NetBSD/sys/dev/nand/nand.h

501 lines
14 KiB
C

/* $NetBSD: nand.h,v 1.19 2018/04/19 21:50:09 christos Exp $ */
/*-
* Copyright (c) 2010 Department of Software Engineering,
* University of Szeged, Hungary
* Copyright (c) 2010 Adam Hoka <ahoka@NetBSD.org>
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by the Department of Software Engineering, University of Szeged, Hungary
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef _NAND_H_
#define _NAND_H_
#include <sys/param.h>
#include <sys/cdefs.h>
#include <sys/bufq.h>
#include <sys/buf.h>
#include <sys/time.h>
#include <dev/nand/onfi.h>
#include <dev/flash/flash.h>
#include <dev/flash/flash_io.h>
#ifdef NAND_DEBUG
#define DPRINTF(x) printf x
#else
#define DPRINTF(x)
#endif
/* same as in linux for compatibility */
enum {
NAND_BAD_MARKER_OFFSET = 0,
NAND_BAD_MARKER_OFFSET_SMALL = 5
};
/* feature flags use in nc_flags */
enum {
NC_BUSWIDTH_16 = (1<<0),
NC_SOURCE_SYNC = (1<<2),
NC_INTERLEAVED_PE = (1<<1),
NC_INTERLEAVED_R = (1<<3),
NC_EXTENDED_PARAM = (1<<4)
};
/* various quirks used in nc_quirks */
enum {
NC_QUIRK_NO_READ_START = (1<<0)
};
enum {
NAND_ECC_READ,
NAND_ECC_WRITE
};
enum {
NAND_ECC_OK,
NAND_ECC_CORRECTED,
NAND_ECC_INVALID,
NAND_ECC_TWOBIT
};
enum {
NAND_ECC_TYPE_HW,
NAND_ECC_TYPE_SW
};
struct nand_bbt {
uint8_t *nbbt_bitmap;
size_t nbbt_size;
};
struct nand_ecc {
size_t necc_offset; /* offset of ecc data in oob */
size_t necc_size; /* size of ecc data in oob */
size_t necc_block_size; /* block size used in ecc calc */
size_t necc_code_size; /* reduntant bytes per block */
int necc_steps; /* pagesize / code size */
int necc_type; /* type of the ecc engine */
};
/**
* nand_chip: structure containing the required information
* about the NAND chip.
*/
struct nand_chip {
struct nand_ecc *nc_ecc; /* ecc information */
uint8_t *nc_oob_cache; /* buffer for oob cache */
uint8_t *nc_page_cache; /* buffer for page cache */
uint8_t *nc_ecc_cache; /* buffer for ecc */
uint64_t nc_size; /* storage size in bytes */
uint32_t nc_page_size; /* page size in bytes */
uint32_t nc_block_size; /* block size in bytes */
uint32_t nc_lun_blocks; /* LUN size in blocks */
uint32_t nc_flags; /* bitfield flags */
uint32_t nc_quirks; /* bitfield quirks */
uint32_t nc_page_shift; /* page shift for page alignment */
uint32_t nc_page_mask; /* page mask for page alignment */
uint32_t nc_block_shift; /* write shift */
uint32_t nc_block_mask; /* write mask */
uint16_t nc_spare_size; /* spare (oob) size in bytes */
uint8_t nc_num_luns; /* number of LUNs */
uint8_t nc_manf_id; /* manufacturer id */
uint8_t nc_dev_id; /* device id */
uint8_t nc_addr_cycles_row; /* row cycles for addressing */
uint8_t nc_addr_cycles_column; /* column cycles for addressing */
uint8_t nc_badmarker_offs; /* offset for marking bad blocks */
bool nc_isonfi; /* if the device is onfi compliant */
};
struct nand_write_cache {
struct bintime nwc_creation;
struct bintime nwc_last_write;
struct bufq_state *nwc_bufq;
uint8_t *nwc_data;
daddr_t nwc_block;
kmutex_t nwc_lock;
bool nwc_write_pending;
struct lwp *nwc_thread;
kcondvar_t nwc_cv;
bool nwc_exiting;
};
/* driver softc for nand */
struct nand_softc {
device_t sc_dev;
device_t controller_dev;
struct nand_interface *nand_if;
void *nand_softc;
struct nand_chip sc_chip;
struct nand_bbt sc_bbt;
size_t sc_part_offset;
size_t sc_part_size;
kmutex_t sc_device_lock; /* serialize access to chip */
struct flash_io sc_flash_io;
};
/* structure holding the nand api */
struct nand_interface {
/* basic nand controller commands */
void (*select) (device_t, bool); /* optional */
void (*command) (device_t, uint8_t);
void (*address) (device_t, uint8_t);
void (*read_buf_1) (device_t, void *, size_t);
void (*read_buf_2) (device_t, void *, size_t);
void (*read_1) (device_t, uint8_t *);
void (*read_2) (device_t, uint16_t *);
void (*write_buf_1) (device_t, const void *, size_t);
void (*write_buf_2) (device_t, const void *, size_t);
void (*write_1) (device_t, uint8_t);
void (*write_2) (device_t, uint16_t);
void (*busy) (device_t);
/* "smart" controllers may override read/program functions */
int (*read_page) (device_t, size_t, uint8_t *); /* optional */
int (*program_page) (device_t, size_t, const uint8_t *); /* optional */
/* functions specific to ecc computation */
int (*ecc_prepare)(device_t, int); /* optional */
int (*ecc_compute)(device_t, const uint8_t *, uint8_t *);
int (*ecc_correct)(device_t, uint8_t *, const uint8_t *,
const uint8_t *);
/* information for the ecc engine */
struct nand_ecc ecc;
/* flash partition information */
const struct flash_partition *part_info;
int part_num;
};
/* attach args */
struct nand_attach_args {
struct nand_interface *naa_nand_if;
};
static __inline void
nand_busy(device_t device)
{
struct nand_softc * const sc = device_private(device);
KASSERT(sc->nand_if->select != NULL);
KASSERT(sc->controller_dev != NULL);
sc->nand_if->select(sc->controller_dev, true);
if (sc->nand_if->busy != NULL) {
sc->nand_if->busy(sc->controller_dev);
}
sc->nand_if->select(sc->controller_dev, false);
}
static __inline void
nand_select(device_t self, bool enable)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->nand_if->select != NULL);
KASSERT(sc->controller_dev != NULL);
sc->nand_if->select(sc->controller_dev, enable);
}
static __inline void
nand_address(device_t self, uint32_t address)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->nand_if->address != NULL);
KASSERT(sc->controller_dev != NULL);
sc->nand_if->address(sc->controller_dev, address);
}
static __inline void
nand_command(device_t self, uint8_t command)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->nand_if->command != NULL);
KASSERT(sc->controller_dev != NULL);
sc->nand_if->command(sc->controller_dev, command);
}
static __inline void
nand_read_1(device_t self, uint8_t *data)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->nand_if->read_1 != NULL);
KASSERT(sc->controller_dev != NULL);
sc->nand_if->read_1(sc->controller_dev, data);
}
static __inline void
nand_write_1(device_t self, uint8_t data)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->nand_if->write_1 != NULL);
KASSERT(sc->controller_dev != NULL);
sc->nand_if->write_1(sc->controller_dev, data);
}
static __inline void
nand_read_2(device_t self, uint16_t *data)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->nand_if->read_2 != NULL);
KASSERT(sc->controller_dev != NULL);
sc->nand_if->read_2(sc->controller_dev, data);
}
static __inline void
nand_write_2(device_t self, uint16_t data)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->nand_if->write_2 != NULL);
KASSERT(sc->controller_dev != NULL);
sc->nand_if->write_2(sc->controller_dev, data);
}
static __inline void
nand_read_buf_1(device_t self, void *buf, size_t size)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->nand_if->read_buf_1 != NULL);
KASSERT(sc->controller_dev != NULL);
sc->nand_if->read_buf_1(sc->controller_dev, buf, size);
}
static __inline void
nand_read_buf_2(device_t self, void *buf, size_t size)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->nand_if->read_buf_2 != NULL);
KASSERT(sc->controller_dev != NULL);
sc->nand_if->read_buf_2(sc->controller_dev, buf, size);
}
static __inline void
nand_write_buf_1(device_t self, const void *buf, size_t size)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->nand_if->write_buf_1 != NULL);
KASSERT(sc->controller_dev != NULL);
sc->nand_if->write_buf_1(sc->controller_dev, buf, size);
}
static __inline void
nand_write_buf_2(device_t self, const void *buf, size_t size)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->nand_if->write_buf_2 != NULL);
KASSERT(sc->controller_dev != NULL);
sc->nand_if->write_buf_2(sc->controller_dev, buf, size);
}
static __inline int
nand_ecc_correct(device_t self, uint8_t *data, const uint8_t *oldcode,
const uint8_t *newcode)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->nand_if->ecc_correct != NULL);
KASSERT(sc->controller_dev != NULL);
return sc->nand_if->ecc_correct(sc->controller_dev, data, oldcode, newcode);
}
static __inline void
nand_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->nand_if->ecc_compute != NULL);
KASSERT(sc->controller_dev != NULL);
sc->nand_if->ecc_compute(sc->controller_dev, data, code);
}
static __inline void
nand_ecc_prepare(device_t self, int mode)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->controller_dev != NULL);
if (sc->nand_if->ecc_prepare != NULL)
sc->nand_if->ecc_prepare(sc->controller_dev, mode);
}
static __inline int
nand_program_page(device_t self, size_t offset, const uint8_t *data)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->nand_if->program_page != NULL);
return sc->nand_if->program_page(self, offset, data);
}
static __inline int
nand_read_page(device_t self, size_t offset, uint8_t *data)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->nand_if->read_page != NULL);
return sc->nand_if->read_page(self, offset, data);
}
#if 0
static __inline bool
nand_block_isbad(device_t self, flash_off_t block)
{
struct nand_softc * const sc = device_private(self);
KASSERT(sc->nand_if->block_isbad != NULL);
KASSERT(sc->controller_dev != NULL);
return sc->nand_if->block_isbad(sc->controller_dev, block);
}
#endif
/* Manufacturer IDs defined by JEDEC */
enum {
NAND_MFR_UNKNOWN = 0x00,
NAND_MFR_AMD = 0x01,
NAND_MFR_FUJITSU = 0x04,
NAND_MFR_RENESAS = 0x07,
NAND_MFR_STMICRO = 0x20,
NAND_MFR_MICRON = 0x2c,
NAND_MFR_NATIONAL = 0x8f,
NAND_MFR_TOSHIBA = 0x98,
NAND_MFR_HYNIX = 0xad,
NAND_MFR_SAMSUNG = 0xec
};
struct nand_manufacturer {
int id;
const char *name;
};
extern const struct nand_manufacturer nand_mfrs[];
/*
* Manufacturer specific parameter functions
*/
int nand_read_parameters_micron(device_t, struct nand_chip *);
int nand_read_parameters_samsung(device_t, struct nand_chip *);
int nand_read_parameters_toshiba(device_t, struct nand_chip *);
/* debug inlines */
static __inline void
nand_dump_data(const char *name, void *data, size_t len)
{
uint8_t *dump = data;
int i;
printf("dumping %s\n--------------\n", name);
for (i = 0; i < len; i++) {
printf("0x%.2hhx ", *dump);
dump++;
}
printf("\n--------------\n");
}
/* flash interface implementation */
int nand_flash_isbad(device_t, flash_off_t, bool *);
int nand_flash_markbad(device_t, flash_off_t);
int nand_flash_write(device_t, flash_off_t, size_t, size_t *, const u_char *);
int nand_flash_read(device_t, flash_off_t, size_t, size_t *, uint8_t *);
int nand_flash_erase(device_t, struct flash_erase_instruction *);
int nand_flash_submit(device_t, struct buf *);
/* nand specific functions */
int nand_erase_block(device_t, size_t);
bool nand_isfactorybad(device_t, flash_off_t);
bool nand_iswornoutbad(device_t, flash_off_t);
bool nand_isbad(device_t, flash_off_t);
void nand_markbad(device_t, size_t);
//int nand_read_page(device_t, size_t, uint8_t *);
int nand_read_oob(device_t, size_t, uint8_t *);
//int nand_program_page(device_t, size_t, const uint8_t *);
device_t nand_attach_mi(struct nand_interface *, device_t);
void nand_init_interface(struct nand_interface *);
void nand_attach_mtdparts(device_t, const char *, const char *);
/* controller drivers may use these functions to get info about the chip */
void nand_read_id(device_t, uint8_t *, uint8_t *);
int nand_read_parameter_page(device_t, struct onfi_parameter_page *);
/*
* default functions for driver development
*/
void nand_default_select(device_t, bool);
int nand_default_ecc_compute(device_t, const uint8_t *, uint8_t *);
int nand_default_ecc_correct(device_t, uint8_t *, const uint8_t *,
const uint8_t *);
int nand_default_read_page(device_t, size_t, uint8_t *);
int nand_default_program_page(device_t, size_t, const uint8_t *);
static __inline void nand_busy(device_t);
static __inline void nand_select(device_t, bool);
static __inline void nand_command(device_t, uint8_t);
static __inline void nand_address(device_t, uint32_t);
static __inline void nand_read_buf_1(device_t, void *, size_t);
static __inline void nand_read_buf_2(device_t, void *, size_t);
static __inline void nand_read_1(device_t, uint8_t *);
static __inline void nand_write_buf_1(device_t, const void *, size_t);
static __inline void nand_write_buf_2(device_t, const void *, size_t);
//static __inline bool nand_block_isbad(device_t, off_t);
//static __inline void nand_block_markbad(device_t, off_t);
//static __inline bool nand_isbusy(device_t);
#endif /* _NAND_H_ */