NetBSD/sys/arch/arm/at91/at91emac.c

917 lines
26 KiB
C

/* $Id: at91emac.c,v 1.2 2008/07/03 01:15:38 matt Exp $ */
/* $NetBSD: at91emac.c,v 1.2 2008/07/03 01:15:38 matt Exp $ */
/*
* Copyright (c) 2007 Embedtronics Oy
* All rights reserved.
*
* Based on arch/arm/ep93xx/epe.c
*
* Copyright (c) 2004 Jesse Off
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.2 2008/07/03 01:15:38 matt Exp $");
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/time.h>
#include <sys/device.h>
#include <uvm/uvm_extern.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <arm/cpufunc.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#include "bpfilter.h"
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#ifdef IPKDB_AT91 // @@@
#include <ipkdb/ipkdb.h>
#endif
#include <arm/at91/at91var.h>
#include <arm/at91/at91emacreg.h>
#include <arm/at91/at91emacvar.h>
#define DEFAULT_MDCDIV 32
#ifndef EMAC_FAST
#define EMAC_FAST
#endif
#ifndef EMAC_FAST
#define EMAC_READ(x) \
bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
#define EMAC_WRITE(x, y) \
bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
#else
#define EMAC_READ(x) ETHREG(x)
#define EMAC_WRITE(x, y) ETHREG(x) = (y)
#endif /* ! EMAC_FAST */
static int emac_match(device_t, cfdata_t, void *);
static void emac_attach(device_t, device_t, void *);
static void emac_init(struct emac_softc *);
static int emac_intr(void* arg);
static int emac_gctx(struct emac_softc *);
static int emac_mediachange(struct ifnet *);
static void emac_mediastatus(struct ifnet *, struct ifmediareq *);
int emac_mii_readreg (device_t, int, int);
void emac_mii_writereg (device_t, int, int, int);
void emac_statchg (device_t );
void emac_tick (void *);
static int emac_ifioctl (struct ifnet *, u_long, void *);
static void emac_ifstart (struct ifnet *);
static void emac_ifwatchdog (struct ifnet *);
static int emac_ifinit (struct ifnet *);
static void emac_ifstop (struct ifnet *, int);
static void emac_setaddr (struct ifnet *);
CFATTACH_DECL(at91emac, sizeof(struct emac_softc),
emac_match, emac_attach, NULL, NULL);
#ifdef EMAC_DEBUG
int emac_debug = EMAC_DEBUG;
#define DPRINTFN(n,fmt) if (emac_debug >= (n)) printf fmt
#else
#define DPRINTFN(n,fmt)
#endif
static int
emac_match(device_t parent, cfdata_t match, void *aux)
{
if (strcmp(match->cf_name, "at91emac") == 0)
return 2;
return 0;
}
static void
emac_attach(device_t parent, device_t self, void *aux)
{
struct emac_softc *sc = device_private(self);
struct at91bus_attach_args *sa = aux;
prop_data_t enaddr;
uint32_t u;
printf("\n");
sc->sc_dev = self;
sc->sc_iot = sa->sa_iot;
sc->sc_pid = sa->sa_pid;
sc->sc_dmat = sa->sa_dmat;
if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh))
panic("%s: Cannot map registers", device_xname(self));
/* enable peripheral clock */
at91_peripheral_clock(sc->sc_pid, 1);
/* configure emac: */
EMAC_WRITE(ETH_CTL, 0); // disable everything
EMAC_WRITE(ETH_IDR, -1); // disable interrupts
EMAC_WRITE(ETH_RBQP, 0); // clear receive
EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
EMAC_WRITE(ETH_TCR, 0); // send nothing
//(void)EMAC_READ(ETH_ISR);
u = EMAC_READ(ETH_TSR);
EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
| ETH_TSR_IDLE | ETH_TSR_RLE
| ETH_TSR_COL|ETH_TSR_OVR)));
u = EMAC_READ(ETH_RSR);
EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
/* Fetch the Ethernet address from property if set. */
enaddr = prop_dictionary_get(device_properties(self), "mac-addr");
if (enaddr != NULL) {
KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
ETHER_ADDR_LEN);
} else {
static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
};
memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
}
at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr, sc);
emac_init(sc);
}
static int
emac_gctx(struct emac_softc *sc)
{
struct ifnet * ifp = &sc->sc_ec.ec_if;
u_int32_t tsr;
tsr = EMAC_READ(ETH_TSR);
if (!(tsr & ETH_TSR_BNQ)) {
// no space left
return 0;
}
// free sent frames
while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) {
int i = sc->txqi % TX_QLEN;
bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0,
sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap);
m_freem(sc->txq[i].m);
DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n", __FUNCTION__, i, sc->txq[i].m, sc->txqc));
sc->txq[i].m = NULL;
sc->txqi = (i + 1) % TX_QLEN;
sc->txqc--;
}
// mark we're free
if (ifp->if_flags & IFF_OACTIVE) {
ifp->if_flags &= ~IFF_OACTIVE;
/* Disable transmit-buffer-free interrupt */
/*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
}
return 1;
}
static int
emac_intr(void *arg)
{
struct emac_softc *sc = (struct emac_softc *)arg;
struct ifnet * ifp = &sc->sc_ec.ec_if;
u_int32_t imr, isr, rsr, ctl;
int bi;
imr = ~EMAC_READ(ETH_IMR);
if (!(imr & (ETH_ISR_RCOM|ETH_ISR_TBRE|ETH_ISR_TIDLE|ETH_ISR_RBNA|ETH_ISR_ROVR))) {
// interrupt not enabled, can't be us
return 0;
}
isr = EMAC_READ(ETH_ISR) & imr;
rsr = EMAC_READ(ETH_RSR); // get receive status register
DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr));
if (isr & ETH_ISR_RBNA) { // out of receive buffers
EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt
ctl = EMAC_READ(ETH_CTL); // get current control register value
EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver
EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit
EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver
ifp->if_ierrors++;
ifp->if_ipackets++;
DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
}
if (isr & ETH_ISR_ROVR) {
EMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt
ifp->if_ierrors++;
ifp->if_ipackets++;
DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
}
if (isr & ETH_ISR_RCOM) { // packet has been received!
uint32_t nfo;
// @@@ if memory is NOT coherent, then we're in trouble @@@@
// bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
// printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr);
DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info));
while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
int fl;
struct mbuf *m;
nfo = sc->RDSC[bi].Info;
fl = (nfo & ETH_RDSC_I_LEN) - 4;
DPRINTFN(2,("## nfo=0x%08X\n", nfo));
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m != NULL) MCLGET(m, M_DONTWAIT);
if (m != NULL && (m->m_flags & M_EXT)) {
bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
MCLBYTES, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat,
sc->rxq[bi].m_dmamap);
sc->rxq[bi].m->m_pkthdr.rcvif = ifp;
sc->rxq[bi].m->m_pkthdr.len =
sc->rxq[bi].m->m_len = fl;
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, sc->rxq[bi].m);
#endif /* NBPFILTER > 0 */
DPRINTFN(2,("received %u bytes packet\n", fl));
(*ifp->if_input)(ifp, sc->rxq[bi].m);
if (mtod(m, intptr_t) & 3) {
m_adj(m, mtod(m, intptr_t) & 3);
}
sc->rxq[bi].m = m;
bus_dmamap_load(sc->sc_dmat,
sc->rxq[bi].m_dmamap,
m->m_ext.ext_buf, MCLBYTES,
NULL, BUS_DMA_NOWAIT);
bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
MCLBYTES, BUS_DMASYNC_PREREAD);
sc->RDSC[bi].Info = 0;
sc->RDSC[bi].Addr =
sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
| (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
} else {
/* Drop packets until we can get replacement
* empty mbufs for the RXDQ.
*/
if (m != NULL) {
m_freem(m);
}
ifp->if_ierrors++;
}
sc->rxqi++;
}
// bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
emac_ifstart(ifp);
}
#if 0 // reloop
irq = EMAC_READ(IntStsC);
if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0)
goto begin;
#endif
return (1);
}
static void
emac_init(struct emac_softc *sc)
{
bus_dma_segment_t segs;
void *addr;
int rsegs, err, i;
struct ifnet * ifp = &sc->sc_ec.ec_if;
uint32_t u;
#if 0
int mdcdiv = DEFAULT_MDCDIV;
#endif
callout_init(&sc->emac_tick_ch, 0);
// ok...
EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
EMAC_WRITE(ETH_IDR, -1); // disable interrupts
EMAC_WRITE(ETH_RBQP, 0); // clear receive
EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
EMAC_WRITE(ETH_TCR, 0); // send nothing
// (void)EMAC_READ(ETH_ISR);
u = EMAC_READ(ETH_TSR);
EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
| ETH_TSR_IDLE | ETH_TSR_RLE
| ETH_TSR_COL|ETH_TSR_OVR)));
u = EMAC_READ(ETH_RSR);
EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
/* configure EMAC */
EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);
#if 0
if (device_cfdata(&sc->sc_dev)->cf_flags)
mdcdiv = device_cfdata(&sc->sc_dev)->cf_flags;
#endif
/* set ethernet address */
EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
| (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
| (sc->sc_enaddr[0]));
EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
| (sc->sc_enaddr[4]));
EMAC_WRITE(ETH_SA2L, 0);
EMAC_WRITE(ETH_SA2H, 0);
EMAC_WRITE(ETH_SA3L, 0);
EMAC_WRITE(ETH_SA3H, 0);
EMAC_WRITE(ETH_SA4L, 0);
EMAC_WRITE(ETH_SA4H, 0);
/* Allocate a page of memory for receive queue descriptors */
sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
sc->rbqlen *= PAGE_SIZE;
DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
&segs, 1, &rsegs, BUS_DMA_WAITOK);
if (err == 0) {
DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
&sc->rbqpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT));
}
if (err == 0) {
DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
&sc->rbqpage_dmamap);
}
if (err == 0) {
DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
}
if (err != 0) {
panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
}
sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
bzero(sc->rbqpage, sc->rbqlen);
/* Set up pointers to start of each queue in kernel addr space.
* Each descriptor queue or status queue entry uses 2 words
*/
sc->RDSC = (void*)sc->rbqpage;
/* Populate the RXQ with mbufs */
sc->rxqi = 0;
for(i = 0; i < RX_QLEN; i++) {
struct mbuf *m;
err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE,
BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
if (err) {
panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err);
}
MGETHDR(m, M_WAIT, MT_DATA);
MCLGET(m, M_WAIT);
sc->rxq[i].m = m;
if (mtod(m, intptr_t) & 3) {
m_adj(m, mtod(m, intptr_t) & 3);
}
err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
m->m_ext.ext_buf, MCLBYTES, NULL,
BUS_DMA_WAITOK);
if (err) {
panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err);
}
sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
| (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
sc->RDSC[i].Info = 0;
bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
MCLBYTES, BUS_DMASYNC_PREREAD);
}
/* prepare transmit queue */
for (i = 0; i < TX_QLEN; i++) {
err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
(BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
&sc->txq[i].m_dmamap);
if (err)
panic("ARGH #1");
sc->txq[i].m = NULL;
}
/* Program each queue's start addr, cur addr, and len registers
* with the physical addresses.
*/
bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen,
BUS_DMASYNC_PREREAD);
addr = (void *)sc->rbqpage_dmamap->dm_segs[0].ds_addr;
EMAC_WRITE(ETH_RBQP, (u_int32_t)addr);
/* Divide HCLK by 32 for MDC clock */
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = emac_mii_readreg;
sc->sc_mii.mii_writereg = emac_mii_writereg;
sc->sc_mii.mii_statchg = emac_statchg;
ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, emac_mediachange,
emac_mediastatus);
mii_attach((device_t )sc, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
// enable / disable interrupts
#if 0
// enable / disable interrupts
EMAC_WRITE(ETH_IDR, -1);
EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
| ETH_ISR_RBNA | ETH_ISR_ROVR);
// (void)EMAC_READ(ETH_ISR); // why
// enable transmitter / receiver
EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
| ETH_CTL_CSR | ETH_CTL_MPE);
#endif
/*
* We can support 802.1Q VLAN-sized frames.
*/
sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
strcpy(ifp->if_xname, device_xname(sc->sc_dev));
ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
ifp->if_ioctl = emac_ifioctl;
ifp->if_start = emac_ifstart;
ifp->if_watchdog = emac_ifwatchdog;
ifp->if_init = emac_ifinit;
ifp->if_stop = emac_ifstop;
ifp->if_timer = 0;
ifp->if_softc = sc;
IFQ_SET_READY(&ifp->if_snd);
if_attach(ifp);
ether_ifattach(ifp, (sc)->sc_enaddr);
}
static int
emac_mediachange(ifp)
struct ifnet *ifp;
{
if (ifp->if_flags & IFF_UP)
emac_ifinit(ifp);
return (0);
}
static void
emac_mediastatus(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct emac_softc *sc = ifp->if_softc;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_active = sc->sc_mii.mii_media_active;
ifmr->ifm_status = sc->sc_mii.mii_media_status;
}
int
emac_mii_readreg(self, phy, reg)
device_t self;
int phy, reg;
{
struct emac_softc *sc;
sc = (struct emac_softc *)self;
EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
| ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
| ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
| ETH_MAN_CODE_IEEE802_3));
while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ;
return (EMAC_READ(ETH_MAN) & ETH_MAN_DATA);
}
void
emac_mii_writereg(self, phy, reg, val)
device_t self;
int phy, reg, val;
{
struct emac_softc *sc;
sc = (struct emac_softc *)self;
EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
| ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
| ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
| ETH_MAN_CODE_IEEE802_3
| (val & ETH_MAN_DATA)));
while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ;
}
void
emac_statchg(self)
device_t self;
{
struct emac_softc *sc = (struct emac_softc *)self;
u_int32_t reg;
/*
* We must keep the MAC and the PHY in sync as
* to the status of full-duplex!
*/
reg = EMAC_READ(ETH_CFG);
if (sc->sc_mii.mii_media_active & IFM_FDX)
reg |= ETH_CFG_FD;
else
reg &= ~ETH_CFG_FD;
EMAC_WRITE(ETH_CFG, reg);
}
void
emac_tick(arg)
void *arg;
{
struct emac_softc* sc = (struct emac_softc *)arg;
struct ifnet * ifp = &sc->sc_ec.ec_if;
int s;
u_int32_t misses;
ifp->if_collisions += EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL);
/* These misses are ok, they will happen if the RAM/CPU can't keep up */
misses = EMAC_READ(ETH_DRFC);
if (misses > 0)
printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
s = splnet();
if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
emac_ifstart(ifp);
}
splx(s);
mii_tick(&sc->sc_mii);
callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
}
static int
emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct emac_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error;
s = splnet();
switch(cmd) {
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
emac_setaddr(ifp);
error = 0;
}
}
splx(s);
return error;
}
static void
emac_ifstart(ifp)
struct ifnet *ifp;
{
struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
struct mbuf *m;
bus_dma_segment_t *segs;
int s, bi, err, nsegs;
s = splnet();
start:
if (emac_gctx(sc) == 0) {
/* Enable transmit-buffer-free interrupt */
EMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
ifp->if_flags |= IFF_OACTIVE;
ifp->if_timer = 10;
splx(s);
return;
}
ifp->if_timer = 0;
IFQ_POLL(&ifp->if_snd, m);
if (m == NULL) {
splx(s);
return;
}
//more:
bi = (sc->txqi + sc->txqc) % TX_QLEN;
if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
BUS_DMA_NOWAIT)) ||
sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
sc->txq[bi].m_dmamap->dm_nsegs > 1) {
/* Copy entire mbuf chain to new single */
struct mbuf *mn;
if (err == 0)
bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
MGETHDR(mn, M_DONTWAIT, MT_DATA);
if (mn == NULL) goto stop;
if (m->m_pkthdr.len > MHLEN) {
MCLGET(mn, M_DONTWAIT);
if ((mn->m_flags & M_EXT) == 0) {
m_freem(mn);
goto stop;
}
}
m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
IFQ_DEQUEUE(&ifp->if_snd, m);
m_freem(m);
m = mn;
bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
BUS_DMA_NOWAIT);
} else {
IFQ_DEQUEUE(&ifp->if_snd, m);
}
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif /* NBPFILTER > 0 */
nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
segs = sc->txq[bi].m_dmamap->dm_segs;
if (nsegs > 1) {
panic("#### ARGH #2");
}
sc->txq[bi].m = m;
sc->txqc++;
DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr,
(unsigned)m->m_pkthdr.len));
#ifdef DIAGNOSTIC
if (sc->txqc > TX_QLEN) {
panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
}
#endif
bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
sc->txq[bi].m_dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
EMAC_WRITE(ETH_TAR, segs->ds_addr);
EMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
goto start;
stop:
splx(s);
return;
}
static void
emac_ifwatchdog(ifp)
struct ifnet *ifp;
{
struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
device_xname(sc->sc_dev), EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG));
}
static int
emac_ifinit(ifp)
struct ifnet *ifp;
{
struct emac_softc *sc = ifp->if_softc;
int s = splnet();
callout_stop(&sc->emac_tick_ch);
// enable interrupts
EMAC_WRITE(ETH_IDR, -1);
EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
| ETH_ISR_RBNA | ETH_ISR_ROVR);
// enable transmitter / receiver
EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
| ETH_CTL_CSR | ETH_CTL_MPE);
mii_mediachg(&sc->sc_mii);
callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
ifp->if_flags |= IFF_RUNNING;
splx(s);
return 0;
}
static void
emac_ifstop(ifp, disable)
struct ifnet *ifp;
int disable;
{
// u_int32_t u;
struct emac_softc *sc = ifp->if_softc;
#if 0
EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
EMAC_WRITE(ETH_IDR, -1); // disable interrupts
// EMAC_WRITE(ETH_RBQP, 0); // clear receive
EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
EMAC_WRITE(ETH_TCR, 0); // send nothing
// (void)EMAC_READ(ETH_ISR);
u = EMAC_READ(ETH_TSR);
EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
| ETH_TSR_IDLE | ETH_TSR_RLE
| ETH_TSR_COL|ETH_TSR_OVR)));
u = EMAC_READ(ETH_RSR);
EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
#endif
callout_stop(&sc->emac_tick_ch);
/* Down the MII. */
mii_down(&sc->sc_mii);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
}
static void
emac_setaddr(ifp)
struct ifnet *ifp;
{
struct emac_softc *sc = ifp->if_softc;
struct ethercom *ac = &sc->sc_ec;
struct ether_multi *enm;
struct ether_multistep step;
u_int8_t ias[3][ETHER_ADDR_LEN];
u_int32_t h, nma = 0, hashes[2] = { 0, 0 };
u_int32_t ctl = EMAC_READ(ETH_CTL);
u_int32_t cfg = EMAC_READ(ETH_CFG);
/* disable receiver temporarily */
EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
if (ifp->if_flags & IFF_PROMISC) {
cfg |= ETH_CFG_CAF;
} else {
cfg &= ~ETH_CFG_CAF;
}
// ETH_CFG_BIG?
ifp->if_flags &= ~IFF_ALLMULTI;
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
cfg |= ETH_CFG_CAF;
hashes[0] = 0xffffffffUL;
hashes[1] = 0xffffffffUL;
ifp->if_flags |= IFF_ALLMULTI;
nma = 0;
break;
}
if (nma < 3) {
/* We can program 3 perfect address filters for mcast */
memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
} else {
/*
* XXX: Datasheet is not very clear here, I'm not sure
* if I'm doing this right. --joff
*/
h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
/* Just want the 6 most-significant bits. */
h = h >> 26;
hashes[ h / 32 ] |= (1 << (h % 32));
cfg |= ETH_CFG_MTI;
}
ETHER_NEXT_MULTI(step, enm);
nma++;
}
// program...
DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
| (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
| (sc->sc_enaddr[0]));
EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
| (sc->sc_enaddr[4]));
if (nma > 1) {
DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
ias[0][0], ias[0][1], ias[0][2],
ias[0][3], ias[0][4], ias[0][5]));
EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
| (ias[0][2] << 16) | (ias[0][1] << 8)
| (ias[0][0]));
EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
| (ias[0][5]));
}
if (nma > 2) {
DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
ias[1][0], ias[1][1], ias[1][2],
ias[1][3], ias[1][4], ias[1][5]));
EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
| (ias[1][2] << 16) | (ias[1][1] << 8)
| (ias[1][0]));
EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
| (ias[1][5]));
}
if (nma > 3) {
DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
ias[2][0], ias[2][1], ias[2][2],
ias[2][3], ias[2][4], ias[2][5]));
EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24)
| (ias[2][2] << 16) | (ias[2][1] << 8)
| (ias[2][0]));
EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8)
| (ias[2][5]));
}
EMAC_WRITE(ETH_HSH, hashes[0]);
EMAC_WRITE(ETH_HSL, hashes[1]);
EMAC_WRITE(ETH_CFG, cfg);
EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
}