NetBSD/sys/arch/acorn32/eb7500atx/eb7500atx_machdep.c
2004-12-12 20:42:53 +00:00

1036 lines
29 KiB
C

/* $NetBSD: eb7500atx_machdep.c,v 1.2 2004/12/12 20:42:53 abs Exp $ */
/*
* Copyright (c) 2000-2002 Reinoud Zandijk.
* Copyright (c) 1994-1998 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Brini.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RiscBSD kernel project
*
* machdep.c
*
* Machine dependant functions for kernel setup
*
* This file still needs a lot of work
*
* Created : 17/09/94
* Updated for yet another new bootloader 28/12/02
*/
#include "opt_ddb.h"
#include "opt_pmap_debug.h"
#include "vidcvideo.h"
#include "rpckbd.h"
#include "pckbc.h"
#include <sys/param.h>
__KERNEL_RCSID(0, "$NetBSD: eb7500atx_machdep.c,v 1.2 2004/12/12 20:42:53 abs Exp $");
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/reboot.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/exec.h>
#include <sys/ksyms.h>
#include <dev/cons.h>
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#include <uvm/uvm.h>
#include <machine/signal.h>
#include <machine/frame.h>
#include <machine/bootconfig.h>
#include <machine/cpu.h>
#include <machine/io.h>
#include <machine/intr.h>
#include <arm/cpuconf.h>
#include <arm/arm32/katelib.h>
#include <arm/arm32/machdep.h>
#include <machine/vconsole.h>
#include <arm/undefined.h>
#include <machine/rtc.h>
#include <machine/bus.h>
#include <arm/iomd/vidc.h>
#include <arm/iomd/iomdreg.h>
#include <arm/iomd/iomdvar.h>
#include <arm/iomd/vidcvideo.h>
#include <sys/device.h>
#include <arm/iomd/rpckbdvar.h>
#include <dev/ic/pckbcvar.h>
#include <dev/i2c/i2cvar.h>
#include <dev/i2c/pcf8583var.h>
#include <arm/iomd/iomdiicvar.h>
/* static i2c_tag_t acorn32_i2c_tag;*/
#include "opt_ipkdb.h"
#include "ksyms.h"
/* Kernel text starts at the base of the kernel address space. */
#define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000)
#define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
/*
* The range 0xf1000000 - 0xf5ffffff is available for kernel VM space
* Fixed mappings exist from 0xf6000000 - 0xffffffff
*/
#define KERNEL_VM_SIZE 0x05000000
/*
* Address to call from cpu_reset() to reset the machine.
* This is machine architecture dependant as it varies depending
* on where the ROM appears when you turn the MMU off.
*/
u_int cpu_reset_address = 0x0; /* XXX 0x3800000 too for rev0 RiscPC 600 */
#define VERBOSE_INIT_ARM
/* Define various stack sizes in pages */
#define IRQ_STACK_SIZE 1
#define ABT_STACK_SIZE 1
#ifdef IPKDB
#define UND_STACK_SIZE 2
#else
#define UND_STACK_SIZE 1
#endif
struct bootconfig bootconfig; /* Boot config storage */
videomemory_t videomemory; /* Video memory descriptor */
char *boot_args = NULL; /* holds the pre-processed boot arguments */
extern char *booted_kernel; /* used for ioctl to retrieve booted kernel */
extern int *vidc_base;
extern u_int32_t iomd_base;
extern struct bus_space iomd_bs_tag;
paddr_t physical_start;
paddr_t physical_freestart;
paddr_t physical_freeend;
paddr_t physical_end;
paddr_t dma_range_begin;
paddr_t dma_range_end;
u_int free_pages;
int physmem = 0;
paddr_t memoryblock_end;
#ifndef PMAP_STATIC_L1S
int max_processes = 64; /* Default number */
#endif /* !PMAP_STATIC_L1S */
u_int videodram_size = 0; /* Amount of DRAM to reserve for video */
/* Physical and virtual addresses for some global pages */
pv_addr_t systempage;
pv_addr_t irqstack;
pv_addr_t undstack;
pv_addr_t abtstack;
pv_addr_t kernelstack;
paddr_t msgbufphys;
extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;
#ifdef PMAP_DEBUG
extern int pmap_debug_level;
#endif /* PMAP_DEBUG */
#define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */
#define KERNEL_PT_SYS 1 /* Page table for mapping proc0 zero page */
#define KERNEL_PT_KERNEL 2 /* Page table for mapping kernel */
#define KERNEL_PT_VMDATA 3 /* Page tables for mapping kernel VM */
#define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
struct user *proc0paddr;
#ifdef CPU_SA110
#define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2)
static vaddr_t sa110_cc_base;
#endif /* CPU_SA110 */
/* Prototypes */
void physcon_display_base(u_int);
extern void consinit(void);
void data_abort_handler(trapframe_t *);
void prefetch_abort_handler(trapframe_t *);
void undefinedinstruction_bounce(trapframe_t *frame);
static void canonicalise_bootconfig(struct bootconfig *, struct bootconfig *);
static void process_kernel_args(void);
extern void dump_spl_masks(void);
extern void vidcrender_reinit(void);
extern int vidcrender_blank(struct vconsole *, int);
void rpc_sa110_cc_setup(void);
extern void parse_mi_bootargs(char *args);
void parse_rpc_bootargs(char *args);
extern void dumpsys(void);
#if NVIDCVIDEO > 0
# define console_flush() /* empty */
#else
extern void console_flush(void);
#endif
#define panic2(a) do { \
memset((void *) (videomemory.vidm_vbase), 0x55, 50*1024); \
consinit(); \
panic a; \
} while (/* CONSTCOND */ 0)
/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
/* NOTE: These variables will be removed, well some of them */
extern u_int spl_mask;
extern u_int current_mask;
void
cpu_reboot(int howto, char *bootstr)
{
#ifdef DIAGNOSTIC
printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
irqmasks[IPL_VM]);
printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
/* dump_spl_masks(); */
#endif /* DIAGNOSTIC */
/*
* If we are still cold then hit the air brakes
* and crash to earth fast
*/
if (cold) {
doshutdownhooks();
printf("Halted while still in the ICE age.\n");
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
printf("rebooting...\n");
cpu_reset();
/*NOTREACHED*/
}
/* Disable console buffering */
cnpollc(1);
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during
* the unmount. It looks like syslogd is getting woken up
* only to find that it cannot page part of the binary in as
* the filesystem has been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
/*
* Auto reboot overload protection
*
* This code stops the kernel entering an endless loop of reboot
* - panic cycles. This will have the effect of stopping further
* reboots after it has rebooted 8 times after panics. A clean
* halt or reboot will reset the counter.
*/
/* Run any shutdown hooks */
doshutdownhooks();
/* Make sure IRQ's are disabled */
IRQdisable;
if (howto & RB_HALT) {
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
}
printf("rebooting...\n");
cpu_reset();
/*NOTREACHED*/
}
/*
* u_int initarm(BootConfig *bootconf)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
* Taking a copy of the boot configuration structure.
* Initialising the physical console so characters can be printed.
* Setting up page tables for the kernel
* Relocating the kernel to the bottom of physical memory
*/
/*
* this part is completely rewritten for the new bootloader ... It features
* a flat memory map with a mapping comparable to the EBSA arm32 machine
* to boost the portability and likeness of the code
*/
/*
* Mapping table for core kernel memory. This memory is mapped at init
* time with section mappings.
*
* XXX One big assumption in the current architecture seems that the kernel is
* XXX supposed to be mapped into bootconfig.dram[0].
*/
#define ONE_MB 0x100000
struct l1_sec_map {
vaddr_t va;
paddr_t pa;
vsize_t size;
vm_prot_t prot;
int cache;
} l1_sec_table[] = {
/* Map 1Mb section for VIDC20 */
{ VIDC_BASE, VIDC_HW_BASE,
ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE },
/* Map 1Mb section from IOMD */
{ IOMD_BASE, IOMD_HW_BASE,
ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE },
/* Map 1Mb of COMBO (and module space) */
{ IO_BASE, IO_HW_BASE,
ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE },
{ 0, 0, 0, 0, 0 }
};
static void
canonicalise_bootconfig(struct bootconfig *bootconf, struct bootconfig *raw_bootconf)
{
/* check for bootconfig v2+ structure */
if (raw_bootconf->magic == BOOTCONFIG_MAGIC) {
/* v2+ cleaned up structure found */
*bootconf = *raw_bootconf;
return;
} else {
panic2(("Internal error: no valid bootconfig block found"));
}
}
u_int
initarm(void *cookie)
{
struct bootconfig *raw_bootconf = cookie;
int loop;
int loop1;
u_int logical;
u_int kerneldatasize;
u_int l1pagetable;
struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE;
pv_addr_t kernel_l1pt;
/*
* Heads up ... Setup the CPU / MMU / TLB functions
*/
set_cpufuncs();
/* canonicalise the boot configuration structure to alow versioning */
canonicalise_bootconfig(&bootconfig, raw_bootconf);
booted_kernel = bootconfig.kernelname;
/* if the wscons interface is used, switch off VERBOSE booting :( */
#if NVIDCVIDEO>0
# undef VERBOSE_INIT_ARM
# undef PMAP_DEBUG
#endif
/*
* Initialise the video memory descriptor
*
* Note: all references to the video memory virtual/physical address
* should go via this structure.
*/
/* Hardwire it on the place the bootloader tells us */
videomemory.vidm_vbase = bootconfig.display_start;
videomemory.vidm_pbase = bootconfig.display_phys;
videomemory.vidm_size = bootconfig.display_size;
if (bootconfig.vram[0].pages)
videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
else
videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
vidc_base = (int *) VIDC_HW_BASE;
iomd_base = IOMD_HW_BASE;
/*
* Initialise the physical console
* This is done in main() but for the moment we do it here so that
* we can use printf in initarm() before main() has been called.
* only for `vidcconsole!' ... not wscons
*/
#if NVIDCVIDEO == 0
consinit();
#endif
/*
* Initialise the diagnostic serial console
* This allows a means of generating output during initarm().
* Once all the memory map changes are complete we can call consinit()
* and not have to worry about things moving.
*/
/* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode); */
/* XXX snif .... i am still not able to this */
/*
* We have the following memory map (derived from EBSA)
*
* virtual address == physical address apart from the areas:
* 0x00000000 -> 0x000fffff which is mapped to
* top 1MB of physical memory
* 0xf0000000 -> 0xf0ffffff wich is mapped to
* physical address 0x01000000 -> 0x01ffffff (DRAM0a, dram[0])
*
* This means that the kernel is mapped suitably for continuing
* execution, all I/O is mapped 1:1 virtual to physical and
* physical memory is accessible.
*
* The initarm() has the responsibility for creating the kernel
* page tables.
* It must also set up various memory pointers that are used
* by pmap etc.
*/
/* START OF REAL NEW STUFF */
/* Check to make sure the page size is correct */
if (PAGE_SIZE != bootconfig.pagesize)
panic2(("Page size is %d bytes instead of %d !! (huh?)\n",
bootconfig.pagesize, PAGE_SIZE));
/* process arguments */
process_kernel_args();
/*
* Now set up the page tables for the kernel ... this part is copied
* in a (modified?) way from the EBSA machine port....
*/
#ifdef VERBOSE_INIT_ARM
printf("Allocating page tables\n");
#endif
/*
* Set up the variables that define the availablilty of physical
* memory
*/
physical_start = 0xffffffff;
physical_end = 0;
for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; ++loop) {
if (bootconfig.dram[loop].address < physical_start)
physical_start = bootconfig.dram[loop].address;
memoryblock_end = bootconfig.dram[loop].address +
bootconfig.dram[loop].pages * PAGE_SIZE;
if (memoryblock_end > physical_end)
physical_end = memoryblock_end;
physmem += bootconfig.dram[loop].pages;
};
/* constants for now, but might be changed/configured */
dma_range_begin = (paddr_t) physical_start;
dma_range_end = (paddr_t) MIN(physical_end, 512*1024*1024);
/* XXX HACK HACK XXX */
/* dma_range_end = 0x18000000; */
if (physical_start != bootconfig.dram[0].address) {
int oldblocks = 0;
/*
* must be a kinetic, as it's the only thing to shuffle memory
* around
*/
/* hack hack - throw away the slow dram */
for (loop = 0; loop < bootconfig.dramblocks; ++loop) {
if (bootconfig.dram[loop].address <
bootconfig.dram[0].address) {
/* non kinetic ram */
bootconfig.dram[loop].address = 0;
physmem -= bootconfig.dram[loop].pages;
bootconfig.drampages -=
bootconfig.dram[loop].pages;
bootconfig.dram[loop].pages = 0;
oldblocks++;
}
}
physical_start = bootconfig.dram[0].address;
bootconfig.dramblocks -= oldblocks;
}
physical_freestart = physical_start;
free_pages = bootconfig.drampages;
physical_freeend = physical_end;
/*
* AHUM !! set this variable ... it was set up in the old 1st
* stage bootloader
*/
kerneldatasize = bootconfig.kernsize + bootconfig.MDFsize;
/* Update the address of the first free page of physical memory */
/* XXX Assumption that the kernel and stuff is at the LOWEST physical memory address? XXX */
physical_freestart +=
bootconfig.kernsize + bootconfig.MDFsize + bootconfig.scratchsize;
free_pages -= (physical_freestart - physical_start) / PAGE_SIZE;
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_pa, (np)); \
(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
#define alloc_pages(var, np) \
(var) = physical_freestart; \
physical_freestart += ((np) * PAGE_SIZE); \
free_pages -= (np); \
memset((char *)(var), 0, ((np) * PAGE_SIZE));
loop1 = 0;
kernel_l1pt.pv_pa = 0;
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
&& kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
} else {
valloc_pages(kernel_pt_table[loop1],
L2_TABLE_SIZE / PAGE_SIZE);
++loop1;
}
}
#ifdef DIAGNOSTIC
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
panic2(("initarm: Failed to align the kernel page "
"directory\n"));
#endif
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
alloc_pages(systempage.pv_pa, 1);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
#ifdef VERBOSE_INIT_ARM
printf("Setting up stacks :\n");
printf("IRQ stack: p0x%08lx v0x%08lx\n",
irqstack.pv_pa, irqstack.pv_va);
printf("ABT stack: p0x%08lx v0x%08lx\n",
abtstack.pv_pa, abtstack.pv_va);
printf("UND stack: p0x%08lx v0x%08lx\n",
undstack.pv_pa, undstack.pv_va);
printf("SVC stack: p0x%08lx v0x%08lx\n",
kernelstack.pv_pa, kernelstack.pv_va);
printf("\n");
#endif
alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
#ifdef CPU_SA110
/*
* XXX totally stuffed hack to work round problems introduced
* in recent versions of the pmap code. Due to the calls used there
* we cannot allocate virtual memory during bootstrap.
*/
sa110_cc_base = (KERNEL_BASE + (physical_freestart - physical_start)
+ (CPU_SA110_CACHE_CLEAN_SIZE - 1))
& ~(CPU_SA110_CACHE_CLEAN_SIZE - 1);
#endif /* CPU_SA110 */
/*
* Ok we have allocated physical pages for the primary kernel
* page tables
*/
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table\n");
#endif
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_pa;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, 0x00000000,
&kernel_pt_table[KERNEL_PT_SYS]);
pmap_link_l2pt(l1pagetable, KERNEL_BASE,
&kernel_pt_table[KERNEL_PT_KERNEL]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
pmap_link_l2pt(l1pagetable, VMEM_VBASE,
&kernel_pt_table[KERNEL_PT_VMEM]);
/* update the top of the kernel VM */
pmap_curmaxkvaddr =
KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
#ifdef VERBOSE_INIT_ARM
printf("Mapping kernel\n");
#endif
/* Now we fill in the L2 pagetable for the kernel code/data */
/* XXX Kernel doesn't have to be on physical_start (!) use bootconfig XXX */
/*
* The defines are a workaround for a recent problem that occurred
* with ARM 610 processors and some ARM 710 processors
* Other ARM 710 and StrongARM processors don't have a problem.
*/
if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
#if defined(CPU_ARM6) || defined(CPU_ARM7)
logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
physical_start, kernexec->a_text,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#else /* CPU_ARM6 || CPU_ARM7 */
logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
physical_start, kernexec->a_text,
VM_PROT_READ, PTE_CACHE);
#endif /* CPU_ARM6 || CPU_ARM7 */
logical += pmap_map_chunk(l1pagetable,
KERNEL_TEXT_BASE + logical, physical_start + logical,
kerneldatasize - kernexec->a_text,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
} else { /* !ZMAGIC */
/*
* Most likely an ELF kernel ...
* XXX no distinction yet between read only and
* read/write area's ...
*/
pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
physical_start, kerneldatasize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
};
#ifdef VERBOSE_INIT_ARM
printf("Constructing L2 page tables\n");
#endif
/* Map the stack pages */
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
}
/* Now we fill in the L2 pagetable for the VRAM */
/*
* Current architectures mean that the VRAM is always in 1
* continuous bank. This means that we can just map the 2 meg
* that the VRAM would occupy. In theory we don't need a page
* table for VRAM, we could section map it but we would need
* the page tables if DRAM was in use.
* XXX please map two adjacent virtual areas to ONE physical
* area
*/
pmap_map_chunk(l1pagetable, VMEM_VBASE, videomemory.vidm_pbase,
videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, VMEM_VBASE + videomemory.vidm_size,
videomemory.vidm_pbase, videomemory.vidm_size,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Map the vector page. */
pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Map the core memory needed before autoconfig */
loop = 0;
while (l1_sec_table[loop].size) {
vm_size_t sz;
#ifdef VERBOSE_INIT_ARM
printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
l1_sec_table[loop].va);
#endif
for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
pmap_map_section(l1pagetable,
l1_sec_table[loop].va + sz,
l1_sec_table[loop].pa + sz,
l1_sec_table[loop].prot,
l1_sec_table[loop].cache);
++loop;
}
/*
* Now we have the real page tables in place so we can switch
* to them. Once this is done we will be running with the
* REAL kernel page tables.
*/
/* Switch tables */
#ifdef VERBOSE_INIT_ARM
printf("switching to new L1 page table\n");
#endif
#ifdef VERBOSE_INIT_ARM
printf("switching domains\n");
#endif
/* be a client to all domains */
cpu_domains(0x55555555);
setttb(kernel_l1pt.pv_pa);
/*
* We must now clean the cache again....
* Cleaning may be done by reading new data to displace any
* dirty data in the cache. This will have happened in setttb()
* but since we are boot strapping the addresses used for the read
* may have just been remapped and thus the cache could be out
* of sync. A re-clean after the switch will cure this.
* After booting there are no gross reloations of the kernel thus
* this problem will not occur after initarm().
*/
cpu_idcache_wbinv_all();
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
/*
* Moved from cpu_startup() as data_abort_handler() references
* this during uvm init
*/
proc0paddr = (struct user *)kernelstack.pv_va;
lwp0.l_addr = proc0paddr;
/*
* if there is support for a serial console ...we should now
* reattach it
*/
/* fcomcndetach();*/
/*
* Reflect videomemory relocation in the videomemory structure
* and reinit console
*/
if (bootconfig.vram[0].pages == 0) {
videomemory.vidm_vbase = VMEM_VBASE;
} else {
videomemory.vidm_vbase = VMEM_VBASE;
bootconfig.display_start = VMEM_VBASE;
};
vidc_base = (int *) VIDC_BASE;
iomd_base = IOMD_BASE;
#if NVIDCVIDEO == 0
physcon_display_base(VMEM_VBASE);
vidcrender_reinit();
#endif
#ifdef VERBOSE_INIT_ARM
printf("running on the new L1 page table!\n");
printf("done.\n");
#endif
arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
#ifdef VERBOSE_INIT_ARM
printf("\n");
#endif
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
#ifdef VERBOSE_INIT_ARM
printf("init subsystems: stacks ");
console_flush();
#endif
set_stackptr(PSR_IRQ32_MODE,
irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_ABT32_MODE,
abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_UND32_MODE,
undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
#ifdef PMAP_DEBUG
if (pmap_debug_level >= 0)
printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
kernelstack.pv_pa);
#endif /* PMAP_DEBUG */
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper
* handler. Until then we will use a handler that just panics but
* tells us why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slightly better one.
*/
#ifdef VERBOSE_INIT_ARM
printf("vectors ");
#endif
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
console_flush();
/*
* At last !
* We now have the kernel in physical memory from the bottom upwards.
* Kernel page tables are physically above this.
* The kernel is mapped to 0xf0000000
* The kernel data PTs will handle the mapping of
* 0xf1000000-0xf5ffffff (80 Mb)
* 2Meg of VRAM is mapped to 0xf7000000
* The page tables are mapped to 0xefc00000
* The IOMD is mapped to 0xf6000000
* The VIDC is mapped to 0xf6100000
* The IOMD/VIDC could be pushed up higher but i havent got
* sufficient documentation to do so; the addresses are not
* parametized yet and hard to read... better fix this before;
* its pretty unforgiving.
*/
/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
printf("undefined ");
#endif
undefined_init();
console_flush();
/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
printf("page ");
#endif
uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
for (loop = 0; loop < bootconfig.dramblocks; loop++) {
paddr_t start = (paddr_t)bootconfig.dram[loop].address;
paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE);
if (start < physical_freestart)
start = physical_freestart;
if (end > physical_freeend)
end = physical_freeend;
/* XXX Consider DMA range intersection checking. */
uvm_page_physload(atop(start), atop(end),
atop(start), atop(end), VM_FREELIST_DEFAULT);
}
/* Boot strap pmap telling it where the kernel page table is */
#ifdef VERBOSE_INIT_ARM
printf("pmap ");
#endif
pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
KERNEL_VM_BASE + KERNEL_VM_SIZE);
console_flush();
/* Setup the IRQ system */
#ifdef VERBOSE_INIT_ARM
printf("irq ");
#endif
console_flush();
irq_init();
#ifdef VERBOSE_INIT_ARM
printf("done.\n\n");
#endif
#if NVIDCVIDEO>0
consinit(); /* necessary ? */
#endif
/* Talk to the user */
printf("NetBSD/evbarm booting ... \n");
/* Tell the user if his boot loader is too old */
if ((bootconfig.magic < BOOTCONFIG_MAGIC) ||
(bootconfig.version != BOOTCONFIG_VERSION)) {
printf("\nDETECTED AN OLD BOOTLOADER. PLEASE UPGRADE IT\n\n");
delay(5000000);
}
printf("Kernel loaded from file %s\n", bootconfig.kernelname);
printf("Kernel arg string (@%p) %s\n",
bootconfig.args, bootconfig.args);
printf("\nBoot configuration structure reports the following "
"memory\n");
printf(" DRAM block 0a at %08x size %08x "
"DRAM block 0b at %08x size %08x\n\r",
bootconfig.dram[0].address,
bootconfig.dram[0].pages * bootconfig.pagesize,
bootconfig.dram[1].address,
bootconfig.dram[1].pages * bootconfig.pagesize);
printf(" DRAM block 1a at %08x size %08x "
"DRAM block 1b at %08x size %08x\n\r",
bootconfig.dram[2].address,
bootconfig.dram[2].pages * bootconfig.pagesize,
bootconfig.dram[3].address,
bootconfig.dram[3].pages * bootconfig.pagesize);
printf(" VRAM block 0 at %08x size %08x\n\r",
bootconfig.vram[0].address,
bootconfig.vram[0].pages * bootconfig.pagesize);
#ifdef IPKDB
/* Initialise ipkdb */
ipkdb_init();
if (boothowto & RB_KDB)
ipkdb_connect(0);
#endif /* NIPKDB */
#if NKSYMS || defined(DDB) || defined(LKM)
ksyms_init(bootconfig.ksym_end - bootconfig.ksym_start,
(void *) bootconfig.ksym_start, (void *) bootconfig.ksym_end);
#endif
#ifdef DDB
db_machine_init();
if (boothowto & RB_KDB)
Debugger();
#endif /* DDB */
/* We return the new stack pointer address */
return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}
static void
process_kernel_args(void)
{
char *args;
/* Ok now we will check the arguments for interesting parameters. */
args = bootconfig.args;
boothowto = 0;
/* Only arguments itself are passed from the new bootloader */
while (*args == ' ')
++args;
boot_args = args;
parse_mi_bootargs(boot_args);
parse_rpc_bootargs(boot_args);
}
void
parse_rpc_bootargs(char *args)
{
int integer;
if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT,
&integer)) {
videodram_size = integer;
/* Round to 4K page */
videodram_size *= 1024;
videodram_size = round_page(videodram_size);
if (videodram_size > 1024*1024)
videodram_size = 1024*1024;
}
}
/* End of machdep.c */