NetBSD/sys/dev/pci/eso.c
kleink e436929104 Fix a (non-dangerous) malloc size botch in eso_allocm();
from Stephen Ma in PR kern/18342.
2004-02-17 17:39:55 +00:00

2015 lines
53 KiB
C

/* $NetBSD: eso.c,v 1.33 2004/02/17 17:39:55 kleink Exp $ */
/*
* Copyright (c) 1999, 2000 Klaus J. Klein
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.33 2004/02/17 17:39:55 kleink Exp $");
#include "mpu.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/pcivar.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/midi_if.h>
#include <dev/mulaw.h>
#include <dev/auconv.h>
#include <dev/ic/mpuvar.h>
#include <dev/ic/i8237reg.h>
#include <dev/pci/esoreg.h>
#include <dev/pci/esovar.h>
#include <machine/bus.h>
#include <machine/intr.h>
#if defined(AUDIO_DEBUG) || defined(DEBUG)
#define DPRINTF(x) printf x
#else
#define DPRINTF(x)
#endif
struct eso_dma {
bus_dma_tag_t ed_dmat;
bus_dmamap_t ed_map;
caddr_t ed_addr;
bus_dma_segment_t ed_segs[1];
int ed_nsegs;
size_t ed_size;
struct eso_dma * ed_next;
};
#define KVADDR(dma) ((void *)(dma)->ed_addr)
#define DMAADDR(dma) ((dma)->ed_map->dm_segs[0].ds_addr)
/* Autoconfiguration interface */
static int eso_match __P((struct device *, struct cfdata *, void *));
static void eso_attach __P((struct device *, struct device *, void *));
static void eso_defer __P((struct device *));
static int eso_print __P((void *, const char *));
CFATTACH_DECL(eso, sizeof (struct eso_softc),
eso_match, eso_attach, NULL, NULL);
/* PCI interface */
static int eso_intr __P((void *));
/* MI audio layer interface */
static int eso_open __P((void *, int));
static void eso_close __P((void *));
static int eso_query_encoding __P((void *, struct audio_encoding *));
static int eso_set_params __P((void *, int, int, struct audio_params *,
struct audio_params *));
static int eso_round_blocksize __P((void *, int));
static int eso_halt_output __P((void *));
static int eso_halt_input __P((void *));
static int eso_getdev __P((void *, struct audio_device *));
static int eso_set_port __P((void *, mixer_ctrl_t *));
static int eso_get_port __P((void *, mixer_ctrl_t *));
static int eso_query_devinfo __P((void *, mixer_devinfo_t *));
static void * eso_allocm __P((void *, int, size_t, struct malloc_type *, int));
static void eso_freem __P((void *, void *, struct malloc_type *));
static size_t eso_round_buffersize __P((void *, int, size_t));
static paddr_t eso_mappage __P((void *, void *, off_t, int));
static int eso_get_props __P((void *));
static int eso_trigger_output __P((void *, void *, void *, int,
void (*)(void *), void *, struct audio_params *));
static int eso_trigger_input __P((void *, void *, void *, int,
void (*)(void *), void *, struct audio_params *));
static struct audio_hw_if eso_hw_if = {
eso_open,
eso_close,
NULL, /* drain */
eso_query_encoding,
eso_set_params,
eso_round_blocksize,
NULL, /* commit_settings */
NULL, /* init_output */
NULL, /* init_input */
NULL, /* start_output */
NULL, /* start_input */
eso_halt_output,
eso_halt_input,
NULL, /* speaker_ctl */
eso_getdev,
NULL, /* setfd */
eso_set_port,
eso_get_port,
eso_query_devinfo,
eso_allocm,
eso_freem,
eso_round_buffersize,
eso_mappage,
eso_get_props,
eso_trigger_output,
eso_trigger_input,
NULL, /* dev_ioctl */
};
static const char * const eso_rev2model[] = {
"ES1938",
"ES1946",
"ES1946 Revision E"
};
/*
* Utility routines
*/
/* Register access etc. */
static uint8_t eso_read_ctlreg __P((struct eso_softc *, uint8_t));
static uint8_t eso_read_mixreg __P((struct eso_softc *, uint8_t));
static uint8_t eso_read_rdr __P((struct eso_softc *));
static void eso_reload_master_vol __P((struct eso_softc *));
static int eso_reset __P((struct eso_softc *));
static void eso_set_gain __P((struct eso_softc *, unsigned int));
static int eso_set_monooutsrc __P((struct eso_softc *, unsigned int));
static int eso_set_recsrc __P((struct eso_softc *, unsigned int));
static void eso_write_cmd __P((struct eso_softc *, uint8_t));
static void eso_write_ctlreg __P((struct eso_softc *, uint8_t, uint8_t));
static void eso_write_mixreg __P((struct eso_softc *, uint8_t, uint8_t));
/* DMA memory allocation */
static int eso_allocmem __P((struct eso_softc *, size_t, size_t, size_t,
int, int, struct eso_dma *));
static void eso_freemem __P((struct eso_dma *));
static int
eso_match(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
return (1);
return (0);
}
static void
eso_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct eso_softc *sc = (struct eso_softc *)self;
struct pci_attach_args *pa = aux;
struct audio_attach_args aa;
pci_intr_handle_t ih;
bus_addr_t vcbase;
const char *intrstring;
int idx;
uint8_t a2mode, mvctl;
aprint_naive(": Audio controller\n");
sc->sc_revision = PCI_REVISION(pa->pa_class);
aprint_normal(": ESS Solo-1 PCI AudioDrive ");
if (sc->sc_revision <
sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
else
aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);
/* Map I/O registers. */
if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
&sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
aprint_error("%s: can't map I/O space\n", sc->sc_dev.dv_xname);
return;
}
if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
&sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
aprint_error("%s: can't map SB I/O space\n",
sc->sc_dev.dv_xname);
return;
}
if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
&sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
aprint_error("%s: can't map VC I/O space\n",
sc->sc_dev.dv_xname);
/* Don't bail out yet: we can map it later, see below. */
vcbase = 0;
sc->sc_vcsize = 0x10; /* From the data sheet. */
}
if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
&sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
aprint_error("%s: can't map MPU I/O space\n",
sc->sc_dev.dv_xname);
return;
}
if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
&sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
aprint_error("%s: can't map Game I/O space\n",
sc->sc_dev.dv_xname);
return;
}
sc->sc_dmat = pa->pa_dmat;
sc->sc_dmas = NULL;
sc->sc_dmac_configured = 0;
/* Enable bus mastering. */
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
PCI_COMMAND_MASTER_ENABLE);
/* Reset the device; bail out upon failure. */
if (eso_reset(sc) != 0) {
aprint_error("%s: can't reset\n", sc->sc_dev.dv_xname);
return;
}
/* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
/* Enable the relevant (DMA) interrupts. */
bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
ESO_IO_IRQCTL_MPUIRQ);
/* Set up A1's sample rate generator for new-style parameters. */
a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
/* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
/* Set mixer regs to something reasonable, needs work. */
sc->sc_recsrc = ESO_MIXREG_ERS_LINE;
sc->sc_monooutsrc = ESO_MIXREG_MPM_MOMUTE;
sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
int v;
switch (idx) {
case ESO_MIC_PLAY_VOL:
case ESO_LINE_PLAY_VOL:
case ESO_CD_PLAY_VOL:
case ESO_MONO_PLAY_VOL:
case ESO_AUXB_PLAY_VOL:
case ESO_DAC_REC_VOL:
case ESO_LINE_REC_VOL:
case ESO_SYNTH_REC_VOL:
case ESO_CD_REC_VOL:
case ESO_MONO_REC_VOL:
case ESO_AUXB_REC_VOL:
case ESO_SPATIALIZER:
v = 0;
break;
case ESO_MASTER_VOL:
v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
break;
default:
v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
break;
}
sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
eso_set_gain(sc, idx);
}
eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
/* Map and establish the interrupt. */
if (pci_intr_map(pa, &ih)) {
aprint_error("%s: couldn't map interrupt\n",
sc->sc_dev.dv_xname);
return;
}
intrstring = pci_intr_string(pa->pa_pc, ih);
sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error("%s: couldn't establish interrupt",
sc->sc_dev.dv_xname);
if (intrstring != NULL)
aprint_normal(" at %s", intrstring);
aprint_normal("\n");
return;
}
aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname,
intrstring);
/*
* Set up the DDMA Control register; a suitable I/O region has been
* supposedly mapped in the VC base address register.
*
* The Solo-1 has an ... interesting silicon bug that causes it to
* not respond to I/O space accesses to the Audio 1 DMA controller
* if the latter's mapping base address is aligned on a 1K boundary.
* As a consequence, it is quite possible for the mapping provided
* in the VC BAR to be useless. To work around this, we defer this
* part until all autoconfiguration on our parent bus is completed
* and then try to map it ourselves in fulfillment of the constraint.
*
* According to the register map we may write to the low 16 bits
* only, but experimenting has shown we're safe.
* -kjk
*/
if (ESO_VALID_DDMAC_BASE(vcbase)) {
pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
vcbase | ESO_PCI_DDMAC_DE);
sc->sc_dmac_configured = 1;
aprint_normal(
"%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
sc->sc_dev.dv_xname, (unsigned long)vcbase);
} else {
DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
sc->sc_dev.dv_xname, (unsigned long)vcbase));
sc->sc_pa = *pa;
config_defer(self, eso_defer);
}
audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
aa.type = AUDIODEV_TYPE_OPL;
aa.hwif = NULL;
aa.hdl = NULL;
(void)config_found(&sc->sc_dev, &aa, audioprint);
aa.type = AUDIODEV_TYPE_MPU;
aa.hwif = NULL;
aa.hdl = NULL;
sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
if (sc->sc_mpudev != NULL) {
/* Unmask the MPU irq. */
mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
}
aa.type = AUDIODEV_TYPE_AUX;
aa.hwif = NULL;
aa.hdl = NULL;
(void)config_found(&sc->sc_dev, &aa, eso_print);
}
static void
eso_defer(self)
struct device *self;
{
struct eso_softc *sc = (struct eso_softc *)self;
struct pci_attach_args *pa = &sc->sc_pa;
bus_addr_t addr, start;
aprint_normal("%s: ", sc->sc_dev.dv_xname);
/*
* This is outright ugly, but since we must not make assumptions
* on the underlying allocator's behaviour it's the most straight-
* forward way to implement it. Note that we skip over the first
* 1K region, which is typically occupied by an attached ISA bus.
*/
for (start = 0x0400; start < 0xffff; start += 0x0400) {
if (bus_space_alloc(sc->sc_iot,
start + sc->sc_vcsize, start + 0x0400 - 1,
sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
&sc->sc_dmac_ioh) != 0)
continue;
pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
addr | ESO_PCI_DDMAC_DE);
sc->sc_dmac_iot = sc->sc_iot;
sc->sc_dmac_configured = 1;
aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
(unsigned long)addr);
return;
}
aprint_error("can't map Audio 1 DMA into I/O space\n");
}
/* ARGSUSED */
static int
eso_print(aux, pnp)
void *aux;
const char *pnp;
{
/* Only joys can attach via this; easy. */
if (pnp)
aprint_normal("joy at %s:", pnp);
return (UNCONF);
}
static void
eso_write_cmd(sc, cmd)
struct eso_softc *sc;
uint8_t cmd;
{
int i;
/* Poll for busy indicator to become clear. */
for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
& ESO_SB_RSR_BUSY) == 0) {
bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
ESO_SB_WDR, cmd);
return;
} else {
delay(10);
}
}
printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
return;
}
/* Write to a controller register */
static void
eso_write_ctlreg(sc, reg, val)
struct eso_softc *sc;
uint8_t reg, val;
{
/* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
eso_write_cmd(sc, reg);
eso_write_cmd(sc, val);
}
/* Read out the Read Data Register */
static uint8_t
eso_read_rdr(sc)
struct eso_softc *sc;
{
int i;
for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
return (bus_space_read_1(sc->sc_sb_iot,
sc->sc_sb_ioh, ESO_SB_RDR));
} else {
delay(10);
}
}
printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
return (-1);
}
static uint8_t
eso_read_ctlreg(sc, reg)
struct eso_softc *sc;
uint8_t reg;
{
eso_write_cmd(sc, ESO_CMD_RCR);
eso_write_cmd(sc, reg);
return (eso_read_rdr(sc));
}
static void
eso_write_mixreg(sc, reg, val)
struct eso_softc *sc;
uint8_t reg, val;
{
int s;
/* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
s = splaudio();
bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
splx(s);
}
static uint8_t
eso_read_mixreg(sc, reg)
struct eso_softc *sc;
uint8_t reg;
{
int s;
uint8_t val;
s = splaudio();
bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
splx(s);
return (val);
}
static int
eso_intr(hdl)
void *hdl;
{
struct eso_softc *sc = hdl;
uint8_t irqctl;
irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
/* If it wasn't ours, that's all she wrote. */
if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
return (0);
if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
/* Clear interrupt. */
(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
ESO_SB_RBSR);
if (sc->sc_rintr)
sc->sc_rintr(sc->sc_rarg);
else
wakeup(&sc->sc_rintr);
}
if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
/*
* Clear the A2 IRQ latch: the cached value reflects the
* current DAC settings with the IRQ latch bit not set.
*/
eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
if (sc->sc_pintr)
sc->sc_pintr(sc->sc_parg);
else
wakeup(&sc->sc_pintr);
}
if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
/* Clear interrupt. */
eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
/*
* Raise a flag to cause a lazy update of the in-softc gain
* values the next time the software mixer is read to keep
* interrupt service cost low. ~0 cannot occur otherwise
* as the master volume has a precision of 6 bits only.
*/
sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
}
#if NMPU > 0
if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
mpu_intr(sc->sc_mpudev);
#endif
return (1);
}
/* Perform a software reset, including DMA FIFOs. */
static int
eso_reset(sc)
struct eso_softc *sc;
{
int i;
bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
/* `Delay' suggested in the data sheet. */
(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
/* Wait for reset to take effect. */
for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
/* Poll for data to become available. */
if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
/* Activate Solo-1 extension commands. */
eso_write_cmd(sc, ESO_CMD_EXTENB);
/* Reset mixer registers. */
eso_write_mixreg(sc, ESO_MIXREG_RESET,
ESO_MIXREG_RESET_RESET);
return (0);
} else {
delay(1000);
}
}
printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
return (-1);
}
/* ARGSUSED */
static int
eso_open(hdl, flags)
void *hdl;
int flags;
{
struct eso_softc *sc = hdl;
DPRINTF(("%s: open\n", sc->sc_dev.dv_xname));
sc->sc_pintr = NULL;
sc->sc_rintr = NULL;
return (0);
}
static void
eso_close(hdl)
void *hdl;
{
DPRINTF(("%s: close\n", ((struct eso_softc *)hdl)->sc_dev.dv_xname));
}
static int
eso_query_encoding(hdl, fp)
void *hdl;
struct audio_encoding *fp;
{
switch (fp->index) {
case 0:
strcpy(fp->name, AudioEulinear);
fp->encoding = AUDIO_ENCODING_ULINEAR;
fp->precision = 8;
fp->flags = 0;
break;
case 1:
strcpy(fp->name, AudioEmulaw);
fp->encoding = AUDIO_ENCODING_ULAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 2:
strcpy(fp->name, AudioEalaw);
fp->encoding = AUDIO_ENCODING_ALAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 3:
strcpy(fp->name, AudioEslinear);
fp->encoding = AUDIO_ENCODING_SLINEAR;
fp->precision = 8;
fp->flags = 0;
break;
case 4:
strcpy(fp->name, AudioEslinear_le);
fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 5:
strcpy(fp->name, AudioEulinear_le);
fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 6:
strcpy(fp->name, AudioEslinear_be);
fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 7:
strcpy(fp->name, AudioEulinear_be);
fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
default:
return (EINVAL);
}
return (0);
}
static int
eso_set_params(hdl, setmode, usemode, play, rec)
void *hdl;
int setmode, usemode;
struct audio_params *play, *rec;
{
struct eso_softc *sc = hdl;
struct audio_params *p;
int mode, r[2], rd[2], clk;
unsigned int srg, fltdiv;
for (mode = AUMODE_RECORD; mode != -1;
mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
if ((setmode & mode) == 0)
continue;
p = (mode == AUMODE_PLAY) ? play : rec;
if (p->sample_rate < ESO_MINRATE ||
p->sample_rate > ESO_MAXRATE ||
(p->precision != 8 && p->precision != 16) ||
(p->channels != 1 && p->channels != 2))
return (EINVAL);
p->factor = 1;
p->sw_code = NULL;
switch (p->encoding) {
case AUDIO_ENCODING_SLINEAR_BE:
case AUDIO_ENCODING_ULINEAR_BE:
if (mode == AUMODE_PLAY && p->precision == 16)
p->sw_code = swap_bytes;
break;
case AUDIO_ENCODING_SLINEAR_LE:
case AUDIO_ENCODING_ULINEAR_LE:
if (mode == AUMODE_RECORD && p->precision == 16)
p->sw_code = swap_bytes;
break;
case AUDIO_ENCODING_ULAW:
if (mode == AUMODE_PLAY) {
p->factor = 2;
p->sw_code = mulaw_to_ulinear16_le;
} else {
p->sw_code = ulinear8_to_mulaw;
}
break;
case AUDIO_ENCODING_ALAW:
if (mode == AUMODE_PLAY) {
p->factor = 2;
p->sw_code = alaw_to_ulinear16_le;
} else {
p->sw_code = ulinear8_to_alaw;
}
break;
default:
return (EINVAL);
}
/*
* We'll compute both possible sample rate dividers and pick
* the one with the least error.
*/
#define ABS(x) ((x) < 0 ? -(x) : (x))
r[0] = ESO_CLK0 /
(128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
r[1] = ESO_CLK1 /
(128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
clk = ABS(p->sample_rate - r[0]) > ABS(p->sample_rate - r[1]);
srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
/* Roll-off frequency of 87%, as in the ES1888 driver. */
fltdiv = 256 - 200279L / r[clk];
/* Update to reflect the possibly inexact rate. */
p->sample_rate = r[clk];
if (mode == AUMODE_RECORD) {
/* Audio 1 */
DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
} else {
/* Audio 2 */
DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
}
#undef ABS
}
return (0);
}
static int
eso_round_blocksize(hdl, blk)
void *hdl;
int blk;
{
return (blk & -32); /* keep good alignment; at least 16 req'd */
}
static int
eso_halt_output(hdl)
void *hdl;
{
struct eso_softc *sc = hdl;
int error, s;
DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
/*
* Disable auto-initialize DMA, allowing the FIFO to drain and then
* stop. The interrupt callback pointer is cleared at this
* point so that an outstanding FIFO interrupt for the remaining data
* will be acknowledged without further processing.
*
* This does not immediately `abort' an operation in progress (c.f.
* audio(9)) but is the method to leave the FIFO behind in a clean
* state with the least hair. (Besides, that item needs to be
* rephrased for trigger_*()-based DMA environments.)
*/
s = splaudio();
eso_write_mixreg(sc, ESO_MIXREG_A2C1,
ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
ESO_IO_A2DMAM_DMAENB);
sc->sc_pintr = NULL;
error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
splx(s);
/* Shut down DMA completely. */
eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
return (error == EWOULDBLOCK ? 0 : error);
}
static int
eso_halt_input(hdl)
void *hdl;
{
struct eso_softc *sc = hdl;
int error, s;
DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
/* Just like eso_halt_output(), but for Audio 1. */
s = splaudio();
eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
ESO_CTLREG_A1C2_DMAENB);
bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
DMA37MD_WRITE | DMA37MD_DEMAND);
sc->sc_rintr = NULL;
error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
splx(s);
/* Shut down DMA completely. */
eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
ESO_DMAC_MASK_MASK);
return (error == EWOULDBLOCK ? 0 : error);
}
static int
eso_getdev(hdl, retp)
void *hdl;
struct audio_device *retp;
{
struct eso_softc *sc = hdl;
strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
snprintf(retp->version, sizeof (retp->version), "0x%02x",
sc->sc_revision);
if (sc->sc_revision <
sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
strncpy(retp->config, eso_rev2model[sc->sc_revision],
sizeof (retp->config));
else
strncpy(retp->config, "unknown", sizeof (retp->config));
return (0);
}
static int
eso_set_port(hdl, cp)
void *hdl;
mixer_ctrl_t *cp;
{
struct eso_softc *sc = hdl;
unsigned int lgain, rgain;
uint8_t tmp;
switch (cp->dev) {
case ESO_DAC_PLAY_VOL:
case ESO_MIC_PLAY_VOL:
case ESO_LINE_PLAY_VOL:
case ESO_SYNTH_PLAY_VOL:
case ESO_CD_PLAY_VOL:
case ESO_AUXB_PLAY_VOL:
case ESO_RECORD_VOL:
case ESO_DAC_REC_VOL:
case ESO_MIC_REC_VOL:
case ESO_LINE_REC_VOL:
case ESO_SYNTH_REC_VOL:
case ESO_CD_REC_VOL:
case ESO_AUXB_REC_VOL:
if (cp->type != AUDIO_MIXER_VALUE)
return (EINVAL);
/*
* Stereo-capable mixer ports: if we get a single-channel
* gain value passed in, then we duplicate it to both left
* and right channels.
*/
switch (cp->un.value.num_channels) {
case 1:
lgain = rgain = ESO_GAIN_TO_4BIT(
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
break;
case 2:
lgain = ESO_GAIN_TO_4BIT(
cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
rgain = ESO_GAIN_TO_4BIT(
cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
break;
default:
return (EINVAL);
}
sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
eso_set_gain(sc, cp->dev);
break;
case ESO_MASTER_VOL:
if (cp->type != AUDIO_MIXER_VALUE)
return (EINVAL);
/* Like above, but a precision of 6 bits. */
switch (cp->un.value.num_channels) {
case 1:
lgain = rgain = ESO_GAIN_TO_6BIT(
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
break;
case 2:
lgain = ESO_GAIN_TO_6BIT(
cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
rgain = ESO_GAIN_TO_6BIT(
cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
break;
default:
return (EINVAL);
}
sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
eso_set_gain(sc, cp->dev);
break;
case ESO_SPATIALIZER:
if (cp->type != AUDIO_MIXER_VALUE ||
cp->un.value.num_channels != 1)
return (EINVAL);
sc->sc_gain[cp->dev][ESO_LEFT] =
sc->sc_gain[cp->dev][ESO_RIGHT] =
ESO_GAIN_TO_6BIT(
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
eso_set_gain(sc, cp->dev);
break;
case ESO_MONO_PLAY_VOL:
case ESO_MONO_REC_VOL:
if (cp->type != AUDIO_MIXER_VALUE ||
cp->un.value.num_channels != 1)
return (EINVAL);
sc->sc_gain[cp->dev][ESO_LEFT] =
sc->sc_gain[cp->dev][ESO_RIGHT] =
ESO_GAIN_TO_4BIT(
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
eso_set_gain(sc, cp->dev);
break;
case ESO_PCSPEAKER_VOL:
if (cp->type != AUDIO_MIXER_VALUE ||
cp->un.value.num_channels != 1)
return (EINVAL);
sc->sc_gain[cp->dev][ESO_LEFT] =
sc->sc_gain[cp->dev][ESO_RIGHT] =
ESO_GAIN_TO_3BIT(
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
eso_set_gain(sc, cp->dev);
break;
case ESO_SPATIALIZER_ENABLE:
if (cp->type != AUDIO_MIXER_ENUM)
return (EINVAL);
sc->sc_spatializer = (cp->un.ord != 0);
tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
if (sc->sc_spatializer)
tmp |= ESO_MIXREG_SPAT_ENB;
else
tmp &= ~ESO_MIXREG_SPAT_ENB;
eso_write_mixreg(sc, ESO_MIXREG_SPAT,
tmp | ESO_MIXREG_SPAT_RSTREL);
break;
case ESO_MASTER_MUTE:
if (cp->type != AUDIO_MIXER_ENUM)
return (EINVAL);
sc->sc_mvmute = (cp->un.ord != 0);
if (sc->sc_mvmute) {
eso_write_mixreg(sc, ESO_MIXREG_LMVM,
eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
ESO_MIXREG_LMVM_MUTE);
eso_write_mixreg(sc, ESO_MIXREG_RMVM,
eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
ESO_MIXREG_RMVM_MUTE);
} else {
eso_write_mixreg(sc, ESO_MIXREG_LMVM,
eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
~ESO_MIXREG_LMVM_MUTE);
eso_write_mixreg(sc, ESO_MIXREG_RMVM,
eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
~ESO_MIXREG_RMVM_MUTE);
}
break;
case ESO_MONOOUT_SOURCE:
if (cp->type != AUDIO_MIXER_ENUM)
return (EINVAL);
return (eso_set_monooutsrc(sc, cp->un.ord));
case ESO_RECORD_MONITOR:
if (cp->type != AUDIO_MIXER_ENUM)
return (EINVAL);
sc->sc_recmon = (cp->un.ord != 0);
tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
if (sc->sc_recmon)
tmp |= ESO_CTLREG_ACTL_RECMON;
else
tmp &= ~ESO_CTLREG_ACTL_RECMON;
eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
break;
case ESO_RECORD_SOURCE:
if (cp->type != AUDIO_MIXER_ENUM)
return (EINVAL);
return (eso_set_recsrc(sc, cp->un.ord));
case ESO_MIC_PREAMP:
if (cp->type != AUDIO_MIXER_ENUM)
return (EINVAL);
sc->sc_preamp = (cp->un.ord != 0);
tmp = eso_read_mixreg(sc, ESO_MIXREG_MPM);
tmp &= ~ESO_MIXREG_MPM_RESV0;
if (sc->sc_preamp)
tmp |= ESO_MIXREG_MPM_PREAMP;
else
tmp &= ~ESO_MIXREG_MPM_PREAMP;
eso_write_mixreg(sc, ESO_MIXREG_MPM, tmp);
break;
default:
return (EINVAL);
}
return (0);
}
static int
eso_get_port(hdl, cp)
void *hdl;
mixer_ctrl_t *cp;
{
struct eso_softc *sc = hdl;
switch (cp->dev) {
case ESO_MASTER_VOL:
/* Reload from mixer after hardware volume control use. */
if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
eso_reload_master_vol(sc);
/* FALLTHROUGH */
case ESO_DAC_PLAY_VOL:
case ESO_MIC_PLAY_VOL:
case ESO_LINE_PLAY_VOL:
case ESO_SYNTH_PLAY_VOL:
case ESO_CD_PLAY_VOL:
case ESO_AUXB_PLAY_VOL:
case ESO_RECORD_VOL:
case ESO_DAC_REC_VOL:
case ESO_MIC_REC_VOL:
case ESO_LINE_REC_VOL:
case ESO_SYNTH_REC_VOL:
case ESO_CD_REC_VOL:
case ESO_AUXB_REC_VOL:
/*
* Stereo-capable ports: if a single-channel query is made,
* just return the left channel's value (since single-channel
* settings themselves are applied to both channels).
*/
switch (cp->un.value.num_channels) {
case 1:
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
sc->sc_gain[cp->dev][ESO_LEFT];
break;
case 2:
cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
sc->sc_gain[cp->dev][ESO_LEFT];
cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
sc->sc_gain[cp->dev][ESO_RIGHT];
break;
default:
return (EINVAL);
}
break;
case ESO_MONO_PLAY_VOL:
case ESO_PCSPEAKER_VOL:
case ESO_MONO_REC_VOL:
case ESO_SPATIALIZER:
if (cp->un.value.num_channels != 1)
return (EINVAL);
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
sc->sc_gain[cp->dev][ESO_LEFT];
break;
case ESO_RECORD_MONITOR:
cp->un.ord = sc->sc_recmon;
break;
case ESO_RECORD_SOURCE:
cp->un.ord = sc->sc_recsrc;
break;
case ESO_MONOOUT_SOURCE:
cp->un.ord = sc->sc_monooutsrc;
break;
case ESO_SPATIALIZER_ENABLE:
cp->un.ord = sc->sc_spatializer;
break;
case ESO_MIC_PREAMP:
cp->un.ord = sc->sc_preamp;
break;
case ESO_MASTER_MUTE:
/* Reload from mixer after hardware volume control use. */
if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
eso_reload_master_vol(sc);
cp->un.ord = sc->sc_mvmute;
break;
default:
return (EINVAL);
}
return (0);
}
static int
eso_query_devinfo(hdl, dip)
void *hdl;
mixer_devinfo_t *dip;
{
switch (dip->index) {
case ESO_DAC_PLAY_VOL:
dip->mixer_class = ESO_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNdac);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_MIC_PLAY_VOL:
dip->mixer_class = ESO_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmicrophone);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_LINE_PLAY_VOL:
dip->mixer_class = ESO_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNline);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_SYNTH_PLAY_VOL:
dip->mixer_class = ESO_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNfmsynth);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_MONO_PLAY_VOL:
dip->mixer_class = ESO_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "mono_in");
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_CD_PLAY_VOL:
dip->mixer_class = ESO_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNcd);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_AUXB_PLAY_VOL:
dip->mixer_class = ESO_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "auxb");
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_MIC_PREAMP:
dip->mixer_class = ESO_MICROPHONE_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNpreamp);
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = 0;
strcpy(dip->un.e.member[1].label.name, AudioNon);
dip->un.e.member[1].ord = 1;
break;
case ESO_MICROPHONE_CLASS:
dip->mixer_class = ESO_MICROPHONE_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmicrophone);
dip->type = AUDIO_MIXER_CLASS;
break;
case ESO_INPUT_CLASS:
dip->mixer_class = ESO_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCinputs);
dip->type = AUDIO_MIXER_CLASS;
break;
case ESO_MASTER_VOL:
dip->mixer_class = ESO_OUTPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = ESO_MASTER_MUTE;
strcpy(dip->label.name, AudioNmaster);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_MASTER_MUTE:
dip->mixer_class = ESO_OUTPUT_CLASS;
dip->prev = ESO_MASTER_VOL;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmute);
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = 0;
strcpy(dip->un.e.member[1].label.name, AudioNon);
dip->un.e.member[1].ord = 1;
break;
case ESO_PCSPEAKER_VOL:
dip->mixer_class = ESO_OUTPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "pc_speaker");
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_MONOOUT_SOURCE:
dip->mixer_class = ESO_OUTPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "mono_out");
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 3;
strcpy(dip->un.e.member[0].label.name, AudioNmute);
dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
strcpy(dip->un.e.member[1].label.name, AudioNdac);
dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
break;
case ESO_SPATIALIZER:
dip->mixer_class = ESO_OUTPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = ESO_SPATIALIZER_ENABLE;
strcpy(dip->label.name, AudioNspatial);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, "level");
break;
case ESO_SPATIALIZER_ENABLE:
dip->mixer_class = ESO_OUTPUT_CLASS;
dip->prev = ESO_SPATIALIZER;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "enable");
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = 0;
strcpy(dip->un.e.member[1].label.name, AudioNon);
dip->un.e.member[1].ord = 1;
break;
case ESO_OUTPUT_CLASS:
dip->mixer_class = ESO_OUTPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCoutputs);
dip->type = AUDIO_MIXER_CLASS;
break;
case ESO_RECORD_MONITOR:
dip->mixer_class = ESO_MONITOR_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmute);
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = 0;
strcpy(dip->un.e.member[1].label.name, AudioNon);
dip->un.e.member[1].ord = 1;
break;
case ESO_MONITOR_CLASS:
dip->mixer_class = ESO_MONITOR_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCmonitor);
dip->type = AUDIO_MIXER_CLASS;
break;
case ESO_RECORD_VOL:
dip->mixer_class = ESO_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNrecord);
dip->type = AUDIO_MIXER_VALUE;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_RECORD_SOURCE:
dip->mixer_class = ESO_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNsource);
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 4;
strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
strcpy(dip->un.e.member[1].label.name, AudioNline);
dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
strcpy(dip->un.e.member[2].label.name, AudioNcd);
dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
break;
case ESO_DAC_REC_VOL:
dip->mixer_class = ESO_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNdac);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_MIC_REC_VOL:
dip->mixer_class = ESO_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmicrophone);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_LINE_REC_VOL:
dip->mixer_class = ESO_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNline);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_SYNTH_REC_VOL:
dip->mixer_class = ESO_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNfmsynth);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_MONO_REC_VOL:
dip->mixer_class = ESO_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "mono_in");
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 1; /* No lies */
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_CD_REC_VOL:
dip->mixer_class = ESO_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNcd);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_AUXB_REC_VOL:
dip->mixer_class = ESO_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "auxb");
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case ESO_RECORD_CLASS:
dip->mixer_class = ESO_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCrecord);
dip->type = AUDIO_MIXER_CLASS;
break;
default:
return (ENXIO);
}
return (0);
}
static int
eso_allocmem(sc, size, align, boundary, flags, direction, ed)
struct eso_softc *sc;
size_t size;
size_t align;
size_t boundary;
int flags;
int direction;
struct eso_dma *ed;
{
int error, wait;
wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
ed->ed_size = size;
error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
&ed->ed_nsegs, wait);
if (error)
goto out;
error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
if (error)
goto free;
error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
wait, &ed->ed_map);
if (error)
goto unmap;
error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
ed->ed_size, NULL, wait |
(direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
if (error)
goto destroy;
return (0);
destroy:
bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
unmap:
bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
free:
bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
out:
return (error);
}
static void
eso_freemem(ed)
struct eso_dma *ed;
{
bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
}
static void *
eso_allocm(hdl, direction, size, type, flags)
void *hdl;
int direction;
size_t size;
struct malloc_type *type;
int flags;
{
struct eso_softc *sc = hdl;
struct eso_dma *ed;
size_t boundary;
int error;
if ((ed = malloc(sizeof (*ed), type, flags)) == NULL)
return (NULL);
/*
* Apparently the Audio 1 DMA controller's current address
* register can't roll over a 64K address boundary, so we have to
* take care of that ourselves. Similarly, the Audio 2 DMA
* controller needs a 1M address boundary.
*/
if (direction == AUMODE_RECORD)
boundary = 0x10000;
else
boundary = 0x100000;
#ifdef alpha
/*
* XXX For Audio 1, which implements the 24 low address bits only,
* XXX force allocation through the (ISA) SGMAP.
*/
if (direction == AUMODE_RECORD)
ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
else
#endif
ed->ed_dmat = sc->sc_dmat;
error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
if (error) {
free(ed, type);
return (NULL);
}
ed->ed_next = sc->sc_dmas;
sc->sc_dmas = ed;
return (KVADDR(ed));
}
static void
eso_freem(hdl, addr, type)
void *hdl;
void *addr;
struct malloc_type *type;
{
struct eso_softc *sc = hdl;
struct eso_dma *p, **pp;
for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
if (KVADDR(p) == addr) {
eso_freemem(p);
*pp = p->ed_next;
free(p, type);
return;
}
}
}
static size_t
eso_round_buffersize(hdl, direction, bufsize)
void *hdl;
int direction;
size_t bufsize;
{
size_t maxsize;
/*
* The playback DMA buffer size on the Solo-1 is limited to 0xfff0
* bytes. This is because IO_A2DMAC is a two byte value
* indicating the literal byte count, and the 4 least significant
* bits are read-only. Zero is not used as a special case for
* 0x10000.
*
* For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
* be represented.
*/
maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
if (bufsize > maxsize)
bufsize = maxsize;
return (bufsize);
}
static paddr_t
eso_mappage(hdl, addr, offs, prot)
void *hdl;
void *addr;
off_t offs;
int prot;
{
struct eso_softc *sc = hdl;
struct eso_dma *ed;
if (offs < 0)
return (-1);
for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr;
ed = ed->ed_next)
;
if (ed == NULL)
return (-1);
return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
offs, prot, BUS_DMA_WAITOK));
}
/* ARGSUSED */
static int
eso_get_props(hdl)
void *hdl;
{
return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
AUDIO_PROP_FULLDUPLEX);
}
static int
eso_trigger_output(hdl, start, end, blksize, intr, arg, param)
void *hdl;
void *start, *end;
int blksize;
void (*intr) __P((void *));
void *arg;
struct audio_params *param;
{
struct eso_softc *sc = hdl;
struct eso_dma *ed;
uint8_t a2c1;
DPRINTF((
"%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
param->precision, param->channels, param->sw_code, param->factor));
/* Find DMA buffer. */
for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
ed = ed->ed_next)
;
if (ed == NULL) {
printf("%s: trigger_output: bad addr %p\n",
sc->sc_dev.dv_xname, start);
return (EINVAL);
}
sc->sc_pintr = intr;
sc->sc_parg = arg;
/* Compute drain timeout. */
sc->sc_pdrain = (blksize * NBBY * hz) /
(param->sample_rate * param->channels *
param->precision * param->factor) + 2; /* slop */
/* DMA transfer count (in `words'!) reload using 2's complement. */
blksize = -(blksize >> 1);
eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
/* Update DAC to reflect DMA count and audio parameters. */
/* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
if (param->precision * param->factor == 16)
sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
else
sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
if (param->channels == 2)
sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
else
sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
param->encoding == AUDIO_ENCODING_SLINEAR_LE)
sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
else
sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
/* Unmask IRQ. */
sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
/* Set up DMA controller. */
bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
DMAADDR(ed));
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
(uint8_t *)end - (uint8_t *)start);
bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
/* Start DMA. */
a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
ESO_MIXREG_A2C1_AUTO;
eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
return (0);
}
static int
eso_trigger_input(hdl, start, end, blksize, intr, arg, param)
void *hdl;
void *start, *end;
int blksize;
void (*intr) __P((void *));
void *arg;
struct audio_params *param;
{
struct eso_softc *sc = hdl;
struct eso_dma *ed;
uint8_t actl, a1c1;
DPRINTF((
"%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
param->precision, param->channels, param->sw_code, param->factor));
/*
* If we failed to configure the Audio 1 DMA controller, bail here
* while retaining availability of the DAC direction (in Audio 2).
*/
if (!sc->sc_dmac_configured)
return (EIO);
/* Find DMA buffer. */
for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
ed = ed->ed_next)
;
if (ed == NULL) {
printf("%s: trigger_output: bad addr %p\n",
sc->sc_dev.dv_xname, start);
return (EINVAL);
}
sc->sc_rintr = intr;
sc->sc_rarg = arg;
/* Compute drain timeout. */
sc->sc_rdrain = (blksize * NBBY * hz) /
(param->sample_rate * param->channels *
param->precision * param->factor) + 2; /* slop */
/* Set up ADC DMA converter parameters. */
actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
if (param->channels == 2) {
actl &= ~ESO_CTLREG_ACTL_MONO;
actl |= ESO_CTLREG_ACTL_STEREO;
} else {
actl &= ~ESO_CTLREG_ACTL_STEREO;
actl |= ESO_CTLREG_ACTL_MONO;
}
eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
/* Set up Transfer Type: maybe move to attach time? */
eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
/* DMA transfer count reload using 2's complement. */
blksize = -blksize;
eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
/* Set up and enable Audio 1 DMA FIFO. */
a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
if (param->precision * param->factor == 16)
a1c1 |= ESO_CTLREG_A1C1_16BIT;
if (param->channels == 2)
a1c1 |= ESO_CTLREG_A1C1_STEREO;
else
a1c1 |= ESO_CTLREG_A1C1_MONO;
if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
param->encoding == AUDIO_ENCODING_SLINEAR_LE)
a1c1 |= ESO_CTLREG_A1C1_SIGNED;
eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
/* Set up ADC IRQ/DRQ parameters. */
eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
/* Set up and enable DMA controller. */
bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
ESO_DMAC_MASK_MASK);
bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
DMAADDR(ed));
bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
(uint8_t *)end - (uint8_t *)start - 1);
bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
/* Start DMA. */
eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
return (0);
}
static int
eso_set_monooutsrc(sc, monooutsrc)
struct eso_softc *sc;
unsigned int monooutsrc;
{
mixer_devinfo_t di;
int i;
uint8_t mpm;
di.index = ESO_MONOOUT_SOURCE;
if (eso_query_devinfo(sc, &di) != 0)
panic("eso_set_monooutsrc: eso_query_devinfo failed");
for (i = 0; i < di.un.e.num_mem; i++) {
if (monooutsrc == di.un.e.member[i].ord) {
mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
mpm &= ~ESO_MIXREG_MPM_MOMASK;
mpm |= monooutsrc;
eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
sc->sc_monooutsrc = monooutsrc;
return (0);
}
}
return (EINVAL);
}
static int
eso_set_recsrc(sc, recsrc)
struct eso_softc *sc;
unsigned int recsrc;
{
mixer_devinfo_t di;
int i;
di.index = ESO_RECORD_SOURCE;
if (eso_query_devinfo(sc, &di) != 0)
panic("eso_set_recsrc: eso_query_devinfo failed");
for (i = 0; i < di.un.e.num_mem; i++) {
if (recsrc == di.un.e.member[i].ord) {
eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
sc->sc_recsrc = recsrc;
return (0);
}
}
return (EINVAL);
}
/*
* Reload Master Volume and Mute values in softc from mixer; used when
* those have previously been invalidated by use of hardware volume controls.
*/
static void
eso_reload_master_vol(sc)
struct eso_softc *sc;
{
uint8_t mv;
mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
(mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
(mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
/* Currently both channels are muted simultaneously; either is OK. */
sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
}
static void
eso_set_gain(sc, port)
struct eso_softc *sc;
unsigned int port;
{
uint8_t mixreg, tmp;
switch (port) {
case ESO_DAC_PLAY_VOL:
mixreg = ESO_MIXREG_PVR_A2;
break;
case ESO_MIC_PLAY_VOL:
mixreg = ESO_MIXREG_PVR_MIC;
break;
case ESO_LINE_PLAY_VOL:
mixreg = ESO_MIXREG_PVR_LINE;
break;
case ESO_SYNTH_PLAY_VOL:
mixreg = ESO_MIXREG_PVR_SYNTH;
break;
case ESO_CD_PLAY_VOL:
mixreg = ESO_MIXREG_PVR_CD;
break;
case ESO_AUXB_PLAY_VOL:
mixreg = ESO_MIXREG_PVR_AUXB;
break;
case ESO_DAC_REC_VOL:
mixreg = ESO_MIXREG_RVR_A2;
break;
case ESO_MIC_REC_VOL:
mixreg = ESO_MIXREG_RVR_MIC;
break;
case ESO_LINE_REC_VOL:
mixreg = ESO_MIXREG_RVR_LINE;
break;
case ESO_SYNTH_REC_VOL:
mixreg = ESO_MIXREG_RVR_SYNTH;
break;
case ESO_CD_REC_VOL:
mixreg = ESO_MIXREG_RVR_CD;
break;
case ESO_AUXB_REC_VOL:
mixreg = ESO_MIXREG_RVR_AUXB;
break;
case ESO_MONO_PLAY_VOL:
mixreg = ESO_MIXREG_PVR_MONO;
break;
case ESO_MONO_REC_VOL:
mixreg = ESO_MIXREG_RVR_MONO;
break;
case ESO_PCSPEAKER_VOL:
/* Special case - only 3-bit, mono, and reserved bits. */
tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
tmp &= ESO_MIXREG_PCSVR_RESV;
/* Map bits 7:5 -> 2:0. */
tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
return;
case ESO_MASTER_VOL:
/* Special case - separate regs, and 6-bit precision. */
/* Map bits 7:2 -> 5:0, reflect mute settings. */
eso_write_mixreg(sc, ESO_MIXREG_LMVM,
(sc->sc_gain[port][ESO_LEFT] >> 2) |
(sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
eso_write_mixreg(sc, ESO_MIXREG_RMVM,
(sc->sc_gain[port][ESO_RIGHT] >> 2) |
(sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
return;
case ESO_SPATIALIZER:
/* Special case - only `mono', and higher precision. */
eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
sc->sc_gain[port][ESO_LEFT]);
return;
case ESO_RECORD_VOL:
/* Very Special case, controller register. */
eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
return;
default:
#ifdef DIAGNOSTIC
panic("eso_set_gain: bad port %u", port);
/* NOTREACHED */
#else
return;
#endif
}
eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
}