4240 lines
110 KiB
C
4240 lines
110 KiB
C
/* $NetBSD: xhci.c,v 1.132 2020/06/06 08:56:30 skrll Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2013 Jonathan A. Kollasch
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* USB rev 2.0 and rev 3.1 specification
|
|
* http://www.usb.org/developers/docs/
|
|
* xHCI rev 1.1 specification
|
|
* http://www.intel.com/technology/usb/spec.htm
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: xhci.c,v 1.132 2020/06/06 08:56:30 skrll Exp $");
|
|
|
|
#ifdef _KERNEL_OPT
|
|
#include "opt_usb.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/device.h>
|
|
#include <sys/select.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <machine/endian.h>
|
|
|
|
#include <dev/usb/usb.h>
|
|
#include <dev/usb/usbdi.h>
|
|
#include <dev/usb/usbdivar.h>
|
|
#include <dev/usb/usbdi_util.h>
|
|
#include <dev/usb/usbhist.h>
|
|
#include <dev/usb/usb_mem.h>
|
|
#include <dev/usb/usb_quirks.h>
|
|
|
|
#include <dev/usb/xhcireg.h>
|
|
#include <dev/usb/xhcivar.h>
|
|
#include <dev/usb/usbroothub.h>
|
|
|
|
|
|
#ifdef USB_DEBUG
|
|
#ifndef XHCI_DEBUG
|
|
#define xhcidebug 0
|
|
#else /* !XHCI_DEBUG */
|
|
#define HEXDUMP(a, b, c) \
|
|
do { \
|
|
if (xhcidebug > 0) \
|
|
hexdump(printf, a, b, c); \
|
|
} while (/*CONSTCOND*/0)
|
|
static int xhcidebug = 0;
|
|
|
|
SYSCTL_SETUP(sysctl_hw_xhci_setup, "sysctl hw.xhci setup")
|
|
{
|
|
int err;
|
|
const struct sysctlnode *rnode;
|
|
const struct sysctlnode *cnode;
|
|
|
|
err = sysctl_createv(clog, 0, NULL, &rnode,
|
|
CTLFLAG_PERMANENT, CTLTYPE_NODE, "xhci",
|
|
SYSCTL_DESCR("xhci global controls"),
|
|
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
|
|
|
|
if (err)
|
|
goto fail;
|
|
|
|
/* control debugging printfs */
|
|
err = sysctl_createv(clog, 0, &rnode, &cnode,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
|
|
"debug", SYSCTL_DESCR("Enable debugging output"),
|
|
NULL, 0, &xhcidebug, sizeof(xhcidebug), CTL_CREATE, CTL_EOL);
|
|
if (err)
|
|
goto fail;
|
|
|
|
return;
|
|
fail:
|
|
aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
|
|
}
|
|
|
|
#endif /* !XHCI_DEBUG */
|
|
#endif /* USB_DEBUG */
|
|
|
|
#ifndef HEXDUMP
|
|
#define HEXDUMP(a, b, c)
|
|
#endif
|
|
|
|
#define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(xhcidebug,FMT,A,B,C,D)
|
|
#define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(xhcidebug,N,FMT,A,B,C,D)
|
|
#define XHCIHIST_FUNC() USBHIST_FUNC()
|
|
#define XHCIHIST_CALLED(name) USBHIST_CALLED(xhcidebug)
|
|
#define XHCIHIST_CALLARGS(FMT,A,B,C,D) \
|
|
USBHIST_CALLARGS(xhcidebug,FMT,A,B,C,D)
|
|
|
|
#define XHCI_DCI_SLOT 0
|
|
#define XHCI_DCI_EP_CONTROL 1
|
|
|
|
#define XHCI_ICI_INPUT_CONTROL 0
|
|
|
|
struct xhci_pipe {
|
|
struct usbd_pipe xp_pipe;
|
|
struct usb_task xp_async_task;
|
|
};
|
|
|
|
#define XHCI_COMMAND_RING_TRBS 256
|
|
#define XHCI_EVENT_RING_TRBS 256
|
|
#define XHCI_EVENT_RING_SEGMENTS 1
|
|
#define XHCI_TRB_3_ED_BIT XHCI_TRB_3_ISP_BIT
|
|
|
|
static usbd_status xhci_open(struct usbd_pipe *);
|
|
static void xhci_close_pipe(struct usbd_pipe *);
|
|
static int xhci_intr1(struct xhci_softc * const);
|
|
static void xhci_softintr(void *);
|
|
static void xhci_poll(struct usbd_bus *);
|
|
static struct usbd_xfer *xhci_allocx(struct usbd_bus *, unsigned int);
|
|
static void xhci_freex(struct usbd_bus *, struct usbd_xfer *);
|
|
static void xhci_abortx(struct usbd_xfer *);
|
|
static bool xhci_dying(struct usbd_bus *);
|
|
static void xhci_get_lock(struct usbd_bus *, kmutex_t **);
|
|
static usbd_status xhci_new_device(device_t, struct usbd_bus *, int, int, int,
|
|
struct usbd_port *);
|
|
static int xhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
|
|
void *, int);
|
|
|
|
static usbd_status xhci_configure_endpoint(struct usbd_pipe *);
|
|
//static usbd_status xhci_unconfigure_endpoint(struct usbd_pipe *);
|
|
static usbd_status xhci_reset_endpoint(struct usbd_pipe *);
|
|
static usbd_status xhci_stop_endpoint(struct usbd_pipe *);
|
|
|
|
static void xhci_host_dequeue(struct xhci_ring * const);
|
|
static usbd_status xhci_set_dequeue(struct usbd_pipe *);
|
|
|
|
static usbd_status xhci_do_command(struct xhci_softc * const,
|
|
struct xhci_soft_trb * const, int);
|
|
static usbd_status xhci_do_command_locked(struct xhci_softc * const,
|
|
struct xhci_soft_trb * const, int);
|
|
static usbd_status xhci_init_slot(struct usbd_device *, uint32_t);
|
|
static void xhci_free_slot(struct xhci_softc *, struct xhci_slot *);
|
|
static usbd_status xhci_set_address(struct usbd_device *, uint32_t, bool);
|
|
static usbd_status xhci_enable_slot(struct xhci_softc * const,
|
|
uint8_t * const);
|
|
static usbd_status xhci_disable_slot(struct xhci_softc * const, uint8_t);
|
|
static usbd_status xhci_address_device(struct xhci_softc * const,
|
|
uint64_t, uint8_t, bool);
|
|
static void xhci_set_dcba(struct xhci_softc * const, uint64_t, int);
|
|
static usbd_status xhci_update_ep0_mps(struct xhci_softc * const,
|
|
struct xhci_slot * const, u_int);
|
|
static usbd_status xhci_ring_init(struct xhci_softc * const,
|
|
struct xhci_ring **, size_t, size_t);
|
|
static void xhci_ring_free(struct xhci_softc * const,
|
|
struct xhci_ring ** const);
|
|
|
|
static void xhci_setup_ctx(struct usbd_pipe *);
|
|
static void xhci_setup_route(struct usbd_pipe *, uint32_t *);
|
|
static void xhci_setup_tthub(struct usbd_pipe *, uint32_t *);
|
|
static void xhci_setup_maxburst(struct usbd_pipe *, uint32_t *);
|
|
static uint32_t xhci_bival2ival(uint32_t, uint32_t);
|
|
|
|
static void xhci_noop(struct usbd_pipe *);
|
|
|
|
static usbd_status xhci_root_intr_transfer(struct usbd_xfer *);
|
|
static usbd_status xhci_root_intr_start(struct usbd_xfer *);
|
|
static void xhci_root_intr_abort(struct usbd_xfer *);
|
|
static void xhci_root_intr_close(struct usbd_pipe *);
|
|
static void xhci_root_intr_done(struct usbd_xfer *);
|
|
|
|
static usbd_status xhci_device_ctrl_transfer(struct usbd_xfer *);
|
|
static usbd_status xhci_device_ctrl_start(struct usbd_xfer *);
|
|
static void xhci_device_ctrl_abort(struct usbd_xfer *);
|
|
static void xhci_device_ctrl_close(struct usbd_pipe *);
|
|
static void xhci_device_ctrl_done(struct usbd_xfer *);
|
|
|
|
static usbd_status xhci_device_intr_transfer(struct usbd_xfer *);
|
|
static usbd_status xhci_device_intr_start(struct usbd_xfer *);
|
|
static void xhci_device_intr_abort(struct usbd_xfer *);
|
|
static void xhci_device_intr_close(struct usbd_pipe *);
|
|
static void xhci_device_intr_done(struct usbd_xfer *);
|
|
|
|
static usbd_status xhci_device_bulk_transfer(struct usbd_xfer *);
|
|
static usbd_status xhci_device_bulk_start(struct usbd_xfer *);
|
|
static void xhci_device_bulk_abort(struct usbd_xfer *);
|
|
static void xhci_device_bulk_close(struct usbd_pipe *);
|
|
static void xhci_device_bulk_done(struct usbd_xfer *);
|
|
|
|
static const struct usbd_bus_methods xhci_bus_methods = {
|
|
.ubm_open = xhci_open,
|
|
.ubm_softint = xhci_softintr,
|
|
.ubm_dopoll = xhci_poll,
|
|
.ubm_allocx = xhci_allocx,
|
|
.ubm_freex = xhci_freex,
|
|
.ubm_abortx = xhci_abortx,
|
|
.ubm_dying = xhci_dying,
|
|
.ubm_getlock = xhci_get_lock,
|
|
.ubm_newdev = xhci_new_device,
|
|
.ubm_rhctrl = xhci_roothub_ctrl,
|
|
};
|
|
|
|
static const struct usbd_pipe_methods xhci_root_intr_methods = {
|
|
.upm_transfer = xhci_root_intr_transfer,
|
|
.upm_start = xhci_root_intr_start,
|
|
.upm_abort = xhci_root_intr_abort,
|
|
.upm_close = xhci_root_intr_close,
|
|
.upm_cleartoggle = xhci_noop,
|
|
.upm_done = xhci_root_intr_done,
|
|
};
|
|
|
|
|
|
static const struct usbd_pipe_methods xhci_device_ctrl_methods = {
|
|
.upm_transfer = xhci_device_ctrl_transfer,
|
|
.upm_start = xhci_device_ctrl_start,
|
|
.upm_abort = xhci_device_ctrl_abort,
|
|
.upm_close = xhci_device_ctrl_close,
|
|
.upm_cleartoggle = xhci_noop,
|
|
.upm_done = xhci_device_ctrl_done,
|
|
};
|
|
|
|
static const struct usbd_pipe_methods xhci_device_isoc_methods = {
|
|
.upm_cleartoggle = xhci_noop,
|
|
};
|
|
|
|
static const struct usbd_pipe_methods xhci_device_bulk_methods = {
|
|
.upm_transfer = xhci_device_bulk_transfer,
|
|
.upm_start = xhci_device_bulk_start,
|
|
.upm_abort = xhci_device_bulk_abort,
|
|
.upm_close = xhci_device_bulk_close,
|
|
.upm_cleartoggle = xhci_noop,
|
|
.upm_done = xhci_device_bulk_done,
|
|
};
|
|
|
|
static const struct usbd_pipe_methods xhci_device_intr_methods = {
|
|
.upm_transfer = xhci_device_intr_transfer,
|
|
.upm_start = xhci_device_intr_start,
|
|
.upm_abort = xhci_device_intr_abort,
|
|
.upm_close = xhci_device_intr_close,
|
|
.upm_cleartoggle = xhci_noop,
|
|
.upm_done = xhci_device_intr_done,
|
|
};
|
|
|
|
static inline uint32_t
|
|
xhci_read_1(const struct xhci_softc * const sc, bus_size_t offset)
|
|
{
|
|
return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
|
|
}
|
|
|
|
static inline uint32_t
|
|
xhci_read_2(const struct xhci_softc * const sc, bus_size_t offset)
|
|
{
|
|
return bus_space_read_2(sc->sc_iot, sc->sc_ioh, offset);
|
|
}
|
|
|
|
static inline uint32_t
|
|
xhci_read_4(const struct xhci_softc * const sc, bus_size_t offset)
|
|
{
|
|
return bus_space_read_4(sc->sc_iot, sc->sc_ioh, offset);
|
|
}
|
|
|
|
static inline void
|
|
xhci_write_1(const struct xhci_softc * const sc, bus_size_t offset,
|
|
uint32_t value)
|
|
{
|
|
bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, value);
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
static inline void
|
|
xhci_write_4(const struct xhci_softc * const sc, bus_size_t offset,
|
|
uint32_t value)
|
|
{
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh, offset, value);
|
|
}
|
|
#endif /* unused */
|
|
|
|
static inline uint32_t
|
|
xhci_cap_read_4(const struct xhci_softc * const sc, bus_size_t offset)
|
|
{
|
|
return bus_space_read_4(sc->sc_iot, sc->sc_cbh, offset);
|
|
}
|
|
|
|
static inline uint32_t
|
|
xhci_op_read_4(const struct xhci_softc * const sc, bus_size_t offset)
|
|
{
|
|
return bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
|
|
}
|
|
|
|
static inline void
|
|
xhci_op_write_4(const struct xhci_softc * const sc, bus_size_t offset,
|
|
uint32_t value)
|
|
{
|
|
bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value);
|
|
}
|
|
|
|
static inline uint64_t
|
|
xhci_op_read_8(const struct xhci_softc * const sc, bus_size_t offset)
|
|
{
|
|
uint64_t value;
|
|
|
|
if (sc->sc_ac64) {
|
|
#ifdef XHCI_USE_BUS_SPACE_8
|
|
value = bus_space_read_8(sc->sc_iot, sc->sc_obh, offset);
|
|
#else
|
|
value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
|
|
value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_obh,
|
|
offset + 4) << 32;
|
|
#endif
|
|
} else {
|
|
value = bus_space_read_4(sc->sc_iot, sc->sc_obh, offset);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
static inline void
|
|
xhci_op_write_8(const struct xhci_softc * const sc, bus_size_t offset,
|
|
uint64_t value)
|
|
{
|
|
if (sc->sc_ac64) {
|
|
#ifdef XHCI_USE_BUS_SPACE_8
|
|
bus_space_write_8(sc->sc_iot, sc->sc_obh, offset, value);
|
|
#else
|
|
bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 0,
|
|
(value >> 0) & 0xffffffff);
|
|
bus_space_write_4(sc->sc_iot, sc->sc_obh, offset + 4,
|
|
(value >> 32) & 0xffffffff);
|
|
#endif
|
|
} else {
|
|
bus_space_write_4(sc->sc_iot, sc->sc_obh, offset, value);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
xhci_op_barrier(const struct xhci_softc * const sc, bus_size_t offset,
|
|
bus_size_t len, int flags)
|
|
{
|
|
bus_space_barrier(sc->sc_iot, sc->sc_obh, offset, len, flags);
|
|
}
|
|
|
|
static inline uint32_t
|
|
xhci_rt_read_4(const struct xhci_softc * const sc, bus_size_t offset)
|
|
{
|
|
return bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
|
|
}
|
|
|
|
static inline void
|
|
xhci_rt_write_4(const struct xhci_softc * const sc, bus_size_t offset,
|
|
uint32_t value)
|
|
{
|
|
bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value);
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
static inline uint64_t
|
|
xhci_rt_read_8(const struct xhci_softc * const sc, bus_size_t offset)
|
|
{
|
|
uint64_t value;
|
|
|
|
if (sc->sc_ac64) {
|
|
#ifdef XHCI_USE_BUS_SPACE_8
|
|
value = bus_space_read_8(sc->sc_iot, sc->sc_rbh, offset);
|
|
#else
|
|
value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
|
|
value |= (uint64_t)bus_space_read_4(sc->sc_iot, sc->sc_rbh,
|
|
offset + 4) << 32;
|
|
#endif
|
|
} else {
|
|
value = bus_space_read_4(sc->sc_iot, sc->sc_rbh, offset);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
#endif /* unused */
|
|
|
|
static inline void
|
|
xhci_rt_write_8(const struct xhci_softc * const sc, bus_size_t offset,
|
|
uint64_t value)
|
|
{
|
|
if (sc->sc_ac64) {
|
|
#ifdef XHCI_USE_BUS_SPACE_8
|
|
bus_space_write_8(sc->sc_iot, sc->sc_rbh, offset, value);
|
|
#else
|
|
bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 0,
|
|
(value >> 0) & 0xffffffff);
|
|
bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset + 4,
|
|
(value >> 32) & 0xffffffff);
|
|
#endif
|
|
} else {
|
|
bus_space_write_4(sc->sc_iot, sc->sc_rbh, offset, value);
|
|
}
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
static inline uint32_t
|
|
xhci_db_read_4(const struct xhci_softc * const sc, bus_size_t offset)
|
|
{
|
|
return bus_space_read_4(sc->sc_iot, sc->sc_dbh, offset);
|
|
}
|
|
#endif /* unused */
|
|
|
|
static inline void
|
|
xhci_db_write_4(const struct xhci_softc * const sc, bus_size_t offset,
|
|
uint32_t value)
|
|
{
|
|
bus_space_write_4(sc->sc_iot, sc->sc_dbh, offset, value);
|
|
}
|
|
|
|
/* --- */
|
|
|
|
static inline uint8_t
|
|
xhci_ep_get_type(usb_endpoint_descriptor_t * const ed)
|
|
{
|
|
u_int eptype = 0;
|
|
|
|
switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
|
|
case UE_CONTROL:
|
|
eptype = 0x0;
|
|
break;
|
|
case UE_ISOCHRONOUS:
|
|
eptype = 0x1;
|
|
break;
|
|
case UE_BULK:
|
|
eptype = 0x2;
|
|
break;
|
|
case UE_INTERRUPT:
|
|
eptype = 0x3;
|
|
break;
|
|
}
|
|
|
|
if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
|
|
(UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
|
|
return eptype | 0x4;
|
|
else
|
|
return eptype;
|
|
}
|
|
|
|
static u_int
|
|
xhci_ep_get_dci(usb_endpoint_descriptor_t * const ed)
|
|
{
|
|
/* xHCI 1.0 section 4.5.1 */
|
|
u_int epaddr = UE_GET_ADDR(ed->bEndpointAddress);
|
|
u_int in = 0;
|
|
|
|
if ((UE_GET_XFERTYPE(ed->bmAttributes) == UE_CONTROL) ||
|
|
(UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN))
|
|
in = 1;
|
|
|
|
return epaddr * 2 + in;
|
|
}
|
|
|
|
static inline u_int
|
|
xhci_dci_to_ici(const u_int i)
|
|
{
|
|
return i + 1;
|
|
}
|
|
|
|
static inline void *
|
|
xhci_slot_get_dcv(struct xhci_softc * const sc, struct xhci_slot * const xs,
|
|
const u_int dci)
|
|
{
|
|
return KERNADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
static inline bus_addr_t
|
|
xhci_slot_get_dcp(struct xhci_softc * const sc, struct xhci_slot * const xs,
|
|
const u_int dci)
|
|
{
|
|
return DMAADDR(&xs->xs_dc_dma, sc->sc_ctxsz * dci);
|
|
}
|
|
#endif /* unused */
|
|
|
|
static inline void *
|
|
xhci_slot_get_icv(struct xhci_softc * const sc, struct xhci_slot * const xs,
|
|
const u_int ici)
|
|
{
|
|
return KERNADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
|
|
}
|
|
|
|
static inline bus_addr_t
|
|
xhci_slot_get_icp(struct xhci_softc * const sc, struct xhci_slot * const xs,
|
|
const u_int ici)
|
|
{
|
|
return DMAADDR(&xs->xs_ic_dma, sc->sc_ctxsz * ici);
|
|
}
|
|
|
|
static inline struct xhci_trb *
|
|
xhci_ring_trbv(struct xhci_ring * const xr, u_int idx)
|
|
{
|
|
return KERNADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
|
|
}
|
|
|
|
static inline bus_addr_t
|
|
xhci_ring_trbp(struct xhci_ring * const xr, u_int idx)
|
|
{
|
|
return DMAADDR(&xr->xr_dma, XHCI_TRB_SIZE * idx);
|
|
}
|
|
|
|
static inline void
|
|
xhci_xfer_put_trb(struct xhci_xfer * const xx, u_int idx,
|
|
uint64_t parameter, uint32_t status, uint32_t control)
|
|
{
|
|
KASSERTMSG(idx < xx->xx_ntrb, "idx=%u xx_ntrb=%u", idx, xx->xx_ntrb);
|
|
xx->xx_trb[idx].trb_0 = parameter;
|
|
xx->xx_trb[idx].trb_2 = status;
|
|
xx->xx_trb[idx].trb_3 = control;
|
|
}
|
|
|
|
static inline void
|
|
xhci_trb_put(struct xhci_trb * const trb, uint64_t parameter, uint32_t status,
|
|
uint32_t control)
|
|
{
|
|
trb->trb_0 = htole64(parameter);
|
|
trb->trb_2 = htole32(status);
|
|
trb->trb_3 = htole32(control);
|
|
}
|
|
|
|
static int
|
|
xhci_trb_get_idx(struct xhci_ring *xr, uint64_t trb_0, int *idx)
|
|
{
|
|
/* base address of TRBs */
|
|
bus_addr_t trbp = xhci_ring_trbp(xr, 0);
|
|
|
|
/* trb_0 range sanity check */
|
|
if (trb_0 == 0 || trb_0 < trbp ||
|
|
(trb_0 - trbp) % sizeof(struct xhci_trb) != 0 ||
|
|
(trb_0 - trbp) / sizeof(struct xhci_trb) >= xr->xr_ntrb) {
|
|
return 1;
|
|
}
|
|
*idx = (trb_0 - trbp) / sizeof(struct xhci_trb);
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int
|
|
xhci_get_epstate(struct xhci_softc * const sc, struct xhci_slot * const xs,
|
|
u_int dci)
|
|
{
|
|
uint32_t *cp;
|
|
|
|
usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
|
|
cp = xhci_slot_get_dcv(sc, xs, dci);
|
|
return XHCI_EPCTX_0_EPSTATE_GET(le32toh(cp[0]));
|
|
}
|
|
|
|
static inline unsigned int
|
|
xhci_ctlrport2bus(struct xhci_softc * const sc, unsigned int ctlrport)
|
|
{
|
|
const unsigned int port = ctlrport - 1;
|
|
const uint8_t bit = __BIT(port % NBBY);
|
|
|
|
return __SHIFTOUT(sc->sc_ctlrportbus[port / NBBY], bit);
|
|
}
|
|
|
|
/*
|
|
* Return the roothub port for a controller port. Both are 1..n.
|
|
*/
|
|
static inline unsigned int
|
|
xhci_ctlrport2rhport(struct xhci_softc * const sc, unsigned int ctrlport)
|
|
{
|
|
|
|
return sc->sc_ctlrportmap[ctrlport - 1];
|
|
}
|
|
|
|
/*
|
|
* Return the controller port for a bus roothub port. Both are 1..n.
|
|
*/
|
|
static inline unsigned int
|
|
xhci_rhport2ctlrport(struct xhci_softc * const sc, unsigned int bn,
|
|
unsigned int rhport)
|
|
{
|
|
|
|
return sc->sc_rhportmap[bn][rhport - 1];
|
|
}
|
|
|
|
/* --- */
|
|
|
|
void
|
|
xhci_childdet(device_t self, device_t child)
|
|
{
|
|
struct xhci_softc * const sc = device_private(self);
|
|
|
|
KASSERT((sc->sc_child == child) || (sc->sc_child2 == child));
|
|
if (child == sc->sc_child2)
|
|
sc->sc_child2 = NULL;
|
|
else if (child == sc->sc_child)
|
|
sc->sc_child = NULL;
|
|
}
|
|
|
|
int
|
|
xhci_detach(struct xhci_softc *sc, int flags)
|
|
{
|
|
int rv = 0;
|
|
|
|
if (sc->sc_child2 != NULL) {
|
|
rv = config_detach(sc->sc_child2, flags);
|
|
if (rv != 0)
|
|
return rv;
|
|
KASSERT(sc->sc_child2 == NULL);
|
|
}
|
|
|
|
if (sc->sc_child != NULL) {
|
|
rv = config_detach(sc->sc_child, flags);
|
|
if (rv != 0)
|
|
return rv;
|
|
KASSERT(sc->sc_child == NULL);
|
|
}
|
|
|
|
/* XXX unconfigure/free slots */
|
|
|
|
/* verify: */
|
|
xhci_rt_write_4(sc, XHCI_IMAN(0), 0);
|
|
xhci_op_write_4(sc, XHCI_USBCMD, 0);
|
|
/* do we need to wait for stop? */
|
|
|
|
xhci_op_write_8(sc, XHCI_CRCR, 0);
|
|
xhci_ring_free(sc, &sc->sc_cr);
|
|
cv_destroy(&sc->sc_command_cv);
|
|
cv_destroy(&sc->sc_cmdbusy_cv);
|
|
|
|
xhci_rt_write_4(sc, XHCI_ERSTSZ(0), 0);
|
|
xhci_rt_write_8(sc, XHCI_ERSTBA(0), 0);
|
|
xhci_rt_write_8(sc, XHCI_ERDP(0), 0 | XHCI_ERDP_BUSY);
|
|
xhci_ring_free(sc, &sc->sc_er);
|
|
|
|
usb_freemem(&sc->sc_bus, &sc->sc_eventst_dma);
|
|
|
|
xhci_op_write_8(sc, XHCI_DCBAAP, 0);
|
|
usb_freemem(&sc->sc_bus, &sc->sc_dcbaa_dma);
|
|
|
|
kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) * sc->sc_maxslots);
|
|
|
|
kmem_free(sc->sc_ctlrportbus,
|
|
howmany(sc->sc_maxports * sizeof(uint8_t), NBBY));
|
|
kmem_free(sc->sc_ctlrportmap, sc->sc_maxports * sizeof(int));
|
|
|
|
for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
|
|
kmem_free(sc->sc_rhportmap[j], sc->sc_maxports * sizeof(int));
|
|
}
|
|
|
|
mutex_destroy(&sc->sc_lock);
|
|
mutex_destroy(&sc->sc_intr_lock);
|
|
|
|
pool_cache_destroy(sc->sc_xferpool);
|
|
|
|
return rv;
|
|
}
|
|
|
|
int
|
|
xhci_activate(device_t self, enum devact act)
|
|
{
|
|
struct xhci_softc * const sc = device_private(self);
|
|
|
|
switch (act) {
|
|
case DVACT_DEACTIVATE:
|
|
sc->sc_dying = true;
|
|
return 0;
|
|
default:
|
|
return EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
bool
|
|
xhci_suspend(device_t dv, const pmf_qual_t *qual)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
xhci_resume(device_t dv, const pmf_qual_t *qual)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
xhci_shutdown(device_t self, int flags)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static int
|
|
xhci_hc_reset(struct xhci_softc * const sc)
|
|
{
|
|
uint32_t usbcmd, usbsts;
|
|
int i;
|
|
|
|
/* Check controller not ready */
|
|
for (i = 0; i < XHCI_WAIT_CNR; i++) {
|
|
usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
|
|
if ((usbsts & XHCI_STS_CNR) == 0)
|
|
break;
|
|
usb_delay_ms(&sc->sc_bus, 1);
|
|
}
|
|
if (i >= XHCI_WAIT_CNR) {
|
|
aprint_error_dev(sc->sc_dev, "controller not ready timeout\n");
|
|
return EIO;
|
|
}
|
|
|
|
/* Halt controller */
|
|
usbcmd = 0;
|
|
xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
|
|
usb_delay_ms(&sc->sc_bus, 1);
|
|
|
|
/* Reset controller */
|
|
usbcmd = XHCI_CMD_HCRST;
|
|
xhci_op_write_4(sc, XHCI_USBCMD, usbcmd);
|
|
for (i = 0; i < XHCI_WAIT_HCRST; i++) {
|
|
/*
|
|
* Wait 1ms first. Existing Intel xHCI requies 1ms delay to
|
|
* prevent system hang (Errata).
|
|
*/
|
|
usb_delay_ms(&sc->sc_bus, 1);
|
|
usbcmd = xhci_op_read_4(sc, XHCI_USBCMD);
|
|
if ((usbcmd & XHCI_CMD_HCRST) == 0)
|
|
break;
|
|
}
|
|
if (i >= XHCI_WAIT_HCRST) {
|
|
aprint_error_dev(sc->sc_dev, "host controller reset timeout\n");
|
|
return EIO;
|
|
}
|
|
|
|
/* Check controller not ready */
|
|
for (i = 0; i < XHCI_WAIT_CNR; i++) {
|
|
usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
|
|
if ((usbsts & XHCI_STS_CNR) == 0)
|
|
break;
|
|
usb_delay_ms(&sc->sc_bus, 1);
|
|
}
|
|
if (i >= XHCI_WAIT_CNR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"controller not ready timeout after reset\n");
|
|
return EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* 7.2 xHCI Support Protocol Capability */
|
|
static void
|
|
xhci_id_protocols(struct xhci_softc *sc, bus_size_t ecp)
|
|
{
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
/* XXX Cache this lot */
|
|
|
|
const uint32_t w0 = xhci_read_4(sc, ecp);
|
|
const uint32_t w4 = xhci_read_4(sc, ecp + 4);
|
|
const uint32_t w8 = xhci_read_4(sc, ecp + 8);
|
|
const uint32_t wc = xhci_read_4(sc, ecp + 0xc);
|
|
|
|
aprint_debug_dev(sc->sc_dev,
|
|
" SP: 0x%08x 0x%08x 0x%08x 0x%08x\n", w0, w4, w8, wc);
|
|
|
|
if (w4 != XHCI_XECP_USBID)
|
|
return;
|
|
|
|
const int major = XHCI_XECP_SP_W0_MAJOR(w0);
|
|
const int minor = XHCI_XECP_SP_W0_MINOR(w0);
|
|
const uint8_t cpo = XHCI_XECP_SP_W8_CPO(w8);
|
|
const uint8_t cpc = XHCI_XECP_SP_W8_CPC(w8);
|
|
|
|
const uint16_t mm = __SHIFTOUT(w0, __BITS(31, 16));
|
|
switch (mm) {
|
|
case 0x0200:
|
|
case 0x0300:
|
|
case 0x0301:
|
|
case 0x0310:
|
|
aprint_debug_dev(sc->sc_dev, " %s ports %d - %d\n",
|
|
major == 3 ? "ss" : "hs", cpo, cpo + cpc -1);
|
|
break;
|
|
default:
|
|
aprint_error_dev(sc->sc_dev, " unknown major/minor (%d/%d)\n",
|
|
major, minor);
|
|
return;
|
|
}
|
|
|
|
const size_t bus = (major == 3) ? 0 : 1;
|
|
|
|
/* Index arrays with 0..n-1 where ports are numbered 1..n */
|
|
for (size_t cp = cpo - 1; cp < cpo + cpc - 1; cp++) {
|
|
if (sc->sc_ctlrportmap[cp] != 0) {
|
|
aprint_error_dev(sc->sc_dev, "controller port %zu "
|
|
"already assigned", cp);
|
|
continue;
|
|
}
|
|
|
|
sc->sc_ctlrportbus[cp / NBBY] |=
|
|
bus == 0 ? 0 : __BIT(cp % NBBY);
|
|
|
|
const size_t rhp = sc->sc_rhportcount[bus]++;
|
|
|
|
KASSERTMSG(sc->sc_rhportmap[bus][rhp] == 0,
|
|
"bus %zu rhp %zu is %d", bus, rhp,
|
|
sc->sc_rhportmap[bus][rhp]);
|
|
|
|
sc->sc_rhportmap[bus][rhp] = cp + 1;
|
|
sc->sc_ctlrportmap[cp] = rhp + 1;
|
|
}
|
|
}
|
|
|
|
/* Process extended capabilities */
|
|
static void
|
|
xhci_ecp(struct xhci_softc *sc, uint32_t hcc)
|
|
{
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
bus_size_t ecp = XHCI_HCC_XECP(hcc) * 4;
|
|
while (ecp != 0) {
|
|
uint32_t ecr = xhci_read_4(sc, ecp);
|
|
aprint_debug_dev(sc->sc_dev, "ECR: 0x%08x\n", ecr);
|
|
switch (XHCI_XECP_ID(ecr)) {
|
|
case XHCI_ID_PROTOCOLS: {
|
|
xhci_id_protocols(sc, ecp);
|
|
break;
|
|
}
|
|
case XHCI_ID_USB_LEGACY: {
|
|
uint8_t bios_sem;
|
|
|
|
/* Take host controller ownership from BIOS */
|
|
bios_sem = xhci_read_1(sc, ecp + XHCI_XECP_BIOS_SEM);
|
|
if (bios_sem) {
|
|
/* sets xHCI to be owned by OS */
|
|
xhci_write_1(sc, ecp + XHCI_XECP_OS_SEM, 1);
|
|
aprint_debug_dev(sc->sc_dev,
|
|
"waiting for BIOS to give up control\n");
|
|
for (int i = 0; i < 5000; i++) {
|
|
bios_sem = xhci_read_1(sc, ecp +
|
|
XHCI_XECP_BIOS_SEM);
|
|
if (bios_sem == 0)
|
|
break;
|
|
DELAY(1000);
|
|
}
|
|
if (bios_sem) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"timed out waiting for BIOS\n");
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
ecr = xhci_read_4(sc, ecp);
|
|
if (XHCI_XECP_NEXT(ecr) == 0) {
|
|
ecp = 0;
|
|
} else {
|
|
ecp += XHCI_XECP_NEXT(ecr) * 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define XHCI_HCCPREV1_BITS \
|
|
"\177\020" /* New bitmask */ \
|
|
"f\020\020XECP\0" \
|
|
"f\014\4MAXPSA\0" \
|
|
"b\013CFC\0" \
|
|
"b\012SEC\0" \
|
|
"b\011SBD\0" \
|
|
"b\010FSE\0" \
|
|
"b\7NSS\0" \
|
|
"b\6LTC\0" \
|
|
"b\5LHRC\0" \
|
|
"b\4PIND\0" \
|
|
"b\3PPC\0" \
|
|
"b\2CZC\0" \
|
|
"b\1BNC\0" \
|
|
"b\0AC64\0" \
|
|
"\0"
|
|
#define XHCI_HCCV1_x_BITS \
|
|
"\177\020" /* New bitmask */ \
|
|
"f\020\020XECP\0" \
|
|
"f\014\4MAXPSA\0" \
|
|
"b\013CFC\0" \
|
|
"b\012SEC\0" \
|
|
"b\011SPC\0" \
|
|
"b\010PAE\0" \
|
|
"b\7NSS\0" \
|
|
"b\6LTC\0" \
|
|
"b\5LHRC\0" \
|
|
"b\4PIND\0" \
|
|
"b\3PPC\0" \
|
|
"b\2CSZ\0" \
|
|
"b\1BNC\0" \
|
|
"b\0AC64\0" \
|
|
"\0"
|
|
|
|
#define XHCI_HCC2_BITS \
|
|
"\177\020" /* New bitmask */ \
|
|
"b\7ETC_TSC\0" \
|
|
"b\6ETC\0" \
|
|
"b\5CIC\0" \
|
|
"b\4LEC\0" \
|
|
"b\3CTC\0" \
|
|
"b\2FSC\0" \
|
|
"b\1CMC\0" \
|
|
"b\0U3C\0" \
|
|
"\0"
|
|
|
|
void
|
|
xhci_start(struct xhci_softc *sc)
|
|
{
|
|
xhci_rt_write_4(sc, XHCI_IMAN(0), XHCI_IMAN_INTR_ENA);
|
|
if ((sc->sc_quirks & XHCI_QUIRK_INTEL) != 0)
|
|
/* Intel xhci needs interrupt rate moderated. */
|
|
xhci_rt_write_4(sc, XHCI_IMOD(0), XHCI_IMOD_DEFAULT_LP);
|
|
else
|
|
xhci_rt_write_4(sc, XHCI_IMOD(0), 0);
|
|
aprint_debug_dev(sc->sc_dev, "current IMOD %u\n",
|
|
xhci_rt_read_4(sc, XHCI_IMOD(0)));
|
|
|
|
/* Go! */
|
|
xhci_op_write_4(sc, XHCI_USBCMD, XHCI_CMD_INTE|XHCI_CMD_RS);
|
|
aprint_debug_dev(sc->sc_dev, "USBCMD 0x%08"PRIx32"\n",
|
|
xhci_op_read_4(sc, XHCI_USBCMD));
|
|
}
|
|
|
|
int
|
|
xhci_init(struct xhci_softc *sc)
|
|
{
|
|
bus_size_t bsz;
|
|
uint32_t hcs1, hcs2, hcs3, hcc, dboff, rtsoff, hcc2;
|
|
uint32_t pagesize, config;
|
|
int i = 0;
|
|
uint16_t hciversion;
|
|
uint8_t caplength;
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
/* Set up the bus struct for the usb 3 and usb 2 buses */
|
|
sc->sc_bus.ub_methods = &xhci_bus_methods;
|
|
sc->sc_bus.ub_pipesize = sizeof(struct xhci_pipe);
|
|
sc->sc_bus.ub_usedma = true;
|
|
sc->sc_bus.ub_hcpriv = sc;
|
|
|
|
sc->sc_bus2.ub_methods = &xhci_bus_methods;
|
|
sc->sc_bus2.ub_pipesize = sizeof(struct xhci_pipe);
|
|
sc->sc_bus2.ub_revision = USBREV_2_0;
|
|
sc->sc_bus2.ub_usedma = true;
|
|
sc->sc_bus2.ub_hcpriv = sc;
|
|
sc->sc_bus2.ub_dmatag = sc->sc_bus.ub_dmatag;
|
|
|
|
caplength = xhci_read_1(sc, XHCI_CAPLENGTH);
|
|
hciversion = xhci_read_2(sc, XHCI_HCIVERSION);
|
|
|
|
if (hciversion < XHCI_HCIVERSION_0_96 ||
|
|
hciversion >= 0x0200) {
|
|
aprint_normal_dev(sc->sc_dev,
|
|
"xHCI version %x.%x not known to be supported\n",
|
|
(hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
|
|
} else {
|
|
aprint_verbose_dev(sc->sc_dev, "xHCI version %x.%x\n",
|
|
(hciversion >> 8) & 0xff, (hciversion >> 0) & 0xff);
|
|
}
|
|
|
|
if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, 0, caplength,
|
|
&sc->sc_cbh) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "capability subregion failure\n");
|
|
return ENOMEM;
|
|
}
|
|
|
|
hcs1 = xhci_cap_read_4(sc, XHCI_HCSPARAMS1);
|
|
sc->sc_maxslots = XHCI_HCS1_MAXSLOTS(hcs1);
|
|
sc->sc_maxintrs = XHCI_HCS1_MAXINTRS(hcs1);
|
|
sc->sc_maxports = XHCI_HCS1_MAXPORTS(hcs1);
|
|
hcs2 = xhci_cap_read_4(sc, XHCI_HCSPARAMS2);
|
|
hcs3 = xhci_cap_read_4(sc, XHCI_HCSPARAMS3);
|
|
aprint_debug_dev(sc->sc_dev,
|
|
"hcs1=%"PRIx32" hcs2=%"PRIx32" hcs3=%"PRIx32"\n", hcs1, hcs2, hcs3);
|
|
|
|
hcc = xhci_cap_read_4(sc, XHCI_HCCPARAMS);
|
|
sc->sc_ac64 = XHCI_HCC_AC64(hcc);
|
|
sc->sc_ctxsz = XHCI_HCC_CSZ(hcc) ? 64 : 32;
|
|
|
|
char sbuf[128];
|
|
if (hciversion < XHCI_HCIVERSION_1_0)
|
|
snprintb(sbuf, sizeof(sbuf), XHCI_HCCPREV1_BITS, hcc);
|
|
else
|
|
snprintb(sbuf, sizeof(sbuf), XHCI_HCCV1_x_BITS, hcc);
|
|
aprint_debug_dev(sc->sc_dev, "hcc=%s\n", sbuf);
|
|
aprint_debug_dev(sc->sc_dev, "xECP %" __PRIxBITS "\n",
|
|
XHCI_HCC_XECP(hcc) * 4);
|
|
if (hciversion >= XHCI_HCIVERSION_1_1) {
|
|
hcc2 = xhci_cap_read_4(sc, XHCI_HCCPARAMS2);
|
|
snprintb(sbuf, sizeof(sbuf), XHCI_HCC2_BITS, hcc2);
|
|
aprint_debug_dev(sc->sc_dev, "hcc2=%s\n", sbuf);
|
|
}
|
|
|
|
/* default all ports to bus 0, i.e. usb 3 */
|
|
sc->sc_ctlrportbus = kmem_zalloc(
|
|
howmany(sc->sc_maxports * sizeof(uint8_t), NBBY), KM_SLEEP);
|
|
sc->sc_ctlrportmap = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
|
|
|
|
/* controller port to bus roothub port map */
|
|
for (size_t j = 0; j < __arraycount(sc->sc_rhportmap); j++) {
|
|
sc->sc_rhportmap[j] = kmem_zalloc(sc->sc_maxports * sizeof(int), KM_SLEEP);
|
|
}
|
|
|
|
/*
|
|
* Process all Extended Capabilities
|
|
*/
|
|
xhci_ecp(sc, hcc);
|
|
|
|
bsz = XHCI_PORTSC(sc->sc_maxports);
|
|
if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, caplength, bsz,
|
|
&sc->sc_obh) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "operational subregion failure\n");
|
|
return ENOMEM;
|
|
}
|
|
|
|
dboff = xhci_cap_read_4(sc, XHCI_DBOFF);
|
|
if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, dboff,
|
|
sc->sc_maxslots * 4, &sc->sc_dbh) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "doorbell subregion failure\n");
|
|
return ENOMEM;
|
|
}
|
|
|
|
rtsoff = xhci_cap_read_4(sc, XHCI_RTSOFF);
|
|
if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, rtsoff,
|
|
sc->sc_maxintrs * 0x20, &sc->sc_rbh) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "runtime subregion failure\n");
|
|
return ENOMEM;
|
|
}
|
|
|
|
int rv;
|
|
rv = xhci_hc_reset(sc);
|
|
if (rv != 0) {
|
|
return rv;
|
|
}
|
|
|
|
if (sc->sc_vendor_init)
|
|
sc->sc_vendor_init(sc);
|
|
|
|
pagesize = xhci_op_read_4(sc, XHCI_PAGESIZE);
|
|
aprint_debug_dev(sc->sc_dev, "PAGESIZE 0x%08x\n", pagesize);
|
|
pagesize = ffs(pagesize);
|
|
if (pagesize == 0) {
|
|
aprint_error_dev(sc->sc_dev, "pagesize is 0\n");
|
|
return EIO;
|
|
}
|
|
sc->sc_pgsz = 1 << (12 + (pagesize - 1));
|
|
aprint_debug_dev(sc->sc_dev, "sc_pgsz 0x%08x\n", (uint32_t)sc->sc_pgsz);
|
|
aprint_debug_dev(sc->sc_dev, "sc_maxslots 0x%08x\n",
|
|
(uint32_t)sc->sc_maxslots);
|
|
aprint_debug_dev(sc->sc_dev, "sc_maxports %d\n", sc->sc_maxports);
|
|
|
|
usbd_status err;
|
|
|
|
sc->sc_maxspbuf = XHCI_HCS2_MAXSPBUF(hcs2);
|
|
aprint_debug_dev(sc->sc_dev, "sc_maxspbuf %d\n", sc->sc_maxspbuf);
|
|
if (sc->sc_maxspbuf != 0) {
|
|
err = usb_allocmem(&sc->sc_bus,
|
|
sizeof(uint64_t) * sc->sc_maxspbuf, sizeof(uint64_t),
|
|
USBMALLOC_COHERENT, &sc->sc_spbufarray_dma);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"spbufarray init fail, err %d\n", err);
|
|
return ENOMEM;
|
|
}
|
|
|
|
sc->sc_spbuf_dma = kmem_zalloc(sizeof(*sc->sc_spbuf_dma) *
|
|
sc->sc_maxspbuf, KM_SLEEP);
|
|
uint64_t *spbufarray = KERNADDR(&sc->sc_spbufarray_dma, 0);
|
|
for (i = 0; i < sc->sc_maxspbuf; i++) {
|
|
usb_dma_t * const dma = &sc->sc_spbuf_dma[i];
|
|
/* allocate contexts */
|
|
err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz,
|
|
sc->sc_pgsz, USBMALLOC_COHERENT, dma);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"spbufarray_dma init fail, err %d\n", err);
|
|
rv = ENOMEM;
|
|
goto bad1;
|
|
}
|
|
spbufarray[i] = htole64(DMAADDR(dma, 0));
|
|
usb_syncmem(dma, 0, sc->sc_pgsz,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
usb_syncmem(&sc->sc_spbufarray_dma, 0,
|
|
sizeof(uint64_t) * sc->sc_maxspbuf, BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
config = xhci_op_read_4(sc, XHCI_CONFIG);
|
|
config &= ~0xFF;
|
|
config |= sc->sc_maxslots & 0xFF;
|
|
xhci_op_write_4(sc, XHCI_CONFIG, config);
|
|
|
|
err = xhci_ring_init(sc, &sc->sc_cr, XHCI_COMMAND_RING_TRBS,
|
|
XHCI_COMMAND_RING_SEGMENTS_ALIGN);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev, "command ring init fail, err %d\n",
|
|
err);
|
|
rv = ENOMEM;
|
|
goto bad1;
|
|
}
|
|
|
|
err = xhci_ring_init(sc, &sc->sc_er, XHCI_EVENT_RING_TRBS,
|
|
XHCI_EVENT_RING_SEGMENTS_ALIGN);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev, "event ring init fail, err %d\n",
|
|
err);
|
|
rv = ENOMEM;
|
|
goto bad2;
|
|
}
|
|
|
|
usb_dma_t *dma;
|
|
size_t size;
|
|
size_t align;
|
|
|
|
dma = &sc->sc_eventst_dma;
|
|
size = roundup2(XHCI_EVENT_RING_SEGMENTS * XHCI_ERSTE_SIZE,
|
|
XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN);
|
|
KASSERTMSG(size <= (512 * 1024), "eventst size %zu too large", size);
|
|
align = XHCI_EVENT_RING_SEGMENT_TABLE_ALIGN;
|
|
err = usb_allocmem(&sc->sc_bus, size, align, USBMALLOC_COHERENT, dma);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev, "eventst init fail, err %d\n",
|
|
err);
|
|
rv = ENOMEM;
|
|
goto bad3;
|
|
}
|
|
|
|
memset(KERNADDR(dma, 0), 0, size);
|
|
usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE);
|
|
aprint_debug_dev(sc->sc_dev, "eventst: 0x%016jx %p %zx\n",
|
|
(uintmax_t)DMAADDR(&sc->sc_eventst_dma, 0),
|
|
KERNADDR(&sc->sc_eventst_dma, 0),
|
|
sc->sc_eventst_dma.udma_block->size);
|
|
|
|
dma = &sc->sc_dcbaa_dma;
|
|
size = (1 + sc->sc_maxslots) * sizeof(uint64_t);
|
|
KASSERTMSG(size <= 2048, "dcbaa size %zu too large", size);
|
|
align = XHCI_DEVICE_CONTEXT_BASE_ADDRESS_ARRAY_ALIGN;
|
|
err = usb_allocmem(&sc->sc_bus, size, align, USBMALLOC_COHERENT, dma);
|
|
if (err) {
|
|
aprint_error_dev(sc->sc_dev, "dcbaa init fail, err %d\n", err);
|
|
rv = ENOMEM;
|
|
goto bad4;
|
|
}
|
|
aprint_debug_dev(sc->sc_dev, "dcbaa: 0x%016jx %p %zx\n",
|
|
(uintmax_t)DMAADDR(&sc->sc_dcbaa_dma, 0),
|
|
KERNADDR(&sc->sc_dcbaa_dma, 0),
|
|
sc->sc_dcbaa_dma.udma_block->size);
|
|
|
|
memset(KERNADDR(dma, 0), 0, size);
|
|
if (sc->sc_maxspbuf != 0) {
|
|
/*
|
|
* DCBA entry 0 hold the scratchbuf array pointer.
|
|
*/
|
|
*(uint64_t *)KERNADDR(dma, 0) =
|
|
htole64(DMAADDR(&sc->sc_spbufarray_dma, 0));
|
|
}
|
|
usb_syncmem(dma, 0, size, BUS_DMASYNC_PREWRITE);
|
|
|
|
sc->sc_slots = kmem_zalloc(sizeof(*sc->sc_slots) * sc->sc_maxslots,
|
|
KM_SLEEP);
|
|
if (sc->sc_slots == NULL) {
|
|
aprint_error_dev(sc->sc_dev, "slots init fail, err %d\n", err);
|
|
rv = ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
sc->sc_xferpool = pool_cache_init(sizeof(struct xhci_xfer), 0, 0, 0,
|
|
"xhcixfer", NULL, IPL_USB, NULL, NULL, NULL);
|
|
if (sc->sc_xferpool == NULL) {
|
|
aprint_error_dev(sc->sc_dev, "pool_cache init fail, err %d\n",
|
|
err);
|
|
rv = ENOMEM;
|
|
goto bad;
|
|
}
|
|
|
|
cv_init(&sc->sc_command_cv, "xhcicmd");
|
|
cv_init(&sc->sc_cmdbusy_cv, "xhcicmdq");
|
|
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
|
|
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
|
|
|
|
struct xhci_erste *erst;
|
|
erst = KERNADDR(&sc->sc_eventst_dma, 0);
|
|
erst[0].erste_0 = htole64(xhci_ring_trbp(sc->sc_er, 0));
|
|
erst[0].erste_2 = htole32(sc->sc_er->xr_ntrb);
|
|
erst[0].erste_3 = htole32(0);
|
|
usb_syncmem(&sc->sc_eventst_dma, 0,
|
|
XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS, BUS_DMASYNC_PREWRITE);
|
|
|
|
xhci_rt_write_4(sc, XHCI_ERSTSZ(0), XHCI_EVENT_RING_SEGMENTS);
|
|
xhci_rt_write_8(sc, XHCI_ERSTBA(0), DMAADDR(&sc->sc_eventst_dma, 0));
|
|
xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(sc->sc_er, 0) |
|
|
XHCI_ERDP_BUSY);
|
|
|
|
xhci_op_write_8(sc, XHCI_DCBAAP, DMAADDR(&sc->sc_dcbaa_dma, 0));
|
|
xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(sc->sc_cr, 0) |
|
|
sc->sc_cr->xr_cs);
|
|
|
|
xhci_op_barrier(sc, 0, 4, BUS_SPACE_BARRIER_WRITE);
|
|
|
|
HEXDUMP("eventst", KERNADDR(&sc->sc_eventst_dma, 0),
|
|
XHCI_ERSTE_SIZE * XHCI_EVENT_RING_SEGMENTS);
|
|
|
|
if ((sc->sc_quirks & XHCI_DEFERRED_START) == 0)
|
|
xhci_start(sc);
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
if (sc->sc_xferpool) {
|
|
pool_cache_destroy(sc->sc_xferpool);
|
|
sc->sc_xferpool = NULL;
|
|
}
|
|
|
|
if (sc->sc_slots) {
|
|
kmem_free(sc->sc_slots, sizeof(*sc->sc_slots) *
|
|
sc->sc_maxslots);
|
|
sc->sc_slots = NULL;
|
|
}
|
|
|
|
usb_freemem(&sc->sc_bus, &sc->sc_dcbaa_dma);
|
|
bad4:
|
|
usb_freemem(&sc->sc_bus, &sc->sc_eventst_dma);
|
|
bad3:
|
|
xhci_ring_free(sc, &sc->sc_er);
|
|
bad2:
|
|
xhci_ring_free(sc, &sc->sc_cr);
|
|
i = sc->sc_maxspbuf;
|
|
bad1:
|
|
for (int j = 0; j < i; j++)
|
|
usb_freemem(&sc->sc_bus, &sc->sc_spbuf_dma[j]);
|
|
usb_freemem(&sc->sc_bus, &sc->sc_spbufarray_dma);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static inline bool
|
|
xhci_polling_p(struct xhci_softc * const sc)
|
|
{
|
|
return sc->sc_bus.ub_usepolling || sc->sc_bus2.ub_usepolling;
|
|
}
|
|
|
|
int
|
|
xhci_intr(void *v)
|
|
{
|
|
struct xhci_softc * const sc = v;
|
|
int ret = 0;
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
if (sc == NULL)
|
|
return 0;
|
|
|
|
mutex_spin_enter(&sc->sc_intr_lock);
|
|
|
|
if (sc->sc_dying || !device_has_power(sc->sc_dev))
|
|
goto done;
|
|
|
|
/* If we get an interrupt while polling, then just ignore it. */
|
|
if (xhci_polling_p(sc)) {
|
|
#ifdef DIAGNOSTIC
|
|
DPRINTFN(16, "ignored interrupt while polling", 0, 0, 0, 0);
|
|
#endif
|
|
goto done;
|
|
}
|
|
|
|
ret = xhci_intr1(sc);
|
|
if (ret) {
|
|
KASSERT(sc->sc_child || sc->sc_child2);
|
|
|
|
/*
|
|
* One of child busses could be already detached. It doesn't
|
|
* matter on which of the two the softintr is scheduled.
|
|
*/
|
|
if (sc->sc_child)
|
|
usb_schedsoftintr(&sc->sc_bus);
|
|
else
|
|
usb_schedsoftintr(&sc->sc_bus2);
|
|
}
|
|
done:
|
|
mutex_spin_exit(&sc->sc_intr_lock);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
xhci_intr1(struct xhci_softc * const sc)
|
|
{
|
|
uint32_t usbsts;
|
|
uint32_t iman;
|
|
|
|
XHCIHIST_FUNC();
|
|
|
|
usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
|
|
XHCIHIST_CALLARGS("USBSTS 0x%08jx", usbsts, 0, 0, 0);
|
|
if ((usbsts & (XHCI_STS_HSE | XHCI_STS_EINT | XHCI_STS_PCD |
|
|
XHCI_STS_HCE)) == 0) {
|
|
DPRINTFN(16, "ignored intr not for %jd",
|
|
device_unit(sc->sc_dev), 0, 0, 0);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Clear EINT and other transient flags, to not misenterpret
|
|
* next shared interrupt. Also, to avoid race, EINT must be cleared
|
|
* before XHCI_IMAN_INTR_PEND is cleared.
|
|
*/
|
|
xhci_op_write_4(sc, XHCI_USBSTS, usbsts & XHCI_STS_RSVDP0);
|
|
|
|
#ifdef XHCI_DEBUG
|
|
usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
|
|
DPRINTFN(16, "USBSTS 0x%08jx", usbsts, 0, 0, 0);
|
|
#endif
|
|
|
|
iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
|
|
DPRINTFN(16, "IMAN0 0x%08jx", iman, 0, 0, 0);
|
|
iman |= XHCI_IMAN_INTR_PEND;
|
|
xhci_rt_write_4(sc, XHCI_IMAN(0), iman);
|
|
|
|
#ifdef XHCI_DEBUG
|
|
iman = xhci_rt_read_4(sc, XHCI_IMAN(0));
|
|
DPRINTFN(16, "IMAN0 0x%08jx", iman, 0, 0, 0);
|
|
usbsts = xhci_op_read_4(sc, XHCI_USBSTS);
|
|
DPRINTFN(16, "USBSTS 0x%08jx", usbsts, 0, 0, 0);
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* 3 port speed types used in USB stack
|
|
*
|
|
* usbdi speed
|
|
* definition: USB_SPEED_* in usb.h
|
|
* They are used in struct usbd_device in USB stack.
|
|
* ioctl interface uses these values too.
|
|
* port_status speed
|
|
* definition: UPS_*_SPEED in usb.h
|
|
* They are used in usb_port_status_t and valid only for USB 2.0.
|
|
* Speed value is always 0 for Super Speed or more, and dwExtPortStatus
|
|
* of usb_port_status_ext_t indicates port speed.
|
|
* Note that some 3.0 values overlap with 2.0 values.
|
|
* (e.g. 0x200 means UPS_POER_POWER_SS in SS and
|
|
* means UPS_LOW_SPEED in HS.)
|
|
* port status returned from hub also uses these values.
|
|
* On NetBSD UPS_OTHER_SPEED indicates port speed is super speed
|
|
* or more.
|
|
* xspeed:
|
|
* definition: Protocol Speed ID (PSI) (xHCI 1.1 7.2.1)
|
|
* They are used in only slot context and PORTSC reg of xhci.
|
|
* The difference between usbdi speed and xspeed is
|
|
* that FS and LS values are swapped.
|
|
*/
|
|
|
|
/* convert usbdi speed to xspeed */
|
|
static int
|
|
xhci_speed2xspeed(int speed)
|
|
{
|
|
switch (speed) {
|
|
case USB_SPEED_LOW: return 2;
|
|
case USB_SPEED_FULL: return 1;
|
|
default: return speed;
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
/* convert xspeed to usbdi speed */
|
|
static int
|
|
xhci_xspeed2speed(int xspeed)
|
|
{
|
|
switch (xspeed) {
|
|
case 1: return USB_SPEED_FULL;
|
|
case 2: return USB_SPEED_LOW;
|
|
default: return xspeed;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* convert xspeed to port status speed */
|
|
static int
|
|
xhci_xspeed2psspeed(int xspeed)
|
|
{
|
|
switch (xspeed) {
|
|
case 0: return 0;
|
|
case 1: return UPS_FULL_SPEED;
|
|
case 2: return UPS_LOW_SPEED;
|
|
case 3: return UPS_HIGH_SPEED;
|
|
default: return UPS_OTHER_SPEED;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Construct input contexts and issue TRB to open pipe.
|
|
*/
|
|
static usbd_status
|
|
xhci_configure_endpoint(struct usbd_pipe *pipe)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
|
|
struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
|
|
#ifdef USB_DEBUG
|
|
const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
|
|
#endif
|
|
struct xhci_soft_trb trb;
|
|
usbd_status err;
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("slot %ju dci %ju epaddr 0x%02jx attr 0x%02jx",
|
|
xs->xs_idx, dci, pipe->up_endpoint->ue_edesc->bEndpointAddress,
|
|
pipe->up_endpoint->ue_edesc->bmAttributes);
|
|
|
|
/* XXX ensure input context is available? */
|
|
|
|
memset(xhci_slot_get_icv(sc, xs, 0), 0, sc->sc_pgsz);
|
|
|
|
/* set up context */
|
|
xhci_setup_ctx(pipe);
|
|
|
|
HEXDUMP("input control context", xhci_slot_get_icv(sc, xs, 0),
|
|
sc->sc_ctxsz * 1);
|
|
HEXDUMP("input endpoint context", xhci_slot_get_icv(sc, xs,
|
|
xhci_dci_to_ici(dci)), sc->sc_ctxsz * 1);
|
|
|
|
trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
|
|
trb.trb_2 = 0;
|
|
trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
|
|
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
|
|
|
|
err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
|
|
|
|
usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
|
|
HEXDUMP("output context", xhci_slot_get_dcv(sc, xs, dci),
|
|
sc->sc_ctxsz * 1);
|
|
|
|
return err;
|
|
}
|
|
|
|
#if 0
|
|
static usbd_status
|
|
xhci_unconfigure_endpoint(struct usbd_pipe *pipe)
|
|
{
|
|
#ifdef USB_DEBUG
|
|
struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
|
|
#endif
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("slot %ju", xs->xs_idx, 0, 0, 0);
|
|
|
|
return USBD_NORMAL_COMPLETION;
|
|
}
|
|
#endif
|
|
|
|
/* 4.6.8, 6.4.3.7 */
|
|
static usbd_status
|
|
xhci_reset_endpoint_locked(struct usbd_pipe *pipe)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
|
|
struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
|
|
const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
|
|
struct xhci_soft_trb trb;
|
|
usbd_status err;
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
|
|
|
|
KASSERT(mutex_owned(&sc->sc_lock));
|
|
|
|
trb.trb_0 = 0;
|
|
trb.trb_2 = 0;
|
|
trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
|
|
XHCI_TRB_3_EP_SET(dci) |
|
|
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_RESET_EP);
|
|
|
|
err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
|
|
|
|
return err;
|
|
}
|
|
|
|
static usbd_status
|
|
xhci_reset_endpoint(struct usbd_pipe *pipe)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
|
|
|
|
mutex_enter(&sc->sc_lock);
|
|
usbd_status ret = xhci_reset_endpoint_locked(pipe);
|
|
mutex_exit(&sc->sc_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* 4.6.9, 6.4.3.8
|
|
* Stop execution of TDs on xfer ring.
|
|
* Should be called with sc_lock held.
|
|
*/
|
|
static usbd_status
|
|
xhci_stop_endpoint(struct usbd_pipe *pipe)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
|
|
struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
|
|
struct xhci_soft_trb trb;
|
|
usbd_status err;
|
|
const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
|
|
|
|
KASSERT(mutex_owned(&sc->sc_lock));
|
|
|
|
trb.trb_0 = 0;
|
|
trb.trb_2 = 0;
|
|
trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
|
|
XHCI_TRB_3_EP_SET(dci) |
|
|
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STOP_EP);
|
|
|
|
err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Set TR Dequeue Pointer.
|
|
* xHCI 1.1 4.6.10 6.4.3.9
|
|
* Purge all of the TRBs on ring and reinitialize ring.
|
|
* Set TR dequeue Pointr to 0 and Cycle State to 1.
|
|
* EPSTATE of endpoint must be ERROR or STOPPED, otherwise CONTEXT_STATE
|
|
* error will be generated.
|
|
*/
|
|
static usbd_status
|
|
xhci_set_dequeue_locked(struct usbd_pipe *pipe)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
|
|
struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
|
|
const u_int dci = xhci_ep_get_dci(pipe->up_endpoint->ue_edesc);
|
|
struct xhci_ring * const xr = xs->xs_xr[dci];
|
|
struct xhci_soft_trb trb;
|
|
usbd_status err;
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("slot %ju dci %ju", xs->xs_idx, dci, 0, 0);
|
|
|
|
KASSERT(mutex_owned(&sc->sc_lock));
|
|
KASSERT(xr != NULL);
|
|
|
|
xhci_host_dequeue(xr);
|
|
|
|
/* set DCS */
|
|
trb.trb_0 = xhci_ring_trbp(xr, 0) | 1; /* XXX */
|
|
trb.trb_2 = 0;
|
|
trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
|
|
XHCI_TRB_3_EP_SET(dci) |
|
|
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SET_TR_DEQUEUE);
|
|
|
|
err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
|
|
|
|
return err;
|
|
}
|
|
|
|
static usbd_status
|
|
xhci_set_dequeue(struct usbd_pipe *pipe)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
|
|
|
|
mutex_enter(&sc->sc_lock);
|
|
usbd_status ret = xhci_set_dequeue_locked(pipe);
|
|
mutex_exit(&sc->sc_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Open new pipe: called from usbd_setup_pipe_flags.
|
|
* Fills methods of pipe.
|
|
* If pipe is not for ep0, calls configure_endpoint.
|
|
*/
|
|
static usbd_status
|
|
xhci_open(struct usbd_pipe *pipe)
|
|
{
|
|
struct usbd_device * const dev = pipe->up_dev;
|
|
struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
|
|
struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
|
|
usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
|
|
const u_int dci = xhci_ep_get_dci(ed);
|
|
const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
|
|
usbd_status err;
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("addr %jd depth %jd port %jd speed %jd", dev->ud_addr,
|
|
dev->ud_depth, dev->ud_powersrc->up_portno, dev->ud_speed);
|
|
DPRINTFN(1, " dci %ju type 0x%02jx epaddr 0x%02jx attr 0x%02jx",
|
|
xhci_ep_get_dci(ed), ed->bDescriptorType, ed->bEndpointAddress,
|
|
ed->bmAttributes);
|
|
DPRINTFN(1, " mps %ju ival %ju", UGETW(ed->wMaxPacketSize),
|
|
ed->bInterval, 0, 0);
|
|
|
|
if (sc->sc_dying)
|
|
return USBD_IOERROR;
|
|
|
|
/* Root Hub */
|
|
if (dev->ud_depth == 0 && dev->ud_powersrc->up_portno == 0) {
|
|
switch (ed->bEndpointAddress) {
|
|
case USB_CONTROL_ENDPOINT:
|
|
pipe->up_methods = &roothub_ctrl_methods;
|
|
break;
|
|
case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
|
|
pipe->up_methods = &xhci_root_intr_methods;
|
|
break;
|
|
default:
|
|
pipe->up_methods = NULL;
|
|
DPRINTFN(0, "bad bEndpointAddress 0x%02jx",
|
|
ed->bEndpointAddress, 0, 0, 0);
|
|
return USBD_INVAL;
|
|
}
|
|
return USBD_NORMAL_COMPLETION;
|
|
}
|
|
|
|
switch (xfertype) {
|
|
case UE_CONTROL:
|
|
pipe->up_methods = &xhci_device_ctrl_methods;
|
|
break;
|
|
case UE_ISOCHRONOUS:
|
|
pipe->up_methods = &xhci_device_isoc_methods;
|
|
return USBD_INVAL;
|
|
break;
|
|
case UE_BULK:
|
|
pipe->up_methods = &xhci_device_bulk_methods;
|
|
break;
|
|
case UE_INTERRUPT:
|
|
pipe->up_methods = &xhci_device_intr_methods;
|
|
break;
|
|
default:
|
|
return USBD_IOERROR;
|
|
break;
|
|
}
|
|
|
|
KASSERT(xs != NULL);
|
|
KASSERT(xs->xs_xr[dci] == NULL);
|
|
|
|
/* allocate transfer ring */
|
|
err = xhci_ring_init(sc, &xs->xs_xr[dci], XHCI_TRANSFER_RING_TRBS,
|
|
XHCI_TRB_ALIGN);
|
|
if (err) {
|
|
DPRINTFN(1, "ring alloc failed %jd", err, 0, 0, 0);
|
|
return err;
|
|
}
|
|
|
|
if (ed->bEndpointAddress != USB_CONTROL_ENDPOINT)
|
|
return xhci_configure_endpoint(pipe);
|
|
|
|
return USBD_NORMAL_COMPLETION;
|
|
}
|
|
|
|
/*
|
|
* Closes pipe, called from usbd_kill_pipe via close methods.
|
|
* If the endpoint to be closed is ep0, disable_slot.
|
|
* Should be called with sc_lock held.
|
|
*/
|
|
static void
|
|
xhci_close_pipe(struct usbd_pipe *pipe)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
|
|
struct xhci_slot * const xs = pipe->up_dev->ud_hcpriv;
|
|
usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
|
|
const u_int dci = xhci_ep_get_dci(ed);
|
|
struct xhci_soft_trb trb;
|
|
uint32_t *cp;
|
|
|
|
XHCIHIST_FUNC();
|
|
|
|
if (sc->sc_dying)
|
|
return;
|
|
|
|
/* xs is uninitialized before xhci_init_slot */
|
|
if (xs == NULL || xs->xs_idx == 0)
|
|
return;
|
|
|
|
XHCIHIST_CALLARGS("pipe %#jx slot %ju dci %ju",
|
|
(uintptr_t)pipe, xs->xs_idx, dci, 0);
|
|
|
|
KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
|
|
KASSERT(mutex_owned(&sc->sc_lock));
|
|
|
|
if (pipe->up_dev->ud_depth == 0)
|
|
return;
|
|
|
|
if (dci == XHCI_DCI_EP_CONTROL) {
|
|
DPRINTFN(4, "closing ep0", 0, 0, 0, 0);
|
|
/* This frees all rings */
|
|
xhci_disable_slot(sc, xs->xs_idx);
|
|
return;
|
|
}
|
|
|
|
if (xhci_get_epstate(sc, xs, dci) != XHCI_EPSTATE_STOPPED)
|
|
(void)xhci_stop_endpoint(pipe);
|
|
|
|
/*
|
|
* set appropriate bit to be dropped.
|
|
* don't set DC bit to 1, otherwise all endpoints
|
|
* would be deconfigured.
|
|
*/
|
|
cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
|
|
cp[0] = htole32(XHCI_INCTX_0_DROP_MASK(dci));
|
|
cp[1] = htole32(0);
|
|
|
|
/* XXX should be most significant one, not dci? */
|
|
cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
|
|
cp[0] = htole32(XHCI_SCTX_0_CTX_NUM_SET(dci));
|
|
|
|
/* configure ep context performs an implicit dequeue */
|
|
xhci_host_dequeue(xs->xs_xr[dci]);
|
|
|
|
/* sync input contexts before they are read from memory */
|
|
usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
|
|
|
|
trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
|
|
trb.trb_2 = 0;
|
|
trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
|
|
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP);
|
|
|
|
(void)xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
|
|
usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
|
|
|
|
xhci_ring_free(sc, &xs->xs_xr[dci]);
|
|
}
|
|
|
|
/*
|
|
* Abort transfer.
|
|
* Should be called with sc_lock held.
|
|
*/
|
|
static void
|
|
xhci_abortx(struct usbd_xfer *xfer)
|
|
{
|
|
XHCIHIST_FUNC();
|
|
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
|
|
struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
|
|
const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
|
|
|
|
XHCIHIST_CALLARGS("xfer %#jx pipe %#jx",
|
|
(uintptr_t)xfer, (uintptr_t)xfer->ux_pipe, 0, 0);
|
|
|
|
KASSERT(mutex_owned(&sc->sc_lock));
|
|
ASSERT_SLEEPABLE();
|
|
|
|
KASSERTMSG((xfer->ux_status == USBD_CANCELLED ||
|
|
xfer->ux_status == USBD_TIMEOUT),
|
|
"bad abort status: %d", xfer->ux_status);
|
|
|
|
/*
|
|
* If we're dying, skip the hardware action and just notify the
|
|
* software that we're done.
|
|
*/
|
|
if (sc->sc_dying) {
|
|
DPRINTFN(4, "xfer %#jx dying %ju", (uintptr_t)xfer,
|
|
xfer->ux_status, 0, 0);
|
|
goto dying;
|
|
}
|
|
|
|
/*
|
|
* HC Step 1: Stop execution of TD on the ring.
|
|
*/
|
|
switch (xhci_get_epstate(sc, xs, dci)) {
|
|
case XHCI_EPSTATE_HALTED:
|
|
(void)xhci_reset_endpoint_locked(xfer->ux_pipe);
|
|
break;
|
|
case XHCI_EPSTATE_STOPPED:
|
|
break;
|
|
default:
|
|
(void)xhci_stop_endpoint(xfer->ux_pipe);
|
|
break;
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
uint32_t epst = xhci_get_epstate(sc, xs, dci);
|
|
if (epst != XHCI_EPSTATE_STOPPED)
|
|
DPRINTFN(4, "dci %ju not stopped %ju", dci, epst, 0, 0);
|
|
#endif
|
|
|
|
/*
|
|
* HC Step 2: Remove any vestiges of the xfer from the ring.
|
|
*/
|
|
xhci_set_dequeue_locked(xfer->ux_pipe);
|
|
|
|
/*
|
|
* Final Step: Notify completion to waiting xfers.
|
|
*/
|
|
dying:
|
|
usb_transfer_complete(xfer);
|
|
DPRINTFN(14, "end", 0, 0, 0, 0);
|
|
|
|
KASSERT(mutex_owned(&sc->sc_lock));
|
|
}
|
|
|
|
static void
|
|
xhci_host_dequeue(struct xhci_ring * const xr)
|
|
{
|
|
/* When dequeueing the controller, update our struct copy too */
|
|
memset(xr->xr_trb, 0, xr->xr_ntrb * XHCI_TRB_SIZE);
|
|
usb_syncmem(&xr->xr_dma, 0, xr->xr_ntrb * XHCI_TRB_SIZE,
|
|
BUS_DMASYNC_PREWRITE);
|
|
memset(xr->xr_cookies, 0, xr->xr_ntrb * sizeof(*xr->xr_cookies));
|
|
|
|
xr->xr_ep = 0;
|
|
xr->xr_cs = 1;
|
|
}
|
|
|
|
/*
|
|
* Recover STALLed endpoint.
|
|
* xHCI 1.1 sect 4.10.2.1
|
|
* Issue RESET_EP to recover halt condition and SET_TR_DEQUEUE to remove
|
|
* all transfers on transfer ring.
|
|
* These are done in thread context asynchronously.
|
|
*/
|
|
static void
|
|
xhci_clear_endpoint_stall_async_task(void *cookie)
|
|
{
|
|
struct usbd_xfer * const xfer = cookie;
|
|
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
|
|
struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
|
|
const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
|
|
struct xhci_ring * const tr = xs->xs_xr[dci];
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("xfer %#jx slot %ju dci %ju", (uintptr_t)xfer, xs->xs_idx,
|
|
dci, 0);
|
|
|
|
/*
|
|
* XXXMRG: Stall task can run after slot is disabled when yanked.
|
|
* This hack notices that the xs has been memset() in
|
|
* xhci_disable_slot() and returns. Both xhci_reset_endpoint()
|
|
* and xhci_set_dequeue() rely upon a valid ring setup for correct
|
|
* operation, and the latter will fault, as would
|
|
* usb_transfer_complete() if it got that far.
|
|
*/
|
|
if (xs->xs_idx == 0) {
|
|
DPRINTFN(4, "ends xs_idx is 0", 0, 0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
KASSERT(tr != NULL);
|
|
|
|
xhci_reset_endpoint(xfer->ux_pipe);
|
|
xhci_set_dequeue(xfer->ux_pipe);
|
|
|
|
mutex_enter(&sc->sc_lock);
|
|
tr->is_halted = false;
|
|
usb_transfer_complete(xfer);
|
|
mutex_exit(&sc->sc_lock);
|
|
DPRINTFN(4, "ends", 0, 0, 0, 0);
|
|
}
|
|
|
|
static usbd_status
|
|
xhci_clear_endpoint_stall_async(struct usbd_xfer *xfer)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
|
|
struct xhci_pipe * const xp = (struct xhci_pipe *)xfer->ux_pipe;
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
|
|
|
|
if (sc->sc_dying) {
|
|
return USBD_IOERROR;
|
|
}
|
|
|
|
usb_init_task(&xp->xp_async_task,
|
|
xhci_clear_endpoint_stall_async_task, xfer, USB_TASKQ_MPSAFE);
|
|
usb_add_task(xfer->ux_pipe->up_dev, &xp->xp_async_task, USB_TASKQ_HC);
|
|
DPRINTFN(4, "ends", 0, 0, 0, 0);
|
|
|
|
return USBD_NORMAL_COMPLETION;
|
|
}
|
|
|
|
/* Process roothub port status/change events and notify to uhub_intr. */
|
|
static void
|
|
xhci_rhpsc(struct xhci_softc * const sc, u_int ctlrport)
|
|
{
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("xhci%jd: port %ju status change",
|
|
device_unit(sc->sc_dev), ctlrport, 0, 0);
|
|
|
|
if (ctlrport > sc->sc_maxports)
|
|
return;
|
|
|
|
const size_t bn = xhci_ctlrport2bus(sc, ctlrport);
|
|
const size_t rhp = xhci_ctlrport2rhport(sc, ctlrport);
|
|
struct usbd_xfer * const xfer = sc->sc_intrxfer[bn];
|
|
|
|
DPRINTFN(4, "xhci%jd: bus %jd bp %ju xfer %#jx status change",
|
|
device_unit(sc->sc_dev), bn, rhp, (uintptr_t)xfer);
|
|
|
|
if (xfer == NULL)
|
|
return;
|
|
KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
|
|
|
|
uint8_t *p = xfer->ux_buf;
|
|
memset(p, 0, xfer->ux_length);
|
|
p[rhp / NBBY] |= 1 << (rhp % NBBY);
|
|
xfer->ux_actlen = xfer->ux_length;
|
|
xfer->ux_status = USBD_NORMAL_COMPLETION;
|
|
usb_transfer_complete(xfer);
|
|
}
|
|
|
|
/* Process Transfer Events */
|
|
static void
|
|
xhci_event_transfer(struct xhci_softc * const sc,
|
|
const struct xhci_trb * const trb)
|
|
{
|
|
uint64_t trb_0;
|
|
uint32_t trb_2, trb_3;
|
|
uint8_t trbcode;
|
|
u_int slot, dci;
|
|
struct xhci_slot *xs;
|
|
struct xhci_ring *xr;
|
|
struct xhci_xfer *xx;
|
|
struct usbd_xfer *xfer;
|
|
usbd_status err;
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
trb_0 = le64toh(trb->trb_0);
|
|
trb_2 = le32toh(trb->trb_2);
|
|
trb_3 = le32toh(trb->trb_3);
|
|
trbcode = XHCI_TRB_2_ERROR_GET(trb_2);
|
|
slot = XHCI_TRB_3_SLOT_GET(trb_3);
|
|
dci = XHCI_TRB_3_EP_GET(trb_3);
|
|
xs = &sc->sc_slots[slot];
|
|
xr = xs->xs_xr[dci];
|
|
|
|
/* sanity check */
|
|
KASSERT(xr != NULL);
|
|
KASSERTMSG(xs->xs_idx != 0 && xs->xs_idx <= sc->sc_maxslots,
|
|
"invalid xs_idx %u slot %u", xs->xs_idx, slot);
|
|
|
|
int idx = 0;
|
|
if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
|
|
if (xhci_trb_get_idx(xr, trb_0, &idx)) {
|
|
DPRINTFN(0, "invalid trb_0 %#jx", trb_0, 0, 0, 0);
|
|
return;
|
|
}
|
|
xx = xr->xr_cookies[idx];
|
|
|
|
/* clear cookie of consumed TRB */
|
|
xr->xr_cookies[idx] = NULL;
|
|
|
|
/*
|
|
* xx is NULL if pipe is opened but xfer is not started.
|
|
* It happens when stopping idle pipe.
|
|
*/
|
|
if (xx == NULL || trbcode == XHCI_TRB_ERROR_LENGTH) {
|
|
DPRINTFN(1, "Ignore #%ju: cookie %#jx cc %ju dci %ju",
|
|
idx, (uintptr_t)xx, trbcode, dci);
|
|
DPRINTFN(1, " orig TRB %#jx type %ju", trb_0,
|
|
XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3)),
|
|
0, 0);
|
|
return;
|
|
}
|
|
} else {
|
|
/* When ED != 0, trb_0 is virtual addr of struct xhci_xfer. */
|
|
xx = (void *)(uintptr_t)(trb_0 & ~0x3);
|
|
}
|
|
/* XXX this may not happen */
|
|
if (xx == NULL) {
|
|
DPRINTFN(1, "xfer done: xx is NULL", 0, 0, 0, 0);
|
|
return;
|
|
}
|
|
xfer = &xx->xx_xfer;
|
|
/* XXX this may happen when detaching */
|
|
if (xfer == NULL) {
|
|
DPRINTFN(1, "xx(%#jx)->xx_xfer is NULL trb_0 %#jx",
|
|
(uintptr_t)xx, trb_0, 0, 0);
|
|
return;
|
|
}
|
|
DPRINTFN(14, "xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
|
|
/* XXX I dunno why this happens */
|
|
KASSERTMSG(xfer->ux_pipe != NULL, "xfer(%p)->ux_pipe is NULL", xfer);
|
|
|
|
if (!xfer->ux_pipe->up_repeat &&
|
|
SIMPLEQ_EMPTY(&xfer->ux_pipe->up_queue)) {
|
|
DPRINTFN(1, "xfer(%#jx)->pipe not queued", (uintptr_t)xfer,
|
|
0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
/* 4.11.5.2 Event Data TRB */
|
|
if ((trb_3 & XHCI_TRB_3_ED_BIT) != 0) {
|
|
DPRINTFN(14, "transfer Event Data: 0x%016jx 0x%08jx"
|
|
" %02jx", trb_0, XHCI_TRB_2_REM_GET(trb_2), trbcode, 0);
|
|
if ((trb_0 & 0x3) == 0x3) {
|
|
xfer->ux_actlen = XHCI_TRB_2_REM_GET(trb_2);
|
|
}
|
|
}
|
|
|
|
switch (trbcode) {
|
|
case XHCI_TRB_ERROR_SHORT_PKT:
|
|
case XHCI_TRB_ERROR_SUCCESS:
|
|
/*
|
|
* A ctrl transfer can generate two events if it has a Data
|
|
* stage. A short data stage can be OK and should not
|
|
* complete the transfer as the status stage needs to be
|
|
* performed.
|
|
*
|
|
* Note: Data and Status stage events point at same xfer.
|
|
* ux_actlen and ux_dmabuf will be passed to
|
|
* usb_transfer_complete after the Status stage event.
|
|
*
|
|
* It can be distingished which stage generates the event:
|
|
* + by checking least 3 bits of trb_0 if ED==1.
|
|
* (see xhci_device_ctrl_start).
|
|
* + by checking the type of original TRB if ED==0.
|
|
*
|
|
* In addition, intr, bulk, and isoc transfer currently
|
|
* consists of single TD, so the "skip" is not needed.
|
|
* ctrl xfer uses EVENT_DATA, and others do not.
|
|
* Thus driver can switch the flow by checking ED bit.
|
|
*/
|
|
if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0) {
|
|
if (xfer->ux_actlen == 0)
|
|
xfer->ux_actlen = xfer->ux_length -
|
|
XHCI_TRB_2_REM_GET(trb_2);
|
|
if (XHCI_TRB_3_TYPE_GET(le32toh(xr->xr_trb[idx].trb_3))
|
|
== XHCI_TRB_TYPE_DATA_STAGE) {
|
|
return;
|
|
}
|
|
} else if ((trb_0 & 0x3) == 0x3) {
|
|
return;
|
|
}
|
|
err = USBD_NORMAL_COMPLETION;
|
|
break;
|
|
case XHCI_TRB_ERROR_STOPPED:
|
|
case XHCI_TRB_ERROR_LENGTH:
|
|
case XHCI_TRB_ERROR_STOPPED_SHORT:
|
|
err = USBD_IOERROR;
|
|
break;
|
|
case XHCI_TRB_ERROR_STALL:
|
|
case XHCI_TRB_ERROR_BABBLE:
|
|
DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0);
|
|
xr->is_halted = true;
|
|
/*
|
|
* Try to claim this xfer for completion. If it has already
|
|
* completed or aborted, drop it on the floor.
|
|
*/
|
|
if (!usbd_xfer_trycomplete(xfer))
|
|
return;
|
|
|
|
/*
|
|
* Stalled endpoints can be recoverd by issuing
|
|
* command TRB TYPE_RESET_EP on xHCI instead of
|
|
* issuing request CLEAR_FEATURE UF_ENDPOINT_HALT
|
|
* on the endpoint. However, this function may be
|
|
* called from softint context (e.g. from umass),
|
|
* in that case driver gets KASSERT in cv_timedwait
|
|
* in xhci_do_command.
|
|
* To avoid this, this runs reset_endpoint and
|
|
* usb_transfer_complete in usb task thread
|
|
* asynchronously (and then umass issues clear
|
|
* UF_ENDPOINT_HALT).
|
|
*/
|
|
|
|
/* Override the status. */
|
|
xfer->ux_status = USBD_STALLED;
|
|
|
|
xhci_clear_endpoint_stall_async(xfer);
|
|
return;
|
|
default:
|
|
DPRINTFN(1, "ERR %ju slot %ju dci %ju", trbcode, slot, dci, 0);
|
|
err = USBD_IOERROR;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Try to claim this xfer for completion. If it has already
|
|
* completed or aborted, drop it on the floor.
|
|
*/
|
|
if (!usbd_xfer_trycomplete(xfer))
|
|
return;
|
|
|
|
/* Set the status. */
|
|
xfer->ux_status = err;
|
|
|
|
if ((trb_3 & XHCI_TRB_3_ED_BIT) == 0 ||
|
|
(trb_0 & 0x3) == 0x0) {
|
|
usb_transfer_complete(xfer);
|
|
}
|
|
}
|
|
|
|
/* Process Command complete events */
|
|
static void
|
|
xhci_event_cmd(struct xhci_softc * const sc, const struct xhci_trb * const trb)
|
|
{
|
|
uint64_t trb_0;
|
|
uint32_t trb_2, trb_3;
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
KASSERT(mutex_owned(&sc->sc_lock));
|
|
|
|
trb_0 = le64toh(trb->trb_0);
|
|
trb_2 = le32toh(trb->trb_2);
|
|
trb_3 = le32toh(trb->trb_3);
|
|
|
|
if (trb_0 == sc->sc_command_addr) {
|
|
sc->sc_resultpending = false;
|
|
|
|
sc->sc_result_trb.trb_0 = trb_0;
|
|
sc->sc_result_trb.trb_2 = trb_2;
|
|
sc->sc_result_trb.trb_3 = trb_3;
|
|
if (XHCI_TRB_2_ERROR_GET(trb_2) !=
|
|
XHCI_TRB_ERROR_SUCCESS) {
|
|
DPRINTFN(1, "command completion "
|
|
"failure: 0x%016jx 0x%08jx 0x%08jx",
|
|
trb_0, trb_2, trb_3, 0);
|
|
}
|
|
cv_signal(&sc->sc_command_cv);
|
|
} else {
|
|
DPRINTFN(1, "spurious event: %#jx 0x%016jx "
|
|
"0x%08jx 0x%08jx", (uintptr_t)trb, trb_0, trb_2, trb_3);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process events.
|
|
* called from xhci_softintr
|
|
*/
|
|
static void
|
|
xhci_handle_event(struct xhci_softc * const sc,
|
|
const struct xhci_trb * const trb)
|
|
{
|
|
uint64_t trb_0;
|
|
uint32_t trb_2, trb_3;
|
|
|
|
XHCIHIST_FUNC();
|
|
|
|
trb_0 = le64toh(trb->trb_0);
|
|
trb_2 = le32toh(trb->trb_2);
|
|
trb_3 = le32toh(trb->trb_3);
|
|
|
|
XHCIHIST_CALLARGS("event: %#jx 0x%016jx 0x%08jx 0x%08jx",
|
|
(uintptr_t)trb, trb_0, trb_2, trb_3);
|
|
|
|
/*
|
|
* 4.11.3.1, 6.4.2.1
|
|
* TRB Pointer is invalid for these completion codes.
|
|
*/
|
|
switch (XHCI_TRB_2_ERROR_GET(trb_2)) {
|
|
case XHCI_TRB_ERROR_RING_UNDERRUN:
|
|
case XHCI_TRB_ERROR_RING_OVERRUN:
|
|
case XHCI_TRB_ERROR_VF_RING_FULL:
|
|
return;
|
|
default:
|
|
if (trb_0 == 0) {
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch (XHCI_TRB_3_TYPE_GET(trb_3)) {
|
|
case XHCI_TRB_EVENT_TRANSFER:
|
|
xhci_event_transfer(sc, trb);
|
|
break;
|
|
case XHCI_TRB_EVENT_CMD_COMPLETE:
|
|
xhci_event_cmd(sc, trb);
|
|
break;
|
|
case XHCI_TRB_EVENT_PORT_STS_CHANGE:
|
|
xhci_rhpsc(sc, (uint32_t)((trb_0 >> 24) & 0xff));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
xhci_softintr(void *v)
|
|
{
|
|
struct usbd_bus * const bus = v;
|
|
struct xhci_softc * const sc = XHCI_BUS2SC(bus);
|
|
struct xhci_ring * const er = sc->sc_er;
|
|
struct xhci_trb *trb;
|
|
int i, j, k;
|
|
|
|
XHCIHIST_FUNC();
|
|
|
|
KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
|
|
|
|
i = er->xr_ep;
|
|
j = er->xr_cs;
|
|
|
|
XHCIHIST_CALLARGS("er: xr_ep %jd xr_cs %jd", i, j, 0, 0);
|
|
|
|
while (1) {
|
|
usb_syncmem(&er->xr_dma, XHCI_TRB_SIZE * i, XHCI_TRB_SIZE,
|
|
BUS_DMASYNC_POSTREAD);
|
|
trb = &er->xr_trb[i];
|
|
k = (le32toh(trb->trb_3) & XHCI_TRB_3_CYCLE_BIT) ? 1 : 0;
|
|
|
|
if (j != k)
|
|
break;
|
|
|
|
xhci_handle_event(sc, trb);
|
|
|
|
i++;
|
|
if (i == er->xr_ntrb) {
|
|
i = 0;
|
|
j ^= 1;
|
|
}
|
|
}
|
|
|
|
er->xr_ep = i;
|
|
er->xr_cs = j;
|
|
|
|
xhci_rt_write_8(sc, XHCI_ERDP(0), xhci_ring_trbp(er, er->xr_ep) |
|
|
XHCI_ERDP_BUSY);
|
|
|
|
DPRINTFN(16, "ends", 0, 0, 0, 0);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
xhci_poll(struct usbd_bus *bus)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_BUS2SC(bus);
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
mutex_enter(&sc->sc_intr_lock);
|
|
int ret = xhci_intr1(sc);
|
|
if (ret) {
|
|
xhci_softintr(bus);
|
|
}
|
|
mutex_exit(&sc->sc_intr_lock);
|
|
|
|
return;
|
|
}
|
|
|
|
static struct usbd_xfer *
|
|
xhci_allocx(struct usbd_bus *bus, unsigned int nframes)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_BUS2SC(bus);
|
|
struct xhci_xfer *xx;
|
|
u_int ntrbs;
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
ntrbs = XHCI_XFER_NTRB;
|
|
const size_t trbsz = sizeof(*xx->xx_trb) * ntrbs;
|
|
|
|
xx = pool_cache_get(sc->sc_xferpool, PR_WAITOK);
|
|
if (xx != NULL) {
|
|
memset(xx, 0, sizeof(*xx));
|
|
if (ntrbs > 0) {
|
|
xx->xx_trb = kmem_alloc(trbsz, KM_SLEEP);
|
|
xx->xx_ntrb = ntrbs;
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
xx->xx_xfer.ux_state = XFER_BUSY;
|
|
#endif
|
|
}
|
|
|
|
return &xx->xx_xfer;
|
|
}
|
|
|
|
static void
|
|
xhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_BUS2SC(bus);
|
|
struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (xfer->ux_state != XFER_BUSY &&
|
|
xfer->ux_status != USBD_NOT_STARTED) {
|
|
DPRINTFN(0, "xfer=%#jx not busy, 0x%08jx",
|
|
(uintptr_t)xfer, xfer->ux_state, 0, 0);
|
|
}
|
|
xfer->ux_state = XFER_FREE;
|
|
#endif
|
|
if (xx->xx_ntrb > 0) {
|
|
kmem_free(xx->xx_trb, xx->xx_ntrb * sizeof(*xx->xx_trb));
|
|
xx->xx_trb = NULL;
|
|
xx->xx_ntrb = 0;
|
|
}
|
|
pool_cache_put(sc->sc_xferpool, xx);
|
|
}
|
|
|
|
static bool
|
|
xhci_dying(struct usbd_bus *bus)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_BUS2SC(bus);
|
|
|
|
return sc->sc_dying;
|
|
}
|
|
|
|
static void
|
|
xhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_BUS2SC(bus);
|
|
|
|
*lock = &sc->sc_lock;
|
|
}
|
|
|
|
extern uint32_t usb_cookie_no;
|
|
|
|
/*
|
|
* xHCI 4.3
|
|
* Called when uhub_explore finds a new device (via usbd_new_device).
|
|
* Port initialization and speed detection (4.3.1) are already done in uhub.c.
|
|
* This function does:
|
|
* Allocate and construct dev structure of default endpoint (ep0).
|
|
* Allocate and open pipe of ep0.
|
|
* Enable slot and initialize slot context.
|
|
* Set Address.
|
|
* Read initial device descriptor.
|
|
* Determine initial MaxPacketSize (mps) by speed.
|
|
* Read full device descriptor.
|
|
* Register this device.
|
|
* Finally state of device transitions ADDRESSED.
|
|
*/
|
|
static usbd_status
|
|
xhci_new_device(device_t parent, struct usbd_bus *bus, int depth,
|
|
int speed, int port, struct usbd_port *up)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_BUS2SC(bus);
|
|
struct usbd_device *dev;
|
|
usbd_status err;
|
|
usb_device_descriptor_t *dd;
|
|
struct xhci_slot *xs;
|
|
uint32_t *cp;
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("port %ju depth %ju speed %ju up %#jx",
|
|
port, depth, speed, (uintptr_t)up);
|
|
|
|
dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
|
|
dev->ud_bus = bus;
|
|
dev->ud_quirks = &usbd_no_quirk;
|
|
dev->ud_addr = 0;
|
|
dev->ud_ddesc.bMaxPacketSize = 0;
|
|
dev->ud_depth = depth;
|
|
dev->ud_powersrc = up;
|
|
dev->ud_myhub = up->up_parent;
|
|
dev->ud_speed = speed;
|
|
dev->ud_langid = USBD_NOLANG;
|
|
dev->ud_cookie.cookie = ++usb_cookie_no;
|
|
|
|
/* Set up default endpoint handle. */
|
|
dev->ud_ep0.ue_edesc = &dev->ud_ep0desc;
|
|
/* doesn't matter, just don't let it uninitialized */
|
|
dev->ud_ep0.ue_toggle = 0;
|
|
|
|
/* Set up default endpoint descriptor. */
|
|
dev->ud_ep0desc.bLength = USB_ENDPOINT_DESCRIPTOR_SIZE;
|
|
dev->ud_ep0desc.bDescriptorType = UDESC_ENDPOINT;
|
|
dev->ud_ep0desc.bEndpointAddress = USB_CONTROL_ENDPOINT;
|
|
dev->ud_ep0desc.bmAttributes = UE_CONTROL;
|
|
dev->ud_ep0desc.bInterval = 0;
|
|
|
|
/* 4.3, 4.8.2.1 */
|
|
switch (speed) {
|
|
case USB_SPEED_SUPER:
|
|
case USB_SPEED_SUPER_PLUS:
|
|
USETW(dev->ud_ep0desc.wMaxPacketSize, USB_3_MAX_CTRL_PACKET);
|
|
break;
|
|
case USB_SPEED_FULL:
|
|
/* XXX using 64 as initial mps of ep0 in FS */
|
|
case USB_SPEED_HIGH:
|
|
USETW(dev->ud_ep0desc.wMaxPacketSize, USB_2_MAX_CTRL_PACKET);
|
|
break;
|
|
case USB_SPEED_LOW:
|
|
default:
|
|
USETW(dev->ud_ep0desc.wMaxPacketSize, USB_MAX_IPACKET);
|
|
break;
|
|
}
|
|
|
|
up->up_dev = dev;
|
|
|
|
dd = &dev->ud_ddesc;
|
|
|
|
if (depth == 0 && port == 0) {
|
|
KASSERT(bus->ub_devices[USB_ROOTHUB_INDEX] == NULL);
|
|
bus->ub_devices[USB_ROOTHUB_INDEX] = dev;
|
|
|
|
/* Establish the default pipe. */
|
|
err = usbd_setup_pipe(dev, 0, &dev->ud_ep0,
|
|
USBD_DEFAULT_INTERVAL, &dev->ud_pipe0);
|
|
if (err) {
|
|
DPRINTFN(1, "setup default pipe failed %jd", err,0,0,0);
|
|
goto bad;
|
|
}
|
|
err = usbd_get_initial_ddesc(dev, dd);
|
|
if (err) {
|
|
DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0);
|
|
goto bad;
|
|
}
|
|
} else {
|
|
uint8_t slot = 0;
|
|
|
|
/* 4.3.2 */
|
|
err = xhci_enable_slot(sc, &slot);
|
|
if (err) {
|
|
DPRINTFN(1, "enable slot %ju", err, 0, 0, 0);
|
|
goto bad;
|
|
}
|
|
|
|
xs = &sc->sc_slots[slot];
|
|
dev->ud_hcpriv = xs;
|
|
|
|
/* 4.3.3 initialize slot structure */
|
|
err = xhci_init_slot(dev, slot);
|
|
if (err) {
|
|
DPRINTFN(1, "init slot %ju", err, 0, 0, 0);
|
|
dev->ud_hcpriv = NULL;
|
|
/*
|
|
* We have to disable_slot here because
|
|
* xs->xs_idx == 0 when xhci_init_slot fails,
|
|
* in that case usbd_remove_dev won't work.
|
|
*/
|
|
mutex_enter(&sc->sc_lock);
|
|
xhci_disable_slot(sc, slot);
|
|
mutex_exit(&sc->sc_lock);
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* We have to establish the default pipe _after_ slot
|
|
* structure has been prepared.
|
|
*/
|
|
err = usbd_setup_pipe(dev, 0, &dev->ud_ep0,
|
|
USBD_DEFAULT_INTERVAL, &dev->ud_pipe0);
|
|
if (err) {
|
|
DPRINTFN(1, "setup default pipe failed %jd", err, 0, 0,
|
|
0);
|
|
goto bad;
|
|
}
|
|
|
|
/* 4.3.4 Address Assignment */
|
|
err = xhci_set_address(dev, slot, false);
|
|
if (err) {
|
|
DPRINTFN(1, "failed! to set address: %ju", err, 0, 0, 0);
|
|
goto bad;
|
|
}
|
|
|
|
/* Allow device time to set new address */
|
|
usbd_delay_ms(dev, USB_SET_ADDRESS_SETTLE);
|
|
|
|
usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
|
|
cp = xhci_slot_get_dcv(sc, xs, XHCI_DCI_SLOT);
|
|
HEXDUMP("slot context", cp, sc->sc_ctxsz);
|
|
uint8_t addr = XHCI_SCTX_3_DEV_ADDR_GET(le32toh(cp[3]));
|
|
DPRINTFN(4, "device address %ju", addr, 0, 0, 0);
|
|
/*
|
|
* XXX ensure we know when the hardware does something
|
|
* we can't yet cope with
|
|
*/
|
|
KASSERTMSG(addr >= 1 && addr <= 127, "addr %d", addr);
|
|
dev->ud_addr = addr;
|
|
|
|
KASSERTMSG(bus->ub_devices[usb_addr2dindex(dev->ud_addr)] == NULL,
|
|
"addr %d already allocated", dev->ud_addr);
|
|
/*
|
|
* The root hub is given its own slot
|
|
*/
|
|
bus->ub_devices[usb_addr2dindex(dev->ud_addr)] = dev;
|
|
|
|
err = usbd_get_initial_ddesc(dev, dd);
|
|
if (err) {
|
|
DPRINTFN(1, "get_initial_ddesc %ju", err, 0, 0, 0);
|
|
goto bad;
|
|
}
|
|
|
|
/* 4.8.2.1 */
|
|
if (USB_IS_SS(speed)) {
|
|
if (dd->bMaxPacketSize != 9) {
|
|
printf("%s: invalid mps 2^%u for SS ep0,"
|
|
" using 512\n",
|
|
device_xname(sc->sc_dev),
|
|
dd->bMaxPacketSize);
|
|
dd->bMaxPacketSize = 9;
|
|
}
|
|
USETW(dev->ud_ep0desc.wMaxPacketSize,
|
|
(1 << dd->bMaxPacketSize));
|
|
} else
|
|
USETW(dev->ud_ep0desc.wMaxPacketSize,
|
|
dd->bMaxPacketSize);
|
|
DPRINTFN(4, "bMaxPacketSize %ju", dd->bMaxPacketSize, 0, 0, 0);
|
|
err = xhci_update_ep0_mps(sc, xs,
|
|
UGETW(dev->ud_ep0desc.wMaxPacketSize));
|
|
if (err) {
|
|
DPRINTFN(1, "update mps of ep0 %ju", err, 0, 0, 0);
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
err = usbd_reload_device_desc(dev);
|
|
if (err) {
|
|
DPRINTFN(1, "reload desc %ju", err, 0, 0, 0);
|
|
goto bad;
|
|
}
|
|
|
|
DPRINTFN(1, "adding unit addr=%jd, rev=%02jx,",
|
|
dev->ud_addr, UGETW(dd->bcdUSB), 0, 0);
|
|
DPRINTFN(1, " class=%jd, subclass=%jd, protocol=%jd,",
|
|
dd->bDeviceClass, dd->bDeviceSubClass,
|
|
dd->bDeviceProtocol, 0);
|
|
DPRINTFN(1, " mps=%jd, len=%jd, noconf=%jd, speed=%jd",
|
|
dd->bMaxPacketSize, dd->bLength, dd->bNumConfigurations,
|
|
dev->ud_speed);
|
|
|
|
usbd_get_device_strings(dev);
|
|
|
|
usbd_add_dev_event(USB_EVENT_DEVICE_ATTACH, dev);
|
|
|
|
if (depth == 0 && port == 0) {
|
|
usbd_attach_roothub(parent, dev);
|
|
DPRINTFN(1, "root hub %#jx", (uintptr_t)dev, 0, 0, 0);
|
|
return USBD_NORMAL_COMPLETION;
|
|
}
|
|
|
|
err = usbd_probe_and_attach(parent, dev, port, dev->ud_addr);
|
|
bad:
|
|
if (err != USBD_NORMAL_COMPLETION) {
|
|
usbd_remove_device(dev, up);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static usbd_status
|
|
xhci_ring_init(struct xhci_softc * const sc, struct xhci_ring **xrp,
|
|
size_t ntrb, size_t align)
|
|
{
|
|
usbd_status err;
|
|
size_t size = ntrb * XHCI_TRB_SIZE;
|
|
struct xhci_ring *xr;
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("xr %#jx ntrb %#jx align %#jx",
|
|
(uintptr_t)*xrp, ntrb, align, 0);
|
|
|
|
xr = kmem_zalloc(sizeof(struct xhci_ring), KM_SLEEP);
|
|
DPRINTFN(1, "ring %#jx", (uintptr_t)xr, 0, 0, 0);
|
|
|
|
err = usb_allocmem(&sc->sc_bus, size, align, USBMALLOC_COHERENT,
|
|
&xr->xr_dma);
|
|
if (err) {
|
|
kmem_free(xr, sizeof(struct xhci_ring));
|
|
DPRINTFN(1, "alloc xr_dma failed %jd", err, 0, 0, 0);
|
|
return err;
|
|
}
|
|
mutex_init(&xr->xr_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
|
|
xr->xr_cookies = kmem_zalloc(sizeof(*xr->xr_cookies) * ntrb, KM_SLEEP);
|
|
xr->xr_trb = xhci_ring_trbv(xr, 0);
|
|
xr->xr_ntrb = ntrb;
|
|
xr->is_halted = false;
|
|
xhci_host_dequeue(xr);
|
|
*xrp = xr;
|
|
|
|
return USBD_NORMAL_COMPLETION;
|
|
}
|
|
|
|
static void
|
|
xhci_ring_free(struct xhci_softc * const sc, struct xhci_ring ** const xr)
|
|
{
|
|
if (*xr == NULL)
|
|
return;
|
|
|
|
usb_freemem(&sc->sc_bus, &(*xr)->xr_dma);
|
|
mutex_destroy(&(*xr)->xr_lock);
|
|
kmem_free((*xr)->xr_cookies,
|
|
sizeof(*(*xr)->xr_cookies) * (*xr)->xr_ntrb);
|
|
kmem_free(*xr, sizeof(struct xhci_ring));
|
|
*xr = NULL;
|
|
}
|
|
|
|
static void
|
|
xhci_ring_put(struct xhci_softc * const sc, struct xhci_ring * const xr,
|
|
void *cookie, struct xhci_soft_trb * const trbs, size_t ntrbs)
|
|
{
|
|
size_t i;
|
|
u_int ri;
|
|
u_int cs;
|
|
uint64_t parameter;
|
|
uint32_t status;
|
|
uint32_t control;
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("%#jx xr_ep %#jx xr_cs %ju",
|
|
(uintptr_t)xr, xr->xr_ep, xr->xr_cs, 0);
|
|
|
|
KASSERTMSG(ntrbs < xr->xr_ntrb, "ntrbs %zu, xr->xr_ntrb %u",
|
|
ntrbs, xr->xr_ntrb);
|
|
for (i = 0; i < ntrbs; i++) {
|
|
DPRINTFN(12, "xr %#jx trbs %#jx num %ju", (uintptr_t)xr,
|
|
(uintptr_t)trbs, i, 0);
|
|
DPRINTFN(12, " 0x%016jx 0x%08jx 0x%08jx",
|
|
trbs[i].trb_0, trbs[i].trb_2, trbs[i].trb_3, 0);
|
|
KASSERTMSG(XHCI_TRB_3_TYPE_GET(trbs[i].trb_3) !=
|
|
XHCI_TRB_TYPE_LINK, "trbs[%zu].trb3 %#x", i, trbs[i].trb_3);
|
|
}
|
|
|
|
ri = xr->xr_ep;
|
|
cs = xr->xr_cs;
|
|
|
|
/*
|
|
* Although the xhci hardware can do scatter/gather dma from
|
|
* arbitrary sized buffers, there is a non-obvious restriction
|
|
* that a LINK trb is only allowed at the end of a burst of
|
|
* transfers - which might be 16kB.
|
|
* Arbitrary aligned LINK trb definitely fail on Ivy bridge.
|
|
* The simple solution is not to allow a LINK trb in the middle
|
|
* of anything - as here.
|
|
* XXX: (dsl) There are xhci controllers out there (eg some made by
|
|
* ASMedia) that seem to lock up if they process a LINK trb but
|
|
* cannot process the linked-to trb yet.
|
|
* The code should write the 'cycle' bit on the link trb AFTER
|
|
* adding the other trb.
|
|
*/
|
|
u_int firstep = xr->xr_ep;
|
|
u_int firstcs = xr->xr_cs;
|
|
|
|
for (i = 0; i < ntrbs; ) {
|
|
u_int oldri = ri;
|
|
u_int oldcs = cs;
|
|
|
|
if (ri >= (xr->xr_ntrb - 1)) {
|
|
/* Put Link TD at the end of ring */
|
|
parameter = xhci_ring_trbp(xr, 0);
|
|
status = 0;
|
|
control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK) |
|
|
XHCI_TRB_3_TC_BIT;
|
|
xr->xr_cookies[ri] = NULL;
|
|
xr->xr_ep = 0;
|
|
xr->xr_cs ^= 1;
|
|
ri = xr->xr_ep;
|
|
cs = xr->xr_cs;
|
|
} else {
|
|
parameter = trbs[i].trb_0;
|
|
status = trbs[i].trb_2;
|
|
control = trbs[i].trb_3;
|
|
|
|
xr->xr_cookies[ri] = cookie;
|
|
ri++;
|
|
i++;
|
|
}
|
|
/*
|
|
* If this is a first TRB, mark it invalid to prevent
|
|
* xHC from running it immediately.
|
|
*/
|
|
if (oldri == firstep) {
|
|
if (oldcs) {
|
|
control &= ~XHCI_TRB_3_CYCLE_BIT;
|
|
} else {
|
|
control |= XHCI_TRB_3_CYCLE_BIT;
|
|
}
|
|
} else {
|
|
if (oldcs) {
|
|
control |= XHCI_TRB_3_CYCLE_BIT;
|
|
} else {
|
|
control &= ~XHCI_TRB_3_CYCLE_BIT;
|
|
}
|
|
}
|
|
xhci_trb_put(&xr->xr_trb[oldri], parameter, status, control);
|
|
usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * oldri,
|
|
XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
/* Now invert cycle bit of first TRB */
|
|
if (firstcs) {
|
|
xr->xr_trb[firstep].trb_3 |= htole32(XHCI_TRB_3_CYCLE_BIT);
|
|
} else {
|
|
xr->xr_trb[firstep].trb_3 &= ~htole32(XHCI_TRB_3_CYCLE_BIT);
|
|
}
|
|
usb_syncmem(&xr->xr_dma, XHCI_TRB_SIZE * firstep,
|
|
XHCI_TRB_SIZE * 1, BUS_DMASYNC_PREWRITE);
|
|
|
|
xr->xr_ep = ri;
|
|
xr->xr_cs = cs;
|
|
|
|
DPRINTFN(12, "%#jx xr_ep %#jx xr_cs %ju", (uintptr_t)xr, xr->xr_ep,
|
|
xr->xr_cs, 0);
|
|
}
|
|
|
|
static inline void
|
|
xhci_ring_put_xfer(struct xhci_softc * const sc, struct xhci_ring * const tr,
|
|
struct xhci_xfer *xx, u_int ntrb)
|
|
{
|
|
KASSERT(ntrb <= xx->xx_ntrb);
|
|
xhci_ring_put(sc, tr, xx, xx->xx_trb, ntrb);
|
|
}
|
|
|
|
/*
|
|
* Stop execution commands, purge all commands on command ring, and
|
|
* rewind dequeue pointer.
|
|
*/
|
|
static void
|
|
xhci_abort_command(struct xhci_softc *sc)
|
|
{
|
|
struct xhci_ring * const cr = sc->sc_cr;
|
|
uint64_t crcr;
|
|
int i;
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("command %#jx timeout, aborting",
|
|
sc->sc_command_addr, 0, 0, 0);
|
|
|
|
mutex_enter(&cr->xr_lock);
|
|
|
|
/* 4.6.1.2 Aborting a Command */
|
|
crcr = xhci_op_read_8(sc, XHCI_CRCR);
|
|
xhci_op_write_8(sc, XHCI_CRCR, crcr | XHCI_CRCR_LO_CA);
|
|
|
|
for (i = 0; i < 500; i++) {
|
|
crcr = xhci_op_read_8(sc, XHCI_CRCR);
|
|
if ((crcr & XHCI_CRCR_LO_CRR) == 0)
|
|
break;
|
|
usb_delay_ms(&sc->sc_bus, 1);
|
|
}
|
|
if ((crcr & XHCI_CRCR_LO_CRR) != 0) {
|
|
DPRINTFN(1, "Command Abort timeout", 0, 0, 0, 0);
|
|
/* reset HC here? */
|
|
}
|
|
|
|
/* reset command ring dequeue pointer */
|
|
cr->xr_ep = 0;
|
|
cr->xr_cs = 1;
|
|
xhci_op_write_8(sc, XHCI_CRCR, xhci_ring_trbp(cr, 0) | cr->xr_cs);
|
|
|
|
mutex_exit(&cr->xr_lock);
|
|
}
|
|
|
|
/*
|
|
* Put a command on command ring, ring bell, set timer, and cv_timedwait.
|
|
* Command completion is notified by cv_signal from xhci_event_cmd()
|
|
* (called from xhci_softint), or timed-out.
|
|
* The completion code is copied to sc->sc_result_trb in xhci_event_cmd(),
|
|
* then do_command examines it.
|
|
*/
|
|
static usbd_status
|
|
xhci_do_command_locked(struct xhci_softc * const sc,
|
|
struct xhci_soft_trb * const trb, int timeout)
|
|
{
|
|
struct xhci_ring * const cr = sc->sc_cr;
|
|
usbd_status err;
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("input: 0x%016jx 0x%08jx 0x%08jx",
|
|
trb->trb_0, trb->trb_2, trb->trb_3, 0);
|
|
|
|
KASSERTMSG(!cpu_intr_p() && !cpu_softintr_p(), "called from intr ctx");
|
|
KASSERT(mutex_owned(&sc->sc_lock));
|
|
|
|
while (sc->sc_command_addr != 0)
|
|
cv_wait(&sc->sc_cmdbusy_cv, &sc->sc_lock);
|
|
|
|
/*
|
|
* If enqueue pointer points at last of ring, it's Link TRB,
|
|
* command TRB will be stored in 0th TRB.
|
|
*/
|
|
if (cr->xr_ep == cr->xr_ntrb - 1)
|
|
sc->sc_command_addr = xhci_ring_trbp(cr, 0);
|
|
else
|
|
sc->sc_command_addr = xhci_ring_trbp(cr, cr->xr_ep);
|
|
|
|
sc->sc_resultpending = true;
|
|
|
|
mutex_enter(&cr->xr_lock);
|
|
xhci_ring_put(sc, cr, NULL, trb, 1);
|
|
mutex_exit(&cr->xr_lock);
|
|
|
|
xhci_db_write_4(sc, XHCI_DOORBELL(0), 0);
|
|
|
|
while (sc->sc_resultpending) {
|
|
if (cv_timedwait(&sc->sc_command_cv, &sc->sc_lock,
|
|
MAX(1, mstohz(timeout))) == EWOULDBLOCK) {
|
|
xhci_abort_command(sc);
|
|
err = USBD_TIMEOUT;
|
|
goto timedout;
|
|
}
|
|
}
|
|
|
|
trb->trb_0 = sc->sc_result_trb.trb_0;
|
|
trb->trb_2 = sc->sc_result_trb.trb_2;
|
|
trb->trb_3 = sc->sc_result_trb.trb_3;
|
|
|
|
DPRINTFN(12, "output: 0x%016jx 0x%08jx 0x%08jx",
|
|
trb->trb_0, trb->trb_2, trb->trb_3, 0);
|
|
|
|
switch (XHCI_TRB_2_ERROR_GET(trb->trb_2)) {
|
|
case XHCI_TRB_ERROR_SUCCESS:
|
|
err = USBD_NORMAL_COMPLETION;
|
|
break;
|
|
default:
|
|
case 192 ... 223:
|
|
DPRINTFN(5, "error %#jx",
|
|
XHCI_TRB_2_ERROR_GET(trb->trb_2), 0, 0, 0);
|
|
err = USBD_IOERROR;
|
|
break;
|
|
case 224 ... 255:
|
|
err = USBD_NORMAL_COMPLETION;
|
|
break;
|
|
}
|
|
|
|
timedout:
|
|
sc->sc_resultpending = false;
|
|
sc->sc_command_addr = 0;
|
|
cv_broadcast(&sc->sc_cmdbusy_cv);
|
|
|
|
return err;
|
|
}
|
|
|
|
static usbd_status
|
|
xhci_do_command(struct xhci_softc * const sc, struct xhci_soft_trb * const trb,
|
|
int timeout)
|
|
{
|
|
|
|
mutex_enter(&sc->sc_lock);
|
|
usbd_status ret = xhci_do_command_locked(sc, trb, timeout);
|
|
mutex_exit(&sc->sc_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static usbd_status
|
|
xhci_enable_slot(struct xhci_softc * const sc, uint8_t * const slotp)
|
|
{
|
|
struct xhci_soft_trb trb;
|
|
usbd_status err;
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
trb.trb_0 = 0;
|
|
trb.trb_2 = 0;
|
|
trb.trb_3 = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ENABLE_SLOT);
|
|
|
|
err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
|
|
if (err != USBD_NORMAL_COMPLETION) {
|
|
return err;
|
|
}
|
|
|
|
*slotp = XHCI_TRB_3_SLOT_GET(trb.trb_3);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* xHCI 4.6.4
|
|
* Deallocate ring and device/input context DMA buffers, and disable_slot.
|
|
* All endpoints in the slot should be stopped.
|
|
* Should be called with sc_lock held.
|
|
*/
|
|
static usbd_status
|
|
xhci_disable_slot(struct xhci_softc * const sc, uint8_t slot)
|
|
{
|
|
struct xhci_soft_trb trb;
|
|
struct xhci_slot *xs;
|
|
usbd_status err;
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
if (sc->sc_dying)
|
|
return USBD_IOERROR;
|
|
|
|
trb.trb_0 = 0;
|
|
trb.trb_2 = 0;
|
|
trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot) |
|
|
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DISABLE_SLOT);
|
|
|
|
err = xhci_do_command_locked(sc, &trb, USBD_DEFAULT_TIMEOUT);
|
|
|
|
if (!err) {
|
|
xs = &sc->sc_slots[slot];
|
|
if (xs->xs_idx != 0) {
|
|
xhci_free_slot(sc, xs);
|
|
xhci_set_dcba(sc, 0, slot);
|
|
memset(xs, 0, sizeof(*xs));
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Set address of device and transition slot state from ENABLED to ADDRESSED
|
|
* if Block Setaddress Request (BSR) is false.
|
|
* If BSR==true, transition slot state from ENABLED to DEFAULT.
|
|
* see xHCI 1.1 4.5.3, 3.3.4
|
|
* Should be called without sc_lock held.
|
|
*/
|
|
static usbd_status
|
|
xhci_address_device(struct xhci_softc * const sc,
|
|
uint64_t icp, uint8_t slot_id, bool bsr)
|
|
{
|
|
struct xhci_soft_trb trb;
|
|
usbd_status err;
|
|
|
|
XHCIHIST_FUNC();
|
|
if (bsr) {
|
|
XHCIHIST_CALLARGS("icp %#jx slot %#jx with bsr",
|
|
icp, slot_id, 0, 0);
|
|
} else {
|
|
XHCIHIST_CALLARGS("icp %#jx slot %#jx nobsr",
|
|
icp, slot_id, 0, 0);
|
|
}
|
|
|
|
trb.trb_0 = icp;
|
|
trb.trb_2 = 0;
|
|
trb.trb_3 = XHCI_TRB_3_SLOT_SET(slot_id) |
|
|
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ADDRESS_DEVICE) |
|
|
(bsr ? XHCI_TRB_3_BSR_BIT : 0);
|
|
|
|
err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
|
|
|
|
if (XHCI_TRB_2_ERROR_GET(trb.trb_2) == XHCI_TRB_ERROR_NO_SLOTS)
|
|
err = USBD_NO_ADDR;
|
|
|
|
return err;
|
|
}
|
|
|
|
static usbd_status
|
|
xhci_update_ep0_mps(struct xhci_softc * const sc,
|
|
struct xhci_slot * const xs, u_int mps)
|
|
{
|
|
struct xhci_soft_trb trb;
|
|
usbd_status err;
|
|
uint32_t * cp;
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("slot %ju mps %ju", xs->xs_idx, mps, 0, 0);
|
|
|
|
cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
|
|
cp[0] = htole32(0);
|
|
cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_EP_CONTROL));
|
|
|
|
cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_EP_CONTROL));
|
|
cp[1] = htole32(XHCI_EPCTX_1_MAXP_SIZE_SET(mps));
|
|
|
|
/* sync input contexts before they are read from memory */
|
|
usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
|
|
HEXDUMP("input context", xhci_slot_get_icv(sc, xs, 0),
|
|
sc->sc_ctxsz * 4);
|
|
|
|
trb.trb_0 = xhci_slot_get_icp(sc, xs, 0);
|
|
trb.trb_2 = 0;
|
|
trb.trb_3 = XHCI_TRB_3_SLOT_SET(xs->xs_idx) |
|
|
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_EVALUATE_CTX);
|
|
|
|
err = xhci_do_command(sc, &trb, USBD_DEFAULT_TIMEOUT);
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
xhci_set_dcba(struct xhci_softc * const sc, uint64_t dcba, int si)
|
|
{
|
|
uint64_t * const dcbaa = KERNADDR(&sc->sc_dcbaa_dma, 0);
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("dcbaa %#jx dc 0x%016jx slot %jd",
|
|
(uintptr_t)&dcbaa[si], dcba, si, 0);
|
|
|
|
dcbaa[si] = htole64(dcba);
|
|
usb_syncmem(&sc->sc_dcbaa_dma, si * sizeof(uint64_t), sizeof(uint64_t),
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
/*
|
|
* Allocate device and input context DMA buffer, and
|
|
* TRB DMA buffer for each endpoint.
|
|
*/
|
|
static usbd_status
|
|
xhci_init_slot(struct usbd_device *dev, uint32_t slot)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
|
|
struct xhci_slot *xs;
|
|
usbd_status err;
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("slot %ju", slot, 0, 0, 0);
|
|
|
|
xs = &sc->sc_slots[slot];
|
|
|
|
/* allocate contexts */
|
|
err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, sc->sc_pgsz,
|
|
USBMALLOC_COHERENT, &xs->xs_dc_dma);
|
|
if (err) {
|
|
DPRINTFN(1, "failed to allocmem output device context %jd",
|
|
err, 0, 0, 0);
|
|
return err;
|
|
}
|
|
memset(KERNADDR(&xs->xs_dc_dma, 0), 0, sc->sc_pgsz);
|
|
|
|
err = usb_allocmem(&sc->sc_bus, sc->sc_pgsz, sc->sc_pgsz,
|
|
USBMALLOC_COHERENT, &xs->xs_ic_dma);
|
|
if (err) {
|
|
DPRINTFN(1, "failed to allocmem input device context %jd",
|
|
err, 0, 0, 0);
|
|
goto bad1;
|
|
}
|
|
memset(KERNADDR(&xs->xs_ic_dma, 0), 0, sc->sc_pgsz);
|
|
|
|
memset(&xs->xs_xr[0], 0, sizeof(xs->xs_xr));
|
|
xs->xs_idx = slot;
|
|
|
|
return USBD_NORMAL_COMPLETION;
|
|
|
|
bad1:
|
|
usb_freemem(&sc->sc_bus, &xs->xs_dc_dma);
|
|
xs->xs_idx = 0;
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
xhci_free_slot(struct xhci_softc *sc, struct xhci_slot *xs)
|
|
{
|
|
u_int dci;
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("slot %ju", xs->xs_idx, 0, 0, 0);
|
|
|
|
/* deallocate all allocated rings in the slot */
|
|
for (dci = XHCI_DCI_SLOT; dci <= XHCI_MAX_DCI; dci++) {
|
|
if (xs->xs_xr[dci] != NULL)
|
|
xhci_ring_free(sc, &xs->xs_xr[dci]);
|
|
}
|
|
usb_freemem(&sc->sc_bus, &xs->xs_ic_dma);
|
|
usb_freemem(&sc->sc_bus, &xs->xs_dc_dma);
|
|
xs->xs_idx = 0;
|
|
}
|
|
|
|
/*
|
|
* Setup slot context, set Device Context Base Address, and issue
|
|
* Set Address Device command.
|
|
*/
|
|
static usbd_status
|
|
xhci_set_address(struct usbd_device *dev, uint32_t slot, bool bsr)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_BUS2SC(dev->ud_bus);
|
|
struct xhci_slot *xs;
|
|
usbd_status err;
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("slot %ju bsr %ju", slot, bsr, 0, 0);
|
|
|
|
xs = &sc->sc_slots[slot];
|
|
|
|
xhci_setup_ctx(dev->ud_pipe0);
|
|
|
|
HEXDUMP("input context", xhci_slot_get_icv(sc, xs, 0),
|
|
sc->sc_ctxsz * 3);
|
|
|
|
xhci_set_dcba(sc, DMAADDR(&xs->xs_dc_dma, 0), slot);
|
|
|
|
err = xhci_address_device(sc, xhci_slot_get_icp(sc, xs, 0), slot, bsr);
|
|
|
|
usb_syncmem(&xs->xs_dc_dma, 0, sc->sc_pgsz, BUS_DMASYNC_POSTREAD);
|
|
HEXDUMP("output context", xhci_slot_get_dcv(sc, xs, 0),
|
|
sc->sc_ctxsz * 2);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* 4.8.2, 6.2.3.2
|
|
* construct slot/endpoint context parameters and do syncmem
|
|
*/
|
|
static void
|
|
xhci_setup_ctx(struct usbd_pipe *pipe)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
|
|
struct usbd_device *dev = pipe->up_dev;
|
|
struct xhci_slot * const xs = dev->ud_hcpriv;
|
|
usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
|
|
const u_int dci = xhci_ep_get_dci(ed);
|
|
const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
|
|
uint32_t *cp;
|
|
uint16_t mps = UGETW(ed->wMaxPacketSize);
|
|
uint8_t speed = dev->ud_speed;
|
|
uint8_t ival = ed->bInterval;
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("pipe %#jx: slot %ju dci %ju speed %ju",
|
|
(uintptr_t)pipe, xs->xs_idx, dci, speed);
|
|
|
|
/* set up initial input control context */
|
|
cp = xhci_slot_get_icv(sc, xs, XHCI_ICI_INPUT_CONTROL);
|
|
cp[0] = htole32(0);
|
|
cp[1] = htole32(XHCI_INCTX_1_ADD_MASK(dci));
|
|
cp[1] |= htole32(XHCI_INCTX_1_ADD_MASK(XHCI_DCI_SLOT));
|
|
cp[7] = htole32(0);
|
|
|
|
/* set up input slot context */
|
|
cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(XHCI_DCI_SLOT));
|
|
cp[0] =
|
|
XHCI_SCTX_0_CTX_NUM_SET(dci) |
|
|
XHCI_SCTX_0_SPEED_SET(xhci_speed2xspeed(speed));
|
|
cp[1] = 0;
|
|
cp[2] = XHCI_SCTX_2_IRQ_TARGET_SET(0);
|
|
cp[3] = 0;
|
|
xhci_setup_route(pipe, cp);
|
|
xhci_setup_tthub(pipe, cp);
|
|
|
|
cp[0] = htole32(cp[0]);
|
|
cp[1] = htole32(cp[1]);
|
|
cp[2] = htole32(cp[2]);
|
|
cp[3] = htole32(cp[3]);
|
|
|
|
/* set up input endpoint context */
|
|
cp = xhci_slot_get_icv(sc, xs, xhci_dci_to_ici(dci));
|
|
cp[0] =
|
|
XHCI_EPCTX_0_EPSTATE_SET(0) |
|
|
XHCI_EPCTX_0_MULT_SET(0) |
|
|
XHCI_EPCTX_0_MAXP_STREAMS_SET(0) |
|
|
XHCI_EPCTX_0_LSA_SET(0) |
|
|
XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(0);
|
|
cp[1] =
|
|
XHCI_EPCTX_1_EPTYPE_SET(xhci_ep_get_type(ed)) |
|
|
XHCI_EPCTX_1_HID_SET(0) |
|
|
XHCI_EPCTX_1_MAXB_SET(0);
|
|
|
|
if (xfertype != UE_ISOCHRONOUS)
|
|
cp[1] |= XHCI_EPCTX_1_CERR_SET(3);
|
|
|
|
if (xfertype == UE_CONTROL)
|
|
cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(8); /* 6.2.3 */
|
|
else if (USB_IS_SS(speed))
|
|
cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(mps);
|
|
else
|
|
cp[4] = XHCI_EPCTX_4_AVG_TRB_LEN_SET(UE_GET_SIZE(mps));
|
|
|
|
xhci_setup_maxburst(pipe, cp);
|
|
|
|
switch (xfertype) {
|
|
case UE_CONTROL:
|
|
break;
|
|
case UE_BULK:
|
|
/* XXX Set MaxPStreams, HID, and LSA if streams enabled */
|
|
break;
|
|
case UE_INTERRUPT:
|
|
if (pipe->up_interval != USBD_DEFAULT_INTERVAL)
|
|
ival = pipe->up_interval;
|
|
|
|
ival = xhci_bival2ival(ival, speed);
|
|
cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
|
|
break;
|
|
case UE_ISOCHRONOUS:
|
|
if (pipe->up_interval != USBD_DEFAULT_INTERVAL)
|
|
ival = pipe->up_interval;
|
|
|
|
/* xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6 */
|
|
if (speed == USB_SPEED_FULL)
|
|
ival += 3; /* 1ms -> 125us */
|
|
ival--;
|
|
cp[0] |= XHCI_EPCTX_0_IVAL_SET(ival);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
DPRINTFN(4, "setting ival %ju MaxBurst %#jx",
|
|
XHCI_EPCTX_0_IVAL_GET(cp[0]), XHCI_EPCTX_1_MAXB_GET(cp[1]), 0, 0);
|
|
|
|
/* rewind TR dequeue pointer in xHC */
|
|
/* can't use xhci_ep_get_dci() yet? */
|
|
*(uint64_t *)(&cp[2]) = htole64(
|
|
xhci_ring_trbp(xs->xs_xr[dci], 0) |
|
|
XHCI_EPCTX_2_DCS_SET(1));
|
|
|
|
cp[0] = htole32(cp[0]);
|
|
cp[1] = htole32(cp[1]);
|
|
cp[4] = htole32(cp[4]);
|
|
|
|
/* rewind TR dequeue pointer in driver */
|
|
struct xhci_ring *xr = xs->xs_xr[dci];
|
|
mutex_enter(&xr->xr_lock);
|
|
xhci_host_dequeue(xr);
|
|
mutex_exit(&xr->xr_lock);
|
|
|
|
/* sync input contexts before they are read from memory */
|
|
usb_syncmem(&xs->xs_ic_dma, 0, sc->sc_pgsz, BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
/*
|
|
* Setup route string and roothub port of given device for slot context
|
|
*/
|
|
static void
|
|
xhci_setup_route(struct usbd_pipe *pipe, uint32_t *cp)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
|
|
struct usbd_device *dev = pipe->up_dev;
|
|
struct usbd_port *up = dev->ud_powersrc;
|
|
struct usbd_device *hub;
|
|
struct usbd_device *adev;
|
|
uint8_t rhport = 0;
|
|
uint32_t route = 0;
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
/* Locate root hub port and Determine route string */
|
|
/* 4.3.3 route string does not include roothub port */
|
|
for (hub = dev; hub != NULL; hub = hub->ud_myhub) {
|
|
uint32_t dep;
|
|
|
|
DPRINTFN(4, "hub %#jx depth %jd upport %#jx upportno %jd",
|
|
(uintptr_t)hub, hub->ud_depth, (uintptr_t)hub->ud_powersrc,
|
|
hub->ud_powersrc ? (uintptr_t)hub->ud_powersrc->up_portno :
|
|
-1);
|
|
|
|
if (hub->ud_powersrc == NULL)
|
|
break;
|
|
dep = hub->ud_depth;
|
|
if (dep == 0)
|
|
break;
|
|
rhport = hub->ud_powersrc->up_portno;
|
|
if (dep > USB_HUB_MAX_DEPTH)
|
|
continue;
|
|
|
|
route |=
|
|
(rhport > UHD_SS_NPORTS_MAX ? UHD_SS_NPORTS_MAX : rhport)
|
|
<< ((dep - 1) * 4);
|
|
}
|
|
route = route >> 4;
|
|
size_t bn = hub == sc->sc_bus.ub_roothub ? 0 : 1;
|
|
|
|
/* Locate port on upstream high speed hub */
|
|
for (adev = dev, hub = up->up_parent;
|
|
hub != NULL && hub->ud_speed != USB_SPEED_HIGH;
|
|
adev = hub, hub = hub->ud_myhub)
|
|
;
|
|
if (hub) {
|
|
int p;
|
|
for (p = 1; p <= hub->ud_hub->uh_hubdesc.bNbrPorts; p++) {
|
|
if (hub->ud_hub->uh_ports[p - 1].up_dev == adev) {
|
|
dev->ud_myhsport = &hub->ud_hub->uh_ports[p - 1];
|
|
goto found;
|
|
}
|
|
}
|
|
panic("%s: cannot find HS port", __func__);
|
|
found:
|
|
DPRINTFN(4, "high speed port %jd", p, 0, 0, 0);
|
|
} else {
|
|
dev->ud_myhsport = NULL;
|
|
}
|
|
|
|
const size_t ctlrport = xhci_rhport2ctlrport(sc, bn, rhport);
|
|
|
|
DPRINTFN(4, "rhport %ju ctlrport %ju Route %05jx hub %#jx", rhport,
|
|
ctlrport, route, (uintptr_t)hub);
|
|
|
|
cp[0] |= XHCI_SCTX_0_ROUTE_SET(route);
|
|
cp[1] |= XHCI_SCTX_1_RH_PORT_SET(ctlrport);
|
|
}
|
|
|
|
/*
|
|
* Setup whether device is hub, whether device uses MTT, and
|
|
* TT informations if it uses MTT.
|
|
*/
|
|
static void
|
|
xhci_setup_tthub(struct usbd_pipe *pipe, uint32_t *cp)
|
|
{
|
|
struct usbd_device *dev = pipe->up_dev;
|
|
struct usbd_port *myhsport = dev->ud_myhsport;
|
|
usb_device_descriptor_t * const dd = &dev->ud_ddesc;
|
|
uint32_t speed = dev->ud_speed;
|
|
uint8_t rhaddr = dev->ud_bus->ub_rhaddr;
|
|
uint8_t tthubslot, ttportnum;
|
|
bool ishub;
|
|
bool usemtt;
|
|
|
|
XHCIHIST_FUNC();
|
|
|
|
/*
|
|
* 6.2.2, Table 57-60, 6.2.2.1, 6.2.2.2
|
|
* tthubslot:
|
|
* This is the slot ID of parent HS hub
|
|
* if LS/FS device is connected && connected through HS hub.
|
|
* This is 0 if device is not LS/FS device ||
|
|
* parent hub is not HS hub ||
|
|
* attached to root hub.
|
|
* ttportnum:
|
|
* This is the downstream facing port of parent HS hub
|
|
* if LS/FS device is connected.
|
|
* This is 0 if device is not LS/FS device ||
|
|
* parent hub is not HS hub ||
|
|
* attached to root hub.
|
|
*/
|
|
if (myhsport &&
|
|
myhsport->up_parent->ud_addr != rhaddr &&
|
|
(speed == USB_SPEED_LOW || speed == USB_SPEED_FULL)) {
|
|
ttportnum = myhsport->up_portno;
|
|
tthubslot = myhsport->up_parent->ud_addr;
|
|
} else {
|
|
ttportnum = 0;
|
|
tthubslot = 0;
|
|
}
|
|
XHCIHIST_CALLARGS("myhsport %#jx ttportnum=%jd tthubslot=%jd",
|
|
(uintptr_t)myhsport, ttportnum, tthubslot, 0);
|
|
|
|
/* ishub is valid after reading UDESC_DEVICE */
|
|
ishub = (dd->bDeviceClass == UDCLASS_HUB);
|
|
|
|
/* dev->ud_hub is valid after reading UDESC_HUB */
|
|
if (ishub && dev->ud_hub) {
|
|
usb_hub_descriptor_t *hd = &dev->ud_hub->uh_hubdesc;
|
|
uint8_t ttt =
|
|
__SHIFTOUT(UGETW(hd->wHubCharacteristics), UHD_TT_THINK);
|
|
|
|
cp[1] |= XHCI_SCTX_1_NUM_PORTS_SET(hd->bNbrPorts);
|
|
cp[2] |= XHCI_SCTX_2_TT_THINK_TIME_SET(ttt);
|
|
DPRINTFN(4, "nports=%jd ttt=%jd", hd->bNbrPorts, ttt, 0, 0);
|
|
}
|
|
|
|
#define IS_MTTHUB(dd) \
|
|
((dd)->bDeviceProtocol == UDPROTO_HSHUBMTT)
|
|
|
|
/*
|
|
* MTT flag is set if
|
|
* 1. this is HS hub && MTTs are supported and enabled; or
|
|
* 2. this is LS or FS device && there is a parent HS hub where MTTs
|
|
* are supported and enabled.
|
|
*
|
|
* XXX enabled is not tested yet
|
|
*/
|
|
if (ishub && speed == USB_SPEED_HIGH && IS_MTTHUB(dd))
|
|
usemtt = true;
|
|
else if ((speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) &&
|
|
myhsport &&
|
|
myhsport->up_parent->ud_addr != rhaddr &&
|
|
IS_MTTHUB(&myhsport->up_parent->ud_ddesc))
|
|
usemtt = true;
|
|
else
|
|
usemtt = false;
|
|
DPRINTFN(4, "class %ju proto %ju ishub %jd usemtt %jd",
|
|
dd->bDeviceClass, dd->bDeviceProtocol, ishub, usemtt);
|
|
|
|
#undef IS_MTTHUB
|
|
|
|
cp[0] |=
|
|
XHCI_SCTX_0_HUB_SET(ishub ? 1 : 0) |
|
|
XHCI_SCTX_0_MTT_SET(usemtt ? 1 : 0);
|
|
cp[2] |=
|
|
XHCI_SCTX_2_TT_HUB_SID_SET(tthubslot) |
|
|
XHCI_SCTX_2_TT_PORT_NUM_SET(ttportnum);
|
|
}
|
|
|
|
/* set up params for periodic endpoint */
|
|
static void
|
|
xhci_setup_maxburst(struct usbd_pipe *pipe, uint32_t *cp)
|
|
{
|
|
struct usbd_device *dev = pipe->up_dev;
|
|
usb_endpoint_descriptor_t * const ed = pipe->up_endpoint->ue_edesc;
|
|
const uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes);
|
|
usbd_desc_iter_t iter;
|
|
const usb_cdc_descriptor_t *cdcd;
|
|
uint32_t maxb = 0;
|
|
uint16_t mps = UGETW(ed->wMaxPacketSize);
|
|
uint8_t speed = dev->ud_speed;
|
|
uint8_t ep;
|
|
|
|
/* config desc is NULL when opening ep0 */
|
|
if (dev == NULL || dev->ud_cdesc == NULL)
|
|
goto no_cdcd;
|
|
cdcd = (const usb_cdc_descriptor_t *)usb_find_desc(dev,
|
|
UDESC_INTERFACE, USBD_CDCSUBTYPE_ANY);
|
|
if (cdcd == NULL)
|
|
goto no_cdcd;
|
|
usb_desc_iter_init(dev, &iter);
|
|
iter.cur = (const void *)cdcd;
|
|
|
|
/* find endpoint_ss_comp desc for ep of this pipe */
|
|
for (ep = 0;;) {
|
|
cdcd = (const usb_cdc_descriptor_t *)usb_desc_iter_next(&iter);
|
|
if (cdcd == NULL)
|
|
break;
|
|
if (ep == 0 && cdcd->bDescriptorType == UDESC_ENDPOINT) {
|
|
ep = ((const usb_endpoint_descriptor_t *)cdcd)->
|
|
bEndpointAddress;
|
|
if (UE_GET_ADDR(ep) ==
|
|
UE_GET_ADDR(ed->bEndpointAddress)) {
|
|
cdcd = (const usb_cdc_descriptor_t *)
|
|
usb_desc_iter_next(&iter);
|
|
break;
|
|
}
|
|
ep = 0;
|
|
}
|
|
}
|
|
if (cdcd != NULL && cdcd->bDescriptorType == UDESC_ENDPOINT_SS_COMP) {
|
|
const usb_endpoint_ss_comp_descriptor_t * esscd =
|
|
(const usb_endpoint_ss_comp_descriptor_t *)cdcd;
|
|
maxb = esscd->bMaxBurst;
|
|
}
|
|
|
|
no_cdcd:
|
|
/* 6.2.3.4, 4.8.2.4 */
|
|
if (USB_IS_SS(speed)) {
|
|
/* USB 3.1 9.6.6 */
|
|
cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(mps);
|
|
/* USB 3.1 9.6.7 */
|
|
cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
|
|
#ifdef notyet
|
|
if (xfertype == UE_ISOCHRONOUS) {
|
|
}
|
|
if (XHCI_HCC2_LEC(sc->sc_hcc2) != 0) {
|
|
/* use ESIT */
|
|
cp[4] |= XHCI_EPCTX_4_MAX_ESIT_PAYLOAD_SET(x);
|
|
cp[0] |= XHCI_EPCTX_0_MAX_ESIT_PAYLOAD_HI_SET(x);
|
|
|
|
/* XXX if LEC = 1, set ESIT instead */
|
|
cp[0] |= XHCI_EPCTX_0_MULT_SET(0);
|
|
} else {
|
|
/* use ival */
|
|
}
|
|
#endif
|
|
} else {
|
|
/* USB 2.0 9.6.6 */
|
|
cp[1] |= XHCI_EPCTX_1_MAXP_SIZE_SET(UE_GET_SIZE(mps));
|
|
|
|
/* 6.2.3.4 */
|
|
if (speed == USB_SPEED_HIGH &&
|
|
(xfertype == UE_ISOCHRONOUS || xfertype == UE_INTERRUPT)) {
|
|
maxb = UE_GET_TRANS(mps);
|
|
} else {
|
|
/* LS/FS or HS CTRL or HS BULK */
|
|
maxb = 0;
|
|
}
|
|
cp[1] |= XHCI_EPCTX_1_MAXB_SET(maxb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Convert endpoint bInterval value to endpoint context interval value
|
|
* for Interrupt pipe.
|
|
* xHCI 6.2.3.6 Table 65, USB 2.0 9.6.6
|
|
*/
|
|
static uint32_t
|
|
xhci_bival2ival(uint32_t ival, uint32_t speed)
|
|
{
|
|
if (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) {
|
|
int i;
|
|
|
|
/*
|
|
* round ival down to "the nearest base 2 multiple of
|
|
* bInterval * 8".
|
|
* bInterval is at most 255 as its type is uByte.
|
|
* 255(ms) = 2040(x 125us) < 2^11, so start with 10.
|
|
*/
|
|
for (i = 10; i > 0; i--) {
|
|
if ((ival * 8) >= (1 << i))
|
|
break;
|
|
}
|
|
ival = i;
|
|
} else {
|
|
/* Interval = bInterval-1 for SS/HS */
|
|
ival--;
|
|
}
|
|
|
|
return ival;
|
|
}
|
|
|
|
/* ----- */
|
|
|
|
static void
|
|
xhci_noop(struct usbd_pipe *pipe)
|
|
{
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
}
|
|
|
|
/*
|
|
* Process root hub request.
|
|
*/
|
|
static int
|
|
xhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
|
|
void *buf, int buflen)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_BUS2SC(bus);
|
|
usb_port_status_t ps;
|
|
int l, totlen = 0;
|
|
uint16_t len, value, index;
|
|
int port, i;
|
|
uint32_t v;
|
|
|
|
XHCIHIST_FUNC();
|
|
|
|
if (sc->sc_dying)
|
|
return -1;
|
|
|
|
size_t bn = bus == &sc->sc_bus ? 0 : 1;
|
|
|
|
len = UGETW(req->wLength);
|
|
value = UGETW(req->wValue);
|
|
index = UGETW(req->wIndex);
|
|
|
|
XHCIHIST_CALLARGS("rhreq: %04jx %04jx %04jx %04jx",
|
|
req->bmRequestType | (req->bRequest << 8), value, index, len);
|
|
|
|
#define C(x,y) ((x) | ((y) << 8))
|
|
switch (C(req->bRequest, req->bmRequestType)) {
|
|
case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
|
|
DPRINTFN(8, "getdesc: wValue=0x%04jx", value, 0, 0, 0);
|
|
if (len == 0)
|
|
break;
|
|
switch (value) {
|
|
#define sd ((usb_string_descriptor_t *)buf)
|
|
case C(2, UDESC_STRING):
|
|
/* Product */
|
|
totlen = usb_makestrdesc(sd, len, "xHCI root hub");
|
|
break;
|
|
#undef sd
|
|
default:
|
|
/* default from usbroothub */
|
|
return buflen;
|
|
}
|
|
break;
|
|
|
|
/* Hub requests */
|
|
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
|
|
break;
|
|
/* Clear Port Feature request */
|
|
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): {
|
|
const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
|
|
|
|
DPRINTFN(4, "UR_CLEAR_PORT_FEAT bp=%jd feat=%jd bus=%jd cp=%jd",
|
|
index, value, bn, cp);
|
|
if (index < 1 || index > sc->sc_rhportcount[bn]) {
|
|
return -1;
|
|
}
|
|
port = XHCI_PORTSC(cp);
|
|
v = xhci_op_read_4(sc, port);
|
|
DPRINTFN(4, "portsc=0x%08jx", v, 0, 0, 0);
|
|
v &= ~XHCI_PS_CLEAR;
|
|
switch (value) {
|
|
case UHF_PORT_ENABLE:
|
|
xhci_op_write_4(sc, port, v & ~XHCI_PS_PED);
|
|
break;
|
|
case UHF_PORT_SUSPEND:
|
|
return -1;
|
|
case UHF_PORT_POWER:
|
|
break;
|
|
case UHF_PORT_TEST:
|
|
case UHF_PORT_INDICATOR:
|
|
return -1;
|
|
case UHF_C_PORT_CONNECTION:
|
|
xhci_op_write_4(sc, port, v | XHCI_PS_CSC);
|
|
break;
|
|
case UHF_C_PORT_ENABLE:
|
|
case UHF_C_PORT_SUSPEND:
|
|
case UHF_C_PORT_OVER_CURRENT:
|
|
return -1;
|
|
case UHF_C_BH_PORT_RESET:
|
|
xhci_op_write_4(sc, port, v | XHCI_PS_WRC);
|
|
break;
|
|
case UHF_C_PORT_RESET:
|
|
xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
|
|
break;
|
|
case UHF_C_PORT_LINK_STATE:
|
|
xhci_op_write_4(sc, port, v | XHCI_PS_PLC);
|
|
break;
|
|
case UHF_C_PORT_CONFIG_ERROR:
|
|
xhci_op_write_4(sc, port, v | XHCI_PS_CEC);
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
break;
|
|
}
|
|
case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
|
|
if (len == 0)
|
|
break;
|
|
if ((value & 0xff) != 0) {
|
|
return -1;
|
|
}
|
|
usb_hub_descriptor_t hubd;
|
|
|
|
totlen = uimin(buflen, sizeof(hubd));
|
|
memcpy(&hubd, buf, totlen);
|
|
hubd.bNbrPorts = sc->sc_rhportcount[bn];
|
|
USETW(hubd.wHubCharacteristics, UHD_PWR_NO_SWITCH);
|
|
hubd.bPwrOn2PwrGood = 200;
|
|
for (i = 0, l = sc->sc_rhportcount[bn]; l > 0; i++, l -= 8) {
|
|
/* XXX can't find out? */
|
|
hubd.DeviceRemovable[i++] = 0;
|
|
}
|
|
hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i;
|
|
totlen = uimin(totlen, hubd.bDescLength);
|
|
memcpy(buf, &hubd, totlen);
|
|
break;
|
|
case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
|
|
if (len != 4) {
|
|
return -1;
|
|
}
|
|
memset(buf, 0, len); /* ? XXX */
|
|
totlen = len;
|
|
break;
|
|
/* Get Port Status request */
|
|
case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
|
|
const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
|
|
|
|
DPRINTFN(8, "get port status bn=%jd i=%jd cp=%ju",
|
|
bn, index, cp, 0);
|
|
if (index < 1 || index > sc->sc_rhportcount[bn]) {
|
|
DPRINTFN(5, "bad get port status: index=%jd bn=%jd "
|
|
"portcount=%jd",
|
|
index, bn, sc->sc_rhportcount[bn], 0);
|
|
return -1;
|
|
}
|
|
if (len != 4) {
|
|
DPRINTFN(5, "bad get port status: len %jd != 4",
|
|
len, 0, 0, 0);
|
|
return -1;
|
|
}
|
|
v = xhci_op_read_4(sc, XHCI_PORTSC(cp));
|
|
DPRINTFN(4, "getrhportsc %jd 0x%08jx", cp, v, 0, 0);
|
|
i = xhci_xspeed2psspeed(XHCI_PS_SPEED_GET(v));
|
|
if (v & XHCI_PS_CCS) i |= UPS_CURRENT_CONNECT_STATUS;
|
|
if (v & XHCI_PS_PED) i |= UPS_PORT_ENABLED;
|
|
if (v & XHCI_PS_OCA) i |= UPS_OVERCURRENT_INDICATOR;
|
|
//if (v & XHCI_PS_SUSP) i |= UPS_SUSPEND;
|
|
if (v & XHCI_PS_PR) i |= UPS_RESET;
|
|
if (v & XHCI_PS_PP) {
|
|
if (i & UPS_OTHER_SPEED)
|
|
i |= UPS_PORT_POWER_SS;
|
|
else
|
|
i |= UPS_PORT_POWER;
|
|
}
|
|
if (i & UPS_OTHER_SPEED)
|
|
i |= UPS_PORT_LS_SET(XHCI_PS_PLS_GET(v));
|
|
if (sc->sc_vendor_port_status)
|
|
i = sc->sc_vendor_port_status(sc, v, i);
|
|
USETW(ps.wPortStatus, i);
|
|
i = 0;
|
|
if (v & XHCI_PS_CSC) i |= UPS_C_CONNECT_STATUS;
|
|
if (v & XHCI_PS_PEC) i |= UPS_C_PORT_ENABLED;
|
|
if (v & XHCI_PS_OCC) i |= UPS_C_OVERCURRENT_INDICATOR;
|
|
if (v & XHCI_PS_PRC) i |= UPS_C_PORT_RESET;
|
|
if (v & XHCI_PS_WRC) i |= UPS_C_BH_PORT_RESET;
|
|
if (v & XHCI_PS_PLC) i |= UPS_C_PORT_LINK_STATE;
|
|
if (v & XHCI_PS_CEC) i |= UPS_C_PORT_CONFIG_ERROR;
|
|
USETW(ps.wPortChange, i);
|
|
totlen = uimin(len, sizeof(ps));
|
|
memcpy(buf, &ps, totlen);
|
|
DPRINTFN(5, "get port status: wPortStatus %#jx wPortChange %#jx"
|
|
" totlen %jd",
|
|
UGETW(ps.wPortStatus), UGETW(ps.wPortChange), totlen, 0);
|
|
break;
|
|
}
|
|
case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
|
|
return -1;
|
|
case C(UR_SET_HUB_DEPTH, UT_WRITE_CLASS_DEVICE):
|
|
break;
|
|
case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
|
|
break;
|
|
/* Set Port Feature request */
|
|
case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): {
|
|
int optval = (index >> 8) & 0xff;
|
|
index &= 0xff;
|
|
if (index < 1 || index > sc->sc_rhportcount[bn]) {
|
|
return -1;
|
|
}
|
|
|
|
const size_t cp = xhci_rhport2ctlrport(sc, bn, index);
|
|
|
|
port = XHCI_PORTSC(cp);
|
|
v = xhci_op_read_4(sc, port);
|
|
DPRINTFN(4, "index %jd cp %jd portsc=0x%08jx", index, cp, v, 0);
|
|
v &= ~XHCI_PS_CLEAR;
|
|
switch (value) {
|
|
case UHF_PORT_ENABLE:
|
|
xhci_op_write_4(sc, port, v | XHCI_PS_PED);
|
|
break;
|
|
case UHF_PORT_SUSPEND:
|
|
/* XXX suspend */
|
|
break;
|
|
case UHF_PORT_RESET:
|
|
v &= ~(XHCI_PS_PED | XHCI_PS_PR);
|
|
xhci_op_write_4(sc, port, v | XHCI_PS_PR);
|
|
/* Wait for reset to complete. */
|
|
usb_delay_ms(&sc->sc_bus, USB_PORT_ROOT_RESET_DELAY);
|
|
if (sc->sc_dying) {
|
|
return -1;
|
|
}
|
|
v = xhci_op_read_4(sc, port);
|
|
if (v & XHCI_PS_PR) {
|
|
xhci_op_write_4(sc, port, v & ~XHCI_PS_PR);
|
|
usb_delay_ms(&sc->sc_bus, 10);
|
|
/* XXX */
|
|
}
|
|
break;
|
|
case UHF_PORT_POWER:
|
|
/* XXX power control */
|
|
break;
|
|
/* XXX more */
|
|
case UHF_C_PORT_RESET:
|
|
xhci_op_write_4(sc, port, v | XHCI_PS_PRC);
|
|
break;
|
|
case UHF_PORT_U1_TIMEOUT:
|
|
if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
|
|
return -1;
|
|
}
|
|
port = XHCI_PORTPMSC(cp);
|
|
v = xhci_op_read_4(sc, port);
|
|
DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx",
|
|
index, cp, v, 0);
|
|
v &= ~XHCI_PM3_U1TO_SET(0xff);
|
|
v |= XHCI_PM3_U1TO_SET(optval);
|
|
xhci_op_write_4(sc, port, v);
|
|
break;
|
|
case UHF_PORT_U2_TIMEOUT:
|
|
if (XHCI_PS_SPEED_GET(v) < XHCI_PS_SPEED_SS) {
|
|
return -1;
|
|
}
|
|
port = XHCI_PORTPMSC(cp);
|
|
v = xhci_op_read_4(sc, port);
|
|
DPRINTFN(4, "index %jd cp %jd portpmsc=0x%08jx",
|
|
index, cp, v, 0);
|
|
v &= ~XHCI_PM3_U2TO_SET(0xff);
|
|
v |= XHCI_PM3_U2TO_SET(optval);
|
|
xhci_op_write_4(sc, port, v);
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
break;
|
|
case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER):
|
|
case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER):
|
|
case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER):
|
|
case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER):
|
|
break;
|
|
default:
|
|
/* default from usbroothub */
|
|
return buflen;
|
|
}
|
|
|
|
return totlen;
|
|
}
|
|
|
|
/* root hub interrupt */
|
|
|
|
static usbd_status
|
|
xhci_root_intr_transfer(struct usbd_xfer *xfer)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
|
|
usbd_status err;
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
/* Insert last in queue. */
|
|
mutex_enter(&sc->sc_lock);
|
|
err = usb_insert_transfer(xfer);
|
|
mutex_exit(&sc->sc_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Pipe isn't running, start first */
|
|
return xhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
|
|
}
|
|
|
|
/* Wait for roothub port status/change */
|
|
static usbd_status
|
|
xhci_root_intr_start(struct usbd_xfer *xfer)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
|
|
const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
|
|
const bool polling = xhci_polling_p(sc);
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
if (sc->sc_dying)
|
|
return USBD_IOERROR;
|
|
|
|
if (!polling)
|
|
mutex_enter(&sc->sc_lock);
|
|
KASSERT(sc->sc_intrxfer[bn] == NULL);
|
|
sc->sc_intrxfer[bn] = xfer;
|
|
xfer->ux_status = USBD_IN_PROGRESS;
|
|
if (!polling)
|
|
mutex_exit(&sc->sc_lock);
|
|
|
|
return USBD_IN_PROGRESS;
|
|
}
|
|
|
|
static void
|
|
xhci_root_intr_abort(struct usbd_xfer *xfer)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
|
|
const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
KASSERT(mutex_owned(&sc->sc_lock));
|
|
KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
|
|
|
|
/* If xfer has already completed, nothing to do here. */
|
|
if (sc->sc_intrxfer[bn] == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Otherwise, sc->sc_intrxfer[bn] had better be this transfer.
|
|
* Cancel it.
|
|
*/
|
|
KASSERT(sc->sc_intrxfer[bn] == xfer);
|
|
xfer->ux_status = USBD_CANCELLED;
|
|
usb_transfer_complete(xfer);
|
|
}
|
|
|
|
static void
|
|
xhci_root_intr_close(struct usbd_pipe *pipe)
|
|
{
|
|
struct xhci_softc * const sc __diagused = XHCI_PIPE2SC(pipe);
|
|
const struct usbd_xfer *xfer __diagused = pipe->up_intrxfer;
|
|
const size_t bn __diagused = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
KASSERT(mutex_owned(&sc->sc_lock));
|
|
|
|
/*
|
|
* Caller must guarantee the xfer has completed first, by
|
|
* closing the pipe only after normal completion or an abort.
|
|
*/
|
|
KASSERT(sc->sc_intrxfer[bn] == NULL);
|
|
}
|
|
|
|
static void
|
|
xhci_root_intr_done(struct usbd_xfer *xfer)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
|
|
const size_t bn = XHCI_XFER2BUS(xfer) == &sc->sc_bus ? 0 : 1;
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
KASSERT(mutex_owned(&sc->sc_lock));
|
|
|
|
/* Claim the xfer so it doesn't get completed again. */
|
|
KASSERT(sc->sc_intrxfer[bn] == xfer);
|
|
KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
|
|
sc->sc_intrxfer[bn] = NULL;
|
|
}
|
|
|
|
/* -------------- */
|
|
/* device control */
|
|
|
|
static usbd_status
|
|
xhci_device_ctrl_transfer(struct usbd_xfer *xfer)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
|
|
usbd_status err;
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
/* Insert last in queue. */
|
|
mutex_enter(&sc->sc_lock);
|
|
err = usb_insert_transfer(xfer);
|
|
mutex_exit(&sc->sc_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Pipe isn't running, start first */
|
|
return xhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
|
|
}
|
|
|
|
static usbd_status
|
|
xhci_device_ctrl_start(struct usbd_xfer *xfer)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
|
|
struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
|
|
const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
|
|
struct xhci_ring * const tr = xs->xs_xr[dci];
|
|
struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
|
|
usb_device_request_t * const req = &xfer->ux_request;
|
|
const bool isread = usbd_xfer_isread(xfer);
|
|
const uint32_t len = UGETW(req->wLength);
|
|
usb_dma_t * const dma = &xfer->ux_dmabuf;
|
|
uint64_t parameter;
|
|
uint32_t status;
|
|
uint32_t control;
|
|
u_int i;
|
|
const bool polling = xhci_polling_p(sc);
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("req: %04jx %04jx %04jx %04jx",
|
|
req->bmRequestType | (req->bRequest << 8), UGETW(req->wValue),
|
|
UGETW(req->wIndex), UGETW(req->wLength));
|
|
|
|
/* we rely on the bottom bits for extra info */
|
|
KASSERTMSG(((uintptr_t)xfer & 0x3) == 0x0, "xfer %zx",
|
|
(uintptr_t) xfer);
|
|
|
|
KASSERT((xfer->ux_rqflags & URQ_REQUEST) != 0);
|
|
|
|
i = 0;
|
|
|
|
/* setup phase */
|
|
parameter = le64dec(req); /* to keep USB endian after xhci_trb_put() */
|
|
status = XHCI_TRB_2_IRQ_SET(0) | XHCI_TRB_2_BYTES_SET(sizeof(*req));
|
|
control = ((len == 0) ? XHCI_TRB_3_TRT_NONE :
|
|
(isread ? XHCI_TRB_3_TRT_IN : XHCI_TRB_3_TRT_OUT)) |
|
|
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SETUP_STAGE) |
|
|
XHCI_TRB_3_IDT_BIT;
|
|
xhci_xfer_put_trb(xx, i++, parameter, status, control);
|
|
|
|
if (len != 0) {
|
|
/* data phase */
|
|
parameter = DMAADDR(dma, 0);
|
|
KASSERTMSG(len <= 0x10000, "len %d", len);
|
|
status = XHCI_TRB_2_IRQ_SET(0) |
|
|
XHCI_TRB_2_TDSZ_SET(0) |
|
|
XHCI_TRB_2_BYTES_SET(len);
|
|
control = (isread ? XHCI_TRB_3_DIR_IN : 0) |
|
|
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DATA_STAGE) |
|
|
(isread ? XHCI_TRB_3_ISP_BIT : 0) |
|
|
XHCI_TRB_3_IOC_BIT;
|
|
xhci_xfer_put_trb(xx, i++, parameter, status, control);
|
|
|
|
usb_syncmem(dma, 0, len,
|
|
isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
parameter = 0;
|
|
status = XHCI_TRB_2_IRQ_SET(0);
|
|
/* the status stage has inverted direction */
|
|
control = ((isread && (len > 0)) ? 0 : XHCI_TRB_3_DIR_IN) |
|
|
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STATUS_STAGE) |
|
|
XHCI_TRB_3_IOC_BIT;
|
|
xhci_xfer_put_trb(xx, i++, parameter, status, control);
|
|
|
|
if (!polling)
|
|
mutex_enter(&tr->xr_lock);
|
|
xhci_ring_put_xfer(sc, tr, xx, i);
|
|
if (!polling)
|
|
mutex_exit(&tr->xr_lock);
|
|
|
|
if (!polling)
|
|
mutex_enter(&sc->sc_lock);
|
|
xfer->ux_status = USBD_IN_PROGRESS;
|
|
xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
|
|
usbd_xfer_schedule_timeout(xfer);
|
|
if (!polling)
|
|
mutex_exit(&sc->sc_lock);
|
|
|
|
return USBD_IN_PROGRESS;
|
|
}
|
|
|
|
static void
|
|
xhci_device_ctrl_done(struct usbd_xfer *xfer)
|
|
{
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
usb_device_request_t *req = &xfer->ux_request;
|
|
int len = UGETW(req->wLength);
|
|
int rd = req->bmRequestType & UT_READ;
|
|
|
|
if (len)
|
|
usb_syncmem(&xfer->ux_dmabuf, 0, len,
|
|
rd ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
|
|
}
|
|
|
|
static void
|
|
xhci_device_ctrl_abort(struct usbd_xfer *xfer)
|
|
{
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
usbd_xfer_abort(xfer);
|
|
}
|
|
|
|
static void
|
|
xhci_device_ctrl_close(struct usbd_pipe *pipe)
|
|
{
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
xhci_close_pipe(pipe);
|
|
}
|
|
|
|
/* ------------------ */
|
|
/* device isochronous */
|
|
|
|
/* ----------- */
|
|
/* device bulk */
|
|
|
|
static usbd_status
|
|
xhci_device_bulk_transfer(struct usbd_xfer *xfer)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
|
|
usbd_status err;
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
/* Insert last in queue. */
|
|
mutex_enter(&sc->sc_lock);
|
|
err = usb_insert_transfer(xfer);
|
|
mutex_exit(&sc->sc_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* Pipe isn't running (otherwise err would be USBD_INPROG),
|
|
* so start it first.
|
|
*/
|
|
return xhci_device_bulk_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
|
|
}
|
|
|
|
static usbd_status
|
|
xhci_device_bulk_start(struct usbd_xfer *xfer)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
|
|
struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
|
|
const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
|
|
struct xhci_ring * const tr = xs->xs_xr[dci];
|
|
struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
|
|
const uint32_t len = xfer->ux_length;
|
|
usb_dma_t * const dma = &xfer->ux_dmabuf;
|
|
uint64_t parameter;
|
|
uint32_t status;
|
|
uint32_t control;
|
|
u_int i = 0;
|
|
const bool polling = xhci_polling_p(sc);
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
|
|
(uintptr_t)xfer, xs->xs_idx, dci, 0);
|
|
|
|
if (sc->sc_dying)
|
|
return USBD_IOERROR;
|
|
|
|
KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
|
|
|
|
parameter = DMAADDR(dma, 0);
|
|
const bool isread = usbd_xfer_isread(xfer);
|
|
if (len)
|
|
usb_syncmem(dma, 0, len,
|
|
isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* XXX: (dsl) The physical buffer must not cross a 64k boundary.
|
|
* If the user supplied buffer crosses such a boundary then 2
|
|
* (or more) TRB should be used.
|
|
* If multiple TRB are used the td_size field must be set correctly.
|
|
* For v1.0 devices (like ivy bridge) this is the number of usb data
|
|
* blocks needed to complete the transfer.
|
|
* Setting it to 1 in the last TRB causes an extra zero-length
|
|
* data block be sent.
|
|
* The earlier documentation differs, I don't know how it behaves.
|
|
*/
|
|
KASSERTMSG(len <= 0x10000, "len %d", len);
|
|
status = XHCI_TRB_2_IRQ_SET(0) |
|
|
XHCI_TRB_2_TDSZ_SET(0) |
|
|
XHCI_TRB_2_BYTES_SET(len);
|
|
control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
|
|
(isread ? XHCI_TRB_3_ISP_BIT : 0) |
|
|
XHCI_TRB_3_IOC_BIT;
|
|
xhci_xfer_put_trb(xx, i++, parameter, status, control);
|
|
|
|
if (!polling)
|
|
mutex_enter(&tr->xr_lock);
|
|
xhci_ring_put_xfer(sc, tr, xx, i);
|
|
if (!polling)
|
|
mutex_exit(&tr->xr_lock);
|
|
|
|
if (!polling)
|
|
mutex_enter(&sc->sc_lock);
|
|
xfer->ux_status = USBD_IN_PROGRESS;
|
|
xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
|
|
usbd_xfer_schedule_timeout(xfer);
|
|
if (!polling)
|
|
mutex_exit(&sc->sc_lock);
|
|
|
|
return USBD_IN_PROGRESS;
|
|
}
|
|
|
|
static void
|
|
xhci_device_bulk_done(struct usbd_xfer *xfer)
|
|
{
|
|
#ifdef USB_DEBUG
|
|
struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
|
|
const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
|
|
#endif
|
|
const bool isread = usbd_xfer_isread(xfer);
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
|
|
(uintptr_t)xfer, xs->xs_idx, dci, 0);
|
|
|
|
usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
|
|
isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
|
|
}
|
|
|
|
static void
|
|
xhci_device_bulk_abort(struct usbd_xfer *xfer)
|
|
{
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
usbd_xfer_abort(xfer);
|
|
}
|
|
|
|
static void
|
|
xhci_device_bulk_close(struct usbd_pipe *pipe)
|
|
{
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
xhci_close_pipe(pipe);
|
|
}
|
|
|
|
/* ---------------- */
|
|
/* device interrupt */
|
|
|
|
static usbd_status
|
|
xhci_device_intr_transfer(struct usbd_xfer *xfer)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
|
|
usbd_status err;
|
|
|
|
XHCIHIST_FUNC(); XHCIHIST_CALLED();
|
|
|
|
/* Insert last in queue. */
|
|
mutex_enter(&sc->sc_lock);
|
|
err = usb_insert_transfer(xfer);
|
|
mutex_exit(&sc->sc_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* Pipe isn't running (otherwise err would be USBD_INPROG),
|
|
* so start it first.
|
|
*/
|
|
return xhci_device_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
|
|
}
|
|
|
|
static usbd_status
|
|
xhci_device_intr_start(struct usbd_xfer *xfer)
|
|
{
|
|
struct xhci_softc * const sc = XHCI_XFER2SC(xfer);
|
|
struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
|
|
const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
|
|
struct xhci_ring * const tr = xs->xs_xr[dci];
|
|
struct xhci_xfer * const xx = XHCI_XFER2XXFER(xfer);
|
|
const uint32_t len = xfer->ux_length;
|
|
const bool polling = xhci_polling_p(sc);
|
|
usb_dma_t * const dma = &xfer->ux_dmabuf;
|
|
uint64_t parameter;
|
|
uint32_t status;
|
|
uint32_t control;
|
|
u_int i = 0;
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
|
|
(uintptr_t)xfer, xs->xs_idx, dci, 0);
|
|
|
|
if (sc->sc_dying)
|
|
return USBD_IOERROR;
|
|
|
|
KASSERT((xfer->ux_rqflags & URQ_REQUEST) == 0);
|
|
|
|
const bool isread = usbd_xfer_isread(xfer);
|
|
if (len)
|
|
usb_syncmem(dma, 0, len,
|
|
isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
|
|
|
|
parameter = DMAADDR(dma, 0);
|
|
KASSERTMSG(len <= 0x10000, "len %d", len);
|
|
status = XHCI_TRB_2_IRQ_SET(0) |
|
|
XHCI_TRB_2_TDSZ_SET(0) |
|
|
XHCI_TRB_2_BYTES_SET(len);
|
|
control = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL) |
|
|
(isread ? XHCI_TRB_3_ISP_BIT : 0) | XHCI_TRB_3_IOC_BIT;
|
|
xhci_xfer_put_trb(xx, i++, parameter, status, control);
|
|
|
|
if (!polling)
|
|
mutex_enter(&tr->xr_lock);
|
|
xhci_ring_put_xfer(sc, tr, xx, i);
|
|
if (!polling)
|
|
mutex_exit(&tr->xr_lock);
|
|
|
|
if (!polling)
|
|
mutex_enter(&sc->sc_lock);
|
|
xfer->ux_status = USBD_IN_PROGRESS;
|
|
xhci_db_write_4(sc, XHCI_DOORBELL(xs->xs_idx), dci);
|
|
usbd_xfer_schedule_timeout(xfer);
|
|
if (!polling)
|
|
mutex_exit(&sc->sc_lock);
|
|
|
|
return USBD_IN_PROGRESS;
|
|
}
|
|
|
|
static void
|
|
xhci_device_intr_done(struct usbd_xfer *xfer)
|
|
{
|
|
struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
|
|
#ifdef USB_DEBUG
|
|
struct xhci_slot * const xs = xfer->ux_pipe->up_dev->ud_hcpriv;
|
|
const u_int dci = xhci_ep_get_dci(xfer->ux_pipe->up_endpoint->ue_edesc);
|
|
#endif
|
|
const bool isread = usbd_xfer_isread(xfer);
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("%#jx slot %ju dci %ju",
|
|
(uintptr_t)xfer, xs->xs_idx, dci, 0);
|
|
|
|
KASSERT(xhci_polling_p(sc) || mutex_owned(&sc->sc_lock));
|
|
|
|
usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
|
|
isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
|
|
}
|
|
|
|
static void
|
|
xhci_device_intr_abort(struct usbd_xfer *xfer)
|
|
{
|
|
struct xhci_softc * const sc __diagused = XHCI_XFER2SC(xfer);
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("%#jx", (uintptr_t)xfer, 0, 0, 0);
|
|
|
|
KASSERT(mutex_owned(&sc->sc_lock));
|
|
KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
|
|
usbd_xfer_abort(xfer);
|
|
}
|
|
|
|
static void
|
|
xhci_device_intr_close(struct usbd_pipe *pipe)
|
|
{
|
|
//struct xhci_softc * const sc = XHCI_PIPE2SC(pipe);
|
|
|
|
XHCIHIST_FUNC();
|
|
XHCIHIST_CALLARGS("%#jx", (uintptr_t)pipe, 0, 0, 0);
|
|
|
|
xhci_close_pipe(pipe);
|
|
}
|