NetBSD/sys/dev/ic/isp_target.c
he 084953b8f7 Update from Matthew Jacob:
Correctly account for F-port vs. F-port (no FLOGI_ACC) topologies.
  Make sure we get a port database entry for the fabric name server.
  Preserve fabric logins if the device didn't change across fabric
  or port database changes, or the device has already logged into
  us (e.g., for target/initiator dual role devices like Veritas
  SANbox). Propagate class 3 service parameter changes where devices
  can change roles.

  Fix all occurrences of setting a sendmarker so that setting it
  for one bus on dual bus cards doesn't wipe a pending sendmarker
  for other busses on the same card :-;.

  Comments added and clarifications made in some of the target mode code.
2000-05-13 16:53:03 +00:00

1235 lines
33 KiB
C

/* $NetBSD: isp_target.c,v 1.4 2000/05/13 16:53:04 he Exp $ */
/*
* Machine and OS Independent Target Mode Code for the Qlogic SCSI/FC adapters.
*
* Copyright (c) 1999 by Matthew Jacob
* All rights reserved.
* mjacob@feral.com
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Include header file appropriate for platform we're building on.
*/
#ifdef __NetBSD__
#include <dev/ic/isp_netbsd.h>
#endif
#ifdef __FreeBSD__
#include <dev/isp/isp_freebsd.h>
#endif
#ifdef __OpenBSD__
#include <dev/ic/isp_openbsd.h>
#endif
#ifdef __linux__
#include "isp_linux.h"
#endif
#ifdef ISP_TARGET_MODE
int isp_tdebug = 0;
static void isp_got_msg __P((struct ispsoftc *, int, in_entry_t *));
static void isp_got_msg_fc __P((struct ispsoftc *, int, in_fcentry_t *));
static void isp_notify_ack __P((struct ispsoftc *, void *));
static void isp_handle_atio(struct ispsoftc *, at_entry_t *);
static void isp_handle_atio2(struct ispsoftc *, at2_entry_t *);
static void isp_handle_ctio(struct ispsoftc *, ct_entry_t *);
static void isp_handle_ctio2(struct ispsoftc *, ct2_entry_t *);
/*
* The Qlogic driver gets an interrupt to look at response queue entries.
* Some of these are status completions for initiatior mode commands, but
* if target mode is enabled, we get a whole wad of response queue entries
* to be handled here.
*
* Basically the split into 3 main groups: Lun Enable/Modification responses,
* SCSI Command processing, and Immediate Notification events.
*
* You start by writing a request queue entry to enable target mode (and
* establish some resource limitations which you can modify later).
* The f/w responds with a LUN ENABLE or LUN MODIFY response with
* the status of this action. If the enable was successful, you can expect...
*
* Response queue entries with SCSI commands encapsulate show up in an ATIO
* (Accept Target IO) type- sometimes with enough info to stop the command at
* this level. Ultimately the driver has to feed back to the f/w's request
* queue a sequence of CTIOs (continue target I/O) that describe data to
* be moved and/or status to be sent) and finally finishing with sending
* to the f/w's response queue an ATIO which then completes the handshake
* with the f/w for that command. There's a lot of variations on this theme,
* including flags you can set in the CTIO for the Qlogic 2X00 fibre channel
* cards that 'auto-replenish' the f/w's ATIO count, but this is the basic
* gist of it.
*
* The third group that can show up in the response queue are Immediate
* Notification events. These include things like notifications of SCSI bus
* resets, or Bus Device Reset messages or other messages received. This
* a classic oddbins area. It can get a little wierd because you then turn
* around and acknowledge the Immediate Notify by writing an entry onto the
* request queue and then the f/w turns around and gives you an acknowledgement
* to *your* acknowledgement on the response queue (the idea being to let
* the f/w tell you when the event is *really* over I guess).
*
*/
/*
* A new response queue entry has arrived. The interrupt service code
* has already swizzled it into the platform dependent from canonical form.
*
* Because of the way this driver is designed, unfortunately most of the
* actual synchronization work has to be done in the platform specific
* code- we have no synchroniation primitives in the common code.
*/
int
isp_target_notify(isp, vptr, optrp)
struct ispsoftc *isp;
void *vptr;
u_int16_t *optrp;
{
u_int16_t status, seqid;
union {
at_entry_t *atiop;
at2_entry_t *at2iop;
ct_entry_t *ctiop;
ct2_entry_t *ct2iop;
lun_entry_t *lunenp;
in_entry_t *inotp;
in_fcentry_t *inot_fcp;
na_entry_t *nackp;
na_fcentry_t *nack_fcp;
isphdr_t *hp;
void * *vp;
#define atiop unp.atiop
#define at2iop unp.at2iop
#define ctiop unp.ctiop
#define ct2iop unp.ct2iop
#define lunenp unp.lunenp
#define inotp unp.inotp
#define inot_fcp unp.inot_fcp
#define nackp unp.nackp
#define nack_fcp unp.nack_fcp
#define hdrp unp.hp
} unp;
int bus, rval = 0;
unp.vp = vptr;
ISP_TDQE(isp, "isp_target_notify", (int) *optrp, vptr);
switch(hdrp->rqs_entry_type) {
case RQSTYPE_ATIO:
isp_handle_atio(isp, atiop);
break;
case RQSTYPE_CTIO:
isp_handle_ctio(isp, ctiop);
break;
case RQSTYPE_ATIO2:
isp_handle_atio2(isp, at2iop);
break;
case RQSTYPE_CTIO2:
isp_handle_ctio2(isp, ct2iop);
break;
case RQSTYPE_ENABLE_LUN:
case RQSTYPE_MODIFY_LUN:
(void) isp_async(isp, ISPASYNC_TARGET_ACTION, vptr);
break;
case RQSTYPE_NOTIFY:
/*
* Either the ISP received a SCSI message it can't
* handle, or it's returning an Immed. Notify entry
* we sent. We can send Immed. Notify entries to
* increment the firmware's resource count for them
* (we set this initially in the Enable Lun entry).
*/
bus = 0;
if (IS_FC(isp)) {
status = inot_fcp->in_status;
seqid = inot_fcp->in_seqid;
} else {
status = inotp->in_status & 0xff;
seqid = inotp->in_seqid;
if (IS_DUALBUS(isp)) {
bus = (inotp->in_iid & 0x80) >> 7;
inotp->in_iid &= ~0x80;
}
}
ITDEBUG(2, ("isp_target_notify: Immediate Notify, "
"status=0x%x seqid=0x%x\n", status, seqid));
switch (status) {
case IN_RESET:
(void) isp_async(isp, ISPASYNC_BUS_RESET, &bus);
break;
case IN_MSG_RECEIVED:
case IN_IDE_RECEIVED:
if (IS_FC(isp)) {
isp_got_msg_fc(isp, bus, vptr);
} else {
isp_got_msg(isp, bus, vptr);
}
break;
case IN_RSRC_UNAVAIL:
PRINTF("%s: Firmware out of ATIOs\n", isp->isp_name);
break;
case IN_ABORT_TASK:
PRINTF("%s: Abort Task for Initiator %d RX_ID 0x%x\n",
isp->isp_name, inot_fcp->in_iid, seqid);
break;
case IN_PORT_LOGOUT:
PRINTF("%s: Port Logout for Initiator %d RX_ID 0x%x\n",
isp->isp_name, inot_fcp->in_iid, seqid);
break;
case IN_PORT_CHANGED:
PRINTF("%s: Port Changed for Initiator %d RX_ID 0x%x\n",
isp->isp_name, inot_fcp->in_iid, seqid);
break;
case IN_GLOBAL_LOGO:
PRINTF("%s: All ports logged out\n", isp->isp_name);
break;
default:
PRINTF("%s: bad status (0x%x) in isp_target_notify\n",
isp->isp_name, status);
break;
}
isp_notify_ack(isp, vptr);
break;
case RQSTYPE_NOTIFY_ACK:
/*
* The ISP is acknowledging our acknowledgement of an
* Immediate Notify entry for some asynchronous event.
*/
if (IS_FC(isp)) {
ITDEBUG(2, ("%s: Notify Ack status=0x%x seqid 0x%x\n",
isp->isp_name, nack_fcp->na_status,
nack_fcp->na_seqid));
} else {
ITDEBUG(2, ("%s: Notify Ack event 0x%x status=0x%x "
"seqid 0x%x\n", isp->isp_name, nackp->na_event,
nackp->na_status, nackp->na_seqid));
}
break;
default:
PRINTF("%s: Unknown entry type 0x%x in isp_target_notify",
isp->isp_name, hdrp->rqs_entry_type);
rval = -1;
break;
}
#undef atiop
#undef at2iop
#undef ctiop
#undef ct2iop
#undef lunenp
#undef inotp
#undef inot_fcp
#undef nackp
#undef nack_fcp
#undef hdrp
return (rval);
}
/*
* Toggle (on/off) target mode for bus/target/lun
*
* The caller has checked for overlap and legality.
*
* Note that not all of bus, target or lun can be paid attention to.
* Note also that this action will not be complete until the f/w writes
* response entry. The caller is responsible for synchronizing this.
*/
int
isp_lun_cmd(isp, cmd, bus, tgt, lun, opaque)
struct ispsoftc *isp;
int cmd;
int bus;
int tgt;
int lun;
u_int32_t opaque;
{
lun_entry_t el;
u_int16_t iptr, optr;
void *outp;
MEMZERO(&el, sizeof (el));
if (IS_DUALBUS(isp)) {
el.le_rsvd = (bus & 0x1) << 7;
}
el.le_cmd_count = DFLT_CMD_CNT;
el.le_in_count = DFLT_INOTIFY;
if (cmd == RQSTYPE_ENABLE_LUN) {
if (IS_SCSI(isp)) {
el.le_flags = LUN_TQAE;
el.le_cdb6len = 12;
el.le_cdb7len = 12;
}
} else if (cmd == -RQSTYPE_ENABLE_LUN) {
cmd = RQSTYPE_ENABLE_LUN;
el.le_cmd_count = 0;
el.le_in_count = 0;
} else if (cmd == -RQSTYPE_MODIFY_LUN) {
cmd = RQSTYPE_MODIFY_LUN;
el.le_ops = LUN_CCDECR | LUN_INDECR;
} else {
el.le_ops = LUN_CCINCR | LUN_ININCR;
}
el.le_header.rqs_entry_type = cmd;
el.le_header.rqs_entry_count = 1;
el.le_reserved = opaque;
if (IS_SCSI(isp)) {
el.le_tgt = tgt;
el.le_lun = lun;
#ifndef ISP2100_SCCLUN
} else {
el.le_lun = lun;
#endif
}
if (isp_getrqentry(isp, &iptr, &optr, &outp)) {
PRINTF("%s: Request Queue Overflow in isp_lun_cmd\n",
isp->isp_name);
return (-1);
}
ISP_SWIZ_ENABLE_LUN(isp, outp, &el);
ISP_TDQE(isp, "isp_lun_cmd", (int) optr, &el);
ISP_ADD_REQUEST(isp, iptr);
return (0);
}
int
isp_target_put_entry(isp, ap)
struct ispsoftc *isp;
void *ap;
{
void *outp;
u_int16_t iptr, optr;
u_int8_t etype = ((isphdr_t *) ap)->rqs_entry_type;
if (isp_getrqentry(isp, &iptr, &optr, &outp)) {
PRINTF("%s: Request Queue Overflow in isp_target_put_entry "
"for type 0x%x\n", isp->isp_name, etype);
return (-1);
}
switch (etype) {
case RQSTYPE_ATIO:
ISP_SWIZ_ATIO(isp, outp, ap);
break;
case RQSTYPE_ATIO2:
ISP_SWIZ_ATIO2(isp, outp, ap);
break;
case RQSTYPE_CTIO:
ISP_SWIZ_CTIO(isp, outp, ap);
break;
case RQSTYPE_CTIO2:
ISP_SWIZ_CTIO2(isp, outp, ap);
break;
default:
PRINTF("%s: Unknown type 0x%x in isp_put_entry\n",
isp->isp_name, etype);
return (-1);
}
ISP_TDQE(isp, "isp_target_put_entry", (int) optr, ap);;
ISP_ADD_REQUEST(isp, iptr);
return (0);
}
int
isp_target_put_atio(isp, iid, tgt, lun, ttype, tval)
struct ispsoftc *isp;
int iid;
int tgt;
int lun;
int ttype;
int tval;
{
union {
at_entry_t _atio;
at2_entry_t _atio2;
} atun;
MEMZERO(&atun, sizeof atun);
if (IS_FC(isp)) {
atun._atio2.at_header.rqs_entry_type = RQSTYPE_ATIO2;
atun._atio2.at_header.rqs_entry_count = 1;
#ifdef ISP2100_SCCLUN
atun._atio2.at_scclun = (uint16_t) lun;
#else
atun._atio2.at_lun = (uint8_t) lun;
#endif
atun._atio2.at_status = CT_OK;
} else {
atun._atio.at_header.rqs_entry_type = RQSTYPE_ATIO;
atun._atio.at_header.rqs_entry_count = 1;
atun._atio.at_iid = iid;
atun._atio.at_tgt = tgt;
atun._atio.at_lun = lun;
atun._atio.at_tag_type = ttype;
atun._atio.at_tag_val = tval;
atun._atio.at_status = CT_OK;
}
return (isp_target_put_entry(isp, &atun));
}
/*
* Command completion- both for handling cases of no resources or
* no blackhole driver, or other cases where we have to, inline,
* finish the command sanely, or for normal command completion.
*
* The 'completion' code value has the scsi status byte in the low 8 bits.
* If status is a CHECK CONDITION and bit 8 is nonzero, then bits 12..15 have
* the sense key and bits 16..23 have the ASCQ and bits 24..31 have the ASC
* values.
*
* NB: the key, asc, ascq, cannot be used for parallel SCSI as it doesn't
* NB: inline SCSI sense reporting.
*
* For both parallel && fibre channel, we use the feature that does
* an automatic resource autoreplenish so we don't have then later do
* put of an atio to replenish the f/w's resource count.
*/
int
isp_endcmd(struct ispsoftc *isp, void *arg, u_int32_t code, u_int32_t hdl)
{
int sts;
union {
ct_entry_t _ctio;
ct2_entry_t _ctio2;
} un;
MEMZERO(&un, sizeof un);
sts = code & 0xff;
if (IS_FC(isp)) {
at2_entry_t *aep = arg;
ct2_entry_t *cto = &un._ctio2;
cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2;
cto->ct_header.rqs_entry_count = 1;
cto->ct_iid = aep->at_iid;
#ifndef ISP2100_SCCLUN
cto->ct_lun = aep->at_lun;
#endif
cto->ct_rxid = aep->at_rxid;
cto->rsp.m1.ct_scsi_status = sts & 0xff;
cto->ct_flags = CT2_SENDSTATUS | CT2_NO_DATA | CT2_FLAG_MODE1;
if (hdl == 0) {
cto->ct_flags |= CT2_CCINCR;
}
if (aep->at_datalen) {
cto->ct_resid = aep->at_datalen;
cto->ct_flags |= CT2_DATA_UNDER;
}
if ((sts & 0xff) == SCSI_CHECK && (sts & ECMD_SVALID)) {
cto->rsp.m1.ct_resp[0] = 0xf0;
cto->rsp.m1.ct_resp[2] = (code >> 12) & 0xf;
cto->rsp.m1.ct_resp[7] = 8;
cto->rsp.m1.ct_resp[12] = (code >> 24) & 0xff;
cto->rsp.m1.ct_resp[13] = (code >> 16) & 0xff;
cto->rsp.m1.ct_senselen = 16;
cto->ct_flags |= CT2_SNSLEN_VALID;
}
cto->ct_reserved = hdl;
} else {
at_entry_t *aep = arg;
ct_entry_t *cto = &un._ctio;
cto->ct_header.rqs_entry_type = RQSTYPE_CTIO;
cto->ct_header.rqs_entry_count = 1;
cto->ct_iid = aep->at_iid;
cto->ct_tgt = aep->at_tgt;
cto->ct_lun = aep->at_lun;
cto->ct_tag_type = aep->at_tag_type;
cto->ct_tag_val = aep->at_tag_val;
cto->ct_flags = CT_SENDSTATUS | CT_NO_DATA;
if (hdl == 0) {
cto->ct_flags |= CT_CCINCR;
}
cto->ct_scsi_status = sts;
cto->ct_reserved = hdl;
}
return (isp_target_put_entry(isp, &un));
}
void
isp_target_async(isp, bus, event)
struct ispsoftc *isp;
int bus;
int event;
{
tmd_event_t evt;
tmd_msg_t msg;
switch (event) {
/*
* These three we handle here to propagate an effective bus reset
* upstream, but these do not require any immediate notify actions
* so we return when done.
*/
case ASYNC_LIP_OCCURRED:
case ASYNC_LOOP_UP:
case ASYNC_LOOP_DOWN:
evt.ev_bus = bus;
evt.ev_event = event;
(void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt);
return;
case ASYNC_LOOP_RESET:
case ASYNC_BUS_RESET:
case ASYNC_TIMEOUT_RESET:
if (IS_FC(isp)) {
return; /* we'll be getting an inotify instead */
}
evt.ev_bus = bus;
evt.ev_event = event;
(void) isp_async(isp, ISPASYNC_TARGET_EVENT, &evt);
break;
case ASYNC_DEVICE_RESET:
/*
* Bus Device Reset resets a specific target, so
* we pass this as a synthesized message.
*/
MEMZERO(&msg, sizeof msg);
if (IS_FC(isp)) {
msg.nt_iid =
((fcparam *)isp->isp_param)->isp_loopid;
} else {
msg.nt_iid =
((sdparam *)isp->isp_param)->isp_initiator_id;
}
msg.nt_bus = bus;
msg.nt_msg[0] = MSG_BUS_DEV_RESET;
(void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg);
break;
default:
PRINTF("%s: isp_target_async: unknown event 0x%x\n",
isp->isp_name, event);
break;
}
isp_notify_ack(isp, NULL);
}
/*
* Process a received message.
* The ISP firmware can handle most messages, there are only
* a few that we need to deal with:
* - abort: clean up the current command
* - abort tag and clear queue
*/
static void
isp_got_msg(isp, bus, inp)
struct ispsoftc *isp;
int bus;
in_entry_t *inp;
{
u_int8_t status = inp->in_status & ~QLTM_SVALID;
if (status == IN_IDE_RECEIVED || status == IN_MSG_RECEIVED) {
tmd_msg_t msg;
MEMZERO(&msg, sizeof (msg));
msg.nt_bus = bus;
msg.nt_iid = inp->in_iid;
msg.nt_tgt = inp->in_tgt;
msg.nt_lun = inp->in_lun;
msg.nt_tagtype = inp->in_tag_type;
msg.nt_tagval = inp->in_tag_val;
MEMCPY(msg.nt_msg, inp->in_msg, IN_MSGLEN);
(void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg);
} else {
PRINTF("%s: unknown immediate notify status 0x%x\n",
isp->isp_name, inp->in_status);
}
}
/*
* Synthesize a message from the task management flags in a FCP_CMND_IU.
*/
static void
isp_got_msg_fc(isp, bus, inp)
struct ispsoftc *isp;
int bus;
in_fcentry_t *inp;
{
static char *f1 = "%s: %s from iid %d lun %d seq 0x%x\n";
static char *f2 =
"%s: unknown %s 0x%x lun %d iid %d task flags 0x%x seq 0x%x\n";
if (inp->in_status != IN_MSG_RECEIVED) {
PRINTF(f2, isp->isp_name, "immediate notify status",
inp->in_status, inp->in_lun, inp->in_iid,
inp->in_task_flags, inp->in_seqid);
} else {
tmd_msg_t msg;
MEMZERO(&msg, sizeof (msg));
msg.nt_bus = bus;
msg.nt_iid = inp->in_iid;
#ifdef ISP2100_SCCLUN
msg.nt_lun = inp->in_scclun;
#else
msg.nt_lun = inp->in_lun;
#endif
msg.nt_tagval = inp->in_seqid;
if (inp->in_task_flags & TASK_FLAGS_ABORT_TASK) {
PRINTF(f1, isp->isp_name, "ABORT TASK",
inp->in_iid, inp->in_lun, inp->in_seqid);
msg.nt_msg[0] = MSG_ABORT_TAG;
} else if (inp->in_task_flags & TASK_FLAGS_CLEAR_TASK_SET) {
PRINTF(f1, isp->isp_name, "CLEAR TASK SET",
inp->in_iid, inp->in_lun, inp->in_seqid);
msg.nt_msg[0] = MSG_CLEAR_QUEUE;
} else if (inp->in_task_flags & TASK_FLAGS_TARGET_RESET) {
PRINTF(f1, isp->isp_name, "TARGET RESET",
inp->in_iid, inp->in_lun, inp->in_seqid);
msg.nt_msg[0] = MSG_BUS_DEV_RESET;
} else if (inp->in_task_flags & TASK_FLAGS_CLEAR_ACA) {
PRINTF(f1, isp->isp_name, "CLEAR ACA",
inp->in_iid, inp->in_lun, inp->in_seqid);
/* ???? */
msg.nt_msg[0] = MSG_REL_RECOVERY;
} else if (inp->in_task_flags & TASK_FLAGS_TERMINATE_TASK) {
PRINTF(f1, isp->isp_name, "TERMINATE TASK",
inp->in_iid, inp->in_lun, inp->in_seqid);
msg.nt_msg[0] = MSG_TERM_IO_PROC;
} else {
PRINTF(f2, isp->isp_name, "task flag",
inp->in_status, inp->in_lun, inp->in_iid,
inp->in_task_flags, inp->in_seqid);
}
if (msg.nt_msg[0]) {
(void) isp_async(isp, ISPASYNC_TARGET_MESSAGE, &msg);
}
}
}
static void
isp_notify_ack(isp, arg)
struct ispsoftc *isp;
void *arg;
{
char storage[QENTRY_LEN];
u_int16_t iptr, optr;
void *outp;
if (isp_getrqentry(isp, &iptr, &optr, &outp)) {
PRINTF("%s: Request Queue Overflow For isp_notify_ack\n",
isp->isp_name);
return;
}
MEMZERO(storage, QENTRY_LEN);
if (IS_FC(isp)) {
na_fcentry_t *na = (na_fcentry_t *) storage;
if (arg) {
in_fcentry_t *inp = arg;
MEMCPY(storage, arg, sizeof (isphdr_t));
na->na_iid = inp->in_iid;
#ifdef ISP2100_SCCLUN
na->na_lun = inp->in_scclun;
#else
na->na_lun = inp->in_lun;
#endif
na->na_task_flags = inp->in_task_flags;
na->na_seqid = inp->in_seqid;
na->na_flags = NAFC_RCOUNT;
if (inp->in_status == IN_RESET) {
na->na_flags |= NAFC_RST_CLRD;
}
} else {
na->na_flags = NAFC_RST_CLRD;
}
na->na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK;
na->na_header.rqs_entry_count = 1;
ISP_SWIZ_NOT_ACK_FC(isp, outp, na);
} else {
na_entry_t *na = (na_entry_t *) storage;
if (arg) {
in_entry_t *inp = arg;
MEMCPY(storage, arg, sizeof (isphdr_t));
na->na_iid = inp->in_iid;
na->na_lun = inp->in_lun;
na->na_tgt = inp->in_tgt;
na->na_seqid = inp->in_seqid;
if (inp->in_status == IN_RESET) {
na->na_event = NA_RST_CLRD;
}
} else {
na->na_event = NA_RST_CLRD;
}
na->na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK;
na->na_header.rqs_entry_count = 1;
ISP_SWIZ_NOT_ACK(isp, outp, na);
}
ISP_TDQE(isp, "isp_notify_ack", (int) optr, storage);
ISP_ADD_REQUEST(isp, iptr);
}
static void
isp_handle_atio(isp, aep)
struct ispsoftc *isp;
at_entry_t *aep;
{
int lun;
lun = aep->at_lun;
/*
* The firmware status (except for the QLTM_SVALID bit) indicates
* why this ATIO was sent to us.
*
* If QLTM_SVALID is set, the firware has recommended Sense Data.
*
* If the DISCONNECTS DISABLED bit is set in the flags field,
* we're still connected on the SCSI bus - i.e. the initiator
* did not set DiscPriv in the identify message. We don't care
* about this so it's ignored.
*/
switch(aep->at_status & ~QLTM_SVALID) {
case AT_PATH_INVALID:
/*
* ATIO rejected by the firmware due to disabled lun.
*/
PRINTF("%s: rejected ATIO for disabled lun %d\n",
isp->isp_name, lun);
break;
case AT_NOCAP:
/*
* Requested Capability not available
* We sent an ATIO that overflowed the firmware's
* command resource count.
*/
PRINTF("%s: rejected ATIO for lun %d because of command count"
" overflow\n", isp->isp_name, lun);
break;
case AT_BDR_MSG:
/*
* If we send an ATIO to the firmware to increment
* its command resource count, and the firmware is
* recovering from a Bus Device Reset, it returns
* the ATIO with this status. We set the command
* resource count in the Enable Lun entry and no
* not increment it. Therefore we should never get
* this status here.
*/
PRINTF("%s: ATIO returned for lun %d because it was in the "
" middle of coping with a Bus Device Reset\n",
isp->isp_name, lun);
break;
case AT_CDB: /* Got a CDB */
case AT_PHASE_ERROR: /* Bus Phase Sequence Error */
/*
* Punt to platform specific layer.
*/
(void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep);
break;
case AT_RESET:
/*
* A bus reset came along an blew away this command. Why
* they do this in addition the async event code stuff,
* I dunno.
*
* Ignore it because the async event will clear things
* up for us.
*/
PRINTF("%s: ATIO returned for lun %d from initiator %d because"
" a Bus Reset occurred\n", isp->isp_name, lun,
aep->at_iid);
break;
default:
PRINTF("%s: Unknown ATIO status 0x%x from initiator %d for lun"
" %d\n", isp->isp_name, aep->at_status, aep->at_iid, lun);
(void) isp_target_put_atio(isp, aep->at_iid, aep->at_tgt,
lun, aep->at_tag_type, aep->at_tag_val);
break;
}
}
static void
isp_handle_atio2(isp, aep)
struct ispsoftc *isp;
at2_entry_t *aep;
{
int lun;
#ifdef ISP2100_SCCLUN
lun = aep->at_scclun;
#else
lun = aep->at_lun;
#endif
/*
* The firmware status (except for the QLTM_SVALID bit) indicates
* why this ATIO was sent to us.
*
* If QLTM_SVALID is set, the firware has recommended Sense Data.
*
* If the DISCONNECTS DISABLED bit is set in the flags field,
* we're still connected on the SCSI bus - i.e. the initiator
* did not set DiscPriv in the identify message. We don't care
* about this so it's ignored.
*/
switch(aep->at_status & ~QLTM_SVALID) {
case AT_PATH_INVALID:
/*
* ATIO rejected by the firmware due to disabled lun.
*/
PRINTF("%s: rejected ATIO2 for disabled lun %d\n",
isp->isp_name, lun);
break;
case AT_NOCAP:
/*
* Requested Capability not available
* We sent an ATIO that overflowed the firmware's
* command resource count.
*/
PRINTF("%s: rejected ATIO2 for lun %d because of command count"
" overflow\n", isp->isp_name, lun);
break;
case AT_BDR_MSG:
/*
* If we send an ATIO to the firmware to increment
* its command resource count, and the firmware is
* recovering from a Bus Device Reset, it returns
* the ATIO with this status. We set the command
* resource count in the Enable Lun entry and no
* not increment it. Therefore we should never get
* this status here.
*/
PRINTF("%s: ATIO2 returned for lun %d because it was in the "
" middle of coping with a Bus Device Reset\n",
isp->isp_name, lun);
break;
case AT_CDB: /* Got a CDB */
/*
* Punt to platform specific layer.
*/
(void) isp_async(isp, ISPASYNC_TARGET_ACTION, aep);
break;
case AT_RESET:
/*
* A bus reset came along an blew away this command. Why
* they do this in addition the async event code stuff,
* I dunno.
*
* Ignore it because the async event will clear things
* up for us.
*/
PRINTF("%s: ATIO2 returned for lun %d from initiator %d because"
" a Bus Reset occurred\n", isp->isp_name, lun,
aep->at_iid);
break;
default:
PRINTF("%s: Unknown ATIO2 status 0x%x from initiator %d for lun"
" %d\n", isp->isp_name, aep->at_status, aep->at_iid, lun);
(void) isp_target_put_atio(isp, aep->at_iid, 0, lun, 0, 0);
break;
}
}
static void
isp_handle_ctio(isp, ct)
struct ispsoftc *isp;
ct_entry_t *ct;
{
ISP_SCSI_XFER_T *xs;
int pl = 0;
char *fmsg = NULL;
if (ct->ct_reserved) {
xs = isp_find_xs(isp, ct->ct_reserved);
if (xs == NULL)
pl = 0;
} else {
pl = 2;
xs = NULL;
}
switch(ct->ct_status & ~QLTM_SVALID) {
case CT_OK:
/*
* There are generally 3 possibilities as to why we'd get
* this condition:
* We disconnected after receiving a CDB.
* We sent or received data.
* We sent status & command complete.
*/
if (ct->ct_flags & CT_SENDSTATUS) {
break;
} else if ((ct->ct_flags & CT_DATAMASK) == CT_NO_DATA) {
/*
* Nothing to do in this case.
*/
IDPRINTF(pl, ("%s:CTIO- iid %d disconnected OK\n",
isp->isp_name, ct->ct_iid));
return;
}
break;
case CT_BDR_MSG:
/*
* Bus Device Reset message received or the SCSI Bus has
* been Reset; the firmware has gone to Bus Free.
*
* The firmware generates an async mailbox interupt to
* notify us of this and returns outstanding CTIOs with this
* status. These CTIOs are handled in that same way as
* CT_ABORTED ones, so just fall through here.
*/
fmsg = "Bus Device Reset";
/*FALLTHROUGH*/
case CT_RESET:
if (fmsg == NULL)
fmsg = "Bus Reset";
/*FALLTHROUGH*/
case CT_ABORTED:
/*
* When an Abort message is received the firmware goes to
* Bus Free and returns all outstanding CTIOs with the status
* set, then sends us an Immediate Notify entry.
*/
if (fmsg == NULL)
fmsg = "ABORT TASK sent by Initiator";
PRINTF("%s: CTIO destroyed by %s\n", isp->isp_name, fmsg);
break;
case CT_INVAL:
/*
* CTIO rejected by the firmware due to disabled lun.
* "Cannot Happen".
*/
PRINTF("%s: Firmware rejected CTIO for disabled lun %d\n",
isp->isp_name, ct->ct_lun);
break;
case CT_NOPATH:
/*
* CTIO rejected by the firmware due "no path for the
* nondisconnecting nexus specified". This means that
* we tried to access the bus while a non-disconnecting
* command is in process.
*/
PRINTF("%s: Firmware rejected CTIO for bad nexus %d/%d/%d\n",
isp->isp_name, ct->ct_iid, ct->ct_tgt, ct->ct_lun);
break;
case CT_RSELTMO:
fmsg = "Reselection";
/*FALLTHROUGH*/
case CT_TIMEOUT:
if (fmsg == NULL)
fmsg = "Command";
PRINTF("%s: Firmware timed out on %s\n", isp->isp_name, fmsg);
break;
case CT_ERR:
fmsg = "Completed with Error";
/*FALLTHROUGH*/
case CT_PHASE_ERROR:
if (fmsg == NULL)
fmsg = "Phase Sequence Error";
/*FALLTHROUGH*/
case CT_TERMINATED:
if (fmsg == NULL)
fmsg = "terminated by TERMINATE TRANSFER";
/*FALLTHROUGH*/
case CT_NOACK:
if (fmsg == NULL)
fmsg = "unacknowledged Immediate Notify pending";
PRINTF("%s: CTIO returned by f/w- %s\n", isp->isp_name, fmsg);
#if 0
if (status & SENSEVALID) {
bcopy((caddr_t) (cep + CTIO_SENSE_OFFSET),
(caddr_t) &cdp->cd_sensedata,
sizeof(scsi_sense_t));
cdp->cd_flags |= CDF_SENSEVALID;
}
#endif
break;
default:
PRINTF("%s: Unknown CTIO status 0x%x\n", isp->isp_name,
ct->ct_status & ~QLTM_SVALID);
break;
}
if (xs == NULL) {
/*
* There may be more than one CTIO for a data transfer,
* or this may be a status CTIO we're not monitoring.
*
* The assumption is that they'll all be returned in the
* order we got them.
*/
if (ct->ct_reserved == 0) {
if ((ct->ct_flags & CT_SENDSTATUS) == 0) {
IDPRINTF(pl,
("%s: intermediate CTIO completed ok\n",
isp->isp_name));
} else {
IDPRINTF(pl,
("%s: unmonitored CTIO completed ok\n",
isp->isp_name));
}
} else {
IDPRINTF(pl,
("%s: NO xs for CTIO (handle 0x%x) status 0x%x\n",
isp->isp_name, ct->ct_reserved,
ct->ct_status & ~QLTM_SVALID));
}
} else {
if (ct->ct_flags & CT_SENDSTATUS) {
/*
* Sent status and command complete.
*
* We're now really done with this command, so we
* punt to the platform dependent layers because
* only there can we do the appropriate command
* complete thread synchronization.
*/
IDPRINTF(pl,
("%s:status CTIO complete\n", isp->isp_name));
} else {
/*
* Final CTIO completed. Release DMA resources and
* notify platform dependent layers.
*/
IDPRINTF(pl,
("%s: data CTIO complete\n", isp->isp_name));
ISP_DMAFREE(isp, xs, ct->ct_reserved);
}
(void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct);
/*
* The platform layer will destroy the handle if appropriate.
*/
}
}
static void
isp_handle_ctio2(isp, ct)
struct ispsoftc *isp;
ct2_entry_t *ct;
{
ISP_SCSI_XFER_T *xs;
int pl = 3;
char *fmsg = NULL;
if (ct->ct_reserved) {
xs = isp_find_xs(isp, ct->ct_reserved);
if (xs == NULL)
pl = 0;
} else {
pl = 2;
xs = NULL;
}
switch(ct->ct_status & ~QLTM_SVALID) {
case CT_OK:
/*
* There are generally 2 possibilities as to why we'd get
* this condition:
* We sent or received data.
* We sent status & command complete.
*/
break;
case CT_BDR_MSG:
/*
* Bus Device Reset message received or the SCSI Bus has
* been Reset; the firmware has gone to Bus Free.
*
* The firmware generates an async mailbox interupt to
* notify us of this and returns outstanding CTIOs with this
* status. These CTIOs are handled in that same way as
* CT_ABORTED ones, so just fall through here.
*/
fmsg = "Bus Device Reset";
/*FALLTHROUGH*/
case CT_RESET:
if (fmsg == NULL)
fmsg = "Bus Reset";
/*FALLTHROUGH*/
case CT_ABORTED:
/*
* When an Abort message is received the firmware goes to
* Bus Free and returns all outstanding CTIOs with the status
* set, then sends us an Immediate Notify entry.
*/
if (fmsg == NULL)
fmsg = "ABORT TASK sent by Initiator";
PRINTF("%s: CTIO2 destroyed by %s\n", isp->isp_name, fmsg);
break;
case CT_INVAL:
/*
* CTIO rejected by the firmware - invalid data direction.
*/
PRINTF("%s: CTIO2 had wrong data directiond\n", isp->isp_name);
break;
case CT_NOPATH:
/*
* CTIO rejected by the firmware due "no path for the
* nondisconnecting nexus specified". This means that
* we tried to access the bus while a non-disconnecting
* command is in process.
*/
PRINTF("%s: Firmware rejected CTIO2 for bad nexus %d->%d\n",
isp->isp_name, ct->ct_iid, ct->ct_lun);
break;
case CT_RSELTMO:
fmsg = "Reselection";
/*FALLTHROUGH*/
case CT_TIMEOUT:
if (fmsg == NULL)
fmsg = "Command";
PRINTF("%s: Firmware timed out on %s\n", isp->isp_name, fmsg);
break;
case CT_ERR:
fmsg = "Completed with Error";
/*FALLTHROUGH*/
case CT_PHASE_ERROR: /* Bus phase sequence error */
if (fmsg == NULL)
fmsg = "Phase Sequence Error";
/*FALLTHROUGH*/
case CT_TERMINATED:
if (fmsg == NULL)
fmsg = "terminated by TERMINATE TRANSFER";
/*FALLTHROUGH*/
case CT_LOGOUT:
if (fmsg == NULL)
fmsg = "Port Logout";
/*FALLTHROUGH*/
case CT_PORTNOTAVAIL:
if (fmsg == NULL)
fmsg = "Port not available";
case CT_NOACK:
if (fmsg == NULL)
fmsg = "unacknowledged Immediate Notify pending";
PRINTF("%s: CTIO returned by f/w- %s\n", isp->isp_name, fmsg);
#if 0
if (status & SENSEVALID) {
bcopy((caddr_t) (cep + CTIO_SENSE_OFFSET),
(caddr_t) &cdp->cd_sensedata,
sizeof(scsi_sense_t));
cdp->cd_flags |= CDF_SENSEVALID;
}
#endif
break;
case CT_INVRXID:
/*
* CTIO rejected by the firmware because an invalid RX_ID.
* Just print a message.
*/
PRINTF("%s: CTIO2 completed with Invalid RX_ID 0x%x\n",
isp->isp_name, ct->ct_rxid);
break;
default:
IDPRINTF(pl, ("%s: Unknown CTIO status 0x%x\n", isp->isp_name,
ct->ct_status & ~QLTM_SVALID));
break;
}
if (xs == NULL) {
/*
* There may be more than one CTIO for a data transfer,
* or this may be a status CTIO we're not monitoring.
*
* The assumption is that they'll all be returned in the
* order we got them.
*/
if (ct->ct_reserved == 0) {
if ((ct->ct_flags & CT_SENDSTATUS) == 0) {
IDPRINTF(pl,
("%s: intermediate CTIO completed ok\n",
isp->isp_name));
} else {
IDPRINTF(pl,
("%s: unmonitored CTIO completed ok\n",
isp->isp_name));
}
} else {
IDPRINTF(pl,
("%s: NO xs for CTIO (handle 0x%x) status 0x%x\n",
isp->isp_name, ct->ct_reserved,
ct->ct_status & ~QLTM_SVALID));
}
} else {
if (ct->ct_flags & CT_SENDSTATUS) {
/*
* Sent status and command complete.
*
* We're now really done with this command, so we
* punt to the platform dependent layers because
* only there can we do the appropriate command
* complete thread synchronization.
*/
IDPRINTF(pl,
("%s: status CTIO complete\n", isp->isp_name));
} else {
/*
* Final CTIO completed. Release DMA resources and
* notify platform dependent layers.
*/
IDPRINTF(pl,
("%s: data CTIO complete\n", isp->isp_name));
ISP_DMAFREE(isp, xs, ct->ct_reserved);
}
(void) isp_async(isp, ISPASYNC_TARGET_ACTION, ct);
/*
* The platform layer will destroy the handle if appropriate.
*/
}
}
#endif