NetBSD/sys/dev/usb/xhci.c
2020-06-06 08:56:30 +00:00

4240 lines
110 KiB
C

/* $NetBSD: xhci.c,v 1.132 2020/06/06 08:56:30 skrll Exp $ */
/*
* Copyright (c) 2013 Jonathan A. Kollasch
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* USB rev 2.0 and rev 3.1 specification
* http://www.usb.org/developers/docs/
* xHCI rev 1.1 specification
* http://www.intel.com/technology/usb/spec.htm
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: xhci.c,v 1.132 2020/06/06 08:56:30 skrll Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/device.h>
#include <sys/select.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/sysctl.h>
#include <machine/endian.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbhist.h>
#include <dev/usb/usb_mem.h>
#include <dev/usb/usb_quirks.h>
#include <dev/usb/xhcireg.h>
#include <dev/usb/xhcivar.h>
#include <dev/usb/usbroothub.h>
#ifdef USB_DEBUG
#ifndef XHCI_DEBUG
#define xhcidebug 0
#else /* !XHCI_DEBUG */
#define HEXDUMP(a, b, c) \
do { \
if (xhcidebug > 0) \
hexdump(printf, a, b, c); \
} while (/*CONSTCOND*/0)
static int xhcidebug = 0;
SYSCTL_SETUP(sysctl_hw_xhci_setup, "sysctl hw.xhci setup")
{
int err;
const struct sysctlnode *rnode;
const struct sysctlnode *cnode;
err = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "xhci",
SYSCTL_DESCR("xhci global controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
if (err)
goto fail;
/* control debugging printfs */
err = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
"debug", SYSCTL_DESCR("Enable debugging output"),
NULL, 0, &xhcidebug, sizeof(xhcidebug), CTL_CREATE, CTL_EOL);
if (err)
goto fail;
return;
fail:
aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
}
#endif /* !XHCI_DEBUG */
#endif /* USB_DEBUG */
#ifndef HEXDUMP
#define HEXDUMP(a, b, c)
#endif
#define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(xhcidebug,FMT,A,B,C,D)
#define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(xhcidebug,N,FMT,A,B,C,D)
#define XHCIHIST_FUNC() USBHIST_FUNC()
#define XHCIHIST_CALLED(name) USBHIST_CALLED(xhcidebug)
#define XHCIHIST_CALLARGS(FMT,A,B,C,D) \
USBHIST_CALLARGS(xhcidebug,FMT,A,B,C,D)
#define XHCI_DCI_SLOT 0
#define XHCI_DCI_EP_CONTROL 1
#define XHCI_ICI_INPUT_CONTROL 0
struct xhci_pipe {
struct usbd_pipe xp_pipe;
struct usb_task xp_async_task;
};
#define XHCI_COMMAND_RING_TRBS 256
#define XHCI_EVENT_RING_TRBS 256
#define XHCI_EVENT_RING_SEGMENTS 1
#define XHCI_TRB_3_ED_BIT XHCI_TRB_3_ISP_BIT
static usbd_status xhci_open(struct usbd_pipe *);
static void xhci_close_pipe(struct usbd_pipe *);
static int xhci_intr1(struct xhci_softc * const);
static void xhci_softintr(void *);
static void xhci_poll(struct usbd_bus *);
static struct usbd_xfer *xhci_allocx(struct usbd_bus *, unsigned int);
static void xhci_freex(struct usbd_bus *, struct usbd_xfer *);
static void xhci_abortx(struct usbd_xfer *);
static bool xhci_dying(struct usbd_bus *);
static void xhci_get_lock(struct usbd_bus *, kmutex_t **);
static usbd_status xhci_new_device(device_t, struct usbd_bus *, int, int, int,
struct usbd_port *);
static int xhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
void *, int);
static usbd_status xhci_configure_endpoint(struct usbd_pipe *);
//static usbd_status xhci_unconfigure_endpoint(struct usbd_pipe *);
static usbd_status xhci_reset_endpoint(struct usbd_pipe *);
static usbd_status xhci_stop_endpoint(struct usbd_pipe *);
static void xhci_host_dequeue(struct xhci_ring * const);
static usbd_status xhci_set_dequeue(struct usbd_pipe *);
static usbd_status xhci_do_command(struct xhci_softc * const,
struct xhci_soft_trb * const, int);
static usbd_status xhci_do_command_locked(struct xhci_softc * const,
struct xhci_soft_trb * const, int);
static usbd_status xhci_init_slot(struct usbd_device *, uint32_t);
static void xhci_free_slot(struct xhci_softc *, struct xhci_slot *);
static usbd_status xhci_set_address(struct usbd_device *, uint32_t, bool);
static usbd_status xhci_enable_slot(struct xhci_softc * const,
uint8_t * const);
static usbd_status xhci_disable_slot(struct xhci_softc * const, uint8_t);
static usbd_status xhci_address_device(struct xhci_softc * const,
uint64_t, uint8_t, bool);
static void xhci_set_dcba(struct xhci_softc * const, uint64_t, int);
static usbd_status xhci_update_ep0_mps(struct xhci_softc * const,
struct xhci_slot * const, u_int);
static usbd_status xhci_ring_init(struct xhci_softc * const,
struct xhci_ring **, size_t, size_t);
static void xhci_ring_free(struct xhci_softc * const,
struct xhci_ring ** const);
static void xhci_setup_ctx(struct usbd_pipe *);
static void xhci_setup_route(struct usbd_pipe *, uint32_t *);
static void xhci_setup_tthub(struct usbd_pipe *, uint32_t *);
static void xhci_setup_maxburst(struct usbd_pipe *, uint32_t *);
static uint32_t xhci_bival2ival(uint32_t, uint32_t);
static void xhci_noop(struct usbd_pipe *);
static usbd_status xhci_root_intr_transfer(struct usbd_xfer *);
static usbd_status xhci_root_intr_start(struct usbd_xfer *);
static void xhci_root_intr_abort(struct usbd_xfer *);
static void xhci_root_intr_close(struct usbd_pipe *);
static void xhci_root_intr_done(struct usbd_xfer *);
static usbd_status xhci_device_ctrl_transfer(struct usbd_xfer *);
static usbd_status xhci_device_ctrl_start(struct usbd_xfer *);
static void xhci_device_ctrl_abort(struct usbd_xfer *);
static void xhci_device_ctrl_close(struct usbd_pipe *);
static void xhci_device_ctrl_done(struct usbd_xfer *);
static usbd_status xhci_device_intr_transfer(struct usbd_xfer *);
static usbd_status xhci_device_intr_start(struct usbd_xfer *);
static void xhci_device_intr_abort(struct usbd_xfer *);
static void xhci_device_intr_close(struct usbd_pipe *);
static void xhci_device_intr_done(struct usbd_xfer *);
static usbd_status xhci_device_bulk_transfer(struct usbd_xfer *);
static usbd_status xhci_device_bulk_start(struct usbd_xfer *);
static void xhci_device_bulk_abort(struct usbd_xfer *);
static void xhci_device_bulk_close(struct usbd_pipe *);
static void xhci_device_bulk_done(struct usbd_xfer *);
static const struct usbd_bus_methods xhci_bus_methods = {
.ubm_open = xhci_open,
.ubm_softint = xhci_softintr,
.ubm_dopoll = xhci_poll,
.ubm_allocx = xhci_allocx,
.ubm_freex = xhci_freex,
.ubm_abortx = xhci_abortx,
.ubm_dying = xhci_dying,
.ubm_getlock = xhci_get_lock,
.ubm_newdev = xhci_new_device,
.ubm_rhctrl = xhci_roothub_ctrl,
};
static const struct usbd_pipe_methods xhci_root_intr_methods = {
.upm_transfer = xhci_root_intr_transfer,
.upm_start = xhci_root_intr_start,
.upm_abort = xhci_root_intr_abort,
.upm_close = xhci_root_intr_close,
.upm_cleartoggle = xhci_noop,
.upm_done = xhci_root_intr_done,
};
static const struct usbd_pipe_methods xhci_device_ctrl_methods = {
.upm_transfer = xhci_device_ctrl_transfer,
.upm_start = xhci_device_ctrl_start,
.upm_abort = xhci_device_ctrl_abort,
.upm_close = xhci_device_ctrl_close,
.upm_cleartoggle = xhci_noop,
.upm_done = xhci_device_ctrl_done,
};
static const struct usbd_pipe_methods xhci_device_isoc_methods = {
.upm_cleartoggle = xhci_noop,
};
static const struct usbd_pipe_methods xhci_device_bulk_methods = {
.upm_transfer = xhci_device_bulk_transfer,
.upm_start = xhci_device_bulk_start,
.upm_abort = xhci_device_bulk_abort,
.upm_close = xhci_device_bulk_close,
.upm_cleartoggle = xhci_noop,
.upm_done = xhci_device_bulk_done,
};
static const struct usbd_pipe_methods xhci_device_intr_methods = {
.upm_transfer = xhci_device_intr_transfer,
.upm_start = xhci_device_intr_start,
.upm_abort = xhci_device_intr_abort,
.upm_close = xhci_device_intr_close,
.upm_cleartoggle = xhci_noop,
.upm_done = xhci_device_intr_done,
};
static inline uint32_t
xhci_read_1(const struct xhci_softc * const sc, bus_size_t offset)
{
return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
}
static inline uint32_t
xhci_read_2(const struct xhci_softc * const sc, bus_size_t offset)
{
return bus_space_read_2(sc->sc_iot, sc->sc_ioh, offset);
}
static inline uint32_t
xhci_read_4(const struct xhci_softc * const sc, bus_size_t offset)
{
return bus_space_read_4(sc->sc_iot, sc->sc_ioh, offset);
}
static inline void
xhci_write_1(const struct xhci_softc * const sc, bus_size_t offset,
uint32_t value)
{
bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, value);
}
#if 0 /* unused */
static inline void
xhci_write_4(const struct xhci_softc * const sc, bus_size_t offset,
uint32_t value)
{
bus_space_write_4(sc->sc_iot, sc->sc_ioh, offset, value);
}
#endif /* unused */
static inline uint32_t
xhci_cap_read_4(const struct xhci_softc * const sc, bus_size_t offset)
{
return bus_space_read_4(sc->sc_iot, sc->sc_cbh, offset);
}
static inline uint32_t
xhci_op_read_4(const struct xhci_softc * const sc, bus_size_t offset)
{
return bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
}
static inline void
xhci_op_write_4(const struct xhci_softc * const sc, bus_size_t offset,
uint32_t value)
{
bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value);
}
static inline uint64_t
xhci_op_read_8(const struct xhci_softc * const sc, bus_size_t offset)
{
uint64_t value;
if (sc->sc_ac64) {
#ifdef XHCI_USE_BUS_SPACE_8
value = bus_space_read_8(sc->sc_iot, sc->sc_obh, offset);
#else
value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_obh,
offset + 4) << 32;
#endif
} else {
value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
}
return value;
}
static inline void
xhci_op_write_8(const struct xhci_softc * const sc, bus_size_t offset,
uint64_t value)
{
if (sc->sc_ac64) {
#ifdef XHCI_USE_BUS_SPACE_8
bus_space_write_8(sc->sc_iot, sc->sc_obh, offset, value);
#else
bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 0,
(value >> 0) & 0xffffffff);
bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 4,
(value >> 32) & 0xffffffff);
#endif
} else {
bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value);
}
}
static inline void
xhci_op_barrier(const struct xhci_softc * const sc, bus_size_t offset,
bus_size_t len, int flags)
{
bus_space_barrier(sc->sc_iot, sc->sc_obh, offset, len, flags);
}
static inline uint32_t
xhci_rt_read_4(const struct xhci_softc * const sc, bus_size_t offset)
{
return bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
}
static inline void
xhci_rt_write_4(const struct xhci_softc * const sc, bus_size_t offset,
uint32_t value)
{
bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value);
}
#if 0 /* unused */
static inline uint64_t
xhci_rt_read_8(const struct xhci_softc * const sc, bus_size_t offset)
{
uint64_t value;
if (sc->sc_ac64) {
#ifdef XHCI_USE_BUS_SPACE_8
value = bus_space_read_8(sc->sc_iot, sc->sc_rbh, offset);
#else
value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_rbh,
offset + 4) << 32;
#endif
} else {
value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
}
return value;
}
#endif /* unused */
static inline void
xhci_rt_write_8(const struct xhci_softc * const sc, bus_size_t offset,
uint64_t value)
{
if (sc->sc_ac64) {
#ifdef XHCI_USE_BUS_SPACE_8
bus_space_write_8(sc->sc_iot, sc->sc_rbh, offset, value);
#else
bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 0,
(value >> 0) & 0xffffffff);
bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 4,
(value >> 32) & 0xffffffff);
#endif
} else {
bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value);
}
}
#if 0 /* unused */
static inline uint32_t
xhci_db_read_4(const struct xhci_softc * const sc, bus_size_t offset)
{
return bus_space_read_4(sc->sc_iot, sc->sc_dbh, offset);
}
#endif /* unused */
static inline void
xhci_db_write_4(const struct xhci_softc * const sc, bus_size_t offset,
uint32_t value)
{
bus_space_write_4(sc->sc_iot, sc->sc_dbh, offset, value);
}
/* --- */
static inline uint8_t
xhci_ep_get_type(usb_endpoint_descriptor_t * const ed)
{
u_int eptype = 0;
switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
case UE_CONTROL:
eptype = 0x0;
break;
case UE_ISOCHRONOUS:
eptype = 0x1;
break;
case UE_BULK:
eptype = 0x2;
break;
case UE_INTERRUPT:
eptype = 0x3;
break;
}
if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
(UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
return eptype | 0x4;
else
return eptype;
}
static u_int
xhci_ep_get_dci(usb_endpoint_descriptor_t * const ed)
{
/* xHCI 1.0 section 4.5.1 */
u_int epaddr = UE_GET_ADDR(ed->bEndpointAddress);
u_int in = 0;
if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
(UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
in = 1;
return epaddr * 2 + in;
}
static inline u_int
xhci_dci_to_ici(const u_int i)
{
return i + 1;
}
static inline void *
xhci_slot_get_dcv(struct xhci_softc * const sc, struct xhci_slot * const xs,
const u_int dci)
{
return KERNADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
}
#if 0 /* unused */
static inline bus_addr_t
xhci_slot_get_dcp(struct xhci_softc * const sc, struct xhci_slot * const xs,
const u_int dci)
{
return DMAADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
}
#endif /* unused */
static inline void *
xhci_slot_get_icv(struct xhci_softc * const sc, struct xhci_slot * const xs,
const u_int ici)
{
return KERNADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
}
static inline bus_addr_t
xhci_slot_get_icp(struct xhci_softc * const sc, struct xhci_slot * const xs,
const u_int ici)
{
return DMAADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
}
static inline struct xhci_trb *
xhci_ring_trbv(struct xhci_ring * const xr, u_int idx)
{
return KERNADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
}
static inline bus_addr_t
xhci_ring_trbp(struct xhci_ring * const xr, u_int idx)
{
return DMAADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
}
static inline void
xhci_xfer_put_trb(struct xhci_xfer * const xx, u_int idx,
uint64_t parameter, uint32_t status, uint32_t control)
{
KASSERTMSG(idx < xx->xx_ntrb, "idx=%u xx_ntrb=%u", idx, xx->xx_ntrb);
xx->xx_trb[idx].trb_0 = parameter;
xx->xx_trb[idx].trb_2 = status;
xx->xx_trb[idx].trb_3 = control;
}
static inline void
xhci_trb_put(struct xhci_trb * const trb, uint64_t parameter, uint32_t status,
uint32_t control)
{
trb->trb_0 = htole64(parameter);
trb->trb_2 = htole32(status);
trb->trb_3 = htole32(control);
}
static int
xhci_trb_get_idx(struct xhci_ring *xr, uint64_t trb_0, int *idx)
{
/* base address of TRBs */
bus_addr_t trbp = xhci_ring_trbp(xr, 0);
/* trb_0 range sanity check */
if (trb_0 == 0 || trb_0 < trbp ||
(trb_0 - trbp) % sizeof(struct xhci_trb) != 0 ||
(trb_0 - trbp) / sizeof(struct xhci_trb) >= xr->xr_ntrb) {
return 1;
}
*idx = (trb_0 - trbp) / sizeof(struct xhci_trb);
return 0;
}
static unsigned int
xhci_get_epstate(struct xhci_softc * const sc, struct xhci_slot * const xs,
u_int dci)
{
uint32_t *cp;
usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
cp = xhci_slot_get_dcv(sc, xs, dci);
return XHCI_EPCTX_0_EPSTATE_GET(le32toh(cp[0]));
}
static inline unsigned int
xhci_ctlrport2bus(struct xhci_softc * const sc, unsigned int ctlrport)
{
const unsigned int port = ctlrport - 1;
const uint8_t bit = __BIT(port % NBBY);
return __SHIFTOUT(sc->sc_ctlrportbus[port / NBBY], bit);
}
/*
* Return the roothub port for a controller port. Both are 1..n.
*/
static inline unsigned int
xhci_ctlrport2rhport(struct xhci_softc * const sc, unsigned int ctrlport)
{
return sc->sc_ctlrportmap[ctrlport - 1];
}
/*
* Return the controller port for a bus roothub port. Both are 1..n.
*/
static inline unsigned int
xhci_rhport2ctlrport(struct xhci_softc * const sc, unsigned int bn,
unsigned int rhport)
{
return sc->sc_rhportmap[bn][rhport - 1];
}
/* --- */
void
xhci_childdet(device_t self, device_t child)
{
struct xhci_softc * const sc = device_private(self);
KASSERT((sc->sc_child == child) || (sc->sc_child2 == child));
if (child == sc->sc_child2)
sc->sc_child2 = NULL;
else if (child == sc->sc_child)
sc->sc_child = NULL;
}
int
xhci_detach(struct xhci_softc *sc, int flags)
{
int rv = 0;
if (sc->sc_child2 != NULL) {
rv = config_detach(sc->sc_child2, flags);
if (rv != 0)
return rv;
KASSERT(sc->sc_child2 == NULL);
}
if (sc->sc_child != NULL) {
rv = config_detach(sc->sc_child, flags);
if (rv != 0)
return rv;
KASSERT(sc->sc_child == NULL);
}
/* XXX unconfigure/free slots */
/* verify: */
xhci_rt_write_4(sc, XHCI_IMAN(0), 0);
xhci_op_write_4(sc, XHCI_USBCMD, 0);
/* do we need to wait for stop? */
xhci_op_write_8(sc, XHCI_CRCR, 0);
xhci_ring_free(sc, &sc->sc_cr);
cv_destroy(&sc->sc_command_cv);
cv_destroy(&sc->sc_cmdbusy_cv);
xhci_rt_write_4(sc, XHCI_ERSTSZ(0), 0);
xhci_rt_write_8(sc, XHCI_ERSTBA(0), 0);
xhci_rt_write_8(sc, XHCI_ERDP(0), 0 | XHCI_ERDP_BUSY);
xhci_ring_free(sc, &sc->sc_er);
usb_freemem(&sc->sc_bus, &sc->sc_eventst_dma);
xhci_op_write_8(sc, XHCI_DCBAAP, 0);
usb_freemem(&sc->sc_bus, &sc->sc_dcbaa_dma);
kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) * sc->sc_maxslots);
kmem_free(sc->sc_ctlrportbus,
howmany(sc->sc_maxports * sizeof(uint8_t), NBBY));
kmem_free(sc->sc_ctlrportmap, sc->sc_maxports * sizeof(int));
for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
kmem_free(sc->sc_rhportmap[j], sc->sc_maxports * sizeof(int));
}
mutex_destroy(&sc->sc_lock);
mutex_destroy(&sc->sc_intr_lock);
pool_cache_destroy(sc->sc_xferpool);
return rv;
}
int
xhci_activate(device_t self, enum devact act)
{
struct xhci_softc * const sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
sc->sc_dying = true;
return 0;
default:
return EOPNOTSUPP;
}
}
bool
xhci_suspend(device_t dv, const pmf_qual_t *qual)
{
return false;
}
bool
xhci_resume(device_t dv, const pmf_qual_t *qual)
{
return false;
}
bool
xhci_shutdown(device_t self, int flags)
{
return false;
}
static int
xhci_hc_reset(struct xhci_softc * const sc)
{
uint32_t usbcmd, usbsts;
int i;
/* Check controller not ready */
for (i = 0; i < XHCI_WAIT_CNR; i++) {
usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
if ((usbsts & XHCI_STS_CNR) == 0)
break;
usb_delay_ms(&sc->sc_bus, 1);
}
if (i >= XHCI_WAIT_CNR) {
aprint_error_dev(sc->sc_dev, "controller not ready timeout\n");
return EIO;
}
/* Halt controller */
usbcmd = 0;
xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
usb_delay_ms(&sc->sc_bus, 1);
/* Reset controller */
usbcmd = XHCI_CMD_HCRST;
xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
for (i = 0; i < XHCI_WAIT_HCRST; i++) {
/*
* Wait 1ms first. Existing Intel xHCI requies 1ms delay to
* prevent system hang (Errata).
*/
usb_delay_ms(&sc->sc_bus, 1);
usbcmd = xhci_op_read_4(sc, XHCI_USBCMD);
if ((usbcmd & XHCI_CMD_HCRST) == 0)
break;
}
if (i >= XHCI_WAIT_HCRST) {
aprint_error_dev(sc->sc_dev, "host controller reset timeout\n");
return EIO;
}
/* Check controller not ready */
for (i = 0; i < XHCI_WAIT_CNR; i++) {
usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
if ((usbsts & XHCI_STS_CNR) == 0)
break;
usb_delay_ms(&sc->sc_bus, 1);
}
if (i >= XHCI_WAIT_CNR) {
aprint_error_dev(sc->sc_dev,
"controller not ready timeout after reset\n");
return EIO;
}
return 0;
}
/* 7.2 xHCI Support Protocol Capability */
static void
xhci_id_protocols(struct xhci_softc *sc, bus_size_t ecp)
{
XHCIHIST_FUNC(); XHCIHIST_CALLED();
/* XXX Cache this lot */
const uint32_t w0 = xhci_read_4(sc, ecp);
const uint32_t w4 = xhci_read_4(sc, ecp + 4);
const uint32_t w8 = xhci_read_4(sc, ecp + 8);
const uint32_t wc = xhci_read_4(sc, ecp + 0xc);
aprint_debug_dev(sc->sc_dev,
" SP: 0x%08x 0x%08x 0x%08x 0x%08x\n", w0, w4, w8, wc);
if (w4 != XHCI_XECP_USBID)
return;
const int major = XHCI_XECP_SP_W0_MAJOR(w0);
const int minor = XHCI_XECP_SP_W0_MINOR(w0);
const uint8_t cpo = XHCI_XECP_SP_W8_CPO(w8);
const uint8_t cpc = XHCI_XECP_SP_W8_CPC(w8);
const uint16_t mm = __SHIFTOUT(w0, __BITS(31, 16));
switch (mm) {
case 0x0200:
case 0x0300:
case 0x0301:
case 0x0310:
aprint_debug_dev(sc->sc_dev, " %s ports %d - %d\n",
major == 3 ? "ss" : "hs", cpo, cpo + cpc -1);
break;
default:
aprint_error_dev(sc->sc_dev, " unknown major/minor (%d/%d)\n",
major, minor);
return;
}
const size_t bus = (major == 3) ? 0 : 1;
/* Index arrays with 0..n-1 where ports are numbered 1..n */
for (size_t cp = cpo - 1; cp < cpo + cpc - 1; cp++) {
if (sc->sc_ctlrportmap[cp] != 0) {
aprint_error_dev(sc->sc_dev, "controller port %zu "
"already assigned", cp);
continue;
}
sc->sc_ctlrportbus[cp / NBBY] |=
bus == 0 ? 0 : __BIT(cp % NBBY);
const size_t rhp = sc->sc_rhportcount[bus]++;
KASSERTMSG(sc->sc_rhportmap[bus][rhp] == 0,
"bus %zu rhp %zu is %d", bus, rhp,
sc->sc_rhportmap[bus][rhp]);
sc->sc_rhportmap[bus][rhp] = cp + 1;
sc->sc_ctlrportmap[cp] = rhp + 1;
}
}
/* Process extended capabilities */
static void
xhci_ecp(struct xhci_softc *sc, uint32_t hcc)
{
XHCIHIST_FUNC(); XHCIHIST_CALLED();
bus_size_t ecp = XHCI_HCC_XECP(hcc) * 4;
while (ecp != 0) {
uint32_t ecr = xhci_read_4(sc, ecp);
aprint_debug_dev(sc->sc_dev, "ECR: 0x%08x\n", ecr);
switch (XHCI_XECP_ID(ecr)) {
case XHCI_ID_PROTOCOLS: {
xhci_id_protocols(sc, ecp);
break;
}
case XHCI_ID_USB_LEGACY: {
uint8_t bios_sem;
/* Take host controller ownership from BIOS */
bios_sem = xhci_read_1(sc, ecp + XHCI_XECP_BIOS_SEM);
if (bios_sem) {
/* sets xHCI to be owned by OS */
xhci_write_1(sc, ecp + XHCI_XECP_OS_SEM, 1);
aprint_debug_dev(sc->sc_dev,
"waiting for BIOS to give up control\n");
for (int i = 0; i < 5000; i++) {
bios_sem = xhci_read_1(sc, ecp +
XHCI_XECP_BIOS_SEM);
if (bios_sem == 0)
break;
DELAY(1000);
}
if (bios_sem) {
aprint_error_dev(sc->sc_dev,
"timed out waiting for BIOS\n");
}
}
break;
}
default:
break;
}
ecr = xhci_read_4(sc, ecp);
if (XHCI_XECP_NEXT(ecr) == 0) {
ecp = 0;
} else {
ecp += XHCI_XECP_NEXT(ecr) * 4;
}
}
}
#define XHCI_HCCPREV1_BITS \
"\177\020" /* New bitmask */ \
"f\020\020XECP\0" \
"f\014\4MAXPSA\0" \
"b\013CFC\0" \
"b\012SEC\0" \
"b\011SBD\0" \
"b\010FSE\0" \
"b\7NSS\0" \
"b\6LTC\0" \
"b\5LHRC\0" \
"b\4PIND\0" \
"b\3PPC\0" \
"b\2CZC\0" \
"b\1BNC\0" \
"b\0AC64\0" \
"\0"
#define XHCI_HCCV1_x_BITS \
"\177\020" /* New bitmask */ \
"f\020\020XECP\0" \
"f\014\4MAXPSA\0" \
"b\013CFC\0" \
"b\012SEC\0" \
"b\011SPC\0" \
"b\010PAE\0" \
"b\7NSS\0" \
"b\6LTC\0" \
"b\5LHRC\0" \
"b\4PIND\0" \
"b\3PPC\0" \
"b\2CSZ\0" \
"b\1BNC\0" \
"b\0AC64\0" \
"\0"
#define XHCI_HCC2_BITS \
"\177\020" /* New bitmask */ \
"b\7ETC_TSC\0" \
"b\6ETC\0" \
"b\5CIC\0" \
"b\4LEC\0" \
"b\3CTC\0" \
"b\2FSC\0" \
"b\1CMC\0" \
"b\0U3C\0" \
"\0"
void
xhci_start(struct xhci_softc *sc)
{
xhci_rt_write_4(sc, XHCI_IMAN(0), XHCI_IMAN_INTR_ENA);
if ((sc->sc_quirks & XHCI_QUIRK_INTEL) != 0)
/* Intel xhci needs interrupt rate moderated. */
xhci_rt_write_4(sc, XHCI_IMOD(0), XHCI_IMOD_DEFAULT_LP);
else
xhci_rt_write_4(sc, XHCI_IMOD(0), 0);
aprint_debug_dev(sc->sc_dev, "current IMOD %u\n",
xhci_rt_read_4(sc, XHCI_IMOD(0)));
/* Go! */
xhci_op_write_4(sc, XHCI_USBCMD, XHCI_CMD_INTE|XHCI_CMD_RS);
aprint_debug_dev(sc->sc_dev, "USBCMD 0x%08"PRIx32"\n",
xhci_op_read_4(sc, XHCI_USBCMD));
}
int
xhci_init(struct xhci_softc *sc)
{
bus_size_t bsz;
uint32_t hcs1, hcs2, hcs3, hcc, dboff, rtsoff, hcc2;
uint32_t pagesize, config;
int i = 0;
uint16_t hciversion;
uint8_t caplength;
XHCIHIST_FUNC(); XHCIHIST_CALLED();
/* Set up the bus struct for the usb 3 and usb 2 buses */
sc->sc_bus.ub_methods = &xhci_bus_methods;
sc->sc_bus.ub_pipesize = sizeof(struct xhci_pipe);
sc->sc_bus.ub_usedma = true;
sc->sc_bus.ub_hcpriv = sc;
sc->sc_bus2.ub_methods = &xhci_bus_methods;
sc->sc_bus2.ub_pipesize = sizeof(struct xhci_pipe);
sc->sc_bus2.ub_revision = USBREV_2_0;
sc->sc_bus2.ub_usedma = true;
sc->sc_bus2.ub_hcpriv = sc;
sc->sc_bus2.ub_dmatag = sc->sc_bus.ub_dmatag;
caplength = xhci_read_1(sc, XHCI_CAPLENGTH);
hciversion = xhci_read_2(sc, XHCI_HCIVERSION);
if (hciversion < XHCI_HCIVERSION_0_96 ||
hciversion >= 0x0200) {
aprint_normal_dev(sc->sc_dev,
"xHCI version %x.%x not known to be supported\n",
(hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
} else {
aprint_verbose_dev(sc->sc_dev, "xHCI version %x.%x\n",
(hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
}
if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, 0, caplength,
&sc->sc_cbh) != 0) {
aprint_error_dev(sc->sc_dev, "capability subregion failure\n");
return ENOMEM;
}
hcs1 = xhci_cap_read_4(sc, XHCI_HCSPARAMS1);
sc->sc_maxslots = XHCI_HCS1_MAXSLOTS(hcs1);
sc->sc_maxintrs = XHCI_HCS1_MAXINTRS(hcs1);
sc->sc_maxports = XHCI_HCS1_MAXPORTS(hcs1);
hcs2 = xhci_cap_read_4(sc, XHCI_HCSPARAMS2);
hcs3 = xhci_cap_read_4(sc, XHCI_HCSPARAMS3);
aprint_debug_dev(sc->sc_dev,
"hcs1=%"PRIx32" hcs2=%"PRIx32" hcs3=%"PRIx32"\n", hcs1, hcs2, hcs3);
hcc = xhci_cap_read_4(sc, XHCI_HCCPARAMS);
sc->sc_ac64 = XHCI_HCC_AC64(hcc);
sc->sc_ctxsz = XHCI_HCC_CSZ(hcc) ? 64 : 32;
char sbuf[128];
if (hciversion < XHCI_HCIVERSION_1_0)
snprintb(sbuf, sizeof(sbuf), XHCI_HCCPREV1_BITS, hcc);
else
snprintb(sbuf, sizeof(sbuf), XHCI_HCCV1_x_BITS, hcc);
aprint_debug_dev(sc->sc_dev, "hcc=%s\n", sbuf);
aprint_debug_dev(sc->sc_dev, "xECP %" __PRIxBITS "\n",
XHCI_HCC_XECP(hcc) * 4);
if (hciversion >= XHCI_HCIVERSION_1_1) {
hcc2 = xhci_cap_read_4(sc, XHCI_HCCPARAMS2);
snprintb(sbuf, sizeof(sbuf), XHCI_HCC2_BITS, hcc2);
aprint_debug_dev(sc->sc_dev, "hcc2=%s\n", sbuf);
}
/* default all ports to bus 0, i.e. usb 3 */
sc->sc_ctlrportbus = kmem_zalloc(
howmany(sc->sc_maxports * sizeof(uint8_t), NBBY), KM_SLEEP);
sc->sc_ctlrportmap = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
/* controller port to bus roothub port map */
for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
sc->sc_rhportmap[j] = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
}
/*
* Process all Extended Capabilities
*/
xhci_ecp(sc, hcc);
bsz = XHCI_PORTSC(sc->sc_maxports);
if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, caplength, bsz,
&sc->sc_obh) != 0) {
aprint_error_dev(sc->sc_dev, "operational subregion failure\n");
return ENOMEM;
}
dboff = xhci_cap_read_4(sc, XHCI_DBOFF);
if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, dboff,
sc->sc_maxslots * 4, &sc->sc_dbh) != 0) {
aprint_error_dev(sc->sc_dev, "doorbell subregion failure\n");
return ENOMEM;
}
rtsoff = xhci_cap_read_4(sc, XHCI_RTSOFF);
if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, rtsoff,
sc->sc_maxintrs * 0x20, &sc->sc_rbh) != 0) {
aprint_error_dev(sc->sc_dev, "runtime subregion failure\n");
return ENOMEM;
}
int rv;
rv = xhci_hc_reset(sc);
if (rv != 0) {
return rv;
}
if (sc->sc_vendor_init)
sc->sc_vendor_init(sc);
pagesize = xhci_op_read_4(sc, XHCI_PAGESIZE);
aprint_debug_dev(sc->sc_dev, "PAGESIZE 0x%08x\n", pagesize);
pagesize = ffs(pagesize);
if (pagesize == 0) {
aprint_error_dev(sc->sc_dev, "pagesize is 0\n");
return EIO;
}
sc->sc_pgsz = 1 << (12 + (pagesize - 1));
aprint_debug_dev(sc->sc_dev, "sc_pgsz 0x%08x\n", (uint32_t)sc->sc_pgsz);
aprint_debug_dev(sc->sc_dev, "sc_maxslots 0x%08x\n",
(uint32_t)sc->sc_maxslots);
aprint_debug_dev(sc->sc_dev, "sc_maxports %d\n", sc->sc_maxports);
usbd_status err;
sc->sc_maxspbuf = XHCI_HCS2_MAXSPBUF(hcs2);
aprint_debug_dev(sc->sc_dev, "sc_maxspbuf %d\n", sc->sc_maxspbuf);
if (sc->sc_maxspbuf != 0) {
err = usb_allocmem(&sc->sc_bus,
sizeof(uint64_t) * sc->sc_maxspbuf, sizeof(uint64_t),
USBMALLOC_COHERENT, &sc->sc_spbufarray_dma);
if (err) {
aprint_error_dev(sc->sc_dev,
"spbufarray init fail, err %d\n", err);
return ENOMEM;
}
sc->sc_spbuf_dma = kmem_zalloc(sizeof(*sc->sc_spbuf_dma) *
sc->sc_maxspbuf, KM_SLEEP);
uint64_t *spbufarray = KERNADDR(&sc->sc_spbufarray_dma, 0);
for (i = 0; i < sc->sc_maxspbuf; i++) {
usb_dma_t * const dma = &sc->sc_spbuf_dma[i];
/* allocate contexts */
err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz,
sc->sc_pgsz, USBMALLOC_COHERENT, dma);
if (err) {
aprint_error_dev(sc->sc_dev,
"spbufarray_dma init fail, err %d\n", err);
rv = ENOMEM;
goto bad1;
}
spbufarray[i] = htole64(DMAADDR(dma, 0));
usb_syncmem(dma, 0, sc->sc_pgsz,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
usb_syncmem(&sc->sc_spbufarray_dma, 0,
sizeof(uint64_t) * sc->sc_maxspbuf, BUS_DMASYNC_PREWRITE);
}
config = xhci_op_read_4(sc, XHCI_CONFIG);
config &= ~0xFF;
config |= sc->sc_maxslots & 0xFF;
xhci_op_write_4(sc, XHCI_CONFIG, config);
err = xhci_ring_init(sc, &sc->sc_cr, XHCI_COMMAND_RING_TRBS,
XHCI_COMMAND_RING_SEGMENTS_ALIGN);
if (err) {
aprint_error_dev(sc->sc_dev, "command ring init fail, err %d\n",
err);
rv = ENOMEM;
goto bad1;
}
err = xhci_ring_init(sc, &sc->sc_er, XHCI_EVENT_RING_TRBS,
XHCI_EVENT_RING_SEGMENTS_ALIGN);
if (err) {
aprint_error_dev(sc->sc_dev, "event ring init fail, err %d\n",
err);
rv = ENOMEM;
goto bad2;
}
usb_dma_t *dma;
size_t size;
size_t align;
dma = &sc->sc_eventst_dma;
size = roundup2(XHCI_EVENT_RING_SEGMENTS * XHCI_ERSTE_SIZE,
XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN);
KASSERTMSG(size <= (512 * 1024), "eventst size %zu too large", size);
align = XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN;
err = usb_allocmem(&sc->sc_bus, size, align, USBMALLOC_COHERENT, dma);
if (err) {
aprint_error_dev(sc->sc_dev, "eventst init fail, err %d\n",
err);
rv = ENOMEM;
goto bad3;
}
memset(KERNADDR(dma, 0), 0, size);
usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE);
aprint_debug_dev(sc->sc_dev, "eventst: 0x%016jx %p %zx\n",
(uintmax_t)DMAADDR(&sc->sc_eventst_dma, 0),
KERNADDR(&sc->sc_eventst_dma, 0),
sc->sc_eventst_dma.udma_block->size);
dma = &sc->sc_dcbaa_dma;
size = (1 + sc->sc_maxslots) * sizeof(uint64_t);
KASSERTMSG(size <= 2048, "dcbaa size %zu too large", size);
align = XHCI_DEVICE_CONTEXT_BASE_ADDRESS_ARRAY_ALIGN;
err = usb_allocmem(&sc->sc_bus, size, align, USBMALLOC_COHERENT, dma);
if (err) {
aprint_error_dev(sc->sc_dev, "dcbaa init fail, err %d\n", err);
rv = ENOMEM;
goto bad4;
}
aprint_debug_dev(sc->sc_dev, "dcbaa: 0x%016jx %p %zx\n",
(uintmax_t)DMAADDR(&sc->sc_dcbaa_dma, 0),
KERNADDR(&sc->sc_dcbaa_dma, 0),
sc->sc_dcbaa_dma.udma_block->size);
memset(KERNADDR(dma, 0), 0, size);
if (sc->sc_maxspbuf != 0) {
/*
* DCBA entry 0 hold the scratchbuf array pointer.
*/
*(uint64_t *)KERNADDR(dma, 0) =
htole64(DMAADDR(&sc->sc_spbufarray_dma, 0));
}
usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE);
sc->sc_slots = kmem_zalloc(sizeof(*sc->sc_slots) * sc->sc_maxslots,
KM_SLEEP);
if (sc->sc_slots == NULL) {
aprint_error_dev(sc->sc_dev, "slots init fail, err %d\n", err);
rv = ENOMEM;
goto bad;
}
sc->sc_xferpool = pool_cache_init(sizeof(struct xhci_xfer), 0, 0, 0,
"xhcixfer", NULL, IPL_USB, NULL, NULL, NULL);
if (sc->sc_xferpool == NULL) {
aprint_error_dev(sc->sc_dev, "pool_cache init fail, err %d\n",
err);
rv = ENOMEM;
goto bad;
}
cv_init(&sc->sc_command_cv, "xhcicmd");
cv_init(&sc->sc_cmdbusy_cv, "xhcicmdq");
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
struct xhci_erste *erst;
erst = KERNADDR(&sc->sc_eventst_dma, 0);
erst[0].erste_0 = htole64(xhci_ring_trbp(sc->sc_er, 0));
erst[0].erste_2 = htole32(sc->sc_er->xr_ntrb);
erst[0].erste_3 = htole32(0);
usb_syncmem(&sc->sc_eventst_dma, 0,
XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS, BUS_DMASYNC_PREWRITE);
xhci_rt_write_4(sc, XHCI_ERSTSZ(0), XHCI_EVENT_RING_SEGMENTS);
xhci_rt_write_8(sc, XHCI_ERSTBA(0), DMAADDR(&sc->sc_eventst_dma, 0));
xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(sc->sc_er, 0) |
XHCI_ERDP_BUSY);
xhci_op_write_8(sc, XHCI_DCBAAP, DMAADDR(&sc->sc_dcbaa_dma, 0));
xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(sc->sc_cr, 0) |
sc->sc_cr->xr_cs);
xhci_op_barrier(sc, 0, 4, BUS_SPACE_BARRIER_WRITE);
HEXDUMP("eventst", KERNADDR(&sc->sc_eventst_dma, 0),
XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS);
if ((sc->sc_quirks & XHCI_DEFERRED_START) == 0)
xhci_start(sc);
return 0;
bad:
if (sc->sc_xferpool) {
pool_cache_destroy(sc->sc_xferpool);
sc->sc_xferpool = NULL;
}
if (sc->sc_slots) {
kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) *
sc->sc_maxslots);
sc->sc_slots = NULL;
}
usb_freemem(&sc->sc_bus, &sc->sc_dcbaa_dma);
bad4:
usb_freemem(&sc->sc_bus, &sc->sc_eventst_dma);
bad3:
xhci_ring_free(sc, &sc->sc_er);
bad2:
xhci_ring_free(sc, &sc->sc_cr);
i = sc->sc_maxspbuf;
bad1:
for (int j = 0; j < i; j++)
usb_freemem(&sc->sc_bus, &sc->sc_spbuf_dma[j]);
usb_freemem(&sc->sc_bus, &sc->sc_spbufarray_dma);
return rv;
}
static inline bool
xhci_polling_p(struct xhci_softc * const sc)
{
return sc->sc_bus.ub_usepolling || sc->sc_bus2.ub_usepolling;
}
int
xhci_intr(void *v)
{
struct xhci_softc * const sc = v;
int ret = 0;
XHCIHIST_FUNC(); XHCIHIST_CALLED();
if (sc == NULL)
return 0;
mutex_spin_enter(&sc->sc_intr_lock);
if (sc->sc_dying || !device_has_power(sc->sc_dev))
goto done;
/* If we get an interrupt while polling, then just ignore it. */
if (xhci_polling_p(sc)) {
#ifdef DIAGNOSTIC
DPRINTFN(16, "ignored interrupt while polling", 0, 0, 0, 0);
#endif
goto done;
}
ret = xhci_intr1(sc);
if (ret) {
KASSERT(sc->sc_child || sc->sc_child2);
/*
* One of child busses could be already detached. It doesn't
* matter on which of the two the softintr is scheduled.
*/
if (sc->sc_child)
usb_schedsoftintr(&sc->sc_bus);
else
usb_schedsoftintr(&sc->sc_bus2);
}
done:
mutex_spin_exit(&sc->sc_intr_lock);
return ret;
}
int
xhci_intr1(struct xhci_softc * const sc)
{
uint32_t usbsts;
uint32_t iman;
XHCIHIST_FUNC();
usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
XHCIHIST_CALLARGS("USBSTS 0x%08jx", usbsts, 0, 0, 0);
if ((usbsts & (XHCI_STS_HSE | XHCI_STS_EINT | XHCI_STS_PCD |
XHCI_STS_HCE)) == 0) {
DPRINTFN(16, "ignored intr not for %jd",
device_unit(sc->sc_dev), 0, 0, 0);
return 0;
}
/*
* Clear EINT and other transient flags, to not misenterpret
* next shared interrupt. Also, to avoid race, EINT must be cleared
* before XHCI_IMAN_INTR_PEND is cleared.
*/
xhci_op_write_4(sc, XHCI_USBSTS, usbsts & XHCI_STS_RSVDP0);
#ifdef XHCI_DEBUG
usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
DPRINTFN(16, "USBSTS 0x%08jx", usbsts, 0, 0, 0);
#endif
iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
DPRINTFN(16, "IMAN0 0x%08jx", iman, 0, 0, 0);
iman |= XHCI_IMAN_INTR_PEND;
xhci_rt_write_4(sc, XHCI_IMAN(0), iman);
#ifdef XHCI_DEBUG
iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
DPRINTFN(16, "IMAN0 0x%08jx", iman, 0, 0, 0);
usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
DPRINTFN(16, "USBSTS 0x%08jx", usbsts, 0, 0, 0);
#endif
return 1;
}
/*
* 3 port speed types used in USB stack
*
* usbdi speed
* definition: USB_SPEED_* in usb.h
* They are used in struct usbd_device in USB stack.
* ioctl interface uses these values too.
* port_status speed
* definition: UPS_*_SPEED in usb.h
* They are used in usb_port_status_t and valid only for USB 2.0.
* Speed value is always 0 for Super Speed or more, and dwExtPortStatus
* of usb_port_status_ext_t indicates port speed.
* Note that some 3.0 values overlap with 2.0 values.
* (e.g. 0x200 means UPS_POER_POWER_SS in SS and
* means UPS_LOW_SPEED in HS.)
* port status returned from hub also uses these values.
* On NetBSD UPS_OTHER_SPEED indicates port speed is super speed
* or more.
* xspeed:
* definition: Protocol Speed ID (PSI) (xHCI 1.1 7.2.1)
* They are used in only slot context and PORTSC reg of xhci.
* The difference between usbdi speed and xspeed is
* that FS and LS values are swapped.
*/
/* convert usbdi speed to xspeed */
static int
xhci_speed2xspeed(int speed)
{
switch (speed) {
case USB_SPEED_LOW: return 2;
case USB_SPEED_FULL: return 1;
default: return speed;
}
}
#if 0
/* convert xspeed to usbdi speed */
static int
xhci_xspeed2speed(int xspeed)
{
switch (xspeed) {
case 1: return USB_SPEED_FULL;
case 2: return USB_SPEED_LOW;
default: return xspeed;
}
}
#endif
/* convert xspeed to port status speed */
static int
xhci_xspeed2psspeed(int xspeed)
{
switch (xspeed) {
case 0: return 0;
case 1: return UPS_FULL_SPEED;
case 2: return UPS_LOW_SPEED;
case 3: return UPS_HIGH_SPEED;
default: return UPS_OTHER_SPEED;
}
}
/*
* Construct input contexts and issue TRB to open pipe.
*/
static usbd_status
xhci_configure_endpoint(struct usbd_pipe *pipe)
{
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
#ifdef USB_DEBUG
const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
#endif
struct xhci_soft_trb trb;
usbd_status err;
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("slot %ju dci %ju epaddr 0x%02jx attr 0x%02jx",
xs->xs_idx, dci, pipe->up_endpoint->ue_edesc->bEndpointAddress,
pipe->up_endpoint->ue_edesc->bmAttributes);
/* XXX ensure input context is available? */
memset(xhci_slot_get_icv(sc, xs, 0), 0, sc->sc_pgsz);
/* set up context */
xhci_setup_ctx(pipe);
HEXDUMP("input control context", xhci_slot_get_icv(sc, xs, 0),
sc->sc_ctxsz * 1);
HEXDUMP("input endpoint context", xhci_slot_get_icv(sc, xs,
xhci_dci_to_ici(dci)), sc->sc_ctxsz * 1);
trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
trb.trb_2 = 0;
trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
HEXDUMP("output context", xhci_slot_get_dcv(sc, xs, dci),
sc->sc_ctxsz * 1);
return err;
}
#if 0
static usbd_status
xhci_unconfigure_endpoint(struct usbd_pipe *pipe)
{
#ifdef USB_DEBUG
struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
#endif
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("slot %ju", xs->xs_idx, 0, 0, 0);
return USBD_NORMAL_COMPLETION;
}
#endif
/* 4.6.8, 6.4.3.7 */
static usbd_status
xhci_reset_endpoint_locked(struct usbd_pipe *pipe)
{
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
struct xhci_soft_trb trb;
usbd_status err;
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
KASSERT(mutex_owned(&sc->sc_lock));
trb.trb_0 = 0;
trb.trb_2 = 0;
trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
XHCI_TRB_3_EP_SET(dci) |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_RESET_EP);
err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
return err;
}
static usbd_status
xhci_reset_endpoint(struct usbd_pipe *pipe)
{
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
mutex_enter(&sc->sc_lock);
usbd_status ret = xhci_reset_endpoint_locked(pipe);
mutex_exit(&sc->sc_lock);
return ret;
}
/*
* 4.6.9, 6.4.3.8
* Stop execution of TDs on xfer ring.
* Should be called with sc_lock held.
*/
static usbd_status
xhci_stop_endpoint(struct usbd_pipe *pipe)
{
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
struct xhci_soft_trb trb;
usbd_status err;
const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
KASSERT(mutex_owned(&sc->sc_lock));
trb.trb_0 = 0;
trb.trb_2 = 0;
trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
XHCI_TRB_3_EP_SET(dci) |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STOP_EP);
err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
return err;
}
/*
* Set TR Dequeue Pointer.
* xHCI 1.1 4.6.10 6.4.3.9
* Purge all of the TRBs on ring and reinitialize ring.
* Set TR dequeue Pointr to 0 and Cycle State to 1.
* EPSTATE of endpoint must be ERROR or STOPPED, otherwise CONTEXT_STATE
* error will be generated.
*/
static usbd_status
xhci_set_dequeue_locked(struct usbd_pipe *pipe)
{
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
struct xhci_ring * const xr = xs->xs_xr[dci];
struct xhci_soft_trb trb;
usbd_status err;
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(xr != NULL);
xhci_host_dequeue(xr);
/* set DCS */
trb.trb_0 = xhci_ring_trbp(xr, 0) | 1; /* XXX */
trb.trb_2 = 0;
trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
XHCI_TRB_3_EP_SET(dci) |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SET_TR_DEQUEUE);
err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
return err;
}
static usbd_status
xhci_set_dequeue(struct usbd_pipe *pipe)
{
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
mutex_enter(&sc->sc_lock);
usbd_status ret = xhci_set_dequeue_locked(pipe);
mutex_exit(&sc->sc_lock);
return ret;
}
/*
* Open new pipe: called from usbd_setup_pipe_flags.
* Fills methods of pipe.
* If pipe is not for ep0, calls configure_endpoint.
*/
static usbd_status
xhci_open(struct usbd_pipe *pipe)
{
struct usbd_device * const dev = pipe->up_dev;
struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
const u_int dci = xhci_ep_get_dci(ed);
const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
usbd_status err;
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("addr %jd depth %jd port %jd speed %jd", dev->ud_addr,
dev->ud_depth, dev->ud_powersrc->up_portno, dev->ud_speed);
DPRINTFN(1, " dci %ju type 0x%02jx epaddr 0x%02jx attr 0x%02jx",
xhci_ep_get_dci(ed), ed->bDescriptorType, ed->bEndpointAddress,
ed->bmAttributes);
DPRINTFN(1, " mps %ju ival %ju", UGETW(ed->wMaxPacketSize),
ed->bInterval, 0, 0);
if (sc->sc_dying)
return USBD_IOERROR;
/* Root Hub */
if (dev->ud_depth == 0 && dev->ud_powersrc->up_portno == 0) {
switch (ed->bEndpointAddress) {
case USB_CONTROL_ENDPOINT:
pipe->up_methods = &roothub_ctrl_methods;
break;
case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
pipe->up_methods = &xhci_root_intr_methods;
break;
default:
pipe->up_methods = NULL;
DPRINTFN(0, "bad bEndpointAddress 0x%02jx",
ed->bEndpointAddress, 0, 0, 0);
return USBD_INVAL;
}
return USBD_NORMAL_COMPLETION;
}
switch (xfertype) {
case UE_CONTROL:
pipe->up_methods = &xhci_device_ctrl_methods;
break;
case UE_ISOCHRONOUS:
pipe->up_methods = &xhci_device_isoc_methods;
return USBD_INVAL;
break;
case UE_BULK:
pipe->up_methods = &xhci_device_bulk_methods;
break;
case UE_INTERRUPT:
pipe->up_methods = &xhci_device_intr_methods;
break;
default:
return USBD_IOERROR;
break;
}
KASSERT(xs != NULL);
KASSERT(xs->xs_xr[dci] == NULL);
/* allocate transfer ring */
err = xhci_ring_init(sc, &xs->xs_xr[dci], XHCI_TRANSFER_RING_TRBS,
XHCI_TRB_ALIGN);
if (err) {
DPRINTFN(1, "ring alloc failed %jd", err, 0, 0, 0);
return err;
}
if (ed->bEndpointAddress != USB_CONTROL_ENDPOINT)
return xhci_configure_endpoint(pipe);
return USBD_NORMAL_COMPLETION;
}
/*
* Closes pipe, called from usbd_kill_pipe via close methods.
* If the endpoint to be closed is ep0, disable_slot.
* Should be called with sc_lock held.
*/
static void
xhci_close_pipe(struct usbd_pipe *pipe)
{
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
const u_int dci = xhci_ep_get_dci(ed);
struct xhci_soft_trb trb;
uint32_t *cp;
XHCIHIST_FUNC();
if (sc->sc_dying)
return;
/* xs is uninitialized before xhci_init_slot */
if (xs == NULL || xs->xs_idx == 0)
return;
XHCIHIST_CALLARGS("pipe %#jx slot %ju dci %ju",
(uintptr_t)pipe, xs->xs_idx, dci, 0);
KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
KASSERT(mutex_owned(&sc->sc_lock));
if (pipe->up_dev->ud_depth == 0)
return;
if (dci == XHCI_DCI_EP_CONTROL) {
DPRINTFN(4, "closing ep0", 0, 0, 0, 0);
/* This frees all rings */
xhci_disable_slot(sc, xs->xs_idx);
return;
}
if (xhci_get_epstate(sc, xs, dci) != XHCI_EPSTATE_STOPPED)
(void)xhci_stop_endpoint(pipe);
/*
* set appropriate bit to be dropped.
* don't set DC bit to 1, otherwise all endpoints
* would be deconfigured.
*/
cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
cp[0] = htole32(XHCI_INCTX_0_DROP_MASK(dci));
cp[1] = htole32(0);
/* XXX should be most significant one, not dci? */
cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
cp[0] = htole32(XHCI_SCTX_0_CTX_NUM_SET(dci));
/* configure ep context performs an implicit dequeue */
xhci_host_dequeue(xs->xs_xr[dci]);
/* sync input contexts before they are read from memory */
usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
trb.trb_2 = 0;
trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
(void)xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
xhci_ring_free(sc, &xs->xs_xr[dci]);
}
/*
* Abort transfer.
* Should be called with sc_lock held.
*/
static void
xhci_abortx(struct usbd_xfer *xfer)
{
XHCIHIST_FUNC();
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
XHCIHIST_CALLARGS("xfer %#jx pipe %#jx",
(uintptr_t)xfer, (uintptr_t)xfer->ux_pipe, 0, 0);
KASSERT(mutex_owned(&sc->sc_lock));
ASSERT_SLEEPABLE();
KASSERTMSG((xfer->ux_status == USBD_CANCELLED ||
xfer->ux_status == USBD_TIMEOUT),
"bad abort status: %d", xfer->ux_status);
/*
* If we're dying, skip the hardware action and just notify the
* software that we're done.
*/
if (sc->sc_dying) {
DPRINTFN(4, "xfer %#jx dying %ju", (uintptr_t)xfer,
xfer->ux_status, 0, 0);
goto dying;
}
/*
* HC Step 1: Stop execution of TD on the ring.
*/
switch (xhci_get_epstate(sc, xs, dci)) {
case XHCI_EPSTATE_HALTED:
(void)xhci_reset_endpoint_locked(xfer->ux_pipe);
break;
case XHCI_EPSTATE_STOPPED:
break;
default:
(void)xhci_stop_endpoint(xfer->ux_pipe);
break;
}
#ifdef DIAGNOSTIC
uint32_t epst = xhci_get_epstate(sc, xs, dci);
if (epst != XHCI_EPSTATE_STOPPED)
DPRINTFN(4, "dci %ju not stopped %ju", dci, epst, 0, 0);
#endif
/*
* HC Step 2: Remove any vestiges of the xfer from the ring.
*/
xhci_set_dequeue_locked(xfer->ux_pipe);
/*
* Final Step: Notify completion to waiting xfers.
*/
dying:
usb_transfer_complete(xfer);
DPRINTFN(14, "end", 0, 0, 0, 0);
KASSERT(mutex_owned(&sc->sc_lock));
}
static void
xhci_host_dequeue(struct xhci_ring * const xr)
{
/* When dequeueing the controller, update our struct copy too */
memset(xr->xr_trb, 0, xr->xr_ntrb * XHCI_TRB_SIZE);
usb_syncmem(&xr->xr_dma, 0, xr->xr_ntrb * XHCI_TRB_SIZE,
BUS_DMASYNC_PREWRITE);
memset(xr->xr_cookies, 0, xr->xr_ntrb * sizeof(*xr->xr_cookies));
xr->xr_ep = 0;
xr->xr_cs = 1;
}
/*
* Recover STALLed endpoint.
* xHCI 1.1 sect 4.10.2.1
* Issue RESET_EP to recover halt condition and SET_TR_DEQUEUE to remove
* all transfers on transfer ring.
* These are done in thread context asynchronously.
*/
static void
xhci_clear_endpoint_stall_async_task(void *cookie)
{
struct usbd_xfer * const xfer = cookie;
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
struct xhci_ring * const tr = xs->xs_xr[dci];
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("xfer %#jx slot %ju dci %ju", (uintptr_t)xfer, xs->xs_idx,
dci, 0);
/*
* XXXMRG: Stall task can run after slot is disabled when yanked.
* This hack notices that the xs has been memset() in
* xhci_disable_slot() and returns. Both xhci_reset_endpoint()
* and xhci_set_dequeue() rely upon a valid ring setup for correct
* operation, and the latter will fault, as would
* usb_transfer_complete() if it got that far.
*/
if (xs->xs_idx == 0) {
DPRINTFN(4, "ends xs_idx is 0", 0, 0, 0, 0);
return;
}
KASSERT(tr != NULL);
xhci_reset_endpoint(xfer->ux_pipe);
xhci_set_dequeue(xfer->ux_pipe);
mutex_enter(&sc->sc_lock);
tr->is_halted = false;
usb_transfer_complete(xfer);
mutex_exit(&sc->sc_lock);
DPRINTFN(4, "ends", 0, 0, 0, 0);
}
static usbd_status
xhci_clear_endpoint_stall_async(struct usbd_xfer *xfer)
{
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
struct xhci_pipe * const xp = (struct xhci_pipe *)xfer->ux_pipe;
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
if (sc->sc_dying) {
return USBD_IOERROR;
}
usb_init_task(&xp->xp_async_task,
xhci_clear_endpoint_stall_async_task, xfer, USB_TASKQ_MPSAFE);
usb_add_task(xfer->ux_pipe->up_dev, &xp->xp_async_task, USB_TASKQ_HC);
DPRINTFN(4, "ends", 0, 0, 0, 0);
return USBD_NORMAL_COMPLETION;
}
/* Process roothub port status/change events and notify to uhub_intr. */
static void
xhci_rhpsc(struct xhci_softc * const sc, u_int ctlrport)
{
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("xhci%jd: port %ju status change",
device_unit(sc->sc_dev), ctlrport, 0, 0);
if (ctlrport > sc->sc_maxports)
return;
const size_t bn = xhci_ctlrport2bus(sc, ctlrport);
const size_t rhp = xhci_ctlrport2rhport(sc, ctlrport);
struct usbd_xfer * const xfer = sc->sc_intrxfer[bn];
DPRINTFN(4, "xhci%jd: bus %jd bp %ju xfer %#jx status change",
device_unit(sc->sc_dev), bn, rhp, (uintptr_t)xfer);
if (xfer == NULL)
return;
KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
uint8_t *p = xfer->ux_buf;
memset(p, 0, xfer->ux_length);
p[rhp / NBBY] |= 1 << (rhp % NBBY);
xfer->ux_actlen = xfer->ux_length;
xfer->ux_status = USBD_NORMAL_COMPLETION;
usb_transfer_complete(xfer);
}
/* Process Transfer Events */
static void
xhci_event_transfer(struct xhci_softc * const sc,
const struct xhci_trb * const trb)
{
uint64_t trb_0;
uint32_t trb_2, trb_3;
uint8_t trbcode;
u_int slot, dci;
struct xhci_slot *xs;
struct xhci_ring *xr;
struct xhci_xfer *xx;
struct usbd_xfer *xfer;
usbd_status err;
XHCIHIST_FUNC(); XHCIHIST_CALLED();
trb_0 = le64toh(trb->trb_0);
trb_2 = le32toh(trb->trb_2);
trb_3 = le32toh(trb->trb_3);
trbcode = XHCI_TRB_2_ERROR_GET(trb_2);
slot = XHCI_TRB_3_SLOT_GET(trb_3);
dci = XHCI_TRB_3_EP_GET(trb_3);
xs = &sc->sc_slots[slot];
xr = xs->xs_xr[dci];
/* sanity check */
KASSERT(xr != NULL);
KASSERTMSG(xs->xs_idx != 0 && xs->xs_idx <= sc->sc_maxslots,
"invalid xs_idx %u slot %u", xs->xs_idx, slot);
int idx = 0;
if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
if (xhci_trb_get_idx(xr, trb_0, &idx)) {
DPRINTFN(0, "invalid trb_0 %#jx", trb_0, 0, 0, 0);
return;
}
xx = xr->xr_cookies[idx];
/* clear cookie of consumed TRB */
xr->xr_cookies[idx] = NULL;
/*
* xx is NULL if pipe is opened but xfer is not started.
* It happens when stopping idle pipe.
*/
if (xx == NULL || trbcode == XHCI_TRB_ERROR_LENGTH) {
DPRINTFN(1, "Ignore #%ju: cookie %#jx cc %ju dci %ju",
idx, (uintptr_t)xx, trbcode, dci);
DPRINTFN(1, " orig TRB %#jx type %ju", trb_0,
XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3)),
0, 0);
return;
}
} else {
/* When ED != 0, trb_0 is virtual addr of struct xhci_xfer. */
xx = (void *)(uintptr_t)(trb_0 & ~0x3);
}
/* XXX this may not happen */
if (xx == NULL) {
DPRINTFN(1, "xfer done: xx is NULL", 0, 0, 0, 0);
return;
}
xfer = &xx->xx_xfer;
/* XXX this may happen when detaching */
if (xfer == NULL) {
DPRINTFN(1, "xx(%#jx)->xx_xfer is NULL trb_0 %#jx",
(uintptr_t)xx, trb_0, 0, 0);
return;
}
DPRINTFN(14, "xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
/* XXX I dunno why this happens */
KASSERTMSG(xfer->ux_pipe != NULL, "xfer(%p)->ux_pipe is NULL", xfer);
if (!xfer->ux_pipe->up_repeat &&
SIMPLEQ_EMPTY(&xfer->ux_pipe->up_queue)) {
DPRINTFN(1, "xfer(%#jx)->pipe not queued", (uintptr_t)xfer,
0, 0, 0);
return;
}
/* 4.11.5.2 Event Data TRB */
if ((trb_3 & XHCI_TRB_3_ED_BIT) != 0) {
DPRINTFN(14, "transfer Event Data: 0x%016jx 0x%08jx"
" %02jx", trb_0, XHCI_TRB_2_REM_GET(trb_2), trbcode, 0);
if ((trb_0 & 0x3) == 0x3) {
xfer->ux_actlen = XHCI_TRB_2_REM_GET(trb_2);
}
}
switch (trbcode) {
case XHCI_TRB_ERROR_SHORT_PKT:
case XHCI_TRB_ERROR_SUCCESS:
/*
* A ctrl transfer can generate two events if it has a Data
* stage. A short data stage can be OK and should not
* complete the transfer as the status stage needs to be
* performed.
*
* Note: Data and Status stage events point at same xfer.
* ux_actlen and ux_dmabuf will be passed to
* usb_transfer_complete after the Status stage event.
*
* It can be distingished which stage generates the event:
* + by checking least 3 bits of trb_0 if ED==1.
* (see xhci_device_ctrl_start).
* + by checking the type of original TRB if ED==0.
*
* In addition, intr, bulk, and isoc transfer currently
* consists of single TD, so the "skip" is not needed.
* ctrl xfer uses EVENT_DATA, and others do not.
* Thus driver can switch the flow by checking ED bit.
*/
if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
if (xfer->ux_actlen == 0)
xfer->ux_actlen = xfer->ux_length -
XHCI_TRB_2_REM_GET(trb_2);
if (XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3))
== XHCI_TRB_TYPE_DATA_STAGE) {
return;
}
} else if ((trb_0 & 0x3) == 0x3) {
return;
}
err = USBD_NORMAL_COMPLETION;
break;
case XHCI_TRB_ERROR_STOPPED:
case XHCI_TRB_ERROR_LENGTH:
case XHCI_TRB_ERROR_STOPPED_SHORT:
err = USBD_IOERROR;
break;
case XHCI_TRB_ERROR_STALL:
case XHCI_TRB_ERROR_BABBLE:
DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0);
xr->is_halted = true;
/*
* Try to claim this xfer for completion. If it has already
* completed or aborted, drop it on the floor.
*/
if (!usbd_xfer_trycomplete(xfer))
return;
/*
* Stalled endpoints can be recoverd by issuing
* command TRB TYPE_RESET_EP on xHCI instead of
* issuing request CLEAR_FEATURE UF_ENDPOINT_HALT
* on the endpoint. However, this function may be
* called from softint context (e.g. from umass),
* in that case driver gets KASSERT in cv_timedwait
* in xhci_do_command.
* To avoid this, this runs reset_endpoint and
* usb_transfer_complete in usb task thread
* asynchronously (and then umass issues clear
* UF_ENDPOINT_HALT).
*/
/* Override the status. */
xfer->ux_status = USBD_STALLED;
xhci_clear_endpoint_stall_async(xfer);
return;
default:
DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0);
err = USBD_IOERROR;
break;
}
/*
* Try to claim this xfer for completion. If it has already
* completed or aborted, drop it on the floor.
*/
if (!usbd_xfer_trycomplete(xfer))
return;
/* Set the status. */
xfer->ux_status = err;
if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0 ||
(trb_0 & 0x3) == 0x0) {
usb_transfer_complete(xfer);
}
}
/* Process Command complete events */
static void
xhci_event_cmd(struct xhci_softc * const sc, const struct xhci_trb * const trb)
{
uint64_t trb_0;
uint32_t trb_2, trb_3;
XHCIHIST_FUNC(); XHCIHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
trb_0 = le64toh(trb->trb_0);
trb_2 = le32toh(trb->trb_2);
trb_3 = le32toh(trb->trb_3);
if (trb_0 == sc->sc_command_addr) {
sc->sc_resultpending = false;
sc->sc_result_trb.trb_0 = trb_0;
sc->sc_result_trb.trb_2 = trb_2;
sc->sc_result_trb.trb_3 = trb_3;
if (XHCI_TRB_2_ERROR_GET(trb_2) !=
XHCI_TRB_ERROR_SUCCESS) {
DPRINTFN(1, "command completion "
"failure: 0x%016jx 0x%08jx 0x%08jx",
trb_0, trb_2, trb_3, 0);
}
cv_signal(&sc->sc_command_cv);
} else {
DPRINTFN(1, "spurious event: %#jx 0x%016jx "
"0x%08jx 0x%08jx", (uintptr_t)trb, trb_0, trb_2, trb_3);
}
}
/*
* Process events.
* called from xhci_softintr
*/
static void
xhci_handle_event(struct xhci_softc * const sc,
const struct xhci_trb * const trb)
{
uint64_t trb_0;
uint32_t trb_2, trb_3;
XHCIHIST_FUNC();
trb_0 = le64toh(trb->trb_0);
trb_2 = le32toh(trb->trb_2);
trb_3 = le32toh(trb->trb_3);
XHCIHIST_CALLARGS("event: %#jx 0x%016jx 0x%08jx 0x%08jx",
(uintptr_t)trb, trb_0, trb_2, trb_3);
/*
* 4.11.3.1, 6.4.2.1
* TRB Pointer is invalid for these completion codes.
*/
switch (XHCI_TRB_2_ERROR_GET(trb_2)) {
case XHCI_TRB_ERROR_RING_UNDERRUN:
case XHCI_TRB_ERROR_RING_OVERRUN:
case XHCI_TRB_ERROR_VF_RING_FULL:
return;
default:
if (trb_0 == 0) {
return;
}
break;
}
switch (XHCI_TRB_3_TYPE_GET(trb_3)) {
case XHCI_TRB_EVENT_TRANSFER:
xhci_event_transfer(sc, trb);
break;
case XHCI_TRB_EVENT_CMD_COMPLETE:
xhci_event_cmd(sc, trb);
break;
case XHCI_TRB_EVENT_PORT_STS_CHANGE:
xhci_rhpsc(sc, (uint32_t)((trb_0 >> 24) & 0xff));
break;
default:
break;
}
}
static void
xhci_softintr(void *v)
{
struct usbd_bus * const bus = v;
struct xhci_softc * const sc = XHCI_BUS2SC(bus);
struct xhci_ring * const er = sc->sc_er;
struct xhci_trb *trb;
int i, j, k;
XHCIHIST_FUNC();
KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
i = er->xr_ep;
j = er->xr_cs;
XHCIHIST_CALLARGS("er: xr_ep %jd xr_cs %jd", i, j, 0, 0);
while (1) {
usb_syncmem(&er->xr_dma, XHCI_TRB_SIZE * i, XHCI_TRB_SIZE,
BUS_DMASYNC_POSTREAD);
trb = &er->xr_trb[i];
k = (le32toh(trb->trb_3) & XHCI_TRB_3_CYCLE_BIT) ? 1 : 0;
if (j != k)
break;
xhci_handle_event(sc, trb);
i++;
if (i == er->xr_ntrb) {
i = 0;
j ^= 1;
}
}
er->xr_ep = i;
er->xr_cs = j;
xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(er, er->xr_ep) |
XHCI_ERDP_BUSY);
DPRINTFN(16, "ends", 0, 0, 0, 0);
return;
}
static void
xhci_poll(struct usbd_bus *bus)
{
struct xhci_softc * const sc = XHCI_BUS2SC(bus);
XHCIHIST_FUNC(); XHCIHIST_CALLED();
mutex_enter(&sc->sc_intr_lock);
int ret = xhci_intr1(sc);
if (ret) {
xhci_softintr(bus);
}
mutex_exit(&sc->sc_intr_lock);
return;
}
static struct usbd_xfer *
xhci_allocx(struct usbd_bus *bus, unsigned int nframes)
{
struct xhci_softc * const sc = XHCI_BUS2SC(bus);
struct xhci_xfer *xx;
u_int ntrbs;
XHCIHIST_FUNC(); XHCIHIST_CALLED();
ntrbs = XHCI_XFER_NTRB;
const size_t trbsz = sizeof(*xx->xx_trb) * ntrbs;
xx = pool_cache_get(sc->sc_xferpool, PR_WAITOK);
if (xx != NULL) {
memset(xx, 0, sizeof(*xx));
if (ntrbs > 0) {
xx->xx_trb = kmem_alloc(trbsz, KM_SLEEP);
xx->xx_ntrb = ntrbs;
}
#ifdef DIAGNOSTIC
xx->xx_xfer.ux_state = XFER_BUSY;
#endif
}
return &xx->xx_xfer;
}
static void
xhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
{
struct xhci_softc * const sc = XHCI_BUS2SC(bus);
struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
XHCIHIST_FUNC(); XHCIHIST_CALLED();
#ifdef DIAGNOSTIC
if (xfer->ux_state != XFER_BUSY &&
xfer->ux_status != USBD_NOT_STARTED) {
DPRINTFN(0, "xfer=%#jx not busy, 0x%08jx",
(uintptr_t)xfer, xfer->ux_state, 0, 0);
}
xfer->ux_state = XFER_FREE;
#endif
if (xx->xx_ntrb > 0) {
kmem_free(xx->xx_trb, xx->xx_ntrb * sizeof(*xx->xx_trb));
xx->xx_trb = NULL;
xx->xx_ntrb = 0;
}
pool_cache_put(sc->sc_xferpool, xx);
}
static bool
xhci_dying(struct usbd_bus *bus)
{
struct xhci_softc * const sc = XHCI_BUS2SC(bus);
return sc->sc_dying;
}
static void
xhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
{
struct xhci_softc * const sc = XHCI_BUS2SC(bus);
*lock = &sc->sc_lock;
}
extern uint32_t usb_cookie_no;
/*
* xHCI 4.3
* Called when uhub_explore finds a new device (via usbd_new_device).
* Port initialization and speed detection (4.3.1) are already done in uhub.c.
* This function does:
* Allocate and construct dev structure of default endpoint (ep0).
* Allocate and open pipe of ep0.
* Enable slot and initialize slot context.
* Set Address.
* Read initial device descriptor.
* Determine initial MaxPacketSize (mps) by speed.
* Read full device descriptor.
* Register this device.
* Finally state of device transitions ADDRESSED.
*/
static usbd_status
xhci_new_device(device_t parent, struct usbd_bus *bus, int depth,
int speed, int port, struct usbd_port *up)
{
struct xhci_softc * const sc = XHCI_BUS2SC(bus);
struct usbd_device *dev;
usbd_status err;
usb_device_descriptor_t *dd;
struct xhci_slot *xs;
uint32_t *cp;
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("port %ju depth %ju speed %ju up %#jx",
port, depth, speed, (uintptr_t)up);
dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
dev->ud_bus = bus;
dev->ud_quirks = &usbd_no_quirk;
dev->ud_addr = 0;
dev->ud_ddesc.bMaxPacketSize = 0;
dev->ud_depth = depth;
dev->ud_powersrc = up;
dev->ud_myhub = up->up_parent;
dev->ud_speed = speed;
dev->ud_langid = USBD_NOLANG;
dev->ud_cookie.cookie = ++usb_cookie_no;
/* Set up default endpoint handle. */
dev->ud_ep0.ue_edesc = &dev->ud_ep0desc;
/* doesn't matter, just don't let it uninitialized */
dev->ud_ep0.ue_toggle = 0;
/* Set up default endpoint descriptor. */
dev->ud_ep0desc.bLength = USB_ENDPOINT_DESCRIPTOR_SIZE;
dev->ud_ep0desc.bDescriptorType = UDESC_ENDPOINT;
dev->ud_ep0desc.bEndpointAddress = USB_CONTROL_ENDPOINT;
dev->ud_ep0desc.bmAttributes = UE_CONTROL;
dev->ud_ep0desc.bInterval = 0;
/* 4.3, 4.8.2.1 */
switch (speed) {
case USB_SPEED_SUPER:
case USB_SPEED_SUPER_PLUS:
USETW(dev->ud_ep0desc.wMaxPacketSize, USB_3_MAX_CTRL_PACKET);
break;
case USB_SPEED_FULL:
/* XXX using 64 as initial mps of ep0 in FS */
case USB_SPEED_HIGH:
USETW(dev->ud_ep0desc.wMaxPacketSize, USB_2_MAX_CTRL_PACKET);
break;
case USB_SPEED_LOW:
default:
USETW(dev->ud_ep0desc.wMaxPacketSize, USB_MAX_IPACKET);
break;
}
up->up_dev = dev;
dd = &dev->ud_ddesc;
if (depth == 0 && port == 0) {
KASSERT(bus->ub_devices[USB_ROOTHUB_INDEX] == NULL);
bus->ub_devices[USB_ROOTHUB_INDEX] = dev;
/* Establish the default pipe. */
err = usbd_setup_pipe(dev, 0, &dev->ud_ep0,
USBD_DEFAULT_INTERVAL, &dev->ud_pipe0);
if (err) {
DPRINTFN(1, "setup default pipe failed %jd", err,0,0,0);
goto bad;
}
err = usbd_get_initial_ddesc(dev, dd);
if (err) {
DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0);
goto bad;
}
} else {
uint8_t slot = 0;
/* 4.3.2 */
err = xhci_enable_slot(sc, &slot);
if (err) {
DPRINTFN(1, "enable slot %ju", err, 0, 0, 0);
goto bad;
}
xs = &sc->sc_slots[slot];
dev->ud_hcpriv = xs;
/* 4.3.3 initialize slot structure */
err = xhci_init_slot(dev, slot);
if (err) {
DPRINTFN(1, "init slot %ju", err, 0, 0, 0);
dev->ud_hcpriv = NULL;
/*
* We have to disable_slot here because
* xs->xs_idx == 0 when xhci_init_slot fails,
* in that case usbd_remove_dev won't work.
*/
mutex_enter(&sc->sc_lock);
xhci_disable_slot(sc, slot);
mutex_exit(&sc->sc_lock);
goto bad;
}
/*
* We have to establish the default pipe _after_ slot
* structure has been prepared.
*/
err = usbd_setup_pipe(dev, 0, &dev->ud_ep0,
USBD_DEFAULT_INTERVAL, &dev->ud_pipe0);
if (err) {
DPRINTFN(1, "setup default pipe failed %jd", err, 0, 0,
0);
goto bad;
}
/* 4.3.4 Address Assignment */
err = xhci_set_address(dev, slot, false);
if (err) {
DPRINTFN(1, "failed! to set address: %ju", err, 0, 0, 0);
goto bad;
}
/* Allow device time to set new address */
usbd_delay_ms(dev, USB_SET_ADDRESS_SETTLE);
usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
cp = xhci_slot_get_dcv(sc, xs, XHCI_DCI_SLOT);
HEXDUMP("slot context", cp, sc->sc_ctxsz);
uint8_t addr = XHCI_SCTX_3_DEV_ADDR_GET(le32toh(cp[3]));
DPRINTFN(4, "device address %ju", addr, 0, 0, 0);
/*
* XXX ensure we know when the hardware does something
* we can't yet cope with
*/
KASSERTMSG(addr >= 1 && addr <= 127, "addr %d", addr);
dev->ud_addr = addr;
KASSERTMSG(bus->ub_devices[usb_addr2dindex(dev->ud_addr)] == NULL,
"addr %d already allocated", dev->ud_addr);
/*
* The root hub is given its own slot
*/
bus->ub_devices[usb_addr2dindex(dev->ud_addr)] = dev;
err = usbd_get_initial_ddesc(dev, dd);
if (err) {
DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0);
goto bad;
}
/* 4.8.2.1 */
if (USB_IS_SS(speed)) {
if (dd->bMaxPacketSize != 9) {
printf("%s: invalid mps 2^%u for SS ep0,"
" using 512\n",
device_xname(sc->sc_dev),
dd->bMaxPacketSize);
dd->bMaxPacketSize = 9;
}
USETW(dev->ud_ep0desc.wMaxPacketSize,
(1 << dd->bMaxPacketSize));
} else
USETW(dev->ud_ep0desc.wMaxPacketSize,
dd->bMaxPacketSize);
DPRINTFN(4, "bMaxPacketSize %ju", dd->bMaxPacketSize, 0, 0, 0);
err = xhci_update_ep0_mps(sc, xs,
UGETW(dev->ud_ep0desc.wMaxPacketSize));
if (err) {
DPRINTFN(1, "update mps of ep0 %ju", err, 0, 0, 0);
goto bad;
}
}
err = usbd_reload_device_desc(dev);
if (err) {
DPRINTFN(1, "reload desc %ju", err, 0, 0, 0);
goto bad;
}
DPRINTFN(1, "adding unit addr=%jd, rev=%02jx,",
dev->ud_addr, UGETW(dd->bcdUSB), 0, 0);
DPRINTFN(1, " class=%jd, subclass=%jd, protocol=%jd,",
dd->bDeviceClass, dd->bDeviceSubClass,
dd->bDeviceProtocol, 0);
DPRINTFN(1, " mps=%jd, len=%jd, noconf=%jd, speed=%jd",
dd->bMaxPacketSize, dd->bLength, dd->bNumConfigurations,
dev->ud_speed);
usbd_get_device_strings(dev);
usbd_add_dev_event(USB_EVENT_DEVICE_ATTACH, dev);
if (depth == 0 && port == 0) {
usbd_attach_roothub(parent, dev);
DPRINTFN(1, "root hub %#jx", (uintptr_t)dev, 0, 0, 0);
return USBD_NORMAL_COMPLETION;
}
err = usbd_probe_and_attach(parent, dev, port, dev->ud_addr);
bad:
if (err != USBD_NORMAL_COMPLETION) {
usbd_remove_device(dev, up);
}
return err;
}
static usbd_status
xhci_ring_init(struct xhci_softc * const sc, struct xhci_ring **xrp,
size_t ntrb, size_t align)
{
usbd_status err;
size_t size = ntrb * XHCI_TRB_SIZE;
struct xhci_ring *xr;
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("xr %#jx ntrb %#jx align %#jx",
(uintptr_t)*xrp, ntrb, align, 0);
xr = kmem_zalloc(sizeof(struct xhci_ring), KM_SLEEP);
DPRINTFN(1, "ring %#jx", (uintptr_t)xr, 0, 0, 0);
err = usb_allocmem(&sc->sc_bus, size, align, USBMALLOC_COHERENT,
&xr->xr_dma);
if (err) {
kmem_free(xr, sizeof(struct xhci_ring));
DPRINTFN(1, "alloc xr_dma failed %jd", err, 0, 0, 0);
return err;
}
mutex_init(&xr->xr_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
xr->xr_cookies = kmem_zalloc(sizeof(*xr->xr_cookies) * ntrb, KM_SLEEP);
xr->xr_trb = xhci_ring_trbv(xr, 0);
xr->xr_ntrb = ntrb;
xr->is_halted = false;
xhci_host_dequeue(xr);
*xrp = xr;
return USBD_NORMAL_COMPLETION;
}
static void
xhci_ring_free(struct xhci_softc * const sc, struct xhci_ring ** const xr)
{
if (*xr == NULL)
return;
usb_freemem(&sc->sc_bus, &(*xr)->xr_dma);
mutex_destroy(&(*xr)->xr_lock);
kmem_free((*xr)->xr_cookies,
sizeof(*(*xr)->xr_cookies) * (*xr)->xr_ntrb);
kmem_free(*xr, sizeof(struct xhci_ring));
*xr = NULL;
}
static void
xhci_ring_put(struct xhci_softc * const sc, struct xhci_ring * const xr,
void *cookie, struct xhci_soft_trb * const trbs, size_t ntrbs)
{
size_t i;
u_int ri;
u_int cs;
uint64_t parameter;
uint32_t status;
uint32_t control;
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("%#jx xr_ep %#jx xr_cs %ju",
(uintptr_t)xr, xr->xr_ep, xr->xr_cs, 0);
KASSERTMSG(ntrbs < xr->xr_ntrb, "ntrbs %zu, xr->xr_ntrb %u",
ntrbs, xr->xr_ntrb);
for (i = 0; i < ntrbs; i++) {
DPRINTFN(12, "xr %#jx trbs %#jx num %ju", (uintptr_t)xr,
(uintptr_t)trbs, i, 0);
DPRINTFN(12, " 0x%016jx 0x%08jx 0x%08jx",
trbs[i].trb_0, trbs[i].trb_2, trbs[i].trb_3, 0);
KASSERTMSG(XHCI_TRB_3_TYPE_GET(trbs[i].trb_3) !=
XHCI_TRB_TYPE_LINK, "trbs[%zu].trb3 %#x", i, trbs[i].trb_3);
}
ri = xr->xr_ep;
cs = xr->xr_cs;
/*
* Although the xhci hardware can do scatter/gather dma from
* arbitrary sized buffers, there is a non-obvious restriction
* that a LINK trb is only allowed at the end of a burst of
* transfers - which might be 16kB.
* Arbitrary aligned LINK trb definitely fail on Ivy bridge.
* The simple solution is not to allow a LINK trb in the middle
* of anything - as here.
* XXX: (dsl) There are xhci controllers out there (eg some made by
* ASMedia) that seem to lock up if they process a LINK trb but
* cannot process the linked-to trb yet.
* The code should write the 'cycle' bit on the link trb AFTER
* adding the other trb.
*/
u_int firstep = xr->xr_ep;
u_int firstcs = xr->xr_cs;
for (i = 0; i < ntrbs; ) {
u_int oldri = ri;
u_int oldcs = cs;
if (ri >= (xr->xr_ntrb - 1)) {
/* Put Link TD at the end of ring */
parameter = xhci_ring_trbp(xr, 0);
status = 0;
control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK) |
XHCI_TRB_3_TC_BIT;
xr->xr_cookies[ri] = NULL;
xr->xr_ep = 0;
xr->xr_cs ^= 1;
ri = xr->xr_ep;
cs = xr->xr_cs;
} else {
parameter = trbs[i].trb_0;
status = trbs[i].trb_2;
control = trbs[i].trb_3;
xr->xr_cookies[ri] = cookie;
ri++;
i++;
}
/*
* If this is a first TRB, mark it invalid to prevent
* xHC from running it immediately.
*/
if (oldri == firstep) {
if (oldcs) {
control &= ~XHCI_TRB_3_CYCLE_BIT;
} else {
control |= XHCI_TRB_3_CYCLE_BIT;
}
} else {
if (oldcs) {
control |= XHCI_TRB_3_CYCLE_BIT;
} else {
control &= ~XHCI_TRB_3_CYCLE_BIT;
}
}
xhci_trb_put(&xr->xr_trb[oldri], parameter, status, control);
usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * oldri,
XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
}
/* Now invert cycle bit of first TRB */
if (firstcs) {
xr->xr_trb[firstep].trb_3 |= htole32(XHCI_TRB_3_CYCLE_BIT);
} else {
xr->xr_trb[firstep].trb_3 &= ~htole32(XHCI_TRB_3_CYCLE_BIT);
}
usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * firstep,
XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
xr->xr_ep = ri;
xr->xr_cs = cs;
DPRINTFN(12, "%#jx xr_ep %#jx xr_cs %ju", (uintptr_t)xr, xr->xr_ep,
xr->xr_cs, 0);
}
static inline void
xhci_ring_put_xfer(struct xhci_softc * const sc, struct xhci_ring * const tr,
struct xhci_xfer *xx, u_int ntrb)
{
KASSERT(ntrb <= xx->xx_ntrb);
xhci_ring_put(sc, tr, xx, xx->xx_trb, ntrb);
}
/*
* Stop execution commands, purge all commands on command ring, and
* rewind dequeue pointer.
*/
static void
xhci_abort_command(struct xhci_softc *sc)
{
struct xhci_ring * const cr = sc->sc_cr;
uint64_t crcr;
int i;
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("command %#jx timeout, aborting",
sc->sc_command_addr, 0, 0, 0);
mutex_enter(&cr->xr_lock);
/* 4.6.1.2 Aborting a Command */
crcr = xhci_op_read_8(sc, XHCI_CRCR);
xhci_op_write_8(sc, XHCI_CRCR, crcr | XHCI_CRCR_LO_CA);
for (i = 0; i < 500; i++) {
crcr = xhci_op_read_8(sc, XHCI_CRCR);
if ((crcr & XHCI_CRCR_LO_CRR) == 0)
break;
usb_delay_ms(&sc->sc_bus, 1);
}
if ((crcr & XHCI_CRCR_LO_CRR) != 0) {
DPRINTFN(1, "Command Abort timeout", 0, 0, 0, 0);
/* reset HC here? */
}
/* reset command ring dequeue pointer */
cr->xr_ep = 0;
cr->xr_cs = 1;
xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(cr, 0) | cr->xr_cs);
mutex_exit(&cr->xr_lock);
}
/*
* Put a command on command ring, ring bell, set timer, and cv_timedwait.
* Command completion is notified by cv_signal from xhci_event_cmd()
* (called from xhci_softint), or timed-out.
* The completion code is copied to sc->sc_result_trb in xhci_event_cmd(),
* then do_command examines it.
*/
static usbd_status
xhci_do_command_locked(struct xhci_softc * const sc,
struct xhci_soft_trb * const trb, int timeout)
{
struct xhci_ring * const cr = sc->sc_cr;
usbd_status err;
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("input: 0x%016jx 0x%08jx 0x%08jx",
trb->trb_0, trb->trb_2, trb->trb_3, 0);
KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
KASSERT(mutex_owned(&sc->sc_lock));
while (sc->sc_command_addr != 0)
cv_wait(&sc->sc_cmdbusy_cv, &sc->sc_lock);
/*
* If enqueue pointer points at last of ring, it's Link TRB,
* command TRB will be stored in 0th TRB.
*/
if (cr->xr_ep == cr->xr_ntrb - 1)
sc->sc_command_addr = xhci_ring_trbp(cr, 0);
else
sc->sc_command_addr = xhci_ring_trbp(cr, cr->xr_ep);
sc->sc_resultpending = true;
mutex_enter(&cr->xr_lock);
xhci_ring_put(sc, cr, NULL, trb, 1);
mutex_exit(&cr->xr_lock);
xhci_db_write_4(sc, XHCI_DOORBELL(0), 0);
while (sc->sc_resultpending) {
if (cv_timedwait(&sc->sc_command_cv, &sc->sc_lock,
MAX(1, mstohz(timeout))) == EWOULDBLOCK) {
xhci_abort_command(sc);
err = USBD_TIMEOUT;
goto timedout;
}
}
trb->trb_0 = sc->sc_result_trb.trb_0;
trb->trb_2 = sc->sc_result_trb.trb_2;
trb->trb_3 = sc->sc_result_trb.trb_3;
DPRINTFN(12, "output: 0x%016jx 0x%08jx 0x%08jx",
trb->trb_0, trb->trb_2, trb->trb_3, 0);
switch (XHCI_TRB_2_ERROR_GET(trb->trb_2)) {
case XHCI_TRB_ERROR_SUCCESS:
err = USBD_NORMAL_COMPLETION;
break;
default:
case 192 ... 223:
DPRINTFN(5, "error %#jx",
XHCI_TRB_2_ERROR_GET(trb->trb_2), 0, 0, 0);
err = USBD_IOERROR;
break;
case 224 ... 255:
err = USBD_NORMAL_COMPLETION;
break;
}
timedout:
sc->sc_resultpending = false;
sc->sc_command_addr = 0;
cv_broadcast(&sc->sc_cmdbusy_cv);
return err;
}
static usbd_status
xhci_do_command(struct xhci_softc * const sc, struct xhci_soft_trb * const trb,
int timeout)
{
mutex_enter(&sc->sc_lock);
usbd_status ret = xhci_do_command_locked(sc, trb, timeout);
mutex_exit(&sc->sc_lock);
return ret;
}
static usbd_status
xhci_enable_slot(struct xhci_softc * const sc, uint8_t * const slotp)
{
struct xhci_soft_trb trb;
usbd_status err;
XHCIHIST_FUNC(); XHCIHIST_CALLED();
trb.trb_0 = 0;
trb.trb_2 = 0;
trb.trb_3 = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ENABLE_SLOT);
err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
if (err != USBD_NORMAL_COMPLETION) {
return err;
}
*slotp = XHCI_TRB_3_SLOT_GET(trb.trb_3);
return err;
}
/*
* xHCI 4.6.4
* Deallocate ring and device/input context DMA buffers, and disable_slot.
* All endpoints in the slot should be stopped.
* Should be called with sc_lock held.
*/
static usbd_status
xhci_disable_slot(struct xhci_softc * const sc, uint8_t slot)
{
struct xhci_soft_trb trb;
struct xhci_slot *xs;
usbd_status err;
XHCIHIST_FUNC(); XHCIHIST_CALLED();
if (sc->sc_dying)
return USBD_IOERROR;
trb.trb_0 = 0;
trb.trb_2 = 0;
trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot) |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DISABLE_SLOT);
err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
if (!err) {
xs = &sc->sc_slots[slot];
if (xs->xs_idx != 0) {
xhci_free_slot(sc, xs);
xhci_set_dcba(sc, 0, slot);
memset(xs, 0, sizeof(*xs));
}
}
return err;
}
/*
* Set address of device and transition slot state from ENABLED to ADDRESSED
* if Block Setaddress Request (BSR) is false.
* If BSR==true, transition slot state from ENABLED to DEFAULT.
* see xHCI 1.1 4.5.3, 3.3.4
* Should be called without sc_lock held.
*/
static usbd_status
xhci_address_device(struct xhci_softc * const sc,
uint64_t icp, uint8_t slot_id, bool bsr)
{
struct xhci_soft_trb trb;
usbd_status err;
XHCIHIST_FUNC();
if (bsr) {
XHCIHIST_CALLARGS("icp %#jx slot %#jx with bsr",
icp, slot_id, 0, 0);
} else {
XHCIHIST_CALLARGS("icp %#jx slot %#jx nobsr",
icp, slot_id, 0, 0);
}
trb.trb_0 = icp;
trb.trb_2 = 0;
trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot_id) |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ADDRESS_DEVICE) |
(bsr ? XHCI_TRB_3_BSR_BIT : 0);
err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
if (XHCI_TRB_2_ERROR_GET(trb.trb_2) == XHCI_TRB_ERROR_NO_SLOTS)
err = USBD_NO_ADDR;
return err;
}
static usbd_status
xhci_update_ep0_mps(struct xhci_softc * const sc,
struct xhci_slot * const xs, u_int mps)
{
struct xhci_soft_trb trb;
usbd_status err;
uint32_t * cp;
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("slot %ju mps %ju", xs->xs_idx, mps, 0, 0);
cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
cp[0] = htole32(0);
cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_EP_CONTROL));
cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_EP_CONTROL));
cp[1] = htole32(XHCI_EPCTX_1_MAXP_SIZE_SET(mps));
/* sync input contexts before they are read from memory */
usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
HEXDUMP("input context", xhci_slot_get_icv(sc, xs, 0),
sc->sc_ctxsz * 4);
trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
trb.trb_2 = 0;
trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_EVALUATE_CTX);
err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
return err;
}
static void
xhci_set_dcba(struct xhci_softc * const sc, uint64_t dcba, int si)
{
uint64_t * const dcbaa = KERNADDR(&sc->sc_dcbaa_dma, 0);
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("dcbaa %#jx dc 0x%016jx slot %jd",
(uintptr_t)&dcbaa[si], dcba, si, 0);
dcbaa[si] = htole64(dcba);
usb_syncmem(&sc->sc_dcbaa_dma, si * sizeof(uint64_t), sizeof(uint64_t),
BUS_DMASYNC_PREWRITE);
}
/*
* Allocate device and input context DMA buffer, and
* TRB DMA buffer for each endpoint.
*/
static usbd_status
xhci_init_slot(struct usbd_device *dev, uint32_t slot)
{
struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
struct xhci_slot *xs;
usbd_status err;
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("slot %ju", slot, 0, 0, 0);
xs = &sc->sc_slots[slot];
/* allocate contexts */
err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, sc->sc_pgsz,
USBMALLOC_COHERENT, &xs->xs_dc_dma);
if (err) {
DPRINTFN(1, "failed to allocmem output device context %jd",
err, 0, 0, 0);
return err;
}
memset(KERNADDR(&xs->xs_dc_dma, 0), 0, sc->sc_pgsz);
err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, sc->sc_pgsz,
USBMALLOC_COHERENT, &xs->xs_ic_dma);
if (err) {
DPRINTFN(1, "failed to allocmem input device context %jd",
err, 0, 0, 0);
goto bad1;
}
memset(KERNADDR(&xs->xs_ic_dma, 0), 0, sc->sc_pgsz);
memset(&xs->xs_xr[0], 0, sizeof(xs->xs_xr));
xs->xs_idx = slot;
return USBD_NORMAL_COMPLETION;
bad1:
usb_freemem(&sc->sc_bus, &xs->xs_dc_dma);
xs->xs_idx = 0;
return err;
}
static void
xhci_free_slot(struct xhci_softc *sc, struct xhci_slot *xs)
{
u_int dci;
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("slot %ju", xs->xs_idx, 0, 0, 0);
/* deallocate all allocated rings in the slot */
for (dci = XHCI_DCI_SLOT; dci <= XHCI_MAX_DCI; dci++) {
if (xs->xs_xr[dci] != NULL)
xhci_ring_free(sc, &xs->xs_xr[dci]);
}
usb_freemem(&sc->sc_bus, &xs->xs_ic_dma);
usb_freemem(&sc->sc_bus, &xs->xs_dc_dma);
xs->xs_idx = 0;
}
/*
* Setup slot context, set Device Context Base Address, and issue
* Set Address Device command.
*/
static usbd_status
xhci_set_address(struct usbd_device *dev, uint32_t slot, bool bsr)
{
struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
struct xhci_slot *xs;
usbd_status err;
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("slot %ju bsr %ju", slot, bsr, 0, 0);
xs = &sc->sc_slots[slot];
xhci_setup_ctx(dev->ud_pipe0);
HEXDUMP("input context", xhci_slot_get_icv(sc, xs, 0),
sc->sc_ctxsz * 3);
xhci_set_dcba(sc, DMAADDR(&xs->xs_dc_dma, 0), slot);
err = xhci_address_device(sc, xhci_slot_get_icp(sc, xs, 0), slot, bsr);
usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
HEXDUMP("output context", xhci_slot_get_dcv(sc, xs, 0),
sc->sc_ctxsz * 2);
return err;
}
/*
* 4.8.2, 6.2.3.2
* construct slot/endpoint context parameters and do syncmem
*/
static void
xhci_setup_ctx(struct usbd_pipe *pipe)
{
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
struct usbd_device *dev = pipe->up_dev;
struct xhci_slot * const xs = dev->ud_hcpriv;
usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
const u_int dci = xhci_ep_get_dci(ed);
const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
uint32_t *cp;
uint16_t mps = UGETW(ed->wMaxPacketSize);
uint8_t speed = dev->ud_speed;
uint8_t ival = ed->bInterval;
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("pipe %#jx: slot %ju dci %ju speed %ju",
(uintptr_t)pipe, xs->xs_idx, dci, speed);
/* set up initial input control context */
cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
cp[0] = htole32(0);
cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(dci));
cp[1] |= htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_SLOT));
cp[7] = htole32(0);
/* set up input slot context */
cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
cp[0] =
XHCI_SCTX_0_CTX_NUM_SET(dci) |
XHCI_SCTX_0_SPEED_SET(xhci_speed2xspeed(speed));
cp[1] = 0;
cp[2] = XHCI_SCTX_2_IRQ_TARGET_SET(0);
cp[3] = 0;
xhci_setup_route(pipe, cp);
xhci_setup_tthub(pipe, cp);
cp[0] = htole32(cp[0]);
cp[1] = htole32(cp[1]);
cp[2] = htole32(cp[2]);
cp[3] = htole32(cp[3]);
/* set up input endpoint context */
cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(dci));
cp[0] =
XHCI_EPCTX_0_EPSTATE_SET(0) |
XHCI_EPCTX_0_MULT_SET(0) |
XHCI_EPCTX_0_MAXP_STREAMS_SET(0) |
XHCI_EPCTX_0_LSA_SET(0) |
XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(0);
cp[1] =
XHCI_EPCTX_1_EPTYPE_SET(xhci_ep_get_type(ed)) |
XHCI_EPCTX_1_HID_SET(0) |
XHCI_EPCTX_1_MAXB_SET(0);
if (xfertype != UE_ISOCHRONOUS)
cp[1] |= XHCI_EPCTX_1_CERR_SET(3);
if (xfertype == UE_CONTROL)
cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(8); /* 6.2.3 */
else if (USB_IS_SS(speed))
cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(mps);
else
cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(UE_GET_SIZE(mps));
xhci_setup_maxburst(pipe, cp);
switch (xfertype) {
case UE_CONTROL:
break;
case UE_BULK:
/* XXX Set MaxPStreams, HID, and LSA if streams enabled */
break;
case UE_INTERRUPT:
if (pipe->up_interval != USBD_DEFAULT_INTERVAL)
ival = pipe->up_interval;
ival = xhci_bival2ival(ival, speed);
cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
break;
case UE_ISOCHRONOUS:
if (pipe->up_interval != USBD_DEFAULT_INTERVAL)
ival = pipe->up_interval;
/* xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6 */
if (speed == USB_SPEED_FULL)
ival += 3; /* 1ms -> 125us */
ival--;
cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
break;
default:
break;
}
DPRINTFN(4, "setting ival %ju MaxBurst %#jx",
XHCI_EPCTX_0_IVAL_GET(cp[0]), XHCI_EPCTX_1_MAXB_GET(cp[1]), 0, 0);
/* rewind TR dequeue pointer in xHC */
/* can't use xhci_ep_get_dci() yet? */
*(uint64_t *)(&cp[2]) = htole64(
xhci_ring_trbp(xs->xs_xr[dci], 0) |
XHCI_EPCTX_2_DCS_SET(1));
cp[0] = htole32(cp[0]);
cp[1] = htole32(cp[1]);
cp[4] = htole32(cp[4]);
/* rewind TR dequeue pointer in driver */
struct xhci_ring *xr = xs->xs_xr[dci];
mutex_enter(&xr->xr_lock);
xhci_host_dequeue(xr);
mutex_exit(&xr->xr_lock);
/* sync input contexts before they are read from memory */
usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
}
/*
* Setup route string and roothub port of given device for slot context
*/
static void
xhci_setup_route(struct usbd_pipe *pipe, uint32_t *cp)
{
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
struct usbd_device *dev = pipe->up_dev;
struct usbd_port *up = dev->ud_powersrc;
struct usbd_device *hub;
struct usbd_device *adev;
uint8_t rhport = 0;
uint32_t route = 0;
XHCIHIST_FUNC(); XHCIHIST_CALLED();
/* Locate root hub port and Determine route string */
/* 4.3.3 route string does not include roothub port */
for (hub = dev; hub != NULL; hub = hub->ud_myhub) {
uint32_t dep;
DPRINTFN(4, "hub %#jx depth %jd upport %#jx upportno %jd",
(uintptr_t)hub, hub->ud_depth, (uintptr_t)hub->ud_powersrc,
hub->ud_powersrc ? (uintptr_t)hub->ud_powersrc->up_portno :
-1);
if (hub->ud_powersrc == NULL)
break;
dep = hub->ud_depth;
if (dep == 0)
break;
rhport = hub->ud_powersrc->up_portno;
if (dep > USB_HUB_MAX_DEPTH)
continue;
route |=
(rhport > UHD_SS_NPORTS_MAX ? UHD_SS_NPORTS_MAX : rhport)
<< ((dep - 1) * 4);
}
route = route >> 4;
size_t bn = hub == sc->sc_bus.ub_roothub ? 0 : 1;
/* Locate port on upstream high speed hub */
for (adev = dev, hub = up->up_parent;
hub != NULL && hub->ud_speed != USB_SPEED_HIGH;
adev = hub, hub = hub->ud_myhub)
;
if (hub) {
int p;
for (p = 1; p <= hub->ud_hub->uh_hubdesc.bNbrPorts; p++) {
if (hub->ud_hub->uh_ports[p - 1].up_dev == adev) {
dev->ud_myhsport = &hub->ud_hub->uh_ports[p - 1];
goto found;
}
}
panic("%s: cannot find HS port", __func__);
found:
DPRINTFN(4, "high speed port %jd", p, 0, 0, 0);
} else {
dev->ud_myhsport = NULL;
}
const size_t ctlrport = xhci_rhport2ctlrport(sc, bn, rhport);
DPRINTFN(4, "rhport %ju ctlrport %ju Route %05jx hub %#jx", rhport,
ctlrport, route, (uintptr_t)hub);
cp[0] |= XHCI_SCTX_0_ROUTE_SET(route);
cp[1] |= XHCI_SCTX_1_RH_PORT_SET(ctlrport);
}
/*
* Setup whether device is hub, whether device uses MTT, and
* TT informations if it uses MTT.
*/
static void
xhci_setup_tthub(struct usbd_pipe *pipe, uint32_t *cp)
{
struct usbd_device *dev = pipe->up_dev;
struct usbd_port *myhsport = dev->ud_myhsport;
usb_device_descriptor_t * const dd = &dev->ud_ddesc;
uint32_t speed = dev->ud_speed;
uint8_t rhaddr = dev->ud_bus->ub_rhaddr;
uint8_t tthubslot, ttportnum;
bool ishub;
bool usemtt;
XHCIHIST_FUNC();
/*
* 6.2.2, Table 57-60, 6.2.2.1, 6.2.2.2
* tthubslot:
* This is the slot ID of parent HS hub
* if LS/FS device is connected && connected through HS hub.
* This is 0 if device is not LS/FS device ||
* parent hub is not HS hub ||
* attached to root hub.
* ttportnum:
* This is the downstream facing port of parent HS hub
* if LS/FS device is connected.
* This is 0 if device is not LS/FS device ||
* parent hub is not HS hub ||
* attached to root hub.
*/
if (myhsport &&
myhsport->up_parent->ud_addr != rhaddr &&
(speed == USB_SPEED_LOW || speed == USB_SPEED_FULL)) {
ttportnum = myhsport->up_portno;
tthubslot = myhsport->up_parent->ud_addr;
} else {
ttportnum = 0;
tthubslot = 0;
}
XHCIHIST_CALLARGS("myhsport %#jx ttportnum=%jd tthubslot=%jd",
(uintptr_t)myhsport, ttportnum, tthubslot, 0);
/* ishub is valid after reading UDESC_DEVICE */
ishub = (dd->bDeviceClass == UDCLASS_HUB);
/* dev->ud_hub is valid after reading UDESC_HUB */
if (ishub && dev->ud_hub) {
usb_hub_descriptor_t *hd = &dev->ud_hub->uh_hubdesc;
uint8_t ttt =
__SHIFTOUT(UGETW(hd->wHubCharacteristics), UHD_TT_THINK);
cp[1] |= XHCI_SCTX_1_NUM_PORTS_SET(hd->bNbrPorts);
cp[2] |= XHCI_SCTX_2_TT_THINK_TIME_SET(ttt);
DPRINTFN(4, "nports=%jd ttt=%jd", hd->bNbrPorts, ttt, 0, 0);
}
#define IS_MTTHUB(dd) \
((dd)->bDeviceProtocol == UDPROTO_HSHUBMTT)
/*
* MTT flag is set if
* 1. this is HS hub && MTTs are supported and enabled; or
* 2. this is LS or FS device && there is a parent HS hub where MTTs
* are supported and enabled.
*
* XXX enabled is not tested yet
*/
if (ishub && speed == USB_SPEED_HIGH && IS_MTTHUB(dd))
usemtt = true;
else if ((speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) &&
myhsport &&
myhsport->up_parent->ud_addr != rhaddr &&
IS_MTTHUB(&myhsport->up_parent->ud_ddesc))
usemtt = true;
else
usemtt = false;
DPRINTFN(4, "class %ju proto %ju ishub %jd usemtt %jd",
dd->bDeviceClass, dd->bDeviceProtocol, ishub, usemtt);
#undef IS_MTTHUB
cp[0] |=
XHCI_SCTX_0_HUB_SET(ishub ? 1 : 0) |
XHCI_SCTX_0_MTT_SET(usemtt ? 1 : 0);
cp[2] |=
XHCI_SCTX_2_TT_HUB_SID_SET(tthubslot) |
XHCI_SCTX_2_TT_PORT_NUM_SET(ttportnum);
}
/* set up params for periodic endpoint */
static void
xhci_setup_maxburst(struct usbd_pipe *pipe, uint32_t *cp)
{
struct usbd_device *dev = pipe->up_dev;
usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
usbd_desc_iter_t iter;
const usb_cdc_descriptor_t *cdcd;
uint32_t maxb = 0;
uint16_t mps = UGETW(ed->wMaxPacketSize);
uint8_t speed = dev->ud_speed;
uint8_t ep;
/* config desc is NULL when opening ep0 */
if (dev == NULL || dev->ud_cdesc == NULL)
goto no_cdcd;
cdcd = (const usb_cdc_descriptor_t *)usb_find_desc(dev,
UDESC_INTERFACE, USBD_CDCSUBTYPE_ANY);
if (cdcd == NULL)
goto no_cdcd;
usb_desc_iter_init(dev, &iter);
iter.cur = (const void *)cdcd;
/* find endpoint_ss_comp desc for ep of this pipe */
for (ep = 0;;) {
cdcd = (const usb_cdc_descriptor_t *)usb_desc_iter_next(&iter);
if (cdcd == NULL)
break;
if (ep == 0 && cdcd->bDescriptorType == UDESC_ENDPOINT) {
ep = ((const usb_endpoint_descriptor_t *)cdcd)->
bEndpointAddress;
if (UE_GET_ADDR(ep) ==
UE_GET_ADDR(ed->bEndpointAddress)) {
cdcd = (const usb_cdc_descriptor_t *)
usb_desc_iter_next(&iter);
break;
}
ep = 0;
}
}
if (cdcd != NULL && cdcd->bDescriptorType == UDESC_ENDPOINT_SS_COMP) {
const usb_endpoint_ss_comp_descriptor_t * esscd =
(const usb_endpoint_ss_comp_descriptor_t *)cdcd;
maxb = esscd->bMaxBurst;
}
no_cdcd:
/* 6.2.3.4, 4.8.2.4 */
if (USB_IS_SS(speed)) {
/* USB 3.1 9.6.6 */
cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(mps);
/* USB 3.1 9.6.7 */
cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
#ifdef notyet
if (xfertype == UE_ISOCHRONOUS) {
}
if (XHCI_HCC2_LEC(sc->sc_hcc2) != 0) {
/* use ESIT */
cp[4] |= XHCI_EPCTX_4_MAX_ESIT_PAYLOAD_SET(x);
cp[0] |= XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(x);
/* XXX if LEC = 1, set ESIT instead */
cp[0] |= XHCI_EPCTX_0_MULT_SET(0);
} else {
/* use ival */
}
#endif
} else {
/* USB 2.0 9.6.6 */
cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(UE_GET_SIZE(mps));
/* 6.2.3.4 */
if (speed == USB_SPEED_HIGH &&
(xfertype == UE_ISOCHRONOUS || xfertype == UE_INTERRUPT)) {
maxb = UE_GET_TRANS(mps);
} else {
/* LS/FS or HS CTRL or HS BULK */
maxb = 0;
}
cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
}
}
/*
* Convert endpoint bInterval value to endpoint context interval value
* for Interrupt pipe.
* xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6
*/
static uint32_t
xhci_bival2ival(uint32_t ival, uint32_t speed)
{
if (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) {
int i;
/*
* round ival down to "the nearest base 2 multiple of
* bInterval * 8".
* bInterval is at most 255 as its type is uByte.
* 255(ms) = 2040(x 125us) < 2^11, so start with 10.
*/
for (i = 10; i > 0; i--) {
if ((ival * 8) >= (1 << i))
break;
}
ival = i;
} else {
/* Interval = bInterval-1 for SS/HS */
ival--;
}
return ival;
}
/* ----- */
static void
xhci_noop(struct usbd_pipe *pipe)
{
XHCIHIST_FUNC(); XHCIHIST_CALLED();
}
/*
* Process root hub request.
*/
static int
xhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
void *buf, int buflen)
{
struct xhci_softc * const sc = XHCI_BUS2SC(bus);
usb_port_status_t ps;
int l, totlen = 0;
uint16_t len, value, index;
int port, i;
uint32_t v;
XHCIHIST_FUNC();
if (sc->sc_dying)
return -1;
size_t bn = bus == &sc->sc_bus ? 0 : 1;
len = UGETW(req->wLength);
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
XHCIHIST_CALLARGS("rhreq: %04jx %04jx %04jx %04jx",
req->bmRequestType | (req->bRequest << 8), value, index, len);
#define C(x,y) ((x) | ((y) << 8))
switch (C(req->bRequest, req->bmRequestType)) {
case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
DPRINTFN(8, "getdesc: wValue=0x%04jx", value, 0, 0, 0);
if (len == 0)
break;
switch (value) {
#define sd ((usb_string_descriptor_t *)buf)
case C(2, UDESC_STRING):
/* Product */
totlen = usb_makestrdesc(sd, len, "xHCI root hub");
break;
#undef sd
default:
/* default from usbroothub */
return buflen;
}
break;
/* Hub requests */
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
/* Clear Port Feature request */
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): {
const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
DPRINTFN(4, "UR_CLEAR_PORT_FEAT bp=%jd feat=%jd bus=%jd cp=%jd",
index, value, bn, cp);
if (index < 1 || index > sc->sc_rhportcount[bn]) {
return -1;
}
port = XHCI_PORTSC(cp);
v = xhci_op_read_4(sc, port);
DPRINTFN(4, "portsc=0x%08jx", v, 0, 0, 0);
v &= ~XHCI_PS_CLEAR;
switch (value) {
case UHF_PORT_ENABLE:
xhci_op_write_4(sc, port, v & ~XHCI_PS_PED);
break;
case UHF_PORT_SUSPEND:
return -1;
case UHF_PORT_POWER:
break;
case UHF_PORT_TEST:
case UHF_PORT_INDICATOR:
return -1;
case UHF_C_PORT_CONNECTION:
xhci_op_write_4(sc, port, v | XHCI_PS_CSC);
break;
case UHF_C_PORT_ENABLE:
case UHF_C_PORT_SUSPEND:
case UHF_C_PORT_OVER_CURRENT:
return -1;
case UHF_C_BH_PORT_RESET:
xhci_op_write_4(sc, port, v | XHCI_PS_WRC);
break;
case UHF_C_PORT_RESET:
xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
break;
case UHF_C_PORT_LINK_STATE:
xhci_op_write_4(sc, port, v | XHCI_PS_PLC);
break;
case UHF_C_PORT_CONFIG_ERROR:
xhci_op_write_4(sc, port, v | XHCI_PS_CEC);
break;
default:
return -1;
}
break;
}
case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
if (len == 0)
break;
if ((value & 0xff) != 0) {
return -1;
}
usb_hub_descriptor_t hubd;
totlen = uimin(buflen, sizeof(hubd));
memcpy(&hubd, buf, totlen);
hubd.bNbrPorts = sc->sc_rhportcount[bn];
USETW(hubd.wHubCharacteristics, UHD_PWR_NO_SWITCH);
hubd.bPwrOn2PwrGood = 200;
for (i = 0, l = sc->sc_rhportcount[bn]; l > 0; i++, l -= 8) {
/* XXX can't find out? */
hubd.DeviceRemovable[i++] = 0;
}
hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i;
totlen = uimin(totlen, hubd.bDescLength);
memcpy(buf, &hubd, totlen);
break;
case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
if (len != 4) {
return -1;
}
memset(buf, 0, len); /* ? XXX */
totlen = len;
break;
/* Get Port Status request */
case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
DPRINTFN(8, "get port status bn=%jd i=%jd cp=%ju",
bn, index, cp, 0);
if (index < 1 || index > sc->sc_rhportcount[bn]) {
DPRINTFN(5, "bad get port status: index=%jd bn=%jd "
"portcount=%jd",
index, bn, sc->sc_rhportcount[bn], 0);
return -1;
}
if (len != 4) {
DPRINTFN(5, "bad get port status: len %jd != 4",
len, 0, 0, 0);
return -1;
}
v = xhci_op_read_4(sc, XHCI_PORTSC(cp));
DPRINTFN(4, "getrhportsc %jd 0x%08jx", cp, v, 0, 0);
i = xhci_xspeed2psspeed(XHCI_PS_SPEED_GET(v));
if (v & XHCI_PS_CCS) i |= UPS_CURRENT_CONNECT_STATUS;
if (v & XHCI_PS_PED) i |= UPS_PORT_ENABLED;
if (v & XHCI_PS_OCA) i |= UPS_OVERCURRENT_INDICATOR;
//if (v & XHCI_PS_SUSP) i |= UPS_SUSPEND;
if (v & XHCI_PS_PR) i |= UPS_RESET;
if (v & XHCI_PS_PP) {
if (i & UPS_OTHER_SPEED)
i |= UPS_PORT_POWER_SS;
else
i |= UPS_PORT_POWER;
}
if (i & UPS_OTHER_SPEED)
i |= UPS_PORT_LS_SET(XHCI_PS_PLS_GET(v));
if (sc->sc_vendor_port_status)
i = sc->sc_vendor_port_status(sc, v, i);
USETW(ps.wPortStatus, i);
i = 0;
if (v & XHCI_PS_CSC) i |= UPS_C_CONNECT_STATUS;
if (v & XHCI_PS_PEC) i |= UPS_C_PORT_ENABLED;
if (v & XHCI_PS_OCC) i |= UPS_C_OVERCURRENT_INDICATOR;
if (v & XHCI_PS_PRC) i |= UPS_C_PORT_RESET;
if (v & XHCI_PS_WRC) i |= UPS_C_BH_PORT_RESET;
if (v & XHCI_PS_PLC) i |= UPS_C_PORT_LINK_STATE;
if (v & XHCI_PS_CEC) i |= UPS_C_PORT_CONFIG_ERROR;
USETW(ps.wPortChange, i);
totlen = uimin(len, sizeof(ps));
memcpy(buf, &ps, totlen);
DPRINTFN(5, "get port status: wPortStatus %#jx wPortChange %#jx"
" totlen %jd",
UGETW(ps.wPortStatus), UGETW(ps.wPortChange), totlen, 0);
break;
}
case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
return -1;
case C(UR_SET_HUB_DEPTH, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
/* Set Port Feature request */
case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): {
int optval = (index >> 8) & 0xff;
index &= 0xff;
if (index < 1 || index > sc->sc_rhportcount[bn]) {
return -1;
}
const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
port = XHCI_PORTSC(cp);
v = xhci_op_read_4(sc, port);
DPRINTFN(4, "index %jd cp %jd portsc=0x%08jx", index, cp, v, 0);
v &= ~XHCI_PS_CLEAR;
switch (value) {
case UHF_PORT_ENABLE:
xhci_op_write_4(sc, port, v | XHCI_PS_PED);
break;
case UHF_PORT_SUSPEND:
/* XXX suspend */
break;
case UHF_PORT_RESET:
v &= ~(XHCI_PS_PED | XHCI_PS_PR);
xhci_op_write_4(sc, port, v | XHCI_PS_PR);
/* Wait for reset to complete. */
usb_delay_ms(&sc->sc_bus, USB_PORT_ROOT_RESET_DELAY);
if (sc->sc_dying) {
return -1;
}
v = xhci_op_read_4(sc, port);
if (v & XHCI_PS_PR) {
xhci_op_write_4(sc, port, v & ~XHCI_PS_PR);
usb_delay_ms(&sc->sc_bus, 10);
/* XXX */
}
break;
case UHF_PORT_POWER:
/* XXX power control */
break;
/* XXX more */
case UHF_C_PORT_RESET:
xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
break;
case UHF_PORT_U1_TIMEOUT:
if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
return -1;
}
port = XHCI_PORTPMSC(cp);
v = xhci_op_read_4(sc, port);
DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx",
index, cp, v, 0);
v &= ~XHCI_PM3_U1TO_SET(0xff);
v |= XHCI_PM3_U1TO_SET(optval);
xhci_op_write_4(sc, port, v);
break;
case UHF_PORT_U2_TIMEOUT:
if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
return -1;
}
port = XHCI_PORTPMSC(cp);
v = xhci_op_read_4(sc, port);
DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx",
index, cp, v, 0);
v &= ~XHCI_PM3_U2TO_SET(0xff);
v |= XHCI_PM3_U2TO_SET(optval);
xhci_op_write_4(sc, port, v);
break;
default:
return -1;
}
}
break;
case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER):
case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER):
case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER):
case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER):
break;
default:
/* default from usbroothub */
return buflen;
}
return totlen;
}
/* root hub interrupt */
static usbd_status
xhci_root_intr_transfer(struct usbd_xfer *xfer)
{
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
usbd_status err;
XHCIHIST_FUNC(); XHCIHIST_CALLED();
/* Insert last in queue. */
mutex_enter(&sc->sc_lock);
err = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
if (err)
return err;
/* Pipe isn't running, start first */
return xhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
/* Wait for roothub port status/change */
static usbd_status
xhci_root_intr_start(struct usbd_xfer *xfer)
{
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
const bool polling = xhci_polling_p(sc);
XHCIHIST_FUNC(); XHCIHIST_CALLED();
if (sc->sc_dying)
return USBD_IOERROR;
if (!polling)
mutex_enter(&sc->sc_lock);
KASSERT(sc->sc_intrxfer[bn] == NULL);
sc->sc_intrxfer[bn] = xfer;
xfer->ux_status = USBD_IN_PROGRESS;
if (!polling)
mutex_exit(&sc->sc_lock);
return USBD_IN_PROGRESS;
}
static void
xhci_root_intr_abort(struct usbd_xfer *xfer)
{
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
XHCIHIST_FUNC(); XHCIHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
/* If xfer has already completed, nothing to do here. */
if (sc->sc_intrxfer[bn] == NULL)
return;
/*
* Otherwise, sc->sc_intrxfer[bn] had better be this transfer.
* Cancel it.
*/
KASSERT(sc->sc_intrxfer[bn] == xfer);
xfer->ux_status = USBD_CANCELLED;
usb_transfer_complete(xfer);
}
static void
xhci_root_intr_close(struct usbd_pipe *pipe)
{
struct xhci_softc * const sc __diagused = XHCI_PIPE2SC(pipe);
const struct usbd_xfer *xfer __diagused = pipe->up_intrxfer;
const size_t bn __diagused = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
XHCIHIST_FUNC(); XHCIHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
/*
* Caller must guarantee the xfer has completed first, by
* closing the pipe only after normal completion or an abort.
*/
KASSERT(sc->sc_intrxfer[bn] == NULL);
}
static void
xhci_root_intr_done(struct usbd_xfer *xfer)
{
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
XHCIHIST_FUNC(); XHCIHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
/* Claim the xfer so it doesn't get completed again. */
KASSERT(sc->sc_intrxfer[bn] == xfer);
KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
sc->sc_intrxfer[bn] = NULL;
}
/* -------------- */
/* device control */
static usbd_status
xhci_device_ctrl_transfer(struct usbd_xfer *xfer)
{
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
usbd_status err;
XHCIHIST_FUNC(); XHCIHIST_CALLED();
/* Insert last in queue. */
mutex_enter(&sc->sc_lock);
err = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
if (err)
return err;
/* Pipe isn't running, start first */
return xhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
static usbd_status
xhci_device_ctrl_start(struct usbd_xfer *xfer)
{
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
struct xhci_ring * const tr = xs->xs_xr[dci];
struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
usb_device_request_t * const req = &xfer->ux_request;
const bool isread = usbd_xfer_isread(xfer);
const uint32_t len = UGETW(req->wLength);
usb_dma_t * const dma = &xfer->ux_dmabuf;
uint64_t parameter;
uint32_t status;
uint32_t control;
u_int i;
const bool polling = xhci_polling_p(sc);
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("req: %04jx %04jx %04jx %04jx",
req->bmRequestType | (req->bRequest << 8), UGETW(req->wValue),
UGETW(req->wIndex), UGETW(req->wLength));
/* we rely on the bottom bits for extra info */
KASSERTMSG(((uintptr_t)xfer & 0x3) == 0x0, "xfer %zx",
(uintptr_t) xfer);
KASSERT((xfer->ux_rqflags & URQ_REQUEST) != 0);
i = 0;
/* setup phase */
parameter = le64dec(req); /* to keep USB endian after xhci_trb_put() */
status = XHCI_TRB_2_IRQ_SET(0) | XHCI_TRB_2_BYTES_SET(sizeof(*req));
control = ((len == 0) ? XHCI_TRB_3_TRT_NONE :
(isread ? XHCI_TRB_3_TRT_IN : XHCI_TRB_3_TRT_OUT)) |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SETUP_STAGE) |
XHCI_TRB_3_IDT_BIT;
xhci_xfer_put_trb(xx, i++, parameter, status, control);
if (len != 0) {
/* data phase */
parameter = DMAADDR(dma, 0);
KASSERTMSG(len <= 0x10000, "len %d", len);
status = XHCI_TRB_2_IRQ_SET(0) |
XHCI_TRB_2_TDSZ_SET(0) |
XHCI_TRB_2_BYTES_SET(len);
control = (isread ? XHCI_TRB_3_DIR_IN : 0) |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DATA_STAGE) |
(isread ? XHCI_TRB_3_ISP_BIT : 0) |
XHCI_TRB_3_IOC_BIT;
xhci_xfer_put_trb(xx, i++, parameter, status, control);
usb_syncmem(dma, 0, len,
isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
}
parameter = 0;
status = XHCI_TRB_2_IRQ_SET(0);
/* the status stage has inverted direction */
control = ((isread && (len > 0)) ? 0 : XHCI_TRB_3_DIR_IN) |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STATUS_STAGE) |
XHCI_TRB_3_IOC_BIT;
xhci_xfer_put_trb(xx, i++, parameter, status, control);
if (!polling)
mutex_enter(&tr->xr_lock);
xhci_ring_put_xfer(sc, tr, xx, i);
if (!polling)
mutex_exit(&tr->xr_lock);
if (!polling)
mutex_enter(&sc->sc_lock);
xfer->ux_status = USBD_IN_PROGRESS;
xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
usbd_xfer_schedule_timeout(xfer);
if (!polling)
mutex_exit(&sc->sc_lock);
return USBD_IN_PROGRESS;
}
static void
xhci_device_ctrl_done(struct usbd_xfer *xfer)
{
XHCIHIST_FUNC(); XHCIHIST_CALLED();
usb_device_request_t *req = &xfer->ux_request;
int len = UGETW(req->wLength);
int rd = req->bmRequestType & UT_READ;
if (len)
usb_syncmem(&xfer->ux_dmabuf, 0, len,
rd ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
}
static void
xhci_device_ctrl_abort(struct usbd_xfer *xfer)
{
XHCIHIST_FUNC(); XHCIHIST_CALLED();
usbd_xfer_abort(xfer);
}
static void
xhci_device_ctrl_close(struct usbd_pipe *pipe)
{
XHCIHIST_FUNC(); XHCIHIST_CALLED();
xhci_close_pipe(pipe);
}
/* ------------------ */
/* device isochronous */
/* ----------- */
/* device bulk */
static usbd_status
xhci_device_bulk_transfer(struct usbd_xfer *xfer)
{
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
usbd_status err;
XHCIHIST_FUNC(); XHCIHIST_CALLED();
/* Insert last in queue. */
mutex_enter(&sc->sc_lock);
err = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
if (err)
return err;
/*
* Pipe isn't running (otherwise err would be USBD_INPROG),
* so start it first.
*/
return xhci_device_bulk_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
static usbd_status
xhci_device_bulk_start(struct usbd_xfer *xfer)
{
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
struct xhci_ring * const tr = xs->xs_xr[dci];
struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
const uint32_t len = xfer->ux_length;
usb_dma_t * const dma = &xfer->ux_dmabuf;
uint64_t parameter;
uint32_t status;
uint32_t control;
u_int i = 0;
const bool polling = xhci_polling_p(sc);
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
(uintptr_t)xfer, xs->xs_idx, dci, 0);
if (sc->sc_dying)
return USBD_IOERROR;
KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
parameter = DMAADDR(dma, 0);
const bool isread = usbd_xfer_isread(xfer);
if (len)
usb_syncmem(dma, 0, len,
isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
/*
* XXX: (dsl) The physical buffer must not cross a 64k boundary.
* If the user supplied buffer crosses such a boundary then 2
* (or more) TRB should be used.
* If multiple TRB are used the td_size field must be set correctly.
* For v1.0 devices (like ivy bridge) this is the number of usb data
* blocks needed to complete the transfer.
* Setting it to 1 in the last TRB causes an extra zero-length
* data block be sent.
* The earlier documentation differs, I don't know how it behaves.
*/
KASSERTMSG(len <= 0x10000, "len %d", len);
status = XHCI_TRB_2_IRQ_SET(0) |
XHCI_TRB_2_TDSZ_SET(0) |
XHCI_TRB_2_BYTES_SET(len);
control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
(isread ? XHCI_TRB_3_ISP_BIT : 0) |
XHCI_TRB_3_IOC_BIT;
xhci_xfer_put_trb(xx, i++, parameter, status, control);
if (!polling)
mutex_enter(&tr->xr_lock);
xhci_ring_put_xfer(sc, tr, xx, i);
if (!polling)
mutex_exit(&tr->xr_lock);
if (!polling)
mutex_enter(&sc->sc_lock);
xfer->ux_status = USBD_IN_PROGRESS;
xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
usbd_xfer_schedule_timeout(xfer);
if (!polling)
mutex_exit(&sc->sc_lock);
return USBD_IN_PROGRESS;
}
static void
xhci_device_bulk_done(struct usbd_xfer *xfer)
{
#ifdef USB_DEBUG
struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
#endif
const bool isread = usbd_xfer_isread(xfer);
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
(uintptr_t)xfer, xs->xs_idx, dci, 0);
usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
}
static void
xhci_device_bulk_abort(struct usbd_xfer *xfer)
{
XHCIHIST_FUNC(); XHCIHIST_CALLED();
usbd_xfer_abort(xfer);
}
static void
xhci_device_bulk_close(struct usbd_pipe *pipe)
{
XHCIHIST_FUNC(); XHCIHIST_CALLED();
xhci_close_pipe(pipe);
}
/* ---------------- */
/* device interrupt */
static usbd_status
xhci_device_intr_transfer(struct usbd_xfer *xfer)
{
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
usbd_status err;
XHCIHIST_FUNC(); XHCIHIST_CALLED();
/* Insert last in queue. */
mutex_enter(&sc->sc_lock);
err = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
if (err)
return err;
/*
* Pipe isn't running (otherwise err would be USBD_INPROG),
* so start it first.
*/
return xhci_device_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
static usbd_status
xhci_device_intr_start(struct usbd_xfer *xfer)
{
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
struct xhci_ring * const tr = xs->xs_xr[dci];
struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
const uint32_t len = xfer->ux_length;
const bool polling = xhci_polling_p(sc);
usb_dma_t * const dma = &xfer->ux_dmabuf;
uint64_t parameter;
uint32_t status;
uint32_t control;
u_int i = 0;
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
(uintptr_t)xfer, xs->xs_idx, dci, 0);
if (sc->sc_dying)
return USBD_IOERROR;
KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
const bool isread = usbd_xfer_isread(xfer);
if (len)
usb_syncmem(dma, 0, len,
isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
parameter = DMAADDR(dma, 0);
KASSERTMSG(len <= 0x10000, "len %d", len);
status = XHCI_TRB_2_IRQ_SET(0) |
XHCI_TRB_2_TDSZ_SET(0) |
XHCI_TRB_2_BYTES_SET(len);
control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
(isread ? XHCI_TRB_3_ISP_BIT : 0) | XHCI_TRB_3_IOC_BIT;
xhci_xfer_put_trb(xx, i++, parameter, status, control);
if (!polling)
mutex_enter(&tr->xr_lock);
xhci_ring_put_xfer(sc, tr, xx, i);
if (!polling)
mutex_exit(&tr->xr_lock);
if (!polling)
mutex_enter(&sc->sc_lock);
xfer->ux_status = USBD_IN_PROGRESS;
xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
usbd_xfer_schedule_timeout(xfer);
if (!polling)
mutex_exit(&sc->sc_lock);
return USBD_IN_PROGRESS;
}
static void
xhci_device_intr_done(struct usbd_xfer *xfer)
{
struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
#ifdef USB_DEBUG
struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
#endif
const bool isread = usbd_xfer_isread(xfer);
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
(uintptr_t)xfer, xs->xs_idx, dci, 0);
KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
}
static void
xhci_device_intr_abort(struct usbd_xfer *xfer)
{
struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("%#jx", (uintptr_t)xfer, 0, 0, 0);
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
usbd_xfer_abort(xfer);
}
static void
xhci_device_intr_close(struct usbd_pipe *pipe)
{
//struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
XHCIHIST_FUNC();
XHCIHIST_CALLARGS("%#jx", (uintptr_t)pipe, 0, 0, 0);
xhci_close_pipe(pipe);
}