NetBSD/sys/kern/kern_event.c

3040 lines
74 KiB
C

/* $NetBSD: kern_event.c,v 1.150 2023/09/21 09:31:50 msaitoh Exp $ */
/*-
* Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
* Copyright (c) 2009 Apple, Inc
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
*/
#ifdef _KERNEL_OPT
#include "opt_ddb.h"
#endif /* _KERNEL_OPT */
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.150 2023/09/21 09:31:50 msaitoh Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/wait.h>
#include <sys/proc.h>
#include <sys/file.h>
#include <sys/select.h>
#include <sys/queue.h>
#include <sys/event.h>
#include <sys/eventvar.h>
#include <sys/poll.h>
#include <sys/kmem.h>
#include <sys/stat.h>
#include <sys/filedesc.h>
#include <sys/syscallargs.h>
#include <sys/kauth.h>
#include <sys/conf.h>
#include <sys/atomic.h>
static int kqueue_scan(file_t *, size_t, struct kevent *,
const struct timespec *, register_t *,
const struct kevent_ops *, struct kevent *,
size_t);
static int kqueue_ioctl(file_t *, u_long, void *);
static int kqueue_fcntl(file_t *, u_int, void *);
static int kqueue_poll(file_t *, int);
static int kqueue_kqfilter(file_t *, struct knote *);
static int kqueue_stat(file_t *, struct stat *);
static int kqueue_close(file_t *);
static void kqueue_restart(file_t *);
static int kqueue_fpathconf(file_t *, int, register_t *);
static int kqueue_register(struct kqueue *, struct kevent *);
static void kqueue_doclose(struct kqueue *, struct klist *, int);
static void knote_detach(struct knote *, filedesc_t *fdp, bool);
static void knote_enqueue(struct knote *);
static void knote_activate(struct knote *);
static void knote_activate_locked(struct knote *);
static void knote_deactivate_locked(struct knote *);
static void filt_kqdetach(struct knote *);
static int filt_kqueue(struct knote *, long hint);
static int filt_procattach(struct knote *);
static void filt_procdetach(struct knote *);
static int filt_proc(struct knote *, long hint);
static int filt_fileattach(struct knote *);
static void filt_timerexpire(void *x);
static int filt_timerattach(struct knote *);
static void filt_timerdetach(struct knote *);
static int filt_timer(struct knote *, long hint);
static int filt_timertouch(struct knote *, struct kevent *, long type);
static int filt_userattach(struct knote *);
static void filt_userdetach(struct knote *);
static int filt_user(struct knote *, long hint);
static int filt_usertouch(struct knote *, struct kevent *, long type);
/*
* Private knote state that should never be exposed outside
* of kern_event.c
*
* Field locking:
*
* q kn_kq->kq_lock
*/
struct knote_impl {
struct knote ki_knote;
unsigned int ki_influx; /* q: in-flux counter */
kmutex_t ki_foplock; /* for kn_filterops */
};
#define KIMPL_TO_KNOTE(kip) (&(kip)->ki_knote)
#define KNOTE_TO_KIMPL(knp) container_of((knp), struct knote_impl, ki_knote)
static inline struct knote *
knote_alloc(bool sleepok)
{
struct knote_impl *ki;
ki = kmem_zalloc(sizeof(*ki), sleepok ? KM_SLEEP : KM_NOSLEEP);
mutex_init(&ki->ki_foplock, MUTEX_DEFAULT, IPL_NONE);
return KIMPL_TO_KNOTE(ki);
}
static inline void
knote_free(struct knote *kn)
{
struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
mutex_destroy(&ki->ki_foplock);
kmem_free(ki, sizeof(*ki));
}
static inline void
knote_foplock_enter(struct knote *kn)
{
mutex_enter(&KNOTE_TO_KIMPL(kn)->ki_foplock);
}
static inline void
knote_foplock_exit(struct knote *kn)
{
mutex_exit(&KNOTE_TO_KIMPL(kn)->ki_foplock);
}
static inline bool __diagused
knote_foplock_owned(struct knote *kn)
{
return mutex_owned(&KNOTE_TO_KIMPL(kn)->ki_foplock);
}
static const struct fileops kqueueops = {
.fo_name = "kqueue",
.fo_read = (void *)enxio,
.fo_write = (void *)enxio,
.fo_ioctl = kqueue_ioctl,
.fo_fcntl = kqueue_fcntl,
.fo_poll = kqueue_poll,
.fo_stat = kqueue_stat,
.fo_close = kqueue_close,
.fo_kqfilter = kqueue_kqfilter,
.fo_restart = kqueue_restart,
.fo_fpathconf = kqueue_fpathconf,
};
static void
filt_nopdetach(struct knote *kn __unused)
{
}
static int
filt_nopevent(struct knote *kn __unused, long hint __unused)
{
return 0;
}
static const struct filterops nop_fd_filtops = {
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
.f_attach = NULL,
.f_detach = filt_nopdetach,
.f_event = filt_nopevent,
};
static const struct filterops nop_filtops = {
.f_flags = FILTEROP_MPSAFE,
.f_attach = NULL,
.f_detach = filt_nopdetach,
.f_event = filt_nopevent,
};
static const struct filterops kqread_filtops = {
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
.f_attach = NULL,
.f_detach = filt_kqdetach,
.f_event = filt_kqueue,
};
static const struct filterops proc_filtops = {
.f_flags = FILTEROP_MPSAFE,
.f_attach = filt_procattach,
.f_detach = filt_procdetach,
.f_event = filt_proc,
};
/*
* file_filtops is not marked MPSAFE because it's going to call
* fileops::fo_kqfilter(), which might not be. That function,
* however, will override the knote's filterops, and thus will
* inherit the MPSAFE-ness of the back-end at that time.
*/
static const struct filterops file_filtops = {
.f_flags = FILTEROP_ISFD,
.f_attach = filt_fileattach,
.f_detach = NULL,
.f_event = NULL,
};
static const struct filterops timer_filtops = {
.f_flags = FILTEROP_MPSAFE,
.f_attach = filt_timerattach,
.f_detach = filt_timerdetach,
.f_event = filt_timer,
.f_touch = filt_timertouch,
};
static const struct filterops user_filtops = {
.f_flags = FILTEROP_MPSAFE,
.f_attach = filt_userattach,
.f_detach = filt_userdetach,
.f_event = filt_user,
.f_touch = filt_usertouch,
};
static u_int kq_ncallouts = 0;
static int kq_calloutmax = (4 * 1024);
#define KN_HASHSIZE 64 /* XXX should be tunable */
#define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
extern const struct filterops fs_filtops; /* vfs_syscalls.c */
extern const struct filterops sig_filtops; /* kern_sig.c */
/*
* Table for all system-defined filters.
* These should be listed in the numeric order of the EVFILT_* defines.
* If filtops is NULL, the filter isn't implemented in NetBSD.
* End of list is when name is NULL.
*
* Note that 'refcnt' is meaningless for built-in filters.
*/
struct kfilter {
const char *name; /* name of filter */
uint32_t filter; /* id of filter */
unsigned refcnt; /* reference count */
const struct filterops *filtops;/* operations for filter */
size_t namelen; /* length of name string */
};
/* System defined filters */
static struct kfilter sys_kfilters[] = {
{ "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 },
{ "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, },
{ "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 },
{ "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 },
{ "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 },
{ "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 },
{ "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 },
{ "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 },
{ "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 },
{ "EVFILT_EMPTY", EVFILT_EMPTY, 0, &file_filtops, 0 },
{ NULL, 0, 0, NULL, 0 },
};
/* User defined kfilters */
static struct kfilter *user_kfilters; /* array */
static int user_kfilterc; /* current offset */
static int user_kfiltermaxc; /* max size so far */
static size_t user_kfiltersz; /* size of allocated memory */
/*
* Global Locks.
*
* Lock order:
*
* kqueue_filter_lock
* -> kn_kq->kq_fdp->fd_lock
* -> knote foplock (if taken)
* -> object lock (e.g., device driver lock, &c.)
* -> kn_kq->kq_lock
*
* Locking rules. ==> indicates the lock is acquired by the backing
* object, locks prior are acquired before calling filter ops:
*
* f_attach: fdp->fd_lock -> knote foplock ->
* (maybe) KERNEL_LOCK ==> backing object lock
*
* f_detach: fdp->fd_lock -> knote foplock ->
* (maybe) KERNEL_LOCK ==> backing object lock
*
* f_event via kevent: fdp->fd_lock -> knote foplock ->
* (maybe) KERNEL_LOCK ==> backing object lock
* N.B. NOTE_SUBMIT will never be set in the "hint" argument
* in this case.
*
* f_event via knote (via backing object: Whatever caller guarantees.
* Typically:
* f_event(NOTE_SUBMIT): caller has already acquired backing
* object lock.
* f_event(!NOTE_SUBMIT): caller has not acquired backing object,
* lock or has possibly acquired KERNEL_LOCK. Backing object
* lock may or may not be acquired as-needed.
* N.B. the knote foplock will **not** be acquired in this case. The
* caller guarantees that klist_fini() will not be called concurrently
* with knote().
*
* f_touch: fdp->fd_lock -> kn_kq->kq_lock (spin lock)
* N.B. knote foplock is **not** acquired in this case and
* the caller must guarantee that klist_fini() will never
* be called. kevent_register() restricts filters that
* provide f_touch to known-safe cases.
*
* klist_fini(): Caller must guarantee that no more knotes can
* be attached to the klist, and must **not** hold the backing
* object's lock; klist_fini() itself will acquire the foplock
* of each knote on the klist.
*
* Locking rules when detaching knotes:
*
* There are some situations where knote submission may require dropping
* locks (see knote_proc_fork()). In order to support this, it's possible
* to mark a knote as being 'in-flux'. Such a knote is guaranteed not to
* be detached while it remains in-flux. Because it will not be detached,
* locks can be dropped so e.g. memory can be allocated, locks on other
* data structures can be acquired, etc. During this time, any attempt to
* detach an in-flux knote must wait until the knote is no longer in-flux.
* When this happens, the knote is marked for death (KN_WILLDETACH) and the
* LWP who gets to finish the detach operation is recorded in the knote's
* 'udata' field (which is no longer required for its original purpose once
* a knote is so marked). Code paths that lead to knote_detach() must ensure
* that their LWP is the one tasked with its final demise after waiting for
* the in-flux status of the knote to clear. Note that once a knote is
* marked KN_WILLDETACH, no code paths may put it into an in-flux state.
*
* Once the special circumstances have been handled, the locks are re-
* acquired in the proper order (object lock -> kq_lock), the knote taken
* out of flux, and any waiters are notified. Because waiters must have
* also dropped *their* locks in order to safely block, they must re-
* validate all of their assumptions; see knote_detach_quiesce(). See also
* the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT)
* cases.
*
* When kqueue_scan() encounters an in-flux knote, the situation is
* treated like another LWP's list marker.
*
* LISTEN WELL: It is important to not hold knotes in flux for an
* extended period of time! In-flux knotes effectively block any
* progress of the kqueue_scan() operation. Any code paths that place
* knotes in-flux should be careful to not block for indefinite periods
* of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but
* KM_SLEEP is not).
*/
static krwlock_t kqueue_filter_lock; /* lock on filter lists */
#define KQ_FLUX_WAIT(kq) (void)cv_wait(&kq->kq_cv, &kq->kq_lock)
#define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv)
static inline bool
kn_in_flux(struct knote *kn)
{
KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
return KNOTE_TO_KIMPL(kn)->ki_influx != 0;
}
static inline bool
kn_enter_flux(struct knote *kn)
{
KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
if (kn->kn_status & KN_WILLDETACH) {
return false;
}
struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
KASSERT(ki->ki_influx < UINT_MAX);
ki->ki_influx++;
return true;
}
static inline bool
kn_leave_flux(struct knote *kn)
{
KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
KASSERT(ki->ki_influx > 0);
ki->ki_influx--;
return ki->ki_influx == 0;
}
static void
kn_wait_flux(struct knote *kn, bool can_loop)
{
struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
bool loop;
KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
/*
* It may not be safe for us to touch the knote again after
* dropping the kq_lock. The caller has let us know in
* 'can_loop'.
*/
for (loop = true; loop && ki->ki_influx != 0; loop = can_loop) {
KQ_FLUX_WAIT(kn->kn_kq);
}
}
#define KNOTE_WILLDETACH(kn) \
do { \
(kn)->kn_status |= KN_WILLDETACH; \
(kn)->kn_kevent.udata = curlwp; \
} while (/*CONSTCOND*/0)
/*
* Wait until the specified knote is in a quiescent state and
* safe to detach. Returns true if we potentially blocked (and
* thus dropped our locks).
*/
static bool
knote_detach_quiesce(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
filedesc_t *fdp = kq->kq_fdp;
KASSERT(mutex_owned(&fdp->fd_lock));
mutex_spin_enter(&kq->kq_lock);
/*
* There are two cases where we might see KN_WILLDETACH here:
*
* 1. Someone else has already started detaching the knote but
* had to wait for it to settle first.
*
* 2. We had to wait for it to settle, and had to come back
* around after re-acquiring the locks.
*
* When KN_WILLDETACH is set, we also set the LWP that claimed
* the prize of finishing the detach in the 'udata' field of the
* knote (which will never be used again for its usual purpose
* once the note is in this state). If it doesn't point to us,
* we must drop the locks and let them in to finish the job.
*
* Otherwise, once we have claimed the knote for ourselves, we
* can finish waiting for it to settle. The is the only scenario
* where touching a detaching knote is safe after dropping the
* locks.
*/
if ((kn->kn_status & KN_WILLDETACH) != 0 &&
kn->kn_kevent.udata != curlwp) {
/*
* N.B. it is NOT safe for us to touch the knote again
* after dropping the locks here. The caller must go
* back around and re-validate everything. However, if
* the knote is in-flux, we want to block to minimize
* busy-looping.
*/
mutex_exit(&fdp->fd_lock);
if (kn_in_flux(kn)) {
kn_wait_flux(kn, false);
mutex_spin_exit(&kq->kq_lock);
return true;
}
mutex_spin_exit(&kq->kq_lock);
preempt_point();
return true;
}
/*
* If we get here, we know that we will be claiming the
* detach responsibilies, or that we already have and
* this is the second attempt after re-validation.
*/
KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
kn->kn_kevent.udata == curlwp);
/*
* Similarly, if we get here, either we are just claiming it
* and may have to wait for it to settle, or if this is the
* second attempt after re-validation that no other code paths
* have put it in-flux.
*/
KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
kn_in_flux(kn) == false);
KNOTE_WILLDETACH(kn);
if (kn_in_flux(kn)) {
mutex_exit(&fdp->fd_lock);
kn_wait_flux(kn, true);
/*
* It is safe for us to touch the knote again after
* dropping the locks, but the caller must still
* re-validate everything because other aspects of
* the environment may have changed while we blocked.
*/
KASSERT(kn_in_flux(kn) == false);
mutex_spin_exit(&kq->kq_lock);
return true;
}
mutex_spin_exit(&kq->kq_lock);
return false;
}
/*
* Calls into the filterops need to be resilient against things which
* destroy a klist, e.g. device detach, freeing a vnode, etc., to avoid
* chasing garbage pointers (to data, or even potentially code in a
* module about to be unloaded). To that end, we acquire the
* knote foplock before calling into the filter ops. When a driver
* (or anything else) is tearing down its klist, klist_fini() enumerates
* each knote, acquires its foplock, and replaces the filterops with a
* nop stub, allowing knote detach (when descriptors are closed) to safely
* proceed.
*/
static int
filter_attach(struct knote *kn)
{
int rv;
KASSERT(knote_foplock_owned(kn));
KASSERT(kn->kn_fop != NULL);
KASSERT(kn->kn_fop->f_attach != NULL);
/*
* N.B. that kn->kn_fop may change as the result of calling
* f_attach(). After f_attach() returns, kn->kn_fop may not
* be modified by code outside of klist_fini().
*/
if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
rv = kn->kn_fop->f_attach(kn);
} else {
KERNEL_LOCK(1, NULL);
rv = kn->kn_fop->f_attach(kn);
KERNEL_UNLOCK_ONE(NULL);
}
return rv;
}
static void
filter_detach(struct knote *kn)
{
KASSERT(knote_foplock_owned(kn));
KASSERT(kn->kn_fop != NULL);
KASSERT(kn->kn_fop->f_detach != NULL);
if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
kn->kn_fop->f_detach(kn);
} else {
KERNEL_LOCK(1, NULL);
kn->kn_fop->f_detach(kn);
KERNEL_UNLOCK_ONE(NULL);
}
}
static int
filter_event(struct knote *kn, long hint, bool submitting)
{
int rv;
/* See knote(). */
KASSERT(submitting || knote_foplock_owned(kn));
KASSERT(kn->kn_fop != NULL);
KASSERT(kn->kn_fop->f_event != NULL);
if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
rv = kn->kn_fop->f_event(kn, hint);
} else {
KERNEL_LOCK(1, NULL);
rv = kn->kn_fop->f_event(kn, hint);
KERNEL_UNLOCK_ONE(NULL);
}
return rv;
}
static int
filter_touch(struct knote *kn, struct kevent *kev, long type)
{
/*
* XXX We cannot assert that the knote foplock is held here
* XXX beause we cannot safely acquire it in all cases
* XXX where "touch" will be used in kqueue_scan(). We just
* XXX have to assume that f_touch will always be safe to call,
* XXX and kqueue_register() allows only the two known-safe
* XXX users of that op.
*/
KASSERT(kn->kn_fop != NULL);
KASSERT(kn->kn_fop->f_touch != NULL);
return kn->kn_fop->f_touch(kn, kev, type);
}
static kauth_listener_t kqueue_listener;
static int
kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
void *arg0, void *arg1, void *arg2, void *arg3)
{
struct proc *p;
int result;
result = KAUTH_RESULT_DEFER;
p = arg0;
if (action != KAUTH_PROCESS_KEVENT_FILTER)
return result;
if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
ISSET(p->p_flag, PK_SUGID)))
return result;
result = KAUTH_RESULT_ALLOW;
return result;
}
/*
* Initialize the kqueue subsystem.
*/
void
kqueue_init(void)
{
rw_init(&kqueue_filter_lock);
kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
kqueue_listener_cb, NULL);
}
/*
* Find kfilter entry by name, or NULL if not found.
*/
static struct kfilter *
kfilter_byname_sys(const char *name)
{
int i;
KASSERT(rw_lock_held(&kqueue_filter_lock));
for (i = 0; sys_kfilters[i].name != NULL; i++) {
if (strcmp(name, sys_kfilters[i].name) == 0)
return &sys_kfilters[i];
}
return NULL;
}
static struct kfilter *
kfilter_byname_user(const char *name)
{
int i;
KASSERT(rw_lock_held(&kqueue_filter_lock));
/* user filter slots have a NULL name if previously deregistered */
for (i = 0; i < user_kfilterc ; i++) {
if (user_kfilters[i].name != NULL &&
strcmp(name, user_kfilters[i].name) == 0)
return &user_kfilters[i];
}
return NULL;
}
static struct kfilter *
kfilter_byname(const char *name)
{
struct kfilter *kfilter;
KASSERT(rw_lock_held(&kqueue_filter_lock));
if ((kfilter = kfilter_byname_sys(name)) != NULL)
return kfilter;
return kfilter_byname_user(name);
}
/*
* Find kfilter entry by filter id, or NULL if not found.
* Assumes entries are indexed in filter id order, for speed.
*/
static struct kfilter *
kfilter_byfilter(uint32_t filter)
{
struct kfilter *kfilter;
KASSERT(rw_lock_held(&kqueue_filter_lock));
if (filter < EVFILT_SYSCOUNT) /* it's a system filter */
kfilter = &sys_kfilters[filter];
else if (user_kfilters != NULL &&
filter < EVFILT_SYSCOUNT + user_kfilterc)
/* it's a user filter */
kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
else
return (NULL); /* out of range */
KASSERT(kfilter->filter == filter); /* sanity check! */
return (kfilter);
}
/*
* Register a new kfilter. Stores the entry in user_kfilters.
* Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
* If retfilter != NULL, the new filterid is returned in it.
*/
int
kfilter_register(const char *name, const struct filterops *filtops,
int *retfilter)
{
struct kfilter *kfilter;
size_t len;
int i;
if (name == NULL || name[0] == '\0' || filtops == NULL)
return (EINVAL); /* invalid args */
rw_enter(&kqueue_filter_lock, RW_WRITER);
if (kfilter_byname(name) != NULL) {
rw_exit(&kqueue_filter_lock);
return (EEXIST); /* already exists */
}
if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
rw_exit(&kqueue_filter_lock);
return (EINVAL); /* too many */
}
for (i = 0; i < user_kfilterc; i++) {
kfilter = &user_kfilters[i];
if (kfilter->name == NULL) {
/* Previously deregistered slot. Reuse. */
goto reuse;
}
}
/* check if need to grow user_kfilters */
if (user_kfilterc + 1 > user_kfiltermaxc) {
/* Grow in KFILTER_EXTENT chunks. */
user_kfiltermaxc += KFILTER_EXTENT;
len = user_kfiltermaxc * sizeof(*kfilter);
kfilter = kmem_alloc(len, KM_SLEEP);
memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
if (user_kfilters != NULL) {
memcpy(kfilter, user_kfilters, user_kfiltersz);
kmem_free(user_kfilters, user_kfiltersz);
}
user_kfiltersz = len;
user_kfilters = kfilter;
}
/* Adding new slot */
kfilter = &user_kfilters[user_kfilterc++];
reuse:
kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
if (retfilter != NULL)
*retfilter = kfilter->filter;
rw_exit(&kqueue_filter_lock);
return (0);
}
/*
* Unregister a kfilter previously registered with kfilter_register.
* This retains the filter id, but clears the name and frees filtops (filter
* operations), so that the number isn't reused during a boot.
* Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
*/
int
kfilter_unregister(const char *name)
{
struct kfilter *kfilter;
if (name == NULL || name[0] == '\0')
return (EINVAL); /* invalid name */
rw_enter(&kqueue_filter_lock, RW_WRITER);
if (kfilter_byname_sys(name) != NULL) {
rw_exit(&kqueue_filter_lock);
return (EINVAL); /* can't detach system filters */
}
kfilter = kfilter_byname_user(name);
if (kfilter == NULL) {
rw_exit(&kqueue_filter_lock);
return (ENOENT);
}
if (kfilter->refcnt != 0) {
rw_exit(&kqueue_filter_lock);
return (EBUSY);
}
/* Cast away const (but we know it's safe. */
kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
kfilter->name = NULL; /* mark as `not implemented' */
if (kfilter->filtops != NULL) {
/* Cast away const (but we know it's safe. */
kmem_free(__UNCONST(kfilter->filtops),
sizeof(*kfilter->filtops));
kfilter->filtops = NULL; /* mark as `not implemented' */
}
rw_exit(&kqueue_filter_lock);
return (0);
}
/*
* Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
* descriptors. Calls fileops kqfilter method for given file descriptor.
*/
static int
filt_fileattach(struct knote *kn)
{
file_t *fp;
fp = kn->kn_obj;
return (*fp->f_ops->fo_kqfilter)(fp, kn);
}
/*
* Filter detach method for EVFILT_READ on kqueue descriptor.
*/
static void
filt_kqdetach(struct knote *kn)
{
struct kqueue *kq;
kq = ((file_t *)kn->kn_obj)->f_kqueue;
mutex_spin_enter(&kq->kq_lock);
selremove_knote(&kq->kq_sel, kn);
mutex_spin_exit(&kq->kq_lock);
}
/*
* Filter event method for EVFILT_READ on kqueue descriptor.
*/
/*ARGSUSED*/
static int
filt_kqueue(struct knote *kn, long hint)
{
struct kqueue *kq;
int rv;
kq = ((file_t *)kn->kn_obj)->f_kqueue;
if (hint != NOTE_SUBMIT)
mutex_spin_enter(&kq->kq_lock);
kn->kn_data = KQ_COUNT(kq);
rv = (kn->kn_data > 0);
if (hint != NOTE_SUBMIT)
mutex_spin_exit(&kq->kq_lock);
return rv;
}
/*
* Filter attach method for EVFILT_PROC.
*/
static int
filt_procattach(struct knote *kn)
{
struct proc *p;
mutex_enter(&proc_lock);
p = proc_find(kn->kn_id);
if (p == NULL) {
mutex_exit(&proc_lock);
return ESRCH;
}
/*
* Fail if it's not owned by you, or the last exec gave us
* setuid/setgid privs (unless you're root).
*/
mutex_enter(p->p_lock);
mutex_exit(&proc_lock);
if (kauth_authorize_process(curlwp->l_cred,
KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
mutex_exit(p->p_lock);
return EACCES;
}
kn->kn_obj = p;
kn->kn_flags |= EV_CLEAR; /* automatically set */
/*
* NOTE_CHILD is only ever generated internally; don't let it
* leak in from user-space. See knote_proc_fork_track().
*/
kn->kn_sfflags &= ~NOTE_CHILD;
klist_insert(&p->p_klist, kn);
mutex_exit(p->p_lock);
return 0;
}
/*
* Filter detach method for EVFILT_PROC.
*
* The knote may be attached to a different process, which may exit,
* leaving nothing for the knote to be attached to. So when the process
* exits, the knote is marked as DETACHED and also flagged as ONESHOT so
* it will be deleted when read out. However, as part of the knote deletion,
* this routine is called, so a check is needed to avoid actually performing
* a detach, because the original process might not exist any more.
*/
static void
filt_procdetach(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
struct proc *p;
/*
* We have to synchronize with knote_proc_exit(), but we
* are forced to acquire the locks in the wrong order here
* because we can't be sure kn->kn_obj is valid unless
* KN_DETACHED is not set.
*/
again:
mutex_spin_enter(&kq->kq_lock);
if ((kn->kn_status & KN_DETACHED) == 0) {
p = kn->kn_obj;
if (!mutex_tryenter(p->p_lock)) {
mutex_spin_exit(&kq->kq_lock);
preempt_point();
goto again;
}
kn->kn_status |= KN_DETACHED;
klist_remove(&p->p_klist, kn);
mutex_exit(p->p_lock);
}
mutex_spin_exit(&kq->kq_lock);
}
/*
* Filter event method for EVFILT_PROC.
*
* Due to some of the complexities of process locking, we have special
* entry points for delivering knote submissions. filt_proc() is used
* only to check for activation from kqueue_register() and kqueue_scan().
*/
static int
filt_proc(struct knote *kn, long hint)
{
struct kqueue *kq = kn->kn_kq;
uint32_t fflags;
/*
* Because we share the same klist with signal knotes, just
* ensure that we're not being invoked for the proc-related
* submissions.
*/
KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0);
mutex_spin_enter(&kq->kq_lock);
fflags = kn->kn_fflags;
mutex_spin_exit(&kq->kq_lock);
return fflags != 0;
}
void
knote_proc_exec(struct proc *p)
{
struct knote *kn, *tmpkn;
struct kqueue *kq;
uint32_t fflags;
mutex_enter(p->p_lock);
SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) {
/* N.B. EVFILT_SIGNAL knotes are on this same list. */
if (kn->kn_fop == &sig_filtops) {
continue;
}
KASSERT(kn->kn_fop == &proc_filtops);
kq = kn->kn_kq;
mutex_spin_enter(&kq->kq_lock);
fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC));
if (fflags) {
knote_activate_locked(kn);
}
mutex_spin_exit(&kq->kq_lock);
}
mutex_exit(p->p_lock);
}
static int __noinline
knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn)
{
struct kqueue *kq = okn->kn_kq;
KASSERT(mutex_owned(&kq->kq_lock));
KASSERT(mutex_owned(p1->p_lock));
/*
* We're going to put this knote into flux while we drop
* the locks and create and attach a new knote to track the
* child. If we are not able to enter flux, then this knote
* is about to go away, so skip the notification.
*/
if (!kn_enter_flux(okn)) {
return 0;
}
mutex_spin_exit(&kq->kq_lock);
mutex_exit(p1->p_lock);
/*
* We actually have to register *two* new knotes:
*
* ==> One for the NOTE_CHILD notification. This is a forced
* ONESHOT note.
*
* ==> One to actually track the child process as it subsequently
* forks, execs, and, ultimately, exits.
*
* If we only register a single knote, then it's possible for
* for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single
* notification if the child exits before the tracking process
* has received the NOTE_CHILD notification, which applications
* aren't expecting (the event's 'data' field would be clobbered,
* for example).
*
* To do this, what we have here is an **extremely** stripped-down
* version of kqueue_register() that has the following properties:
*
* ==> Does not block to allocate memory. If we are unable
* to allocate memory, we return ENOMEM.
*
* ==> Does not search for existing knotes; we know there
* are not any because this is a new process that isn't
* even visible to other processes yet.
*
* ==> Assumes that the knhash for our kq's descriptor table
* already exists (after all, we're already tracking
* processes with knotes if we got here).
*
* ==> Directly attaches the new tracking knote to the child
* process.
*
* The whole point is to do the minimum amount of work while the
* knote is held in-flux, and to avoid doing extra work in general
* (we already have the new child process; why bother looking it
* up again?).
*/
filedesc_t *fdp = kq->kq_fdp;
struct knote *knchild, *kntrack;
int error = 0;
knchild = knote_alloc(false);
kntrack = knote_alloc(false);
if (__predict_false(knchild == NULL || kntrack == NULL)) {
error = ENOMEM;
goto out;
}
kntrack->kn_obj = p2;
kntrack->kn_id = p2->p_pid;
kntrack->kn_kq = kq;
kntrack->kn_fop = okn->kn_fop;
kntrack->kn_kfilter = okn->kn_kfilter;
kntrack->kn_sfflags = okn->kn_sfflags;
kntrack->kn_sdata = p1->p_pid;
kntrack->kn_kevent.ident = p2->p_pid;
kntrack->kn_kevent.filter = okn->kn_filter;
kntrack->kn_kevent.flags =
okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR;
kntrack->kn_kevent.fflags = 0;
kntrack->kn_kevent.data = 0;
kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */
/*
* The child note does not need to be attached to the
* new proc's klist at all.
*/
*knchild = *kntrack;
knchild->kn_status = KN_DETACHED;
knchild->kn_sfflags = 0;
knchild->kn_kevent.flags |= EV_ONESHOT;
knchild->kn_kevent.fflags = NOTE_CHILD;
knchild->kn_kevent.data = p1->p_pid; /* parent */
mutex_enter(&fdp->fd_lock);
/*
* We need to check to see if the kq is closing, and skip
* attaching the knote if so. Normally, this isn't necessary
* when coming in the front door because the file descriptor
* layer will synchronize this.
*
* It's safe to test KQ_CLOSING without taking the kq_lock
* here because that flag is only ever set when the fd_lock
* is also held.
*/
if (__predict_false(kq->kq_count & KQ_CLOSING)) {
mutex_exit(&fdp->fd_lock);
goto out;
}
/*
* We do the "insert into FD table" and "attach to klist" steps
* in the opposite order of kqueue_register() here to avoid
* having to take p2->p_lock twice. But this is OK because we
* hold fd_lock across the entire operation.
*/
mutex_enter(p2->p_lock);
error = kauth_authorize_process(curlwp->l_cred,
KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL);
if (__predict_false(error != 0)) {
mutex_exit(p2->p_lock);
mutex_exit(&fdp->fd_lock);
error = EACCES;
goto out;
}
klist_insert(&p2->p_klist, kntrack);
mutex_exit(p2->p_lock);
KASSERT(fdp->fd_knhashmask != 0);
KASSERT(fdp->fd_knhash != NULL);
struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id,
fdp->fd_knhashmask)];
SLIST_INSERT_HEAD(list, kntrack, kn_link);
SLIST_INSERT_HEAD(list, knchild, kn_link);
/* This adds references for knchild *and* kntrack. */
atomic_add_int(&kntrack->kn_kfilter->refcnt, 2);
knote_activate(knchild);
kntrack = NULL;
knchild = NULL;
mutex_exit(&fdp->fd_lock);
out:
if (__predict_false(knchild != NULL)) {
knote_free(knchild);
}
if (__predict_false(kntrack != NULL)) {
knote_free(kntrack);
}
mutex_enter(p1->p_lock);
mutex_spin_enter(&kq->kq_lock);
if (kn_leave_flux(okn)) {
KQ_FLUX_WAKEUP(kq);
}
return error;
}
void
knote_proc_fork(struct proc *p1, struct proc *p2)
{
struct knote *kn;
struct kqueue *kq;
uint32_t fflags;
mutex_enter(p1->p_lock);
/*
* N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we
* don't want to pre-fetch the next knote; in the event we
* have to drop p_lock, we will have put the knote in-flux,
* meaning that no one will be able to detach it until we
* have taken the knote out of flux. However, that does
* NOT stop someone else from detaching the next note in the
* list while we have it unlocked. Thus, we want to fetch
* the next note in the list only after we have re-acquired
* the lock, and using SLIST_FOREACH() will satisfy that.
*/
SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) {
/* N.B. EVFILT_SIGNAL knotes are on this same list. */
if (kn->kn_fop == &sig_filtops) {
continue;
}
KASSERT(kn->kn_fop == &proc_filtops);
kq = kn->kn_kq;
mutex_spin_enter(&kq->kq_lock);
kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK);
if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) {
/*
* This will drop kq_lock and p_lock and
* re-acquire them before it returns.
*/
if (knote_proc_fork_track(p1, p2, kn)) {
kn->kn_fflags |= NOTE_TRACKERR;
}
KASSERT(mutex_owned(p1->p_lock));
KASSERT(mutex_owned(&kq->kq_lock));
}
fflags = kn->kn_fflags;
if (fflags) {
knote_activate_locked(kn);
}
mutex_spin_exit(&kq->kq_lock);
}
mutex_exit(p1->p_lock);
}
void
knote_proc_exit(struct proc *p)
{
struct knote *kn;
struct kqueue *kq;
KASSERT(mutex_owned(p->p_lock));
while (!SLIST_EMPTY(&p->p_klist)) {
kn = SLIST_FIRST(&p->p_klist);
kq = kn->kn_kq;
KASSERT(kn->kn_obj == p);
mutex_spin_enter(&kq->kq_lock);
kn->kn_data = P_WAITSTATUS(p);
/*
* Mark as ONESHOT, so that the knote is g/c'ed
* when read.
*/
kn->kn_flags |= (EV_EOF | EV_ONESHOT);
kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT;
/*
* Detach the knote from the process and mark it as such.
* N.B. EVFILT_SIGNAL are also on p_klist, but by the
* time we get here, all open file descriptors for this
* process have been released, meaning that signal knotes
* will have already been detached.
*
* We need to synchronize this with filt_procdetach().
*/
KASSERT(kn->kn_fop == &proc_filtops);
if ((kn->kn_status & KN_DETACHED) == 0) {
kn->kn_status |= KN_DETACHED;
SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext);
}
/*
* Always activate the knote for NOTE_EXIT regardless
* of whether or not the listener cares about it.
* This matches historical behavior.
*/
knote_activate_locked(kn);
mutex_spin_exit(&kq->kq_lock);
}
}
#define FILT_TIMER_NOSCHED ((uintptr_t)-1)
static int
filt_timercompute(struct kevent *kev, uintptr_t *tticksp)
{
struct timespec ts;
uintptr_t tticks;
if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) {
return EINVAL;
}
/*
* Convert the event 'data' to a timespec, then convert the
* timespec to callout ticks.
*/
switch (kev->fflags & NOTE_TIMER_UNITMASK) {
case NOTE_SECONDS:
ts.tv_sec = kev->data;
ts.tv_nsec = 0;
break;
case NOTE_MSECONDS: /* == historical value 0 */
ts.tv_sec = kev->data / 1000;
ts.tv_nsec = (kev->data % 1000) * 1000000;
break;
case NOTE_USECONDS:
ts.tv_sec = kev->data / 1000000;
ts.tv_nsec = (kev->data % 1000000) * 1000;
break;
case NOTE_NSECONDS:
ts.tv_sec = kev->data / 1000000000;
ts.tv_nsec = kev->data % 1000000000;
break;
default:
return EINVAL;
}
if (kev->fflags & NOTE_ABSTIME) {
struct timespec deadline = ts;
/*
* Get current time.
*
* XXX This is CLOCK_REALTIME. There is no way to
* XXX specify CLOCK_MONOTONIC.
*/
nanotime(&ts);
/* Absolute timers do not repeat. */
kev->data = FILT_TIMER_NOSCHED;
/* If we're past the deadline, then the event will fire. */
if (timespeccmp(&deadline, &ts, <=)) {
tticks = FILT_TIMER_NOSCHED;
goto out;
}
/* Calculate how much time is left. */
timespecsub(&deadline, &ts, &ts);
} else {
/* EV_CLEAR automatically set for relative timers. */
kev->flags |= EV_CLEAR;
}
tticks = tstohz(&ts);
/* if the supplied value is under our resolution, use 1 tick */
if (tticks == 0) {
if (kev->data == 0)
return EINVAL;
tticks = 1;
} else if (tticks > INT_MAX) {
return EINVAL;
}
if ((kev->flags & EV_ONESHOT) != 0) {
/* Timer does not repeat. */
kev->data = FILT_TIMER_NOSCHED;
} else {
KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED);
kev->data = tticks;
}
out:
*tticksp = tticks;
return 0;
}
static void
filt_timerexpire(void *knx)
{
struct knote *kn = knx;
struct kqueue *kq = kn->kn_kq;
mutex_spin_enter(&kq->kq_lock);
kn->kn_data++;
knote_activate_locked(kn);
if (kn->kn_sdata != FILT_TIMER_NOSCHED) {
KASSERT(kn->kn_sdata > 0);
KASSERT(kn->kn_sdata <= INT_MAX);
callout_schedule((callout_t *)kn->kn_hook,
(int)kn->kn_sdata);
}
mutex_spin_exit(&kq->kq_lock);
}
static inline void
filt_timerstart(struct knote *kn, uintptr_t tticks)
{
callout_t *calloutp = kn->kn_hook;
KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
KASSERT(!callout_pending(calloutp));
if (__predict_false(tticks == FILT_TIMER_NOSCHED)) {
kn->kn_data = 1;
} else {
KASSERT(tticks <= INT_MAX);
callout_reset(calloutp, (int)tticks, filt_timerexpire, kn);
}
}
static int
filt_timerattach(struct knote *kn)
{
callout_t *calloutp;
struct kqueue *kq;
uintptr_t tticks;
int error;
struct kevent kev = {
.flags = kn->kn_flags,
.fflags = kn->kn_sfflags,
.data = kn->kn_sdata,
};
error = filt_timercompute(&kev, &tticks);
if (error) {
return error;
}
if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
(calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
atomic_dec_uint(&kq_ncallouts);
return ENOMEM;
}
callout_init(calloutp, CALLOUT_MPSAFE);
kq = kn->kn_kq;
mutex_spin_enter(&kq->kq_lock);
kn->kn_sdata = kev.data;
kn->kn_flags = kev.flags;
KASSERT(kn->kn_sfflags == kev.fflags);
kn->kn_hook = calloutp;
filt_timerstart(kn, tticks);
mutex_spin_exit(&kq->kq_lock);
return (0);
}
static void
filt_timerdetach(struct knote *kn)
{
callout_t *calloutp;
struct kqueue *kq = kn->kn_kq;
/* prevent rescheduling when we expire */
mutex_spin_enter(&kq->kq_lock);
kn->kn_sdata = FILT_TIMER_NOSCHED;
mutex_spin_exit(&kq->kq_lock);
calloutp = (callout_t *)kn->kn_hook;
/*
* Attempt to stop the callout. This will block if it's
* already running.
*/
callout_halt(calloutp, NULL);
callout_destroy(calloutp);
kmem_free(calloutp, sizeof(*calloutp));
atomic_dec_uint(&kq_ncallouts);
}
static int
filt_timertouch(struct knote *kn, struct kevent *kev, long type)
{
struct kqueue *kq = kn->kn_kq;
callout_t *calloutp;
uintptr_t tticks;
int error;
KASSERT(mutex_owned(&kq->kq_lock));
switch (type) {
case EVENT_REGISTER:
/* Only relevant for EV_ADD. */
if ((kev->flags & EV_ADD) == 0) {
return 0;
}
/*
* Stop the timer, under the assumption that if
* an application is re-configuring the timer,
* they no longer care about the old one. We
* can safely drop the kq_lock while we wait
* because fdp->fd_lock will be held throughout,
* ensuring that no one can sneak in with an
* EV_DELETE or close the kq.
*/
KASSERT(mutex_owned(&kq->kq_fdp->fd_lock));
calloutp = kn->kn_hook;
callout_halt(calloutp, &kq->kq_lock);
KASSERT(mutex_owned(&kq->kq_lock));
knote_deactivate_locked(kn);
kn->kn_data = 0;
error = filt_timercompute(kev, &tticks);
if (error) {
return error;
}
kn->kn_sdata = kev->data;
kn->kn_flags = kev->flags;
kn->kn_sfflags = kev->fflags;
filt_timerstart(kn, tticks);
break;
case EVENT_PROCESS:
*kev = kn->kn_kevent;
break;
default:
panic("%s: invalid type (%ld)", __func__, type);
}
return 0;
}
static int
filt_timer(struct knote *kn, long hint)
{
struct kqueue *kq = kn->kn_kq;
int rv;
mutex_spin_enter(&kq->kq_lock);
rv = (kn->kn_data != 0);
mutex_spin_exit(&kq->kq_lock);
return rv;
}
static int
filt_userattach(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
/*
* EVFILT_USER knotes are not attached to anything in the kernel.
*/
mutex_spin_enter(&kq->kq_lock);
kn->kn_hook = NULL;
if (kn->kn_fflags & NOTE_TRIGGER)
kn->kn_hookid = 1;
else
kn->kn_hookid = 0;
mutex_spin_exit(&kq->kq_lock);
return (0);
}
static void
filt_userdetach(struct knote *kn)
{
/*
* EVFILT_USER knotes are not attached to anything in the kernel.
*/
}
static int
filt_user(struct knote *kn, long hint)
{
struct kqueue *kq = kn->kn_kq;
int hookid;
mutex_spin_enter(&kq->kq_lock);
hookid = kn->kn_hookid;
mutex_spin_exit(&kq->kq_lock);
return hookid;
}
static int
filt_usertouch(struct knote *kn, struct kevent *kev, long type)
{
int ffctrl;
KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
switch (type) {
case EVENT_REGISTER:
if (kev->fflags & NOTE_TRIGGER)
kn->kn_hookid = 1;
ffctrl = kev->fflags & NOTE_FFCTRLMASK;
kev->fflags &= NOTE_FFLAGSMASK;
switch (ffctrl) {
case NOTE_FFNOP:
break;
case NOTE_FFAND:
kn->kn_sfflags &= kev->fflags;
break;
case NOTE_FFOR:
kn->kn_sfflags |= kev->fflags;
break;
case NOTE_FFCOPY:
kn->kn_sfflags = kev->fflags;
break;
default:
/* XXX Return error? */
break;
}
kn->kn_sdata = kev->data;
if (kev->flags & EV_CLEAR) {
kn->kn_hookid = 0;
kn->kn_data = 0;
kn->kn_fflags = 0;
}
break;
case EVENT_PROCESS:
*kev = kn->kn_kevent;
kev->fflags = kn->kn_sfflags;
kev->data = kn->kn_sdata;
if (kn->kn_flags & EV_CLEAR) {
kn->kn_hookid = 0;
kn->kn_data = 0;
kn->kn_fflags = 0;
}
break;
default:
panic("filt_usertouch() - invalid type (%ld)", type);
break;
}
return 0;
}
/*
* filt_seltrue:
*
* This filter "event" routine simulates seltrue().
*/
int
filt_seltrue(struct knote *kn, long hint)
{
/*
* We don't know how much data can be read/written,
* but we know that it *can* be. This is about as
* good as select/poll does as well.
*/
kn->kn_data = 0;
return (1);
}
/*
* This provides full kqfilter entry for device switch tables, which
* has same effect as filter using filt_seltrue() as filter method.
*/
static void
filt_seltruedetach(struct knote *kn)
{
/* Nothing to do */
}
const struct filterops seltrue_filtops = {
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
.f_attach = NULL,
.f_detach = filt_seltruedetach,
.f_event = filt_seltrue,
};
int
seltrue_kqfilter(dev_t dev, struct knote *kn)
{
switch (kn->kn_filter) {
case EVFILT_READ:
case EVFILT_WRITE:
kn->kn_fop = &seltrue_filtops;
break;
default:
return (EINVAL);
}
/* Nothing more to do */
return (0);
}
/*
* kqueue(2) system call.
*/
static int
kqueue1(struct lwp *l, int flags, register_t *retval)
{
struct kqueue *kq;
file_t *fp;
int fd, error;
if ((error = fd_allocfile(&fp, &fd)) != 0)
return error;
fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
fp->f_type = DTYPE_KQUEUE;
fp->f_ops = &kqueueops;
kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
cv_init(&kq->kq_cv, "kqueue");
selinit(&kq->kq_sel);
TAILQ_INIT(&kq->kq_head);
fp->f_kqueue = kq;
*retval = fd;
kq->kq_fdp = curlwp->l_fd;
fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
fd_affix(curproc, fp, fd);
return error;
}
/*
* kqueue(2) system call.
*/
int
sys_kqueue(struct lwp *l, const void *v, register_t *retval)
{
return kqueue1(l, 0, retval);
}
int
sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
register_t *retval)
{
/* {
syscallarg(int) flags;
} */
return kqueue1(l, SCARG(uap, flags), retval);
}
/*
* kevent(2) system call.
*/
int
kevent_fetch_changes(void *ctx, const struct kevent *changelist,
struct kevent *changes, size_t index, int n)
{
return copyin(changelist + index, changes, n * sizeof(*changes));
}
int
kevent_put_events(void *ctx, struct kevent *events,
struct kevent *eventlist, size_t index, int n)
{
return copyout(events, eventlist + index, n * sizeof(*events));
}
static const struct kevent_ops kevent_native_ops = {
.keo_private = NULL,
.keo_fetch_timeout = copyin,
.keo_fetch_changes = kevent_fetch_changes,
.keo_put_events = kevent_put_events,
};
int
sys___kevent100(struct lwp *l, const struct sys___kevent100_args *uap,
register_t *retval)
{
/* {
syscallarg(int) fd;
syscallarg(const struct kevent *) changelist;
syscallarg(size_t) nchanges;
syscallarg(struct kevent *) eventlist;
syscallarg(size_t) nevents;
syscallarg(const struct timespec *) timeout;
} */
return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
SCARG(uap, timeout), &kevent_native_ops);
}
int
kevent1(register_t *retval, int fd,
const struct kevent *changelist, size_t nchanges,
struct kevent *eventlist, size_t nevents,
const struct timespec *timeout,
const struct kevent_ops *keops)
{
struct kevent *kevp;
struct kqueue *kq;
struct timespec ts;
size_t i, n, ichange;
int nerrors, error;
struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */
file_t *fp;
/* check that we're dealing with a kq */
fp = fd_getfile(fd);
if (fp == NULL)
return (EBADF);
if (fp->f_type != DTYPE_KQUEUE) {
fd_putfile(fd);
return (EBADF);
}
if (timeout != NULL) {
error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
if (error)
goto done;
timeout = &ts;
}
kq = fp->f_kqueue;
nerrors = 0;
ichange = 0;
/* traverse list of events to register */
while (nchanges > 0) {
n = MIN(nchanges, __arraycount(kevbuf));
error = (*keops->keo_fetch_changes)(keops->keo_private,
changelist, kevbuf, ichange, n);
if (error)
goto done;
for (i = 0; i < n; i++) {
kevp = &kevbuf[i];
kevp->flags &= ~EV_SYSFLAGS;
/* register each knote */
error = kqueue_register(kq, kevp);
if (!error && !(kevp->flags & EV_RECEIPT))
continue;
if (nevents == 0)
goto done;
kevp->flags = EV_ERROR;
kevp->data = error;
error = (*keops->keo_put_events)
(keops->keo_private, kevp,
eventlist, nerrors, 1);
if (error)
goto done;
nevents--;
nerrors++;
}
nchanges -= n; /* update the results */
ichange += n;
}
if (nerrors) {
*retval = nerrors;
error = 0;
goto done;
}
/* actually scan through the events */
error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
kevbuf, __arraycount(kevbuf));
done:
fd_putfile(fd);
return (error);
}
/*
* Register a given kevent kev onto the kqueue
*/
static int
kqueue_register(struct kqueue *kq, struct kevent *kev)
{
struct kfilter *kfilter;
filedesc_t *fdp;
file_t *fp;
fdfile_t *ff;
struct knote *kn, *newkn;
struct klist *list;
int error, fd, rv;
fdp = kq->kq_fdp;
fp = NULL;
kn = NULL;
error = 0;
fd = 0;
newkn = knote_alloc(true);
rw_enter(&kqueue_filter_lock, RW_READER);
kfilter = kfilter_byfilter(kev->filter);
if (kfilter == NULL || kfilter->filtops == NULL) {
/* filter not found nor implemented */
rw_exit(&kqueue_filter_lock);
knote_free(newkn);
return (EINVAL);
}
/* search if knote already exists */
if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
/* monitoring a file descriptor */
/* validate descriptor */
if (kev->ident > INT_MAX
|| (fp = fd_getfile(fd = kev->ident)) == NULL) {
rw_exit(&kqueue_filter_lock);
knote_free(newkn);
return EBADF;
}
mutex_enter(&fdp->fd_lock);
ff = fdp->fd_dt->dt_ff[fd];
if (ff->ff_refcnt & FR_CLOSING) {
error = EBADF;
goto doneunlock;
}
if (fd <= fdp->fd_lastkqfile) {
SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
if (kq == kn->kn_kq &&
kev->filter == kn->kn_filter)
break;
}
}
} else {
/*
* not monitoring a file descriptor, so
* lookup knotes in internal hash table
*/
mutex_enter(&fdp->fd_lock);
if (fdp->fd_knhashmask != 0) {
list = &fdp->fd_knhash[
KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
SLIST_FOREACH(kn, list, kn_link) {
if (kev->ident == kn->kn_id &&
kq == kn->kn_kq &&
kev->filter == kn->kn_filter)
break;
}
}
}
/* It's safe to test KQ_CLOSING while holding only the fd_lock. */
KASSERT(mutex_owned(&fdp->fd_lock));
KASSERT((kq->kq_count & KQ_CLOSING) == 0);
/*
* kn now contains the matching knote, or NULL if no match
*/
if (kn == NULL) {
if (kev->flags & EV_ADD) {
/* create new knote */
kn = newkn;
newkn = NULL;
kn->kn_obj = fp;
kn->kn_id = kev->ident;
kn->kn_kq = kq;
kn->kn_fop = kfilter->filtops;
kn->kn_kfilter = kfilter;
kn->kn_sfflags = kev->fflags;
kn->kn_sdata = kev->data;
kev->fflags = 0;
kev->data = 0;
kn->kn_kevent = *kev;
KASSERT(kn->kn_fop != NULL);
/*
* XXX Allow only known-safe users of f_touch.
* XXX See filter_touch() for details.
*/
if (kn->kn_fop->f_touch != NULL &&
kn->kn_fop != &timer_filtops &&
kn->kn_fop != &user_filtops) {
error = ENOTSUP;
goto fail_ev_add;
}
/*
* apply reference count to knote structure, and
* do not release it at the end of this routine.
*/
fp = NULL;
if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
/*
* If knote is not on an fd, store on
* internal hash table.
*/
if (fdp->fd_knhashmask == 0) {
/* XXXAD can block with fd_lock held */
fdp->fd_knhash = hashinit(KN_HASHSIZE,
HASH_LIST, true,
&fdp->fd_knhashmask);
}
list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
fdp->fd_knhashmask)];
} else {
/* Otherwise, knote is on an fd. */
list = (struct klist *)
&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
if ((int)kn->kn_id > fdp->fd_lastkqfile)
fdp->fd_lastkqfile = kn->kn_id;
}
SLIST_INSERT_HEAD(list, kn, kn_link);
/*
* N.B. kn->kn_fop may change as the result
* of filter_attach()!
*/
knote_foplock_enter(kn);
error = filter_attach(kn);
if (error != 0) {
#ifdef DEBUG
struct proc *p = curlwp->l_proc;
const file_t *ft = kn->kn_obj;
printf("%s: %s[%d]: event type %d not "
"supported for file type %d/%s "
"(error %d)\n", __func__,
p->p_comm, p->p_pid,
kn->kn_filter, ft ? ft->f_type : -1,
ft ? ft->f_ops->fo_name : "?", error);
#endif
fail_ev_add:
/*
* N.B. no need to check for this note to
* be in-flux, since it was never visible
* to the monitored object.
*
* knote_detach() drops fdp->fd_lock
*/
knote_foplock_exit(kn);
mutex_enter(&kq->kq_lock);
KNOTE_WILLDETACH(kn);
KASSERT(kn_in_flux(kn) == false);
mutex_exit(&kq->kq_lock);
knote_detach(kn, fdp, false);
goto done;
}
atomic_inc_uint(&kfilter->refcnt);
goto done_ev_add;
} else {
/* No matching knote and the EV_ADD flag is not set. */
error = ENOENT;
goto doneunlock;
}
}
if (kev->flags & EV_DELETE) {
/*
* Let the world know that this knote is about to go
* away, and wait for it to settle if it's currently
* in-flux.
*/
mutex_spin_enter(&kq->kq_lock);
if (kn->kn_status & KN_WILLDETACH) {
/*
* This knote is already on its way out,
* so just be done.
*/
mutex_spin_exit(&kq->kq_lock);
goto doneunlock;
}
KNOTE_WILLDETACH(kn);
if (kn_in_flux(kn)) {
mutex_exit(&fdp->fd_lock);
/*
* It's safe for us to conclusively wait for
* this knote to settle because we know we'll
* be completing the detach.
*/
kn_wait_flux(kn, true);
KASSERT(kn_in_flux(kn) == false);
mutex_spin_exit(&kq->kq_lock);
mutex_enter(&fdp->fd_lock);
} else {
mutex_spin_exit(&kq->kq_lock);
}
/* knote_detach() drops fdp->fd_lock */
knote_detach(kn, fdp, true);
goto done;
}
/*
* The user may change some filter values after the
* initial EV_ADD, but doing so will not reset any
* filter which have already been triggered.
*/
knote_foplock_enter(kn);
kn->kn_kevent.udata = kev->udata;
KASSERT(kn->kn_fop != NULL);
if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
kn->kn_fop->f_touch != NULL) {
mutex_spin_enter(&kq->kq_lock);
error = filter_touch(kn, kev, EVENT_REGISTER);
mutex_spin_exit(&kq->kq_lock);
if (__predict_false(error != 0)) {
/* Never a new knote (which would consume newkn). */
KASSERT(newkn != NULL);
knote_foplock_exit(kn);
goto doneunlock;
}
} else {
kn->kn_sfflags = kev->fflags;
kn->kn_sdata = kev->data;
}
/*
* We can get here if we are trying to attach
* an event to a file descriptor that does not
* support events, and the attach routine is
* broken and does not return an error.
*/
done_ev_add:
rv = filter_event(kn, 0, false);
if (rv)
knote_activate(kn);
knote_foplock_exit(kn);
/* disable knote */
if ((kev->flags & EV_DISABLE)) {
mutex_spin_enter(&kq->kq_lock);
if ((kn->kn_status & KN_DISABLED) == 0)
kn->kn_status |= KN_DISABLED;
mutex_spin_exit(&kq->kq_lock);
}
/* enable knote */
if ((kev->flags & EV_ENABLE)) {
knote_enqueue(kn);
}
doneunlock:
mutex_exit(&fdp->fd_lock);
done:
rw_exit(&kqueue_filter_lock);
if (newkn != NULL)
knote_free(newkn);
if (fp != NULL)
fd_putfile(fd);
return (error);
}
#define KN_FMT(buf, kn) \
(snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
#if defined(DDB)
void
kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...))
{
const struct knote *kn;
u_int count;
int nmarker;
char buf[128];
count = 0;
nmarker = 0;
(*pr)("kqueue %p (restart=%d count=%u):\n", kq,
!!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq));
(*pr)(" Queued knotes:\n");
TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
if (kn->kn_status & KN_MARKER) {
nmarker++;
} else {
count++;
}
(*pr)(" knote %p: kq=%p status=%s\n",
kn, kn->kn_kq, KN_FMT(buf, kn));
(*pr)(" id=0x%lx (%lu) filter=%d\n",
(u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter);
if (kn->kn_kq != kq) {
(*pr)(" !!! kn->kn_kq != kq\n");
}
}
if (count != KQ_COUNT(kq)) {
(*pr)(" !!! count(%u) != KQ_COUNT(%u)\n",
count, KQ_COUNT(kq));
}
}
#endif /* DDB */
#if defined(DEBUG)
static void
kqueue_check(const char *func, size_t line, const struct kqueue *kq)
{
const struct knote *kn;
u_int count;
int nmarker;
char buf[128];
KASSERT(mutex_owned(&kq->kq_lock));
count = 0;
nmarker = 0;
TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
func, line, kq, kn, KN_FMT(buf, kn));
}
if ((kn->kn_status & KN_MARKER) == 0) {
if (kn->kn_kq != kq) {
panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
func, line, kq, kn, kn->kn_kq,
KN_FMT(buf, kn));
}
if ((kn->kn_status & KN_ACTIVE) == 0) {
panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
func, line, kq, kn, KN_FMT(buf, kn));
}
count++;
if (count > KQ_COUNT(kq)) {
panic("%s,%zu: kq=%p kq->kq_count(%u) != "
"count(%d), nmarker=%d",
func, line, kq, KQ_COUNT(kq), count,
nmarker);
}
} else {
nmarker++;
}
}
}
#define kq_check(a) kqueue_check(__func__, __LINE__, (a))
#else /* defined(DEBUG) */
#define kq_check(a) /* nothing */
#endif /* defined(DEBUG) */
static void
kqueue_restart(file_t *fp)
{
struct kqueue *kq = fp->f_kqueue;
KASSERT(kq != NULL);
mutex_spin_enter(&kq->kq_lock);
kq->kq_count |= KQ_RESTART;
cv_broadcast(&kq->kq_cv);
mutex_spin_exit(&kq->kq_lock);
}
static int
kqueue_fpathconf(struct file *fp, int name, register_t *retval)
{
return EINVAL;
}
/*
* Scan through the list of events on fp (for a maximum of maxevents),
* returning the results in to ulistp. Timeout is determined by tsp; if
* NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
* as appropriate.
*/
static int
kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
const struct timespec *tsp, register_t *retval,
const struct kevent_ops *keops, struct kevent *kevbuf,
size_t kevcnt)
{
struct kqueue *kq;
struct kevent *kevp;
struct timespec ats, sleepts;
struct knote *kn, *marker;
struct knote_impl morker;
size_t count, nkev, nevents;
int timeout, error, touch, rv, influx;
filedesc_t *fdp;
fdp = curlwp->l_fd;
kq = fp->f_kqueue;
count = maxevents;
nkev = nevents = error = 0;
if (count == 0) {
*retval = 0;
return 0;
}
if (tsp) { /* timeout supplied */
ats = *tsp;
if (inittimeleft(&ats, &sleepts) == -1) {
*retval = maxevents;
return EINVAL;
}
timeout = tstohz(&ats);
if (timeout <= 0)
timeout = -1; /* do poll */
} else {
/* no timeout, wait forever */
timeout = 0;
}
memset(&morker, 0, sizeof(morker));
marker = &morker.ki_knote;
marker->kn_kq = kq;
marker->kn_status = KN_MARKER;
mutex_spin_enter(&kq->kq_lock);
retry:
kevp = kevbuf;
if (KQ_COUNT(kq) == 0) {
if (timeout >= 0) {
error = cv_timedwait_sig(&kq->kq_cv,
&kq->kq_lock, timeout);
if (error == 0) {
if (KQ_COUNT(kq) == 0 &&
(kq->kq_count & KQ_RESTART)) {
/* return to clear file reference */
error = ERESTART;
} else if (tsp == NULL || (timeout =
gettimeleft(&ats, &sleepts)) > 0) {
goto retry;
}
} else {
/* don't restart after signals... */
if (error == ERESTART)
error = EINTR;
if (error == EWOULDBLOCK)
error = 0;
}
}
mutex_spin_exit(&kq->kq_lock);
goto done;
}
/* mark end of knote list */
TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
influx = 0;
/*
* Acquire the fdp->fd_lock interlock to avoid races with
* file creation/destruction from other threads.
*/
mutex_spin_exit(&kq->kq_lock);
relock:
mutex_enter(&fdp->fd_lock);
mutex_spin_enter(&kq->kq_lock);
while (count != 0) {
/*
* Get next knote. We are guaranteed this will never
* be NULL because of the marker we inserted above.
*/
kn = TAILQ_FIRST(&kq->kq_head);
bool kn_is_other_marker =
(kn->kn_status & KN_MARKER) != 0 && kn != marker;
bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0;
bool kn_is_in_flux = kn_in_flux(kn);
/*
* If we found a marker that's not ours, or this knote
* is in a state of flux, then wait for everything to
* settle down and go around again.
*/
if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) {
if (influx) {
influx = 0;
KQ_FLUX_WAKEUP(kq);
}
mutex_exit(&fdp->fd_lock);
if (kn_is_other_marker || kn_is_in_flux) {
KQ_FLUX_WAIT(kq);
mutex_spin_exit(&kq->kq_lock);
} else {
/*
* Detaching but not in-flux? Someone is
* actively trying to finish the job; just
* go around and try again.
*/
KASSERT(kn_is_detaching);
mutex_spin_exit(&kq->kq_lock);
preempt_point();
}
goto relock;
}
TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
if (kn == marker) {
/* it's our marker, stop */
KQ_FLUX_WAKEUP(kq);
if (count == maxevents) {
mutex_exit(&fdp->fd_lock);
goto retry;
}
break;
}
KASSERT((kn->kn_status & KN_BUSY) == 0);
kq_check(kq);
kn->kn_status &= ~KN_QUEUED;
kn->kn_status |= KN_BUSY;
kq_check(kq);
if (kn->kn_status & KN_DISABLED) {
kn->kn_status &= ~KN_BUSY;
kq->kq_count--;
/* don't want disabled events */
continue;
}
if ((kn->kn_flags & EV_ONESHOT) == 0) {
mutex_spin_exit(&kq->kq_lock);
KASSERT(mutex_owned(&fdp->fd_lock));
knote_foplock_enter(kn);
rv = filter_event(kn, 0, false);
knote_foplock_exit(kn);
mutex_spin_enter(&kq->kq_lock);
/* Re-poll if note was re-enqueued. */
if ((kn->kn_status & KN_QUEUED) != 0) {
kn->kn_status &= ~KN_BUSY;
/* Re-enqueue raised kq_count, lower it again */
kq->kq_count--;
influx = 1;
continue;
}
if (rv == 0) {
/*
* non-ONESHOT event that hasn't triggered
* again, so it will remain de-queued.
*/
kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
kq->kq_count--;
influx = 1;
continue;
}
} else {
/*
* Must NOT drop kq_lock until we can do
* the KNOTE_WILLDETACH() below.
*/
}
KASSERT(kn->kn_fop != NULL);
touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
kn->kn_fop->f_touch != NULL);
/* XXXAD should be got from f_event if !oneshot. */
KASSERT((kn->kn_status & KN_WILLDETACH) == 0);
if (touch) {
(void)filter_touch(kn, kevp, EVENT_PROCESS);
} else {
*kevp = kn->kn_kevent;
}
kevp++;
nkev++;
influx = 1;
if (kn->kn_flags & EV_ONESHOT) {
/* delete ONESHOT events after retrieval */
KNOTE_WILLDETACH(kn);
kn->kn_status &= ~KN_BUSY;
kq->kq_count--;
KASSERT(kn_in_flux(kn) == false);
KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
KASSERT(kn->kn_kevent.udata == curlwp);
mutex_spin_exit(&kq->kq_lock);
knote_detach(kn, fdp, true);
mutex_enter(&fdp->fd_lock);
mutex_spin_enter(&kq->kq_lock);
} else if (kn->kn_flags & EV_CLEAR) {
/* clear state after retrieval */
kn->kn_data = 0;
kn->kn_fflags = 0;
/*
* Manually clear knotes who weren't
* 'touch'ed.
*/
if (touch == 0) {
kn->kn_data = 0;
kn->kn_fflags = 0;
}
kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
kq->kq_count--;
} else if (kn->kn_flags & EV_DISPATCH) {
kn->kn_status |= KN_DISABLED;
kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
kq->kq_count--;
} else {
/* add event back on list */
kq_check(kq);
kn->kn_status |= KN_QUEUED;
kn->kn_status &= ~KN_BUSY;
TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
kq_check(kq);
}
if (nkev == kevcnt) {
/* do copyouts in kevcnt chunks */
influx = 0;
KQ_FLUX_WAKEUP(kq);
mutex_spin_exit(&kq->kq_lock);
mutex_exit(&fdp->fd_lock);
error = (*keops->keo_put_events)
(keops->keo_private,
kevbuf, ulistp, nevents, nkev);
mutex_enter(&fdp->fd_lock);
mutex_spin_enter(&kq->kq_lock);
nevents += nkev;
nkev = 0;
kevp = kevbuf;
}
count--;
if (error != 0 || count == 0) {
/* remove marker */
TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
break;
}
}
KQ_FLUX_WAKEUP(kq);
mutex_spin_exit(&kq->kq_lock);
mutex_exit(&fdp->fd_lock);
done:
if (nkev != 0) {
/* copyout remaining events */
error = (*keops->keo_put_events)(keops->keo_private,
kevbuf, ulistp, nevents, nkev);
}
*retval = maxevents - count;
return error;
}
/*
* fileops ioctl method for a kqueue descriptor.
*
* Two ioctls are currently supported. They both use struct kfilter_mapping:
* KFILTER_BYNAME find name for filter, and return result in
* name, which is of size len.
* KFILTER_BYFILTER find filter for name. len is ignored.
*/
/*ARGSUSED*/
static int
kqueue_ioctl(file_t *fp, u_long com, void *data)
{
struct kfilter_mapping *km;
const struct kfilter *kfilter;
char *name;
int error;
km = data;
error = 0;
name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
switch (com) {
case KFILTER_BYFILTER: /* convert filter -> name */
rw_enter(&kqueue_filter_lock, RW_READER);
kfilter = kfilter_byfilter(km->filter);
if (kfilter != NULL) {
strlcpy(name, kfilter->name, KFILTER_MAXNAME);
rw_exit(&kqueue_filter_lock);
error = copyoutstr(name, km->name, km->len, NULL);
} else {
rw_exit(&kqueue_filter_lock);
error = ENOENT;
}
break;
case KFILTER_BYNAME: /* convert name -> filter */
error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
if (error) {
break;
}
rw_enter(&kqueue_filter_lock, RW_READER);
kfilter = kfilter_byname(name);
if (kfilter != NULL)
km->filter = kfilter->filter;
else
error = ENOENT;
rw_exit(&kqueue_filter_lock);
break;
default:
error = ENOTTY;
break;
}
kmem_free(name, KFILTER_MAXNAME);
return (error);
}
/*
* fileops fcntl method for a kqueue descriptor.
*/
static int
kqueue_fcntl(file_t *fp, u_int com, void *data)
{
return (ENOTTY);
}
/*
* fileops poll method for a kqueue descriptor.
* Determine if kqueue has events pending.
*/
static int
kqueue_poll(file_t *fp, int events)
{
struct kqueue *kq;
int revents;
kq = fp->f_kqueue;
revents = 0;
if (events & (POLLIN | POLLRDNORM)) {
mutex_spin_enter(&kq->kq_lock);
if (KQ_COUNT(kq) != 0) {
revents |= events & (POLLIN | POLLRDNORM);
} else {
selrecord(curlwp, &kq->kq_sel);
}
kq_check(kq);
mutex_spin_exit(&kq->kq_lock);
}
return revents;
}
/*
* fileops stat method for a kqueue descriptor.
* Returns dummy info, with st_size being number of events pending.
*/
static int
kqueue_stat(file_t *fp, struct stat *st)
{
struct kqueue *kq;
kq = fp->f_kqueue;
memset(st, 0, sizeof(*st));
st->st_size = KQ_COUNT(kq);
st->st_blksize = sizeof(struct kevent);
st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
st->st_blocks = 1;
st->st_uid = kauth_cred_geteuid(fp->f_cred);
st->st_gid = kauth_cred_getegid(fp->f_cred);
return 0;
}
static void
kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
{
struct knote *kn;
filedesc_t *fdp;
fdp = kq->kq_fdp;
KASSERT(mutex_owned(&fdp->fd_lock));
again:
for (kn = SLIST_FIRST(list); kn != NULL;) {
if (kq != kn->kn_kq) {
kn = SLIST_NEXT(kn, kn_link);
continue;
}
if (knote_detach_quiesce(kn)) {
mutex_enter(&fdp->fd_lock);
goto again;
}
knote_detach(kn, fdp, true);
mutex_enter(&fdp->fd_lock);
kn = SLIST_FIRST(list);
}
}
/*
* fileops close method for a kqueue descriptor.
*/
static int
kqueue_close(file_t *fp)
{
struct kqueue *kq;
filedesc_t *fdp;
fdfile_t *ff;
int i;
kq = fp->f_kqueue;
fp->f_kqueue = NULL;
fp->f_type = 0;
fdp = curlwp->l_fd;
KASSERT(kq->kq_fdp == fdp);
mutex_enter(&fdp->fd_lock);
/*
* We're doing to drop the fd_lock multiple times while
* we detach knotes. During this time, attempts to register
* knotes via the back door (e.g. knote_proc_fork_track())
* need to fail, lest they sneak in to attach a knote after
* we've already drained the list it's destined for.
*
* We must acquire kq_lock here to set KQ_CLOSING (to serialize
* with other code paths that modify kq_count without holding
* the fd_lock), but once this bit is set, it's only safe to
* test it while holding the fd_lock, and holding kq_lock while
* doing so is not necessary.
*/
mutex_enter(&kq->kq_lock);
kq->kq_count |= KQ_CLOSING;
mutex_exit(&kq->kq_lock);
for (i = 0; i <= fdp->fd_lastkqfile; i++) {
if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
continue;
kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
}
if (fdp->fd_knhashmask != 0) {
for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
}
}
mutex_exit(&fdp->fd_lock);
#if defined(DEBUG)
mutex_enter(&kq->kq_lock);
kq_check(kq);
mutex_exit(&kq->kq_lock);
#endif /* DEBUG */
KASSERT(TAILQ_EMPTY(&kq->kq_head));
KASSERT(KQ_COUNT(kq) == 0);
mutex_destroy(&kq->kq_lock);
cv_destroy(&kq->kq_cv);
seldestroy(&kq->kq_sel);
kmem_free(kq, sizeof(*kq));
return (0);
}
/*
* struct fileops kqfilter method for a kqueue descriptor.
* Event triggered when monitored kqueue changes.
*/
static int
kqueue_kqfilter(file_t *fp, struct knote *kn)
{
struct kqueue *kq;
kq = ((file_t *)kn->kn_obj)->f_kqueue;
KASSERT(fp == kn->kn_obj);
if (kn->kn_filter != EVFILT_READ)
return EINVAL;
kn->kn_fop = &kqread_filtops;
mutex_enter(&kq->kq_lock);
selrecord_knote(&kq->kq_sel, kn);
mutex_exit(&kq->kq_lock);
return 0;
}
/*
* Walk down a list of knotes, activating them if their event has
* triggered. The caller's object lock (e.g. device driver lock)
* must be held.
*/
void
knote(struct klist *list, long hint)
{
struct knote *kn, *tmpkn;
SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
/*
* We assume here that the backing object's lock is
* already held if we're traversing the klist, and
* so acquiring the knote foplock would create a
* deadlock scenario. But we also know that the klist
* won't disappear on us while we're here, so not
* acquiring it is safe.
*/
if (filter_event(kn, hint, true)) {
knote_activate(kn);
}
}
}
/*
* Remove all knotes referencing a specified fd
*/
void
knote_fdclose(int fd)
{
struct klist *list;
struct knote *kn;
filedesc_t *fdp;
again:
fdp = curlwp->l_fd;
mutex_enter(&fdp->fd_lock);
list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
while ((kn = SLIST_FIRST(list)) != NULL) {
if (knote_detach_quiesce(kn)) {
goto again;
}
knote_detach(kn, fdp, true);
mutex_enter(&fdp->fd_lock);
}
mutex_exit(&fdp->fd_lock);
}
/*
* Drop knote. Called with fdp->fd_lock held, and will drop before
* returning.
*/
static void
knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
{
struct klist *list;
struct kqueue *kq;
kq = kn->kn_kq;
KASSERT((kn->kn_status & KN_MARKER) == 0);
KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
KASSERT(kn->kn_fop != NULL);
KASSERT(mutex_owned(&fdp->fd_lock));
/* Remove from monitored object. */
if (dofop) {
knote_foplock_enter(kn);
filter_detach(kn);
knote_foplock_exit(kn);
}
/* Remove from descriptor table. */
if (kn->kn_fop->f_flags & FILTEROP_ISFD)
list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
else
list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
SLIST_REMOVE(list, kn, knote, kn_link);
/* Remove from kqueue. */
again:
mutex_spin_enter(&kq->kq_lock);
KASSERT(kn_in_flux(kn) == false);
if ((kn->kn_status & KN_QUEUED) != 0) {
kq_check(kq);
KASSERT(KQ_COUNT(kq) != 0);
kq->kq_count--;
TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
kn->kn_status &= ~KN_QUEUED;
kq_check(kq);
} else if (kn->kn_status & KN_BUSY) {
mutex_spin_exit(&kq->kq_lock);
goto again;
}
mutex_spin_exit(&kq->kq_lock);
mutex_exit(&fdp->fd_lock);
if (kn->kn_fop->f_flags & FILTEROP_ISFD)
fd_putfile(kn->kn_id);
atomic_dec_uint(&kn->kn_kfilter->refcnt);
knote_free(kn);
}
/*
* Queue new event for knote.
*/
static void
knote_enqueue(struct knote *kn)
{
struct kqueue *kq;
KASSERT((kn->kn_status & KN_MARKER) == 0);
kq = kn->kn_kq;
mutex_spin_enter(&kq->kq_lock);
if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
/* Don't bother enqueueing a dying knote. */
goto out;
}
if ((kn->kn_status & KN_DISABLED) != 0) {
kn->kn_status &= ~KN_DISABLED;
}
if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
kq_check(kq);
kn->kn_status |= KN_QUEUED;
TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
kq->kq_count++;
kq_check(kq);
cv_broadcast(&kq->kq_cv);
selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
}
out:
mutex_spin_exit(&kq->kq_lock);
}
/*
* Queue new event for knote.
*/
static void
knote_activate_locked(struct knote *kn)
{
struct kqueue *kq;
KASSERT((kn->kn_status & KN_MARKER) == 0);
kq = kn->kn_kq;
if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
/* Don't bother enqueueing a dying knote. */
return;
}
kn->kn_status |= KN_ACTIVE;
if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
kq_check(kq);
kn->kn_status |= KN_QUEUED;
TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
kq->kq_count++;
kq_check(kq);
cv_broadcast(&kq->kq_cv);
selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
}
}
static void
knote_activate(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
mutex_spin_enter(&kq->kq_lock);
knote_activate_locked(kn);
mutex_spin_exit(&kq->kq_lock);
}
static void
knote_deactivate_locked(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
if (kn->kn_status & KN_QUEUED) {
kq_check(kq);
kn->kn_status &= ~KN_QUEUED;
TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
KASSERT(KQ_COUNT(kq) > 0);
kq->kq_count--;
kq_check(kq);
}
kn->kn_status &= ~KN_ACTIVE;
}
/*
* Set EV_EOF on the specified knote. Also allows additional
* EV_* flags to be set (e.g. EV_ONESHOT).
*/
void
knote_set_eof(struct knote *kn, uint32_t flags)
{
struct kqueue *kq = kn->kn_kq;
mutex_spin_enter(&kq->kq_lock);
kn->kn_flags |= EV_EOF | flags;
mutex_spin_exit(&kq->kq_lock);
}
/*
* Clear EV_EOF on the specified knote.
*/
void
knote_clear_eof(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
mutex_spin_enter(&kq->kq_lock);
kn->kn_flags &= ~EV_EOF;
mutex_spin_exit(&kq->kq_lock);
}
/*
* Initialize a klist.
*/
void
klist_init(struct klist *list)
{
SLIST_INIT(list);
}
/*
* Finalize a klist.
*/
void
klist_fini(struct klist *list)
{
struct knote *kn;
/*
* Neuter all existing knotes on the klist because the list is
* being destroyed. The caller has guaranteed that no additional
* knotes will be added to the list, that the backing object's
* locks are not held (otherwise there is a locking order issue
* with acquiring the knote foplock ), and that we can traverse
* the list safely in this state.
*/
SLIST_FOREACH(kn, list, kn_selnext) {
knote_foplock_enter(kn);
KASSERT(kn->kn_fop != NULL);
if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
kn->kn_fop = &nop_fd_filtops;
} else {
kn->kn_fop = &nop_filtops;
}
knote_foplock_exit(kn);
}
}
/*
* Insert a knote into a klist.
*/
void
klist_insert(struct klist *list, struct knote *kn)
{
SLIST_INSERT_HEAD(list, kn, kn_selnext);
}
/*
* Remove a knote from a klist. Returns true if the last
* knote was removed and the list is now empty.
*/
bool
klist_remove(struct klist *list, struct knote *kn)
{
SLIST_REMOVE(list, kn, knote, kn_selnext);
return SLIST_EMPTY(list);
}