NetBSD/sys/arch/evbarm/ifpga/ifpga_clock.c

382 lines
9.7 KiB
C

/* $NetBSD: ifpga_clock.c,v 1.2 2001/11/23 19:36:50 thorpej Exp $ */
/*
* Copyright (c) 2001 ARM Ltd
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* The IFPGA has three timers. Timer 0 is clocked by the system bus clock,
* while timers 1 and 2 are clocked at 24MHz. To keep things simple here,
* we use timers 1 and 2 only. All three timers are 16-bit counters that
* are programmable in either periodic mode or in one-shot mode.
*/
/* Include header files */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/device.h>
#include <arm/cpufunc.h>
#include <machine/intr.h>
#include <evbarm/ifpga/ifpgavar.h>
#include <evbarm/ifpga/ifpgamem.h>
#include <evbarm/ifpga/ifpgareg.h>
/*
* Statistics clock interval and variance, in usec. Variance must be a
* power of two. Since this gives us an even number, not an odd number,
* we discard one case and compensate. That is, a variance of 1024 would
* give us offsets in [0..1023]. Instead, we take offsets in [1..1023].
* This is symmetric about the point 512, or statvar/2, and thus averages
* to that value (assuming uniform random numbers).
*/
static int statvar = 1024 / 4; /* {stat,prof}clock variance */
static int statmin; /* statclock interval - variance/2 */
static int profmin; /* profclock interval - variance/2 */
static int timer2min; /* current, from above choices */
static int statprev; /* previous value in stat timer */
#define TIMER_1_CLEAR (IFPGA_TIMER1_BASE + TIMERx_CLR)
#define TIMER_1_LOAD (IFPGA_TIMER1_BASE + TIMERx_LOAD)
#define TIMER_1_VALUE (IFPGA_TIMER1_BASE + TIMERx_VALUE)
#define TIMER_1_CTRL (IFPGA_TIMER1_BASE + TIMERx_CTRL)
#define TIMER_2_CLEAR (IFPGA_TIMER2_BASE + TIMERx_CLR)
#define TIMER_2_LOAD (IFPGA_TIMER2_BASE + TIMERx_LOAD)
#define TIMER_2_VALUE (IFPGA_TIMER2_BASE + TIMERx_VALUE)
#define TIMER_2_CTRL (IFPGA_TIMER2_BASE + TIMERx_CTRL)
#define COUNTS_PER_SEC (IFPGA_TIMER1_FREQ / 16)
extern struct ifpga_softc *clock_sc;
static int clock_started = 0;
static int load_timer(int, int);
static __inline u_int
getclock(void)
{
return bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh,
TIMER_1_VALUE);
}
static __inline u_int
getstatclock(void)
{
return bus_space_read_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh,
TIMER_2_VALUE);
}
/*
* int clockhandler(struct clockframe *frame)
*
* Function called by timer 1 interrupts.
* This just clears the interrupt condition and calls hardclock().
*/
static int
clockhandler(void *fr)
{
struct clockframe *frame = (struct clockframe *)fr;
bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh,
TIMER_1_CLEAR, 0);
hardclock(frame);
return 0; /* Pass the interrupt on down the chain */
}
/*
* int statclockhandler(struct clockframe *frame)
*
* Function called by timer 2 interrupts.
* Add some random jitter to the clock, and then call statclock().
*/
static int
statclockhandler(void *fr)
{
struct clockframe *frame = (struct clockframe *) fr;
int newint, r, var;
var = statvar;
do {
r = random() & (var - 1);
} while (r == 0);
newint = timer2min + r;
if (newint & ~0x0000ffff)
panic("statclockhandler: statclock variance too large");
/*
* The timer was automatically reloaded with the previous latch
* value at the time of the interrupts. Compensate now for the
* amount of time that has run off since then, plus one tick
* roundoff. This should keep us closer to the mean.
*/
r = (statprev - getstatclock() + 1);
if (r < newint) {
newint -= r;
r = 0;
}
else
printf("statclockhandler: Statclock overrun\n");
statprev = load_timer(IFPGA_TIMER2_BASE, newint);
statclock(frame);
if (r)
/*
* We've completely overrun the previous interval,
* make sure we report the correct number of ticks.
*/
statclock(frame);
return 0; /* Pass the interrupt on down the chain */
}
static int
load_timer(int base, int intvl)
{
int control;
if (intvl & ~0x0000ffff)
panic("clock: Invalid interval\n");
control = (TIMERx_CTRL_ENABLE | TIMERx_CTRL_MODE_PERIODIC |
TIMERx_CTRL_PRESCALE_DIV16);
bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh,
base + TIMERx_LOAD, intvl);
bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh,
base + TIMERx_CTRL, control);
bus_space_write_4(clock_sc->sc_iot, clock_sc->sc_tmr_ioh,
base + TIMERx_CLR, 0);
return intvl;
}
/*
* void setstatclockrate(int hz)
*
* We assume that hz is either stathz or profhz, and that neither will
* change after being set by cpu_initclocks(). We could recalculate the
* intervals here, but that would be a pain.
*/
void
setstatclockrate(int hz)
{
if (hz == stathz)
timer2min = statmin;
else
timer2min = profmin;
}
/*
* void cpu_initclocks(void)
*
* Initialise the clocks.
*/
void
cpu_initclocks()
{
int intvl;
int statint;
int profint;
int minint;
if (hz < 50 || COUNTS_PER_SEC % hz) {
printf("cannot get %d Hz clock; using 100 Hz\n", hz);
hz = 100;
tick = 1000000 / hz;
}
if (stathz == 0)
stathz = hz;
else if (stathz < 50 || COUNTS_PER_SEC % stathz) {
printf("cannot get %d Hz statclock; using 100 Hz\n", stathz);
stathz = 100;
}
if (profhz == 0)
profhz = stathz * 5;
else if (profhz < stathz || COUNTS_PER_SEC % profhz) {
printf("cannot get %d Hz profclock; using %d Hz\n", profhz,
stathz);
profhz = stathz;
}
intvl = COUNTS_PER_SEC / hz;
statint = COUNTS_PER_SEC / stathz;
profint = COUNTS_PER_SEC / profhz;
minint = statint / 2 + 100;
while (statvar > minint)
statvar >>= 1;
/* Adjust interval counts, per note above. */
intvl--;
statint--;
profint--;
/* Calculate the base reload values. */
statmin = statint - (statvar >> 1);
profmin = profint - (statvar >> 1);
timer2min = statmin;
statprev = statint;
/* Report the clock frequencies */
printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
/* Setup timer 1 and claim interrupt */
clock_sc->sc_clockintr = intr_claim(IFPGA_TIMER1_IRQ, IPL_CLOCK,
"tmr1 hard clk", clockhandler, 0);
if (clock_sc->sc_clockintr == NULL)
panic("%s: Cannot install timer 1 interrupt handler\n",
clock_sc->sc_dev.dv_xname);
clock_sc->sc_clock_count
= load_timer(IFPGA_TIMER1_BASE, intvl);
/*
* Use ticks per 256us for accuracy since ticks per us is often
* fractional e.g. @ 66MHz
*/
clock_sc->sc_clock_ticks_per_256us =
((((clock_sc->sc_clock_count * hz) / 1000) * 256) / 1000);
clock_started = 1;
/* Set up timer 2 as statclk/profclk. */
clock_sc->sc_statclockintr = intr_claim(IFPGA_TIMER2_IRQ,
IPL_STATCLOCK, "tmr2 stat clk", statclockhandler, 0);
if (clock_sc->sc_statclockintr == NULL)
panic("%s: Cannot install timer 2 interrupt handler\n",
clock_sc->sc_dev.dv_xname);
load_timer(IFPGA_TIMER2_BASE, statint);
}
/*
* void microtime(struct timeval *tvp)
*
* Fill in the specified timeval struct with the current time
* accurate to the microsecond.
*/
void
microtime(struct timeval *tvp)
{
int s;
int tm;
int deltatm;
static struct timeval oldtv;
if (clock_sc == NULL || clock_sc->sc_clock_count == 0)
return;
s = splhigh();
tm = getclock();
deltatm = clock_sc->sc_clock_count - tm;
#ifdef DIAGNOSTIC
if (deltatm < 0)
panic("opps deltatm < 0 tm=%d deltatm=%d\n", tm, deltatm);
#endif
/* Fill in the timeval struct */
*tvp = time;
tvp->tv_usec += ((deltatm << 8) / clock_sc->sc_clock_ticks_per_256us);
/* Make sure the micro seconds don't overflow. */
while (tvp->tv_usec >= 1000000) {
tvp->tv_usec -= 1000000;
++tvp->tv_sec;
}
/* Make sure the time has advanced. */
if (tvp->tv_sec == oldtv.tv_sec &&
tvp->tv_usec <= oldtv.tv_usec) {
tvp->tv_usec = oldtv.tv_usec + 1;
if (tvp->tv_usec >= 1000000) {
tvp->tv_usec -= 1000000;
++tvp->tv_sec;
}
}
oldtv = *tvp;
(void)splx(s);
}
/*
* Estimated loop for n microseconds
*/
/* Need to re-write this to use the timers */
/* One day soon I will actually do this */
int delaycount = 50;
void
delay(u_int n)
{
if (clock_started) {
u_int starttime;
u_int curtime;
starttime = getclock();
n *= IFPGA_TIMER1_FREQ / 1000000;
do {
curtime = getclock();
} while (n > (curtime - starttime));
} else {
volatile u_int i;
if (n == 0) return;
while (n-- > 0) {
/* XXX - Seriously gross hack */
if (cputype == CPU_ID_SA110)
for (i = delaycount; --i;)
;
else
for (i = 8; --i;)
;
}
}
}