NetBSD/sys/dev/pci/if_rtwn.c

3580 lines
94 KiB
C

/* $NetBSD: if_rtwn.c,v 1.18 2018/12/09 11:14:02 jdolecek Exp $ */
/* $OpenBSD: if_rtwn.c,v 1.5 2015/06/14 08:02:47 stsp Exp $ */
#define IEEE80211_NO_HT
/*-
* Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2015 Stefan Sperling <stsp@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Realtek RTL8188CE
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_rtwn.c,v 1.18 2018/12/09 11:14:02 jdolecek Exp $");
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <sys/mutex.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/firmload.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/ic/rtwnreg.h>
#include <dev/ic/rtwn_data.h>
#include <dev/pci/if_rtwnreg.h>
#ifdef RTWN_DEBUG
#define DPRINTF(x) do { if (rtwn_debug) printf x; } while (0)
#define DPRINTFN(n, x) do { if (rtwn_debug >= (n)) printf x; } while (0)
int rtwn_debug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
/*
* PCI configuration space registers.
*/
#define RTWN_PCI_IOBA 0x10 /* i/o mapped base */
#define RTWN_PCI_MMBA 0x18 /* memory mapped base */
#define RTWN_INT_ENABLE_TX \
(R92C_IMR_VODOK | R92C_IMR_VIDOK | R92C_IMR_BEDOK | \
R92C_IMR_BKDOK | R92C_IMR_MGNTDOK | \
R92C_IMR_HIGHDOK | R92C_IMR_BDOK)
#define RTWN_INT_ENABLE_RX \
(R92C_IMR_ROK | R92C_IMR_RDU | R92C_IMR_RXFOVW)
#define RTWN_INT_ENABLE (RTWN_INT_ENABLE_TX | RTWN_INT_ENABLE_RX)
static const struct rtwn_device {
pci_vendor_id_t rd_vendor;
pci_product_id_t rd_product;
} rtwn_devices[] = {
{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RTL8188CE },
{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RTL8192CE }
};
static int rtwn_match(device_t, cfdata_t, void *);
static void rtwn_attach(device_t, device_t, void *);
static int rtwn_detach(device_t, int);
static int rtwn_activate(device_t, enum devact);
CFATTACH_DECL_NEW(rtwn, sizeof(struct rtwn_softc), rtwn_match,
rtwn_attach, rtwn_detach, rtwn_activate);
static int rtwn_alloc_rx_list(struct rtwn_softc *);
static void rtwn_reset_rx_list(struct rtwn_softc *);
static void rtwn_free_rx_list(struct rtwn_softc *);
static void rtwn_setup_rx_desc(struct rtwn_softc *, struct r92c_rx_desc_pci *,
bus_addr_t, size_t, int);
static int rtwn_alloc_tx_list(struct rtwn_softc *, int);
static void rtwn_reset_tx_list(struct rtwn_softc *, int);
static void rtwn_free_tx_list(struct rtwn_softc *, int);
static void rtwn_write_1(struct rtwn_softc *, uint16_t, uint8_t);
static void rtwn_write_2(struct rtwn_softc *, uint16_t, uint16_t);
static void rtwn_write_4(struct rtwn_softc *, uint16_t, uint32_t);
static uint8_t rtwn_read_1(struct rtwn_softc *, uint16_t);
static uint16_t rtwn_read_2(struct rtwn_softc *, uint16_t);
static uint32_t rtwn_read_4(struct rtwn_softc *, uint16_t);
static int rtwn_fw_cmd(struct rtwn_softc *, uint8_t, const void *, int);
static void rtwn_rf_write(struct rtwn_softc *, int, uint8_t, uint32_t);
static uint32_t rtwn_rf_read(struct rtwn_softc *, int, uint8_t);
static int rtwn_llt_write(struct rtwn_softc *, uint32_t, uint32_t);
static uint8_t rtwn_efuse_read_1(struct rtwn_softc *, uint16_t);
static void rtwn_efuse_read(struct rtwn_softc *);
static int rtwn_read_chipid(struct rtwn_softc *);
static void rtwn_efuse_switch_power(struct rtwn_softc *);
static void rtwn_read_rom(struct rtwn_softc *);
static int rtwn_media_change(struct ifnet *);
static int rtwn_ra_init(struct rtwn_softc *);
static int rtwn_get_nettype(struct rtwn_softc *);
static void rtwn_set_nettype0_msr(struct rtwn_softc *, uint8_t);
static void rtwn_tsf_sync_enable(struct rtwn_softc *);
static void rtwn_set_led(struct rtwn_softc *, int, int);
static void rtwn_calib_to(void *);
static void rtwn_next_scan(void *);
static void rtwn_newassoc(struct ieee80211_node *, int);
static int rtwn_reset(struct ifnet *);
static int rtwn_newstate(struct ieee80211com *, enum ieee80211_state,
int);
static int rtwn_wme_update(struct ieee80211com *);
static void rtwn_update_avgrssi(struct rtwn_softc *, int, int8_t);
static int8_t rtwn_get_rssi(struct rtwn_softc *, int, void *);
static void rtwn_rx_frame(struct rtwn_softc *, struct r92c_rx_desc_pci *,
struct rtwn_rx_data *, int);
static int rtwn_tx(struct rtwn_softc *, struct mbuf *,
struct ieee80211_node *);
static void rtwn_tx_done(struct rtwn_softc *, int);
static void rtwn_start(struct ifnet *);
static void rtwn_watchdog(struct ifnet *);
static int rtwn_ioctl(struct ifnet *, u_long, void *);
static int rtwn_power_on(struct rtwn_softc *);
static int rtwn_llt_init(struct rtwn_softc *);
static void rtwn_fw_reset(struct rtwn_softc *);
static int rtwn_fw_loadpage(struct rtwn_softc *, int, uint8_t *, int);
static int rtwn_load_firmware(struct rtwn_softc *);
static int rtwn_dma_init(struct rtwn_softc *);
static void rtwn_mac_init(struct rtwn_softc *);
static void rtwn_bb_init(struct rtwn_softc *);
static void rtwn_rf_init(struct rtwn_softc *);
static void rtwn_cam_init(struct rtwn_softc *);
static void rtwn_pa_bias_init(struct rtwn_softc *);
static void rtwn_rxfilter_init(struct rtwn_softc *);
static void rtwn_edca_init(struct rtwn_softc *);
static void rtwn_write_txpower(struct rtwn_softc *, int, uint16_t[]);
static void rtwn_get_txpower(struct rtwn_softc *, int,
struct ieee80211_channel *, struct ieee80211_channel *,
uint16_t[]);
static void rtwn_set_txpower(struct rtwn_softc *,
struct ieee80211_channel *, struct ieee80211_channel *);
static void rtwn_set_chan(struct rtwn_softc *,
struct ieee80211_channel *, struct ieee80211_channel *);
static void rtwn_iq_calib(struct rtwn_softc *);
static void rtwn_lc_calib(struct rtwn_softc *);
static void rtwn_temp_calib(struct rtwn_softc *);
static int rtwn_init(struct ifnet *);
static void rtwn_init_task(void *);
static void rtwn_stop(struct ifnet *, int);
static int rtwn_intr(void *);
static void rtwn_softintr(void *);
/* Aliases. */
#define rtwn_bb_write rtwn_write_4
#define rtwn_bb_read rtwn_read_4
static const struct rtwn_device *
rtwn_lookup(const struct pci_attach_args *pa)
{
const struct rtwn_device *rd;
int i;
for (i = 0; i < __arraycount(rtwn_devices); i++) {
rd = &rtwn_devices[i];
if (PCI_VENDOR(pa->pa_id) == rd->rd_vendor &&
PCI_PRODUCT(pa->pa_id) == rd->rd_product)
return rd;
}
return NULL;
}
static int
rtwn_match(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = aux;
if (rtwn_lookup(pa) != NULL)
return 1;
return 0;
}
static void
rtwn_attach(device_t parent, device_t self, void *aux)
{
struct rtwn_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = GET_IFP(sc);
int i, error;
pcireg_t memtype;
const char *intrstr;
char intrbuf[PCI_INTRSTR_LEN];
sc->sc_dev = self;
sc->sc_dmat = pa->pa_dmat;
sc->sc_pc = pa->pa_pc;
sc->sc_tag = pa->pa_tag;
pci_aprint_devinfo(pa, NULL);
callout_init(&sc->scan_to, 0);
callout_setfunc(&sc->scan_to, rtwn_next_scan, sc);
callout_init(&sc->calib_to, 0);
callout_setfunc(&sc->calib_to, rtwn_calib_to, sc);
sc->sc_soft_ih = softint_establish(SOFTINT_NET, rtwn_softintr, sc);
sc->init_task = softint_establish(SOFTINT_NET, rtwn_init_task, sc);
/* Power up the device */
pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
/* Map control/status registers. */
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, RTWN_PCI_MMBA);
error = pci_mapreg_map(pa, RTWN_PCI_MMBA, memtype, 0, &sc->sc_st,
&sc->sc_sh, NULL, &sc->sc_mapsize);
if (error != 0) {
aprint_error_dev(self, "can't map mem space\n");
return;
}
/* Install interrupt handler. */
if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
aprint_error_dev(self, "can't map interrupt\n");
return;
}
intrstr = pci_intr_string(sc->sc_pc, sc->sc_pihp[0], intrbuf,
sizeof(intrbuf));
sc->sc_ih = pci_intr_establish_xname(sc->sc_pc, sc->sc_pihp[0], IPL_NET,
rtwn_intr, sc, device_xname(self));
if (sc->sc_ih == NULL) {
aprint_error_dev(self, "can't establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
error = rtwn_read_chipid(sc);
if (error != 0) {
aprint_error_dev(self, "unsupported test or unknown chip\n");
return;
}
/* Disable PCIe Active State Power Management (ASPM). */
if (pci_get_capability(sc->sc_pc, sc->sc_tag, PCI_CAP_PCIEXPRESS,
&sc->sc_cap_off, NULL)) {
uint32_t lcsr = pci_conf_read(sc->sc_pc, sc->sc_tag,
sc->sc_cap_off + PCIE_LCSR);
lcsr &= ~(PCIE_LCSR_ASPM_L0S | PCIE_LCSR_ASPM_L1);
pci_conf_write(sc->sc_pc, sc->sc_tag,
sc->sc_cap_off + PCIE_LCSR, lcsr);
}
/* Allocate Tx/Rx buffers. */
error = rtwn_alloc_rx_list(sc);
if (error != 0) {
aprint_error_dev(self, "could not allocate Rx buffers\n");
return;
}
for (i = 0; i < RTWN_NTXQUEUES; i++) {
error = rtwn_alloc_tx_list(sc, i);
if (error != 0) {
aprint_error_dev(self,
"could not allocate Tx buffers\n");
return;
}
}
/* Determine number of Tx/Rx chains. */
if (sc->chip & RTWN_CHIP_92C) {
sc->ntxchains = (sc->chip & RTWN_CHIP_92C_1T2R) ? 1 : 2;
sc->nrxchains = 2;
} else {
sc->ntxchains = 1;
sc->nrxchains = 1;
}
rtwn_read_rom(sc);
aprint_normal_dev(self, "MAC/BB RTL%s, RF 6052 %dT%dR, address %s\n",
(sc->chip & RTWN_CHIP_92C) ? "8192CE" : "8188CE",
sc->ntxchains, sc->nrxchains, ether_sprintf(ic->ic_myaddr));
/*
* Setup the 802.11 device.
*/
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* Not only, but not used. */
ic->ic_opmode = IEEE80211_M_STA; /* Default to BSS mode. */
ic->ic_state = IEEE80211_S_INIT;
/* Set device capabilities. */
ic->ic_caps =
IEEE80211_C_MONITOR | /* Monitor mode supported. */
IEEE80211_C_IBSS | /* IBSS mode supported */
IEEE80211_C_HOSTAP | /* HostAp mode supported */
IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
IEEE80211_C_SHSLOT | /* Short slot time supported. */
IEEE80211_C_WME | /* 802.11e */
IEEE80211_C_WPA; /* WPA/RSN. */
#ifndef IEEE80211_NO_HT
/* Set HT capabilities. */
ic->ic_htcaps =
IEEE80211_HTCAP_CBW20_40 |
IEEE80211_HTCAP_DSSSCCK40;
/* Set supported HT rates. */
for (i = 0; i < sc->nrxchains; i++)
ic->ic_sup_mcs[i] = 0xff;
#endif
/* Set supported .11b and .11g rates. */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
/* Set supported .11b and .11g channels (1 through 14). */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = rtwn_init;
ifp->if_ioctl = rtwn_ioctl;
ifp->if_start = rtwn_start;
ifp->if_watchdog = rtwn_watchdog;
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
error = if_initialize(ifp);
if (error != 0) {
ifp->if_softc = NULL; /* For rtwn_detach() */
aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
error);
goto fail;
}
ieee80211_ifattach(ic);
/* Use common softint-based if_input */
ifp->if_percpuq = if_percpuq_create(ifp);
if_register(ifp);
/* override default methods */
ic->ic_newassoc = rtwn_newassoc;
ic->ic_reset = rtwn_reset;
ic->ic_wme.wme_update = rtwn_wme_update;
/* Override state transition machine. */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = rtwn_newstate;
ieee80211_media_init(ic, rtwn_media_change, ieee80211_media_status);
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(RTWN_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof(sc->sc_txtapu);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(RTWN_TX_RADIOTAP_PRESENT);
ieee80211_announce(ic);
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
return;
fail:
rtwn_detach(self, 0);
}
static int
rtwn_detach(device_t self, int flags)
{
struct rtwn_softc *sc = device_private(self);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = GET_IFP(sc);
int s, i;
callout_stop(&sc->scan_to);
callout_stop(&sc->calib_to);
s = splnet();
if (ifp->if_softc != NULL) {
rtwn_stop(ifp, 0);
pmf_device_deregister(self);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
bpf_detach(ifp);
ieee80211_ifdetach(ic);
if_detach(ifp);
}
/* Free Tx/Rx buffers. */
for (i = 0; i < RTWN_NTXQUEUES; i++)
rtwn_free_tx_list(sc, i);
rtwn_free_rx_list(sc);
splx(s);
callout_destroy(&sc->scan_to);
callout_destroy(&sc->calib_to);
if (sc->init_task != NULL)
softint_disestablish(sc->init_task);
if (sc->sc_soft_ih != NULL)
softint_disestablish(sc->sc_soft_ih);
if (sc->sc_ih != NULL) {
pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
pci_intr_release(sc->sc_pc, sc->sc_pihp, 1);
}
return 0;
}
static int
rtwn_activate(device_t self, enum devact act)
{
struct rtwn_softc *sc = device_private(self);
struct ifnet *ifp = GET_IFP(sc);
switch (act) {
case DVACT_DEACTIVATE:
if (ifp->if_flags & IFF_RUNNING)
rtwn_stop(ifp, 0);
return 0;
default:
return EOPNOTSUPP;
}
}
static void
rtwn_setup_rx_desc(struct rtwn_softc *sc, struct r92c_rx_desc_pci *desc,
bus_addr_t addr, size_t len, int idx)
{
memset(desc, 0, sizeof(*desc));
desc->rxdw0 = htole32(SM(R92C_RXDW0_PKTLEN, len) |
((idx == RTWN_RX_LIST_COUNT - 1) ? R92C_RXDW0_EOR : 0));
desc->rxbufaddr = htole32(addr);
bus_space_barrier(sc->sc_st, sc->sc_sh, 0, sc->sc_mapsize,
BUS_SPACE_BARRIER_WRITE);
desc->rxdw0 |= htole32(R92C_RXDW0_OWN);
}
static int
rtwn_alloc_rx_list(struct rtwn_softc *sc)
{
struct rtwn_rx_ring *rx_ring = &sc->rx_ring;
struct rtwn_rx_data *rx_data;
const size_t size = sizeof(struct r92c_rx_desc_pci) * RTWN_RX_LIST_COUNT;
int i, error = 0;
/* Allocate Rx descriptors. */
error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
&rx_ring->map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create rx desc DMA map\n");
rx_ring->map = NULL;
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &rx_ring->seg, 1,
&rx_ring->nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not allocate rx desc\n");
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &rx_ring->seg, rx_ring->nsegs,
size, (void **)&rx_ring->desc, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
if (error != 0) {
bus_dmamem_free(sc->sc_dmat, &rx_ring->seg, rx_ring->nsegs);
rx_ring->desc = NULL;
aprint_error_dev(sc->sc_dev, "could not map rx desc\n");
goto fail;
}
memset(rx_ring->desc, 0, size);
error = bus_dmamap_load_raw(sc->sc_dmat, rx_ring->map, &rx_ring->seg,
1, size, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not load rx desc\n");
goto fail;
}
/* Allocate Rx buffers. */
for (i = 0; i < RTWN_RX_LIST_COUNT; i++) {
rx_data = &rx_ring->rx_data[i];
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT, &rx_data->map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create rx buf DMA map\n");
goto fail;
}
MGETHDR(rx_data->m, M_DONTWAIT, MT_DATA);
if (__predict_false(rx_data->m == NULL)) {
aprint_error_dev(sc->sc_dev,
"couldn't allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
MCLGET(rx_data->m, M_DONTWAIT);
if (__predict_false(!(rx_data->m->m_flags & M_EXT))) {
aprint_error_dev(sc->sc_dev,
"couldn't allocate rx mbuf cluster\n");
m_free(rx_data->m);
rx_data->m = NULL;
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, rx_data->map,
mtod(rx_data->m, void *), MCLBYTES, NULL,
BUS_DMA_NOWAIT | BUS_DMA_READ);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not load rx buf DMA map\n");
goto fail;
}
bus_dmamap_sync(sc->sc_dmat, rx_data->map, 0, MCLBYTES,
BUS_DMASYNC_PREREAD);
rtwn_setup_rx_desc(sc, &rx_ring->desc[i],
rx_data->map->dm_segs[0].ds_addr, MCLBYTES, i);
}
fail: if (error != 0)
rtwn_free_rx_list(sc);
return error;
}
static void
rtwn_reset_rx_list(struct rtwn_softc *sc)
{
struct rtwn_rx_ring *rx_ring = &sc->rx_ring;
struct rtwn_rx_data *rx_data;
int i;
for (i = 0; i < RTWN_RX_LIST_COUNT; i++) {
rx_data = &rx_ring->rx_data[i];
rtwn_setup_rx_desc(sc, &rx_ring->desc[i],
rx_data->map->dm_segs[0].ds_addr, MCLBYTES, i);
}
}
static void
rtwn_free_rx_list(struct rtwn_softc *sc)
{
struct rtwn_rx_ring *rx_ring = &sc->rx_ring;
struct rtwn_rx_data *rx_data;
int i, s;
s = splnet();
if (rx_ring->map) {
if (rx_ring->desc) {
bus_dmamap_unload(sc->sc_dmat, rx_ring->map);
bus_dmamem_unmap(sc->sc_dmat, rx_ring->desc,
sizeof (struct r92c_rx_desc_pci) * RTWN_RX_LIST_COUNT);
bus_dmamem_free(sc->sc_dmat, &rx_ring->seg,
rx_ring->nsegs);
rx_ring->desc = NULL;
}
bus_dmamap_destroy(sc->sc_dmat, rx_ring->map);
rx_ring->map = NULL;
}
for (i = 0; i < RTWN_RX_LIST_COUNT; i++) {
rx_data = &rx_ring->rx_data[i];
if (rx_data->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, rx_data->map);
m_freem(rx_data->m);
rx_data->m = NULL;
}
bus_dmamap_destroy(sc->sc_dmat, rx_data->map);
rx_data->map = NULL;
}
splx(s);
}
static int
rtwn_alloc_tx_list(struct rtwn_softc *sc, int qid)
{
struct rtwn_tx_ring *tx_ring = &sc->tx_ring[qid];
struct rtwn_tx_data *tx_data;
const size_t size = sizeof(struct r92c_tx_desc_pci) * RTWN_TX_LIST_COUNT;
int i = 0, error = 0;
error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
&tx_ring->map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create tx ring DMA map\n");
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
&tx_ring->seg, 1, &tx_ring->nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate tx ring DMA memory\n");
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &tx_ring->seg, tx_ring->nsegs,
size, (void **)&tx_ring->desc, BUS_DMA_NOWAIT);
if (error != 0) {
bus_dmamem_free(sc->sc_dmat, &tx_ring->seg, tx_ring->nsegs);
aprint_error_dev(sc->sc_dev, "can't map tx ring DMA memory\n");
goto fail;
}
memset(tx_ring->desc, 0, size);
error = bus_dmamap_load(sc->sc_dmat, tx_ring->map, tx_ring->desc,
size, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not load tx ring DMA map\n");
goto fail;
}
for (i = 0; i < RTWN_TX_LIST_COUNT; i++) {
struct r92c_tx_desc_pci *desc = &tx_ring->desc[i];
/* setup tx desc */
desc->nextdescaddr = htole32(tx_ring->map->dm_segs[0].ds_addr
+ sizeof(*desc) * ((i + 1) % RTWN_TX_LIST_COUNT));
tx_data = &tx_ring->tx_data[i];
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT, &tx_data->map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create tx buf DMA map\n");
goto fail;
}
tx_data->m = NULL;
tx_data->ni = NULL;
}
fail:
if (error != 0)
rtwn_free_tx_list(sc, qid);
return error;
}
static void
rtwn_reset_tx_list(struct rtwn_softc *sc, int qid)
{
struct rtwn_tx_ring *tx_ring = &sc->tx_ring[qid];
int i;
for (i = 0; i < RTWN_TX_LIST_COUNT; i++) {
struct r92c_tx_desc_pci *desc = &tx_ring->desc[i];
struct rtwn_tx_data *tx_data = &tx_ring->tx_data[i];
memset(desc, 0, sizeof(*desc) -
(sizeof(desc->reserved) + sizeof(desc->nextdescaddr64) +
sizeof(desc->nextdescaddr)));
if (tx_data->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, tx_data->map);
m_freem(tx_data->m);
tx_data->m = NULL;
ieee80211_free_node(tx_data->ni);
tx_data->ni = NULL;
}
}
sc->qfullmsk &= ~(1 << qid);
tx_ring->queued = 0;
tx_ring->cur = 0;
}
static void
rtwn_free_tx_list(struct rtwn_softc *sc, int qid)
{
struct rtwn_tx_ring *tx_ring = &sc->tx_ring[qid];
struct rtwn_tx_data *tx_data;
int i;
if (tx_ring->map != NULL) {
if (tx_ring->desc != NULL) {
bus_dmamap_unload(sc->sc_dmat, tx_ring->map);
bus_dmamem_unmap(sc->sc_dmat, tx_ring->desc,
sizeof (struct r92c_tx_desc_pci) * RTWN_TX_LIST_COUNT);
bus_dmamem_free(sc->sc_dmat, &tx_ring->seg,
tx_ring->nsegs);
}
bus_dmamap_destroy(sc->sc_dmat, tx_ring->map);
}
for (i = 0; i < RTWN_TX_LIST_COUNT; i++) {
tx_data = &tx_ring->tx_data[i];
if (tx_data->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, tx_data->map);
m_freem(tx_data->m);
tx_data->m = NULL;
}
bus_dmamap_destroy(sc->sc_dmat, tx_data->map);
}
sc->qfullmsk &= ~(1 << qid);
tx_ring->queued = 0;
tx_ring->cur = 0;
}
static void
rtwn_write_1(struct rtwn_softc *sc, uint16_t addr, uint8_t val)
{
bus_space_write_1(sc->sc_st, sc->sc_sh, addr, val);
}
static void
rtwn_write_2(struct rtwn_softc *sc, uint16_t addr, uint16_t val)
{
bus_space_write_2(sc->sc_st, sc->sc_sh, addr, htole16(val));
}
static void
rtwn_write_4(struct rtwn_softc *sc, uint16_t addr, uint32_t val)
{
bus_space_write_4(sc->sc_st, sc->sc_sh, addr, htole32(val));
}
static uint8_t
rtwn_read_1(struct rtwn_softc *sc, uint16_t addr)
{
return bus_space_read_1(sc->sc_st, sc->sc_sh, addr);
}
static uint16_t
rtwn_read_2(struct rtwn_softc *sc, uint16_t addr)
{
return le16toh(bus_space_read_2(sc->sc_st, sc->sc_sh, addr));
}
static uint32_t
rtwn_read_4(struct rtwn_softc *sc, uint16_t addr)
{
return le32toh(bus_space_read_4(sc->sc_st, sc->sc_sh, addr));
}
static int
rtwn_fw_cmd(struct rtwn_softc *sc, uint8_t id, const void *buf, int len)
{
struct r92c_fw_cmd cmd;
uint8_t *cp;
int fwcur;
int ntries;
DPRINTFN(3, ("%s: %s: id=0x%02x, buf=%p, len=%d\n",
device_xname(sc->sc_dev), __func__, id, buf, len));
fwcur = sc->fwcur;
sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX;
/* Wait for current FW box to be empty. */
for (ntries = 0; ntries < 100; ntries++) {
if (!(rtwn_read_1(sc, R92C_HMETFR) & (1 << sc->fwcur)))
break;
DELAY(1);
}
if (ntries == 100) {
aprint_error_dev(sc->sc_dev,
"could not send firmware command %d\n", id);
return ETIMEDOUT;
}
memset(&cmd, 0, sizeof(cmd));
KASSERT(len <= sizeof(cmd.msg));
memcpy(cmd.msg, buf, len);
/* Write the first word last since that will trigger the FW. */
cp = (uint8_t *)&cmd;
if (len >= 4) {
cmd.id = id | R92C_CMD_FLAG_EXT;
rtwn_write_2(sc, R92C_HMEBOX_EXT(fwcur), cp[1] + (cp[2] << 8));
rtwn_write_4(sc, R92C_HMEBOX(fwcur),
cp[0] + (cp[3] << 8) + (cp[4] << 16) + (cp[5] << 24));
} else {
cmd.id = id;
rtwn_write_4(sc, R92C_HMEBOX(fwcur),
cp[0] + (cp[1] << 8) + (cp[2] << 16) + (cp[3] << 24));
}
/* Give firmware some time for processing. */
DELAY(2000);
return 0;
}
static void
rtwn_rf_write(struct rtwn_softc *sc, int chain, uint8_t addr, uint32_t val)
{
rtwn_bb_write(sc, R92C_LSSI_PARAM(chain),
SM(R92C_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val));
}
static uint32_t
rtwn_rf_read(struct rtwn_softc *sc, int chain, uint8_t addr)
{
uint32_t reg[R92C_MAX_CHAINS], val;
reg[0] = rtwn_bb_read(sc, R92C_HSSI_PARAM2(0));
if (chain != 0)
reg[chain] = rtwn_bb_read(sc, R92C_HSSI_PARAM2(chain));
rtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE);
DELAY(1000);
rtwn_bb_write(sc, R92C_HSSI_PARAM2(chain),
RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) |
R92C_HSSI_PARAM2_READ_EDGE);
DELAY(1000);
rtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
reg[0] | R92C_HSSI_PARAM2_READ_EDGE);
DELAY(1000);
if (rtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI)
val = rtwn_bb_read(sc, R92C_HSPI_READBACK(chain));
else
val = rtwn_bb_read(sc, R92C_LSSI_READBACK(chain));
return MS(val, R92C_LSSI_READBACK_DATA);
}
static int
rtwn_llt_write(struct rtwn_softc *sc, uint32_t addr, uint32_t data)
{
int ntries;
rtwn_write_4(sc, R92C_LLT_INIT,
SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) |
SM(R92C_LLT_INIT_ADDR, addr) |
SM(R92C_LLT_INIT_DATA, data));
/* Wait for write operation to complete. */
for (ntries = 0; ntries < 20; ntries++) {
if (MS(rtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) ==
R92C_LLT_INIT_OP_NO_ACTIVE)
return 0;
DELAY(5);
}
return ETIMEDOUT;
}
static uint8_t
rtwn_efuse_read_1(struct rtwn_softc *sc, uint16_t addr)
{
uint32_t reg;
int ntries;
reg = rtwn_read_4(sc, R92C_EFUSE_CTRL);
reg = RW(reg, R92C_EFUSE_CTRL_ADDR, addr);
reg &= ~R92C_EFUSE_CTRL_VALID;
rtwn_write_4(sc, R92C_EFUSE_CTRL, reg);
/* Wait for read operation to complete. */
for (ntries = 0; ntries < 100; ntries++) {
reg = rtwn_read_4(sc, R92C_EFUSE_CTRL);
if (reg & R92C_EFUSE_CTRL_VALID)
return MS(reg, R92C_EFUSE_CTRL_DATA);
DELAY(5);
}
aprint_error_dev(sc->sc_dev,
"could not read efuse byte at address 0x%x\n", addr);
return 0xff;
}
static void
rtwn_efuse_read(struct rtwn_softc *sc)
{
uint8_t *rom = (uint8_t *)&sc->rom;
uint32_t reg;
uint16_t addr = 0;
uint8_t off, msk;
int i;
rtwn_efuse_switch_power(sc);
memset(&sc->rom, 0xff, sizeof(sc->rom));
while (addr < 512) {
reg = rtwn_efuse_read_1(sc, addr);
if (reg == 0xff)
break;
addr++;
off = reg >> 4;
msk = reg & 0xf;
for (i = 0; i < 4; i++) {
if (msk & (1 << i))
continue;
rom[off * 8 + i * 2 + 0] = rtwn_efuse_read_1(sc, addr);
addr++;
rom[off * 8 + i * 2 + 1] = rtwn_efuse_read_1(sc, addr);
addr++;
}
}
#ifdef RTWN_DEBUG
if (rtwn_debug >= 2) {
/* Dump ROM content. */
printf("\n");
for (i = 0; i < sizeof(sc->rom); i++)
printf("%02x:", rom[i]);
printf("\n");
}
#endif
}
static void
rtwn_efuse_switch_power(struct rtwn_softc *sc)
{
uint32_t reg;
reg = rtwn_read_2(sc, R92C_SYS_ISO_CTRL);
if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) {
rtwn_write_2(sc, R92C_SYS_ISO_CTRL,
reg | R92C_SYS_ISO_CTRL_PWC_EV12V);
}
reg = rtwn_read_2(sc, R92C_SYS_FUNC_EN);
if (!(reg & R92C_SYS_FUNC_EN_ELDR)) {
rtwn_write_2(sc, R92C_SYS_FUNC_EN,
reg | R92C_SYS_FUNC_EN_ELDR);
}
reg = rtwn_read_2(sc, R92C_SYS_CLKR);
if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) !=
(R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) {
rtwn_write_2(sc, R92C_SYS_CLKR,
reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M);
}
}
/* rtwn_read_chipid: reg=0x40073b chipid=0x0 */
static int
rtwn_read_chipid(struct rtwn_softc *sc)
{
uint32_t reg;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
reg = rtwn_read_4(sc, R92C_SYS_CFG);
DPRINTF(("%s: version=0x%08x\n", device_xname(sc->sc_dev), reg));
if (reg & R92C_SYS_CFG_TRP_VAUX_EN)
/* Unsupported test chip. */
return EIO;
if (reg & R92C_SYS_CFG_TYPE_92C) {
sc->chip |= RTWN_CHIP_92C;
/* Check if it is a castrated 8192C. */
if (MS(rtwn_read_4(sc, R92C_HPON_FSM),
R92C_HPON_FSM_CHIP_BONDING_ID) ==
R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R)
sc->chip |= RTWN_CHIP_92C_1T2R;
}
if (reg & R92C_SYS_CFG_VENDOR_UMC) {
sc->chip |= RTWN_CHIP_UMC;
if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0)
sc->chip |= RTWN_CHIP_UMC_A_CUT;
} else if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) != 0) {
if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 1)
sc->chip |= RTWN_CHIP_UMC | RTWN_CHIP_UMC_B_CUT;
else
/* Unsupported unknown chip. */
return EIO;
}
return 0;
}
static void
rtwn_read_rom(struct rtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct r92c_rom *rom = &sc->rom;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Read full ROM image. */
rtwn_efuse_read(sc);
if (rom->id != 0x8129) {
aprint_error_dev(sc->sc_dev, "invalid EEPROM ID 0x%x\n",
rom->id);
}
/* XXX Weird but this is what the vendor driver does. */
sc->pa_setting = rtwn_efuse_read_1(sc, 0x1fa);
sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE);
sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY);
DPRINTF(("PA setting=0x%x, board=0x%x, regulatory=%d\n",
sc->pa_setting, sc->board_type, sc->regulatory));
IEEE80211_ADDR_COPY(ic->ic_myaddr, rom->macaddr);
}
static int
rtwn_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
rtwn_stop(ifp, 0);
error = rtwn_init(ifp);
}
return error;
}
/*
* Initialize rate adaptation in firmware.
*/
static int
rtwn_ra_init(struct rtwn_softc *sc)
{
static const uint8_t map[] = {
2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108
};
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct ieee80211_rateset *rs = &ni->ni_rates;
struct r92c_fw_cmd_macid_cfg cmd;
uint32_t rates, basicrates;
uint8_t mode;
int maxrate, maxbasicrate, error, i, j;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Get normal and basic rates mask. */
rates = basicrates = 0;
maxrate = maxbasicrate = 0;
for (i = 0; i < rs->rs_nrates; i++) {
/* Convert 802.11 rate to HW rate index. */
for (j = 0; j < __arraycount(map); j++)
if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == map[j])
break;
if (j == __arraycount(map)) /* Unknown rate, skip. */
continue;
rates |= 1 << j;
if (j > maxrate)
maxrate = j;
if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) {
basicrates |= 1 << j;
if (j > maxbasicrate)
maxbasicrate = j;
}
}
if (ic->ic_curmode == IEEE80211_MODE_11B)
mode = R92C_RAID_11B;
else
mode = R92C_RAID_11BG;
DPRINTF(("%s: mode=0x%x rates=0x%08x, basicrates=0x%08x\n",
device_xname(sc->sc_dev), mode, rates, basicrates));
if (basicrates == 0)
basicrates |= 1; /* add 1Mbps */
/* Set rates mask for group addressed frames. */
cmd.macid = RTWN_MACID_BC | RTWN_MACID_VALID;
cmd.mask = htole32((mode << 28) | basicrates);
error = rtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not add broadcast station\n");
return error;
}
/* Set initial MRR rate. */
DPRINTF(("%s: maxbasicrate=%d\n", device_xname(sc->sc_dev),
maxbasicrate));
rtwn_write_1(sc, R92C_INIDATA_RATE_SEL(RTWN_MACID_BC), maxbasicrate);
/* Set rates mask for unicast frames. */
cmd.macid = RTWN_MACID_BSS | RTWN_MACID_VALID;
cmd.mask = htole32((mode << 28) | rates);
error = rtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not add BSS station\n");
return error;
}
/* Set initial MRR rate. */
DPRINTF(("%s: maxrate=%d\n", device_xname(sc->sc_dev), maxrate));
rtwn_write_1(sc, R92C_INIDATA_RATE_SEL(RTWN_MACID_BSS), maxrate);
/* Configure Automatic Rate Fallback Register. */
if (ic->ic_curmode == IEEE80211_MODE_11B) {
if (rates & 0x0c)
rtwn_write_4(sc, R92C_ARFR(0), htole32(rates & 0x0d));
else
rtwn_write_4(sc, R92C_ARFR(0), htole32(rates & 0x0f));
} else
rtwn_write_4(sc, R92C_ARFR(0), htole32(rates & 0x0ff5));
/* Indicate highest supported rate. */
ni->ni_txrate = rs->rs_nrates - 1;
return 0;
}
static int
rtwn_get_nettype(struct rtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int type;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
type = R92C_CR_NETTYPE_INFRA;
break;
case IEEE80211_M_HOSTAP:
type = R92C_CR_NETTYPE_AP;
break;
case IEEE80211_M_IBSS:
type = R92C_CR_NETTYPE_ADHOC;
break;
default:
type = R92C_CR_NETTYPE_NOLINK;
break;
}
return type;
}
static void
rtwn_set_nettype0_msr(struct rtwn_softc *sc, uint8_t type)
{
uint32_t reg;
reg = rtwn_read_4(sc, R92C_CR);
reg = RW(reg, R92C_CR_NETTYPE, type);
rtwn_write_4(sc, R92C_CR, reg);
}
static void
rtwn_tsf_sync_enable(struct rtwn_softc *sc)
{
struct ieee80211_node *ni = sc->sc_ic.ic_bss;
uint64_t tsf;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Enable TSF synchronization. */
rtwn_write_1(sc, R92C_BCN_CTRL,
rtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_DIS_TSF_UDT0);
rtwn_write_1(sc, R92C_BCN_CTRL,
rtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN);
/* Set initial TSF. */
tsf = ni->ni_tstamp.tsf;
tsf = le64toh(tsf);
tsf = tsf - (tsf % (ni->ni_intval * IEEE80211_DUR_TU));
tsf -= IEEE80211_DUR_TU;
rtwn_write_4(sc, R92C_TSFTR + 0, (uint32_t)tsf);
rtwn_write_4(sc, R92C_TSFTR + 4, (uint32_t)(tsf >> 32));
rtwn_write_1(sc, R92C_BCN_CTRL,
rtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN);
}
static void
rtwn_set_led(struct rtwn_softc *sc, int led, int on)
{
uint8_t reg;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
if (led == RTWN_LED_LINK) {
reg = rtwn_read_1(sc, R92C_LEDCFG2) & 0xf0;
if (!on)
reg |= R92C_LEDCFG2_DIS;
else
reg |= R92C_LEDCFG2_EN;
rtwn_write_1(sc, R92C_LEDCFG2, reg);
sc->ledlink = on; /* Save LED state. */
}
}
static void
rtwn_calib_to(void *arg)
{
struct rtwn_softc *sc = arg;
struct r92c_fw_cmd_rssi cmd;
int s;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
s = splnet();
if (sc->sc_ic.ic_state != IEEE80211_S_RUN)
goto restart_timer;
if (sc->avg_pwdb != -1) {
/* Indicate Rx signal strength to FW for rate adaptation. */
memset(&cmd, 0, sizeof(cmd));
cmd.macid = 0; /* BSS. */
cmd.pwdb = sc->avg_pwdb;
DPRINTFN(3, ("sending RSSI command avg=%d\n", sc->avg_pwdb));
rtwn_fw_cmd(sc, R92C_CMD_RSSI_SETTING, &cmd, sizeof(cmd));
}
/* Do temperature compensation. */
rtwn_temp_calib(sc);
restart_timer:
callout_schedule(&sc->calib_to, mstohz(2000));
splx(s);
}
static void
rtwn_next_scan(void *arg)
{
struct rtwn_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int s;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
s = splnet();
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
splx(s);
}
static void
rtwn_newassoc(struct ieee80211_node *ni, int isnew)
{
DPRINTF(("%s: new node %s\n", __func__, ether_sprintf(ni->ni_macaddr)));
/* start with lowest Tx rate */
ni->ni_txrate = 0;
}
static int
rtwn_reset(struct ifnet *ifp)
{
struct rtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_opmode != IEEE80211_M_MONITOR)
return ENETRESET;
rtwn_set_chan(sc, ic->ic_curchan, NULL);
return 0;
}
static int
rtwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct rtwn_softc *sc = IC2IFP(ic)->if_softc;
struct ieee80211_node *ni;
enum ieee80211_state ostate = ic->ic_state;
uint32_t reg;
int s;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
s = splnet();
callout_stop(&sc->scan_to);
callout_stop(&sc->calib_to);
if (ostate != nstate) {
DPRINTF(("%s: %s -> %s\n", __func__,
ieee80211_state_name[ostate],
ieee80211_state_name[nstate]));
}
switch (ostate) {
case IEEE80211_S_INIT:
break;
case IEEE80211_S_SCAN:
if (nstate != IEEE80211_S_SCAN) {
/*
* End of scanning
*/
/* flush 4-AC Queue after site_survey */
rtwn_write_1(sc, R92C_TXPAUSE, 0x0);
/* Allow Rx from our BSSID only. */
rtwn_write_4(sc, R92C_RCR,
rtwn_read_4(sc, R92C_RCR) |
R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
}
break;
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
break;
case IEEE80211_S_RUN:
/* Turn link LED off. */
rtwn_set_led(sc, RTWN_LED_LINK, 0);
/* Set media status to 'No Link'. */
rtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
/* Stop Rx of data frames. */
rtwn_write_2(sc, R92C_RXFLTMAP2, 0);
/* Rest TSF. */
rtwn_write_1(sc, R92C_DUAL_TSF_RST, 0x03);
/* Disable TSF synchronization. */
rtwn_write_1(sc, R92C_BCN_CTRL,
rtwn_read_1(sc, R92C_BCN_CTRL) |
R92C_BCN_CTRL_DIS_TSF_UDT0);
/* Back to 20MHz mode */
rtwn_set_chan(sc, ic->ic_curchan, NULL);
/* Reset EDCA parameters. */
rtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3217);
rtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4317);
rtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x00105320);
rtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a444);
/* flush all cam entries */
rtwn_cam_init(sc);
break;
}
switch (nstate) {
case IEEE80211_S_INIT:
/* Turn link LED off. */
rtwn_set_led(sc, RTWN_LED_LINK, 0);
break;
case IEEE80211_S_SCAN:
if (ostate != IEEE80211_S_SCAN) {
/*
* Begin of scanning
*/
/* Set gain for scanning. */
reg = rtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
rtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
reg = rtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
rtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
/* Allow Rx from any BSSID. */
rtwn_write_4(sc, R92C_RCR,
rtwn_read_4(sc, R92C_RCR) &
~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
/* Stop Rx of data frames. */
rtwn_write_2(sc, R92C_RXFLTMAP2, 0);
/* Disable update TSF */
rtwn_write_1(sc, R92C_BCN_CTRL,
rtwn_read_1(sc, R92C_BCN_CTRL) |
R92C_BCN_CTRL_DIS_TSF_UDT0);
}
/* Make link LED blink during scan. */
rtwn_set_led(sc, RTWN_LED_LINK, !sc->ledlink);
/* Pause AC Tx queues. */
rtwn_write_1(sc, R92C_TXPAUSE,
rtwn_read_1(sc, R92C_TXPAUSE) | 0x0f);
rtwn_set_chan(sc, ic->ic_curchan, NULL);
/* Start periodic scan. */
callout_schedule(&sc->scan_to, mstohz(200));
break;
case IEEE80211_S_AUTH:
/* Set initial gain under link. */
reg = rtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
#ifdef doaslinux
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
#else
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
#endif
rtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
reg = rtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
#ifdef doaslinux
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
#else
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
#endif
rtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
/* Set media status to 'No Link'. */
rtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
/* Allow Rx from any BSSID. */
rtwn_write_4(sc, R92C_RCR,
rtwn_read_4(sc, R92C_RCR) &
~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
rtwn_set_chan(sc, ic->ic_curchan, NULL);
break;
case IEEE80211_S_ASSOC:
break;
case IEEE80211_S_RUN:
ni = ic->ic_bss;
rtwn_set_chan(sc, ic->ic_curchan, NULL);
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* Back to 20Mhz mode */
rtwn_set_chan(sc, ic->ic_curchan, NULL);
/* Set media status to 'No Link'. */
rtwn_set_nettype0_msr(sc, R92C_CR_NETTYPE_NOLINK);
/* Enable Rx of data frames. */
rtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
/* Allow Rx from any BSSID. */
rtwn_write_4(sc, R92C_RCR,
rtwn_read_4(sc, R92C_RCR) &
~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
/* Accept Rx data/control/management frames */
rtwn_write_4(sc, R92C_RCR,
rtwn_read_4(sc, R92C_RCR) |
R92C_RCR_ADF | R92C_RCR_ACF | R92C_RCR_AMF);
/* Turn link LED on. */
rtwn_set_led(sc, RTWN_LED_LINK, 1);
break;
}
/* Set media status to 'Associated'. */
rtwn_set_nettype0_msr(sc, rtwn_get_nettype(sc));
/* Set BSSID. */
rtwn_write_4(sc, R92C_BSSID + 0, LE_READ_4(&ni->ni_bssid[0]));
rtwn_write_4(sc, R92C_BSSID + 4, LE_READ_2(&ni->ni_bssid[4]));
if (ic->ic_curmode == IEEE80211_MODE_11B)
rtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0);
else /* 802.11b/g */
rtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3);
/* Enable Rx of data frames. */
rtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
/* Flush all AC queues. */
rtwn_write_1(sc, R92C_TXPAUSE, 0);
/* Set beacon interval. */
rtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
/* Allow Rx from our BSSID only. */
rtwn_write_4(sc, R92C_RCR,
rtwn_read_4(sc, R92C_RCR) |
R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
/* Enable TSF synchronization. */
rtwn_tsf_sync_enable(sc);
break;
case IEEE80211_M_HOSTAP:
rtwn_write_2(sc, R92C_BCNTCFG, 0x000f);
/* Allow Rx from any BSSID. */
rtwn_write_4(sc, R92C_RCR,
rtwn_read_4(sc, R92C_RCR) &
~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
/* Reset TSF timer to zero. */
reg = rtwn_read_4(sc, R92C_TCR);
reg &= ~0x01;
rtwn_write_4(sc, R92C_TCR, reg);
reg |= 0x01;
rtwn_write_4(sc, R92C_TCR, reg);
break;
case IEEE80211_M_MONITOR:
default:
break;
}
rtwn_write_1(sc, R92C_SIFS_CCK + 1, 10);
rtwn_write_1(sc, R92C_SIFS_OFDM + 1, 10);
rtwn_write_1(sc, R92C_SPEC_SIFS + 1, 10);
rtwn_write_1(sc, R92C_MAC_SPEC_SIFS + 1, 10);
rtwn_write_1(sc, R92C_R2T_SIFS + 1, 10);
rtwn_write_1(sc, R92C_T2T_SIFS + 1, 10);
/* Initialize rate adaptation. */
rtwn_ra_init(sc);
/* Turn link LED on. */
rtwn_set_led(sc, RTWN_LED_LINK, 1);
/* Reset average RSSI. */
sc->avg_pwdb = -1;
/* Reset temperature calibration state machine. */
sc->thcal_state = 0;
sc->thcal_lctemp = 0;
/* Start periodic calibration. */
callout_schedule(&sc->calib_to, mstohz(2000));
break;
}
(void)sc->sc_newstate(ic, nstate, arg);
splx(s);
return 0;
}
static int
rtwn_wme_update(struct ieee80211com *ic)
{
static const uint16_t aci2reg[WME_NUM_AC] = {
R92C_EDCA_BE_PARAM,
R92C_EDCA_BK_PARAM,
R92C_EDCA_VI_PARAM,
R92C_EDCA_VO_PARAM
};
struct rtwn_softc *sc = IC2IFP(ic)->if_softc;
const struct wmeParams *wmep;
int s, aci, aifs, slottime;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
s = splnet();
slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
for (aci = 0; aci < WME_NUM_AC; aci++) {
wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
/* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */
aifs = wmep->wmep_aifsn * slottime + 10;
rtwn_write_4(sc, aci2reg[aci],
SM(R92C_EDCA_PARAM_TXOP, wmep->wmep_txopLimit) |
SM(R92C_EDCA_PARAM_ECWMIN, wmep->wmep_logcwmin) |
SM(R92C_EDCA_PARAM_ECWMAX, wmep->wmep_logcwmax) |
SM(R92C_EDCA_PARAM_AIFS, aifs));
}
splx(s);
return 0;
}
static void
rtwn_update_avgrssi(struct rtwn_softc *sc, int rate, int8_t rssi)
{
int pwdb;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Convert antenna signal to percentage. */
if (rssi <= -100 || rssi >= 20)
pwdb = 0;
else if (rssi >= 0)
pwdb = 100;
else
pwdb = 100 + rssi;
if (rate <= 3) {
/* CCK gain is smaller than OFDM/MCS gain. */
pwdb += 6;
if (pwdb > 100)
pwdb = 100;
if (pwdb <= 14)
pwdb -= 4;
else if (pwdb <= 26)
pwdb -= 8;
else if (pwdb <= 34)
pwdb -= 6;
else if (pwdb <= 42)
pwdb -= 2;
}
if (sc->avg_pwdb == -1) /* Init. */
sc->avg_pwdb = pwdb;
else if (sc->avg_pwdb < pwdb)
sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1;
else
sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20);
DPRINTFN(4, ("PWDB=%d EMA=%d\n", pwdb, sc->avg_pwdb));
}
static int8_t
rtwn_get_rssi(struct rtwn_softc *sc, int rate, void *physt)
{
static const int8_t cckoff[] = { 16, -12, -26, -46 };
struct r92c_rx_phystat *phy;
struct r92c_rx_cck *cck;
uint8_t rpt;
int8_t rssi;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
if (rate <= 3) {
cck = (struct r92c_rx_cck *)physt;
if (sc->sc_flags & RTWN_FLAG_CCK_HIPWR) {
rpt = (cck->agc_rpt >> 5) & 0x3;
rssi = (cck->agc_rpt & 0x1f) << 1;
} else {
rpt = (cck->agc_rpt >> 6) & 0x3;
rssi = cck->agc_rpt & 0x3e;
}
rssi = cckoff[rpt] - rssi;
} else { /* OFDM/HT. */
phy = (struct r92c_rx_phystat *)physt;
rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110;
}
return rssi;
}
static void
rtwn_rx_frame(struct rtwn_softc *sc, struct r92c_rx_desc_pci *rx_desc,
struct rtwn_rx_data *rx_data, int desc_idx)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = IC2IFP(ic);
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct r92c_rx_phystat *phy = NULL;
uint32_t rxdw0, rxdw3;
struct mbuf *m, *m1;
uint8_t rate;
int8_t rssi = 0;
int infosz, pktlen, shift, totlen, error, s;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
rxdw0 = le32toh(rx_desc->rxdw0);
rxdw3 = le32toh(rx_desc->rxdw3);
if (__predict_false(rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR))) {
/*
* This should not happen since we setup our Rx filter
* to not receive these frames.
*/
ifp->if_ierrors++;
return;
}
pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN);
/*
* XXX: This will drop most control packets. Do we really
* want this in IEEE80211_M_MONITOR mode?
*/
if (__predict_false(pktlen < (int)sizeof(struct ieee80211_frame_ack))) {
ic->ic_stats.is_rx_tooshort++;
ifp->if_ierrors++;
return;
}
if (__predict_false(pktlen > MCLBYTES)) {
ifp->if_ierrors++;
return;
}
rate = MS(rxdw3, R92C_RXDW3_RATE);
infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
if (infosz > sizeof(struct r92c_rx_phystat))
infosz = sizeof(struct r92c_rx_phystat);
shift = MS(rxdw0, R92C_RXDW0_SHIFT);
totlen = pktlen + infosz + shift;
/* Get RSSI from PHY status descriptor if present. */
if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) {
phy = mtod(rx_data->m, struct r92c_rx_phystat *);
rssi = rtwn_get_rssi(sc, rate, phy);
/* Update our average RSSI. */
rtwn_update_avgrssi(sc, rate, rssi);
}
DPRINTFN(5, ("Rx frame len=%d rate=%d infosz=%d shift=%d rssi=%d\n",
pktlen, rate, infosz, shift, rssi));
MGETHDR(m1, M_DONTWAIT, MT_DATA);
if (__predict_false(m1 == NULL)) {
ic->ic_stats.is_rx_nobuf++;
ifp->if_ierrors++;
return;
}
MCLGET(m1, M_DONTWAIT);
if (__predict_false(!(m1->m_flags & M_EXT))) {
m_freem(m1);
ic->ic_stats.is_rx_nobuf++;
ifp->if_ierrors++;
return;
}
bus_dmamap_sync(sc->sc_dmat, rx_data->map, 0, totlen,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, rx_data->map);
error = bus_dmamap_load(sc->sc_dmat, rx_data->map, mtod(m1, void *),
MCLBYTES, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
if (error != 0) {
m_freem(m1);
if (bus_dmamap_load_mbuf(sc->sc_dmat, rx_data->map,
rx_data->m, BUS_DMA_NOWAIT))
panic("%s: could not load old RX mbuf",
device_xname(sc->sc_dev));
bus_dmamap_sync(sc->sc_dmat, rx_data->map, 0, MCLBYTES,
BUS_DMASYNC_PREREAD);
/* Physical address may have changed. */
rtwn_setup_rx_desc(sc, rx_desc,
rx_data->map->dm_segs[0].ds_addr, MCLBYTES, desc_idx);
ifp->if_ierrors++;
return;
}
/* Finalize mbuf. */
m = rx_data->m;
rx_data->m = m1;
m->m_pkthdr.len = m->m_len = totlen;
m_set_rcvif(m, ifp);
bus_dmamap_sync(sc->sc_dmat, rx_data->map, 0, MCLBYTES,
BUS_DMASYNC_PREREAD);
/* Update RX descriptor. */
rtwn_setup_rx_desc(sc, rx_desc, rx_data->map->dm_segs[0].ds_addr,
MCLBYTES, desc_idx);
/* Get ieee80211 frame header. */
if (rxdw0 & R92C_RXDW0_PHYST)
m_adj(m, infosz + shift);
else
m_adj(m, shift);
wh = mtod(m, struct ieee80211_frame *);
s = splnet();
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct rtwn_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
/* Map HW rate index to 802.11 rate. */
tap->wr_flags = 2;
if (!(rxdw3 & R92C_RXDW3_HT)) {
switch (rate) {
/* CCK. */
case 0: tap->wr_rate = 2; break;
case 1: tap->wr_rate = 4; break;
case 2: tap->wr_rate = 11; break;
case 3: tap->wr_rate = 22; break;
/* OFDM. */
case 4: tap->wr_rate = 12; break;
case 5: tap->wr_rate = 18; break;
case 6: tap->wr_rate = 24; break;
case 7: tap->wr_rate = 36; break;
case 8: tap->wr_rate = 48; break;
case 9: tap->wr_rate = 72; break;
case 10: tap->wr_rate = 96; break;
case 11: tap->wr_rate = 108; break;
}
} else if (rate >= 12) { /* MCS0~15. */
/* Bit 7 set means HT MCS instead of rate. */
tap->wr_rate = 0x80 | (rate - 12);
}
tap->wr_dbm_antsignal = rssi;
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
}
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* push the frame up to the 802.11 stack */
ieee80211_input(ic, m, ni, rssi, 0);
/* Node is no longer needed. */
ieee80211_free_node(ni);
splx(s);
}
static int
rtwn_tx(struct rtwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct ieee80211_key *k = NULL;
struct rtwn_tx_ring *tx_ring;
struct rtwn_tx_data *data;
struct r92c_tx_desc_pci *txd;
uint16_t qos, seq;
uint8_t raid, type, tid, qid;
int hasqos, error;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
wh = mtod(m, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m);
if (k == NULL)
return ENOBUFS;
wh = mtod(m, struct ieee80211_frame *);
}
if ((hasqos = ieee80211_has_qos(wh))) {
/* data frames in 11n mode */
qos = ieee80211_get_qos(wh);
tid = qos & IEEE80211_QOS_TID;
qid = TID_TO_WME_AC(tid);
} else if (type != IEEE80211_FC0_TYPE_DATA) {
/* Use AC_VO for management frames. */
tid = 0; /* compiler happy */
qid = RTWN_VO_QUEUE;
} else {
/* non-qos data frames */
tid = R92C_TXDW1_QSEL_BE;
qid = RTWN_BE_QUEUE;
}
/* Grab a Tx buffer from the ring. */
tx_ring = &sc->tx_ring[qid];
data = &tx_ring->tx_data[tx_ring->cur];
if (data->m != NULL) {
m_freem(m);
return ENOBUFS;
}
/* Fill Tx descriptor. */
txd = &tx_ring->desc[tx_ring->cur];
if (htole32(txd->txdw0) & R92C_RXDW0_OWN) {
m_freem(m);
return ENOBUFS;
}
txd->txdw0 = htole32(
SM(R92C_TXDW0_PKTLEN, m->m_pkthdr.len) |
SM(R92C_TXDW0_OFFSET, sizeof(*txd)) |
R92C_TXDW0_FSG | R92C_TXDW0_LSG);
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
txd->txdw0 |= htole32(R92C_TXDW0_BMCAST);
txd->txdw1 = 0;
txd->txdw4 = 0;
txd->txdw5 = 0;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
type == IEEE80211_FC0_TYPE_DATA) {
if (ic->ic_curmode == IEEE80211_MODE_11B)
raid = R92C_RAID_11B;
else
raid = R92C_RAID_11BG;
txd->txdw1 |= htole32(
SM(R92C_TXDW1_MACID, RTWN_MACID_BSS) |
SM(R92C_TXDW1_QSEL, tid) |
SM(R92C_TXDW1_RAID, raid) |
R92C_TXDW1_AGGBK);
if (ic->ic_flags & IEEE80211_F_USEPROT) {
/* for 11g */
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF |
R92C_TXDW4_HWRTSEN);
} else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
txd->txdw4 |= htole32(R92C_TXDW4_RTSEN |
R92C_TXDW4_HWRTSEN);
}
}
/* Send RTS at OFDM24. */
txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, 8));
txd->txdw5 |= htole32(SM(R92C_TXDW5_RTSRATE_FBLIMIT, 0xf));
/* Send data at OFDM54. */
txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 11));
txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE_FBLIMIT, 0x1f));
} else if (type == IEEE80211_FC0_TYPE_MGT) {
txd->txdw1 |= htole32(
SM(R92C_TXDW1_MACID, RTWN_MACID_BSS) |
SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT) |
SM(R92C_TXDW1_RAID, R92C_RAID_11B));
/* Force CCK1. */
txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
/* Use 1Mbps */
txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
} else {
txd->txdw1 |= htole32(
SM(R92C_TXDW1_MACID, RTWN_MACID_BC) |
SM(R92C_TXDW1_RAID, R92C_RAID_11B));
/* Force CCK1. */
txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
/* Use 1Mbps */
txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
}
/* Set sequence number (already little endian). */
seq = LE_READ_2(&wh->i_seq[0]) >> IEEE80211_SEQ_SEQ_SHIFT;
txd->txdseq = htole16(seq);
if (!hasqos) {
/* Use HW sequence numbering for non-QoS frames. */
txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ);
txd->txdseq |= htole16(0x8000); /* WTF? */
} else
txd->txdw4 |= htole32(R92C_TXDW4_QOS);
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (error && error != EFBIG) {
aprint_error_dev(sc->sc_dev, "can't map mbuf (error %d)\n",
error);
m_freem(m);
return error;
}
if (error != 0) {
/* Too many DMA segments, linearize mbuf. */
struct mbuf *newm = m_defrag(m, M_DONTWAIT);
if (newm == NULL) {
aprint_error_dev(sc->sc_dev, "can't defrag mbuf\n");
m_freem(m);
return ENOBUFS;
}
m = newm;
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"can't map mbuf (error %d)\n", error);
m_freem(m);
return error;
}
}
txd->txbufaddr = htole32(data->map->dm_segs[0].ds_addr);
txd->txbufsize = htole16(m->m_pkthdr.len);
bus_space_barrier(sc->sc_st, sc->sc_sh, 0, sc->sc_mapsize,
BUS_SPACE_BARRIER_WRITE);
txd->txdw0 |= htole32(R92C_TXDW0_OWN);
bus_dmamap_sync(sc->sc_dmat, tx_ring->map, 0,
sizeof(*txd) * RTWN_TX_LIST_COUNT, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, data->map, 0, m->m_pkthdr.len,
BUS_DMASYNC_PREWRITE);
data->m = m;
data->ni = ni;
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct rtwn_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
if (wh->i_fc[1] & IEEE80211_FC1_WEP)
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
}
tx_ring->cur = (tx_ring->cur + 1) % RTWN_TX_LIST_COUNT;
tx_ring->queued++;
if (tx_ring->queued > RTWN_TX_LIST_HIMARK)
sc->qfullmsk |= (1 << qid);
/* Kick TX. */
rtwn_write_2(sc, R92C_PCIE_CTRL_REG, (1 << qid));
return 0;
}
static void
rtwn_tx_done(struct rtwn_softc *sc, int qid)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = IC2IFP(ic);
struct rtwn_tx_ring *tx_ring = &sc->tx_ring[qid];
struct rtwn_tx_data *tx_data;
struct r92c_tx_desc_pci *tx_desc;
int i, s;
DPRINTFN(3, ("%s: %s: qid=%d\n", device_xname(sc->sc_dev), __func__,
qid));
s = splnet();
bus_dmamap_sync(sc->sc_dmat, tx_ring->map,
0, sizeof(*tx_desc) * RTWN_TX_LIST_COUNT,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (i = 0; i < RTWN_TX_LIST_COUNT; i++) {
tx_data = &tx_ring->tx_data[i];
if (tx_data->m == NULL)
continue;
tx_desc = &tx_ring->desc[i];
if (le32toh(tx_desc->txdw0) & R92C_TXDW0_OWN)
continue;
bus_dmamap_unload(sc->sc_dmat, tx_data->map);
m_freem(tx_data->m);
tx_data->m = NULL;
ieee80211_free_node(tx_data->ni);
tx_data->ni = NULL;
ifp->if_opackets++;
sc->sc_tx_timer = 0;
tx_ring->queued--;
}
if (tx_ring->queued < RTWN_TX_LIST_LOMARK)
sc->qfullmsk &= ~(1 << qid);
splx(s);
}
static void
rtwn_start(struct ifnet *ifp)
{
struct rtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ether_header *eh;
struct ieee80211_node *ni;
struct mbuf *m;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
for (;;) {
if (sc->qfullmsk != 0) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
/* Send pending management frames first. */
IF_DEQUEUE(&ic->ic_mgtq, m);
if (m != NULL) {
ni = M_GETCTX(m, struct ieee80211_node *);
M_CLEARCTX(m);
goto sendit;
}
if (ic->ic_state != IEEE80211_S_RUN)
break;
/* Encapsulate and send data frames. */
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (m->m_len < (int)sizeof(*eh) &&
(m = m_pullup(m, sizeof(*eh))) == NULL) {
ifp->if_oerrors++;
continue;
}
eh = mtod(m, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m);
ifp->if_oerrors++;
continue;
}
bpf_mtap(ifp, m, BPF_D_OUT);
if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
sendit:
bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
if (rtwn_tx(sc, m, ni) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
DPRINTFN(3, ("%s: %s done\n", device_xname(sc->sc_dev), __func__));
}
static void
rtwn_watchdog(struct ifnet *ifp)
{
struct rtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
aprint_error_dev(sc->sc_dev, "device timeout\n");
softint_schedule(sc->init_task);
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ic);
}
static int
rtwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct rtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
DPRINTFN(3, ("%s: %s: cmd=0x%08lx, data=%p\n", device_xname(sc->sc_dev),
__func__, cmd, data));
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
case IFF_UP | IFF_RUNNING:
break;
case IFF_UP:
error = rtwn_init(ifp);
if (error != 0)
ifp->if_flags &= ~IFF_UP;
break;
case IFF_RUNNING:
rtwn_stop(ifp, 1);
break;
case 0:
break;
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
/* setup multicast filter, etc */
error = 0;
}
break;
case SIOCS80211CHANNEL:
error = ieee80211_ioctl(ic, cmd, data);
if (error == ENETRESET &&
ic->ic_opmode == IEEE80211_M_MONITOR) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
rtwn_set_chan(sc, ic->ic_curchan, NULL);
}
error = 0;
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
break;
}
if (error == ENETRESET) {
error = 0;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
rtwn_stop(ifp, 0);
error = rtwn_init(ifp);
}
}
splx(s);
DPRINTFN(3, ("%s: %s: error=%d\n", device_xname(sc->sc_dev), __func__,
error));
return error;
}
static int
rtwn_power_on(struct rtwn_softc *sc)
{
uint32_t reg;
int ntries;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Wait for autoload done bit. */
for (ntries = 0; ntries < 1000; ntries++) {
if (rtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN)
break;
DELAY(5);
}
if (ntries == 1000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for chip autoload\n");
return ETIMEDOUT;
}
/* Unlock ISO/CLK/Power control register. */
rtwn_write_1(sc, R92C_RSV_CTRL, 0);
/* TODO: check if we need this for 8188CE */
if (sc->board_type != R92C_BOARD_TYPE_DONGLE) {
/* bt coex */
reg = rtwn_read_4(sc, R92C_APS_FSMCO);
reg |= (R92C_APS_FSMCO_SOP_ABG |
R92C_APS_FSMCO_SOP_AMB |
R92C_APS_FSMCO_XOP_BTCK);
rtwn_write_4(sc, R92C_APS_FSMCO, reg);
}
/* Move SPS into PWM mode. */
rtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b);
DELAY(100);
/* Set low byte to 0x0f, leave others unchanged. */
rtwn_write_4(sc, R92C_AFE_XTAL_CTRL,
(rtwn_read_4(sc, R92C_AFE_XTAL_CTRL) & 0xffffff00) | 0x0f);
/* TODO: check if we need this for 8188CE */
if (sc->board_type != R92C_BOARD_TYPE_DONGLE) {
/* bt coex */
reg = rtwn_read_4(sc, R92C_AFE_XTAL_CTRL);
reg &= ~0x00024800; /* XXX magic from linux */
rtwn_write_4(sc, R92C_AFE_XTAL_CTRL, reg);
}
rtwn_write_2(sc, R92C_SYS_ISO_CTRL,
(rtwn_read_2(sc, R92C_SYS_ISO_CTRL) & 0xff) |
R92C_SYS_ISO_CTRL_PWC_EV12V | R92C_SYS_ISO_CTRL_DIOR);
DELAY(200);
/* TODO: linux does additional btcoex stuff here */
/* Auto enable WLAN. */
rtwn_write_2(sc, R92C_APS_FSMCO,
rtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC);
for (ntries = 0; ntries < 1000; ntries++) {
if (!(rtwn_read_2(sc, R92C_APS_FSMCO) &
R92C_APS_FSMCO_APFM_ONMAC))
break;
DELAY(5);
}
if (ntries == 1000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for MAC auto ON\n");
return ETIMEDOUT;
}
/* Enable radio, GPIO and LED functions. */
rtwn_write_2(sc, R92C_APS_FSMCO,
R92C_APS_FSMCO_AFSM_PCIE |
R92C_APS_FSMCO_PDN_EN |
R92C_APS_FSMCO_PFM_ALDN);
/* Release RF digital isolation. */
rtwn_write_2(sc, R92C_SYS_ISO_CTRL,
rtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR);
if (sc->chip & RTWN_CHIP_92C)
rtwn_write_1(sc, R92C_PCIE_CTRL_REG + 3, 0x77);
else
rtwn_write_1(sc, R92C_PCIE_CTRL_REG + 3, 0x22);
rtwn_write_4(sc, R92C_INT_MIG, 0);
if (sc->board_type != R92C_BOARD_TYPE_DONGLE) {
/* bt coex */
reg = rtwn_read_4(sc, R92C_AFE_XTAL_CTRL + 2);
reg &= 0xfd; /* XXX magic from linux */
rtwn_write_4(sc, R92C_AFE_XTAL_CTRL + 2, reg);
}
rtwn_write_1(sc, R92C_GPIO_MUXCFG,
rtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_RFKILL);
reg = rtwn_read_1(sc, R92C_GPIO_IO_SEL);
if (!(reg & R92C_GPIO_IO_SEL_RFKILL)) {
aprint_error_dev(sc->sc_dev,
"radio is disabled by hardware switch\n");
return EPERM; /* :-) */
}
/* Initialize MAC. */
reg = rtwn_read_1(sc, R92C_APSD_CTRL);
rtwn_write_1(sc, R92C_APSD_CTRL,
rtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF);
for (ntries = 0; ntries < 200; ntries++) {
if (!(rtwn_read_1(sc, R92C_APSD_CTRL) &
R92C_APSD_CTRL_OFF_STATUS))
break;
DELAY(500);
}
if (ntries == 200) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for MAC initialization\n");
return ETIMEDOUT;
}
/* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */
reg = rtwn_read_2(sc, R92C_CR);
reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN |
R92C_CR_ENSEC;
rtwn_write_2(sc, R92C_CR, reg);
rtwn_write_1(sc, 0xfe10, 0x19);
return 0;
}
static int
rtwn_llt_init(struct rtwn_softc *sc)
{
int i, error;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Reserve pages [0; R92C_TX_PAGE_COUNT]. */
for (i = 0; i < R92C_TX_PAGE_COUNT; i++) {
if ((error = rtwn_llt_write(sc, i, i + 1)) != 0)
return error;
}
/* NB: 0xff indicates end-of-list. */
if ((error = rtwn_llt_write(sc, i, 0xff)) != 0)
return error;
/*
* Use pages [R92C_TX_PAGE_COUNT + 1; R92C_TXPKTBUF_COUNT - 1]
* as ring buffer.
*/
for (++i; i < R92C_TXPKTBUF_COUNT - 1; i++) {
if ((error = rtwn_llt_write(sc, i, i + 1)) != 0)
return error;
}
/* Make the last page point to the beginning of the ring buffer. */
error = rtwn_llt_write(sc, i, R92C_TX_PAGE_COUNT + 1);
return error;
}
static void
rtwn_fw_reset(struct rtwn_softc *sc)
{
uint16_t reg;
int ntries;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Tell 8051 to reset itself. */
rtwn_write_1(sc, R92C_HMETFR + 3, 0x20);
/* Wait until 8051 resets by itself. */
for (ntries = 0; ntries < 100; ntries++) {
reg = rtwn_read_2(sc, R92C_SYS_FUNC_EN);
if (!(reg & R92C_SYS_FUNC_EN_CPUEN))
goto sleep;
DELAY(50);
}
/* Force 8051 reset. */
rtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN);
sleep:
CLR(sc->sc_flags, RTWN_FLAG_FW_LOADED);
#if 0
/*
* We must sleep for one second to let the firmware settle.
* Accessing registers too early will hang the whole system.
*/
tsleep(&reg, 0, "rtwnrst", hz);
#else
DELAY(1000 * 1000);
#endif
}
static int
rtwn_fw_loadpage(struct rtwn_softc *sc, int page, uint8_t *buf, int len)
{
uint32_t reg;
int off, mlen, error = 0, i;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
reg = rtwn_read_4(sc, R92C_MCUFWDL);
reg = RW(reg, R92C_MCUFWDL_PAGE, page);
rtwn_write_4(sc, R92C_MCUFWDL, reg);
DELAY(5);
off = R92C_FW_START_ADDR;
while (len > 0) {
if (len > 196)
mlen = 196;
else if (len > 4)
mlen = 4;
else
mlen = 1;
for (i = 0; i < mlen; i++)
rtwn_write_1(sc, off++, buf[i]);
buf += mlen;
len -= mlen;
}
return error;
}
static int
rtwn_load_firmware(struct rtwn_softc *sc)
{
firmware_handle_t fwh;
const struct r92c_fw_hdr *hdr;
const char *name;
u_char *fw, *ptr;
size_t len;
uint32_t reg;
int mlen, ntries, page, error;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Read firmware image from the filesystem. */
if ((sc->chip & (RTWN_CHIP_UMC_A_CUT | RTWN_CHIP_92C)) ==
RTWN_CHIP_UMC_A_CUT)
name = "rtl8192cfwU.bin";
else if (sc->chip & RTWN_CHIP_UMC_B_CUT)
name = "rtl8192cfwU_B.bin";
else
name = "rtl8192cfw.bin";
DPRINTF(("%s: firmware: %s\n", device_xname(sc->sc_dev), name));
if ((error = firmware_open("if_rtwn", name, &fwh)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not read firmware %s (error %d)\n", name, error);
return error;
}
const size_t fwlen = len = firmware_get_size(fwh);
fw = firmware_malloc(len);
if (fw == NULL) {
aprint_error_dev(sc->sc_dev,
"failed to allocate firmware memory (size=%zu)\n", len);
firmware_close(fwh);
return ENOMEM;
}
error = firmware_read(fwh, 0, fw, len);
firmware_close(fwh);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"failed to read firmware (error %d)\n", error);
firmware_free(fw, fwlen);
return error;
}
if (len < sizeof(*hdr)) {
aprint_error_dev(sc->sc_dev, "firmware too short\n");
error = EINVAL;
goto fail;
}
ptr = fw;
hdr = (const struct r92c_fw_hdr *)ptr;
/* Check if there is a valid FW header and skip it. */
if ((le16toh(hdr->signature) >> 4) == 0x88c ||
(le16toh(hdr->signature) >> 4) == 0x92c) {
DPRINTF(("FW V%d.%d %02d-%02d %02d:%02d\n",
le16toh(hdr->version), le16toh(hdr->subversion),
hdr->month, hdr->date, hdr->hour, hdr->minute));
ptr += sizeof(*hdr);
len -= sizeof(*hdr);
}
if (rtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RAM_DL_SEL)
rtwn_fw_reset(sc);
/* Enable FW download. */
rtwn_write_2(sc, R92C_SYS_FUNC_EN,
rtwn_read_2(sc, R92C_SYS_FUNC_EN) |
R92C_SYS_FUNC_EN_CPUEN);
rtwn_write_1(sc, R92C_MCUFWDL,
rtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN);
rtwn_write_1(sc, R92C_MCUFWDL + 2,
rtwn_read_1(sc, R92C_MCUFWDL + 2) & ~0x08);
/* Reset the FWDL checksum. */
rtwn_write_1(sc, R92C_MCUFWDL,
rtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_CHKSUM_RPT);
/* download firmware */
for (page = 0; len > 0; page++) {
mlen = MIN(len, R92C_FW_PAGE_SIZE);
error = rtwn_fw_loadpage(sc, page, ptr, mlen);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not load firmware page %d\n", page);
goto fail;
}
ptr += mlen;
len -= mlen;
}
/* Disable FW download. */
rtwn_write_1(sc, R92C_MCUFWDL,
rtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN);
rtwn_write_1(sc, R92C_MCUFWDL + 1, 0);
/* Wait for checksum report. */
for (ntries = 0; ntries < 1000; ntries++) {
if (rtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT)
break;
DELAY(5);
}
if (ntries == 1000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for checksum report\n");
error = ETIMEDOUT;
goto fail;
}
reg = rtwn_read_4(sc, R92C_MCUFWDL);
reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY;
rtwn_write_4(sc, R92C_MCUFWDL, reg);
/* Wait for firmware readiness. */
for (ntries = 0; ntries < 1000; ntries++) {
if (rtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY)
break;
DELAY(5);
}
if (ntries == 1000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for firmware readiness\n");
error = ETIMEDOUT;
goto fail;
}
SET(sc->sc_flags, RTWN_FLAG_FW_LOADED);
fail:
firmware_free(fw, fwlen);
return error;
}
static int
rtwn_dma_init(struct rtwn_softc *sc)
{
uint32_t reg;
int error;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Initialize LLT table. */
error = rtwn_llt_init(sc);
if (error != 0)
return error;
/* Set number of pages for normal priority queue. */
rtwn_write_2(sc, R92C_RQPN_NPQ, 0);
rtwn_write_4(sc, R92C_RQPN,
/* Set number of pages for public queue. */
SM(R92C_RQPN_PUBQ, R92C_PUBQ_NPAGES) |
/* Set number of pages for high priority queue. */
SM(R92C_RQPN_HPQ, R92C_HPQ_NPAGES) |
/* Set number of pages for low priority queue. */
SM(R92C_RQPN_LPQ, R92C_LPQ_NPAGES) |
/* Load values. */
R92C_RQPN_LD);
rtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, R92C_TX_PAGE_BOUNDARY);
rtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, R92C_TX_PAGE_BOUNDARY);
rtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, R92C_TX_PAGE_BOUNDARY);
rtwn_write_1(sc, R92C_TRXFF_BNDY, R92C_TX_PAGE_BOUNDARY);
rtwn_write_1(sc, R92C_TDECTRL + 1, R92C_TX_PAGE_BOUNDARY);
reg = rtwn_read_2(sc, R92C_TRXDMA_CTRL);
reg &= ~R92C_TRXDMA_CTRL_QMAP_M;
reg |= 0xF771;
rtwn_write_2(sc, R92C_TRXDMA_CTRL, reg);
rtwn_write_4(sc, R92C_TCR, R92C_TCR_CFENDFORM | (1 << 12) | (1 << 13));
/* Configure Tx DMA. */
rtwn_write_4(sc, R92C_BKQ_DESA,
sc->tx_ring[RTWN_BK_QUEUE].map->dm_segs[0].ds_addr);
rtwn_write_4(sc, R92C_BEQ_DESA,
sc->tx_ring[RTWN_BE_QUEUE].map->dm_segs[0].ds_addr);
rtwn_write_4(sc, R92C_VIQ_DESA,
sc->tx_ring[RTWN_VI_QUEUE].map->dm_segs[0].ds_addr);
rtwn_write_4(sc, R92C_VOQ_DESA,
sc->tx_ring[RTWN_VO_QUEUE].map->dm_segs[0].ds_addr);
rtwn_write_4(sc, R92C_BCNQ_DESA,
sc->tx_ring[RTWN_BEACON_QUEUE].map->dm_segs[0].ds_addr);
rtwn_write_4(sc, R92C_MGQ_DESA,
sc->tx_ring[RTWN_MGNT_QUEUE].map->dm_segs[0].ds_addr);
rtwn_write_4(sc, R92C_HQ_DESA,
sc->tx_ring[RTWN_HIGH_QUEUE].map->dm_segs[0].ds_addr);
/* Configure Rx DMA. */
rtwn_write_4(sc, R92C_RX_DESA, sc->rx_ring.map->dm_segs[0].ds_addr);
/* Set Tx/Rx transfer page boundary. */
rtwn_write_2(sc, R92C_TRXFF_BNDY + 2, 0x27ff);
/* Set Tx/Rx transfer page size. */
rtwn_write_1(sc, R92C_PBP,
SM(R92C_PBP_PSRX, R92C_PBP_128) |
SM(R92C_PBP_PSTX, R92C_PBP_128));
return 0;
}
static void
rtwn_mac_init(struct rtwn_softc *sc)
{
int i;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Write MAC initialization values. */
for (i = 0; i < __arraycount(rtl8192ce_mac); i++)
rtwn_write_1(sc, rtl8192ce_mac[i].reg, rtl8192ce_mac[i].val);
}
static void
rtwn_bb_init(struct rtwn_softc *sc)
{
const struct rtwn_bb_prog *prog;
uint32_t reg;
int i;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Enable BB and RF. */
rtwn_write_2(sc, R92C_SYS_FUNC_EN,
rtwn_read_2(sc, R92C_SYS_FUNC_EN) |
R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST |
R92C_SYS_FUNC_EN_DIO_RF);
rtwn_write_2(sc, R92C_AFE_PLL_CTRL, 0xdb83);
rtwn_write_1(sc, R92C_RF_CTRL,
R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB);
rtwn_write_1(sc, R92C_SYS_FUNC_EN,
R92C_SYS_FUNC_EN_DIO_PCIE | R92C_SYS_FUNC_EN_PCIEA |
R92C_SYS_FUNC_EN_PPLL | R92C_SYS_FUNC_EN_BB_GLB_RST |
R92C_SYS_FUNC_EN_BBRSTB);
rtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80);
rtwn_write_4(sc, R92C_LEDCFG0,
rtwn_read_4(sc, R92C_LEDCFG0) | 0x00800000);
/* Select BB programming. */
prog = (sc->chip & RTWN_CHIP_92C) ?
&rtl8192ce_bb_prog_2t : &rtl8192ce_bb_prog_1t;
/* Write BB initialization values. */
for (i = 0; i < prog->count; i++) {
rtwn_bb_write(sc, prog->regs[i], prog->vals[i]);
DELAY(1);
}
if (sc->chip & RTWN_CHIP_92C_1T2R) {
/* 8192C 1T only configuration. */
reg = rtwn_bb_read(sc, R92C_FPGA0_TXINFO);
reg = (reg & ~0x00000003) | 0x2;
rtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg);
reg = rtwn_bb_read(sc, R92C_FPGA1_TXINFO);
reg = (reg & ~0x00300033) | 0x00200022;
rtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg);
reg = rtwn_bb_read(sc, R92C_CCK0_AFESETTING);
reg = (reg & ~0xff000000) | 0x45 << 24;
rtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg);
reg = rtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA);
reg = (reg & ~0x000000ff) | 0x23;
rtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg);
reg = rtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1);
reg = (reg & ~0x00000030) | 1 << 4;
rtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg);
reg = rtwn_bb_read(sc, 0xe74);
reg = (reg & ~0x0c000000) | 2 << 26;
rtwn_bb_write(sc, 0xe74, reg);
reg = rtwn_bb_read(sc, 0xe78);
reg = (reg & ~0x0c000000) | 2 << 26;
rtwn_bb_write(sc, 0xe78, reg);
reg = rtwn_bb_read(sc, 0xe7c);
reg = (reg & ~0x0c000000) | 2 << 26;
rtwn_bb_write(sc, 0xe7c, reg);
reg = rtwn_bb_read(sc, 0xe80);
reg = (reg & ~0x0c000000) | 2 << 26;
rtwn_bb_write(sc, 0xe80, reg);
reg = rtwn_bb_read(sc, 0xe88);
reg = (reg & ~0x0c000000) | 2 << 26;
rtwn_bb_write(sc, 0xe88, reg);
}
/* Write AGC values. */
for (i = 0; i < prog->agccount; i++) {
rtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE,
prog->agcvals[i]);
DELAY(1);
}
if (rtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) &
R92C_HSSI_PARAM2_CCK_HIPWR)
sc->sc_flags |= RTWN_FLAG_CCK_HIPWR;
}
static void
rtwn_rf_init(struct rtwn_softc *sc)
{
const struct rtwn_rf_prog *prog;
uint32_t reg, type;
int i, j, idx, off;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Select RF programming based on board type. */
if (!(sc->chip & RTWN_CHIP_92C)) {
if (sc->board_type == R92C_BOARD_TYPE_MINICARD)
prog = rtl8188ce_rf_prog;
else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA)
prog = rtl8188ru_rf_prog;
else
prog = rtl8188cu_rf_prog;
} else
prog = rtl8192ce_rf_prog;
for (i = 0; i < sc->nrxchains; i++) {
/* Save RF_ENV control type. */
idx = i / 2;
off = (i % 2) * 16;
reg = rtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx));
type = (reg >> off) & 0x10;
/* Set RF_ENV enable. */
reg = rtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
reg |= 0x100000;
rtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
DELAY(1);
/* Set RF_ENV output high. */
reg = rtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
reg |= 0x10;
rtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
DELAY(1);
/* Set address and data lengths of RF registers. */
reg = rtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH;
rtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
DELAY(1);
reg = rtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH;
rtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
DELAY(1);
/* Write RF initialization values for this chain. */
for (j = 0; j < prog[i].count; j++) {
if (prog[i].regs[j] >= 0xf9 &&
prog[i].regs[j] <= 0xfe) {
/*
* These are fake RF registers offsets that
* indicate a delay is required.
*/
DELAY(50);
continue;
}
rtwn_rf_write(sc, i, prog[i].regs[j],
prog[i].vals[j]);
DELAY(1);
}
/* Restore RF_ENV control type. */
reg = rtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx));
reg &= ~(0x10 << off) | (type << off);
rtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg);
/* Cache RF register CHNLBW. */
sc->rf_chnlbw[i] = rtwn_rf_read(sc, i, R92C_RF_CHNLBW);
}
if ((sc->chip & (RTWN_CHIP_UMC_A_CUT | RTWN_CHIP_92C)) ==
RTWN_CHIP_UMC_A_CUT) {
rtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255);
rtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00);
}
}
static void
rtwn_cam_init(struct rtwn_softc *sc)
{
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Invalidate all CAM entries. */
rtwn_write_4(sc, R92C_CAMCMD, R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR);
}
static void
rtwn_pa_bias_init(struct rtwn_softc *sc)
{
uint8_t reg;
int i;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
for (i = 0; i < sc->nrxchains; i++) {
if (sc->pa_setting & (1 << i))
continue;
rtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406);
rtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406);
rtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406);
rtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406);
}
if (!(sc->pa_setting & 0x10)) {
reg = rtwn_read_1(sc, 0x16);
reg = (reg & ~0xf0) | 0x90;
rtwn_write_1(sc, 0x16, reg);
}
}
static void
rtwn_rxfilter_init(struct rtwn_softc *sc)
{
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Initialize Rx filter. */
/* TODO: use better filter for monitor mode. */
rtwn_write_4(sc, R92C_RCR,
R92C_RCR_AAP | R92C_RCR_APM | R92C_RCR_AM | R92C_RCR_AB |
R92C_RCR_APP_ICV | R92C_RCR_AMF | R92C_RCR_HTC_LOC_CTRL |
R92C_RCR_APP_MIC | R92C_RCR_APP_PHYSTS);
/* Accept all multicast frames. */
rtwn_write_4(sc, R92C_MAR + 0, 0xffffffff);
rtwn_write_4(sc, R92C_MAR + 4, 0xffffffff);
/* Accept all management frames. */
rtwn_write_2(sc, R92C_RXFLTMAP0, 0xffff);
/* Reject all control frames. */
rtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000);
/* Accept all data frames. */
rtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
}
static void
rtwn_edca_init(struct rtwn_softc *sc)
{
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* set spec SIFS (used in NAV) */
rtwn_write_2(sc, R92C_SPEC_SIFS, 0x1010);
rtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x1010);
/* set SIFS CCK/OFDM */
rtwn_write_2(sc, R92C_SIFS_CCK, 0x1010);
rtwn_write_2(sc, R92C_SIFS_OFDM, 0x0e0e);
/* TXOP */
rtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x005ea42b);
rtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a44f);
rtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4322);
rtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3222);
}
static void
rtwn_write_txpower(struct rtwn_softc *sc, int chain,
uint16_t power[RTWN_RIDX_COUNT])
{
uint32_t reg;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Write per-CCK rate Tx power. */
if (chain == 0) {
reg = rtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32);
reg = RW(reg, R92C_TXAGC_A_CCK1, power[0]);
rtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg);
reg = rtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
reg = RW(reg, R92C_TXAGC_A_CCK2, power[1]);
reg = RW(reg, R92C_TXAGC_A_CCK55, power[2]);
reg = RW(reg, R92C_TXAGC_A_CCK11, power[3]);
rtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
} else {
reg = rtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32);
reg = RW(reg, R92C_TXAGC_B_CCK1, power[0]);
reg = RW(reg, R92C_TXAGC_B_CCK2, power[1]);
reg = RW(reg, R92C_TXAGC_B_CCK55, power[2]);
rtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg);
reg = rtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
reg = RW(reg, R92C_TXAGC_B_CCK11, power[3]);
rtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
}
/* Write per-OFDM rate Tx power. */
rtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain),
SM(R92C_TXAGC_RATE06, power[ 4]) |
SM(R92C_TXAGC_RATE09, power[ 5]) |
SM(R92C_TXAGC_RATE12, power[ 6]) |
SM(R92C_TXAGC_RATE18, power[ 7]));
rtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain),
SM(R92C_TXAGC_RATE24, power[ 8]) |
SM(R92C_TXAGC_RATE36, power[ 9]) |
SM(R92C_TXAGC_RATE48, power[10]) |
SM(R92C_TXAGC_RATE54, power[11]));
/* Write per-MCS Tx power. */
rtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain),
SM(R92C_TXAGC_MCS00, power[12]) |
SM(R92C_TXAGC_MCS01, power[13]) |
SM(R92C_TXAGC_MCS02, power[14]) |
SM(R92C_TXAGC_MCS03, power[15]));
rtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain),
SM(R92C_TXAGC_MCS04, power[16]) |
SM(R92C_TXAGC_MCS05, power[17]) |
SM(R92C_TXAGC_MCS06, power[18]) |
SM(R92C_TXAGC_MCS07, power[19]));
rtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain),
SM(R92C_TXAGC_MCS08, power[20]) |
SM(R92C_TXAGC_MCS09, power[21]) |
SM(R92C_TXAGC_MCS10, power[22]) |
SM(R92C_TXAGC_MCS11, power[23]));
rtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain),
SM(R92C_TXAGC_MCS12, power[24]) |
SM(R92C_TXAGC_MCS13, power[25]) |
SM(R92C_TXAGC_MCS14, power[26]) |
SM(R92C_TXAGC_MCS15, power[27]));
}
static void
rtwn_get_txpower(struct rtwn_softc *sc, int chain,
struct ieee80211_channel *c, struct ieee80211_channel *extc,
uint16_t power[RTWN_RIDX_COUNT])
{
struct ieee80211com *ic = &sc->sc_ic;
struct r92c_rom *rom = &sc->rom;
uint16_t cckpow, ofdmpow, htpow, diff, maxpwr;
const struct rtwn_txpwr *base;
int ridx, chan, group;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Determine channel group. */
chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
if (chan <= 3)
group = 0;
else if (chan <= 9)
group = 1;
else
group = 2;
/* Get original Tx power based on board type and RF chain. */
if (!(sc->chip & RTWN_CHIP_92C)) {
if (sc->board_type == R92C_BOARD_TYPE_HIGHPA)
base = &rtl8188ru_txagc[chain];
else
base = &rtl8192cu_txagc[chain];
} else
base = &rtl8192cu_txagc[chain];
memset(power, 0, RTWN_RIDX_COUNT * sizeof(power[0]));
if (sc->regulatory == 0) {
for (ridx = 0; ridx <= 3; ridx++)
power[ridx] = base->pwr[0][ridx];
}
for (ridx = 4; ridx < RTWN_RIDX_COUNT; ridx++) {
if (sc->regulatory == 3) {
power[ridx] = base->pwr[0][ridx];
/* Apply vendor limits. */
if (extc != NULL)
maxpwr = rom->ht40_max_pwr[group];
else
maxpwr = rom->ht20_max_pwr[group];
maxpwr = (maxpwr >> (chain * 4)) & 0xf;
if (power[ridx] > maxpwr)
power[ridx] = maxpwr;
} else if (sc->regulatory == 1) {
if (extc == NULL)
power[ridx] = base->pwr[group][ridx];
} else if (sc->regulatory != 2)
power[ridx] = base->pwr[0][ridx];
}
/* Compute per-CCK rate Tx power. */
cckpow = rom->cck_tx_pwr[chain][group];
for (ridx = 0; ridx <= 3; ridx++) {
power[ridx] += cckpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
htpow = rom->ht40_1s_tx_pwr[chain][group];
if (sc->ntxchains > 1) {
/* Apply reduction for 2 spatial streams. */
diff = rom->ht40_2s_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
htpow = (htpow > diff) ? htpow - diff : 0;
}
/* Compute per-OFDM rate Tx power. */
diff = rom->ofdm_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
ofdmpow = htpow + diff; /* HT->OFDM correction. */
for (ridx = 4; ridx <= 11; ridx++) {
power[ridx] += ofdmpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
/* Compute per-MCS Tx power. */
if (extc == NULL) {
diff = rom->ht20_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
htpow += diff; /* HT40->HT20 correction. */
}
for (ridx = 12; ridx <= 27; ridx++) {
power[ridx] += htpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
#ifdef RTWN_DEBUG
if (rtwn_debug >= 4) {
/* Dump per-rate Tx power values. */
printf("Tx power for chain %d:\n", chain);
for (ridx = 0; ridx < RTWN_RIDX_COUNT; ridx++)
printf("Rate %d = %u\n", ridx, power[ridx]);
}
#endif
}
static void
rtwn_set_txpower(struct rtwn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
uint16_t power[RTWN_RIDX_COUNT];
int i;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
for (i = 0; i < sc->ntxchains; i++) {
/* Compute per-rate Tx power values. */
rtwn_get_txpower(sc, i, c, extc, power);
/* Write per-rate Tx power values to hardware. */
rtwn_write_txpower(sc, i, power);
}
}
static void
rtwn_set_chan(struct rtwn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
struct ieee80211com *ic = &sc->sc_ic;
u_int chan;
int i;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
/* Set Tx power for this new channel. */
rtwn_set_txpower(sc, c, extc);
for (i = 0; i < sc->nrxchains; i++) {
rtwn_rf_write(sc, i, R92C_RF_CHNLBW,
RW(sc->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan));
}
#ifndef IEEE80211_NO_HT
if (extc != NULL) {
uint32_t reg;
/* Is secondary channel below or above primary? */
int prichlo = c->ic_freq < extc->ic_freq;
rtwn_write_1(sc, R92C_BWOPMODE,
rtwn_read_1(sc, R92C_BWOPMODE) & ~R92C_BWOPMODE_20MHZ);
reg = rtwn_read_1(sc, R92C_RRSR + 2);
reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5;
rtwn_write_1(sc, R92C_RRSR + 2, reg);
rtwn_bb_write(sc, R92C_FPGA0_RFMOD,
rtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ);
rtwn_bb_write(sc, R92C_FPGA1_RFMOD,
rtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ);
/* Set CCK side band. */
reg = rtwn_bb_read(sc, R92C_CCK0_SYSTEM);
reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4;
rtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg);
reg = rtwn_bb_read(sc, R92C_OFDM1_LSTF);
reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10;
rtwn_bb_write(sc, R92C_OFDM1_LSTF, reg);
rtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
rtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) &
~R92C_FPGA0_ANAPARAM2_CBW20);
reg = rtwn_bb_read(sc, 0x818);
reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26;
rtwn_bb_write(sc, 0x818, reg);
/* Select 40MHz bandwidth. */
rtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
(sc->rf_chnlbw[0] & ~0xfff) | chan);
} else
#endif
{
rtwn_write_1(sc, R92C_BWOPMODE,
rtwn_read_1(sc, R92C_BWOPMODE) | R92C_BWOPMODE_20MHZ);
rtwn_bb_write(sc, R92C_FPGA0_RFMOD,
rtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ);
rtwn_bb_write(sc, R92C_FPGA1_RFMOD,
rtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ);
rtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
rtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) |
R92C_FPGA0_ANAPARAM2_CBW20);
/* Select 20MHz bandwidth. */
rtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
(sc->rf_chnlbw[0] & ~0xfff) | R92C_RF_CHNLBW_BW20 | chan);
}
}
static void
rtwn_iq_calib(struct rtwn_softc *sc)
{
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* XXX */
}
static void
rtwn_lc_calib(struct rtwn_softc *sc)
{
uint32_t rf_ac[2];
uint8_t txmode;
int i;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
txmode = rtwn_read_1(sc, R92C_OFDM1_LSTF + 3);
if ((txmode & 0x70) != 0) {
/* Disable all continuous Tx. */
rtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70);
/* Set RF mode to standby mode. */
for (i = 0; i < sc->nrxchains; i++) {
rf_ac[i] = rtwn_rf_read(sc, i, R92C_RF_AC);
rtwn_rf_write(sc, i, R92C_RF_AC,
RW(rf_ac[i], R92C_RF_AC_MODE,
R92C_RF_AC_MODE_STANDBY));
}
} else {
/* Block all Tx queues. */
rtwn_write_1(sc, R92C_TXPAUSE, 0xff);
}
/* Start calibration. */
rtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
rtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART);
/* Give calibration the time to complete. */
DELAY(100);
/* Restore configuration. */
if ((txmode & 0x70) != 0) {
/* Restore Tx mode. */
rtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode);
/* Restore RF mode. */
for (i = 0; i < sc->nrxchains; i++)
rtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]);
} else {
/* Unblock all Tx queues. */
rtwn_write_1(sc, R92C_TXPAUSE, 0x00);
}
}
static void
rtwn_temp_calib(struct rtwn_softc *sc)
{
int temp;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
if (sc->thcal_state == 0) {
/* Start measuring temperature. */
rtwn_rf_write(sc, 0, R92C_RF_T_METER, 0x60);
sc->thcal_state = 1;
return;
}
sc->thcal_state = 0;
/* Read measured temperature. */
temp = rtwn_rf_read(sc, 0, R92C_RF_T_METER) & 0x1f;
if (temp == 0) /* Read failed, skip. */
return;
DPRINTFN(2, ("temperature=%d\n", temp));
/*
* Redo IQ and LC calibration if temperature changed significantly
* since last calibration.
*/
if (sc->thcal_lctemp == 0) {
/* First calibration is performed in rtwn_init(). */
sc->thcal_lctemp = temp;
} else if (abs(temp - sc->thcal_lctemp) > 1) {
DPRINTF(("IQ/LC calib triggered by temp: %d -> %d\n",
sc->thcal_lctemp, temp));
rtwn_iq_calib(sc);
rtwn_lc_calib(sc);
/* Record temperature of last calibration. */
sc->thcal_lctemp = temp;
}
}
static int
rtwn_init(struct ifnet *ifp)
{
struct rtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t reg;
int i, error;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
/* Init firmware commands ring. */
sc->fwcur = 0;
/* Power on adapter. */
error = rtwn_power_on(sc);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not power on adapter\n");
goto fail;
}
/* Initialize DMA. */
error = rtwn_dma_init(sc);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not initialize DMA\n");
goto fail;
}
/* Set info size in Rx descriptors (in 64-bit words). */
rtwn_write_1(sc, R92C_RX_DRVINFO_SZ, 4);
/* Disable interrupts. */
rtwn_write_4(sc, R92C_HISR, 0xffffffff);
rtwn_write_4(sc, R92C_HIMR, 0x00000000);
/* Set MAC address. */
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
for (i = 0; i < IEEE80211_ADDR_LEN; i++)
rtwn_write_1(sc, R92C_MACID + i, ic->ic_myaddr[i]);
/* Set initial network type. */
rtwn_set_nettype0_msr(sc, rtwn_get_nettype(sc));
rtwn_rxfilter_init(sc);
reg = rtwn_read_4(sc, R92C_RRSR);
reg = RW(reg, R92C_RRSR_RATE_BITMAP, R92C_RRSR_RATE_ALL);
rtwn_write_4(sc, R92C_RRSR, reg);
/* Set short/long retry limits. */
rtwn_write_2(sc, R92C_RL,
SM(R92C_RL_SRL, 0x07) | SM(R92C_RL_LRL, 0x07));
/* Initialize EDCA parameters. */
rtwn_edca_init(sc);
/* Set data and response automatic rate fallback retry counts. */
rtwn_write_4(sc, R92C_DARFRC + 0, 0x01000000);
rtwn_write_4(sc, R92C_DARFRC + 4, 0x07060504);
rtwn_write_4(sc, R92C_RARFRC + 0, 0x01000000);
rtwn_write_4(sc, R92C_RARFRC + 4, 0x07060504);
rtwn_write_2(sc, R92C_FWHW_TXQ_CTRL, 0x1f80);
/* Set ACK timeout. */
rtwn_write_1(sc, R92C_ACKTO, 0x40);
/* Initialize beacon parameters. */
rtwn_write_2(sc, R92C_TBTT_PROHIBIT, 0x6404);
rtwn_write_1(sc, R92C_DRVERLYINT, 0x05);
rtwn_write_1(sc, R92C_BCNDMATIM, 0x02);
rtwn_write_2(sc, R92C_BCNTCFG, 0x660f);
/* Setup AMPDU aggregation. */
rtwn_write_4(sc, R92C_AGGLEN_LMT, 0x99997631); /* MCS7~0 */
rtwn_write_1(sc, R92C_AGGR_BREAK_TIME, 0x16);
rtwn_write_1(sc, R92C_BCN_MAX_ERR, 0xff);
rtwn_write_1(sc, R92C_BCN_CTRL, R92C_BCN_CTRL_DIS_TSF_UDT0);
rtwn_write_4(sc, R92C_PIFS, 0x1c);
rtwn_write_4(sc, R92C_MCUTST_1, 0x0);
/* Load 8051 microcode. */
error = rtwn_load_firmware(sc);
if (error != 0)
goto fail;
/* Initialize MAC/BB/RF blocks. */
rtwn_mac_init(sc);
rtwn_bb_init(sc);
rtwn_rf_init(sc);
/* Turn CCK and OFDM blocks on. */
reg = rtwn_bb_read(sc, R92C_FPGA0_RFMOD);
reg |= R92C_RFMOD_CCK_EN;
rtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
reg = rtwn_bb_read(sc, R92C_FPGA0_RFMOD);
reg |= R92C_RFMOD_OFDM_EN;
rtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
/* Clear per-station keys table. */
rtwn_cam_init(sc);
/* Enable hardware sequence numbering. */
rtwn_write_1(sc, R92C_HWSEQ_CTRL, 0xff);
/* Perform LO and IQ calibrations. */
rtwn_iq_calib(sc);
/* Perform LC calibration. */
rtwn_lc_calib(sc);
rtwn_pa_bias_init(sc);
/* Initialize GPIO setting. */
rtwn_write_1(sc, R92C_GPIO_MUXCFG,
rtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_ENBT);
/* Fix for lower temperature. */
rtwn_write_1(sc, 0x15, 0xe9);
/* Set default channel. */
rtwn_set_chan(sc, ic->ic_curchan, NULL);
/* Clear pending interrupts. */
rtwn_write_4(sc, R92C_HISR, 0xffffffff);
/* Enable interrupts. */
rtwn_write_4(sc, R92C_HIMR, RTWN_INT_ENABLE);
/* We're ready to go. */
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
return 0;
fail:
rtwn_stop(ifp, 1);
return error;
}
static void
rtwn_init_task(void *arg)
{
struct rtwn_softc *sc = arg;
struct ifnet *ifp = GET_IFP(sc);
int s;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
s = splnet();
rtwn_stop(ifp, 0);
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
rtwn_init(ifp);
splx(s);
}
static void
rtwn_stop(struct ifnet *ifp, int disable)
{
struct rtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint16_t reg;
int s, i;
DPRINTFN(3, ("%s: %s\n", device_xname(sc->sc_dev), __func__));
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
callout_stop(&sc->scan_to);
callout_stop(&sc->calib_to);
s = splnet();
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
/* Disable interrupts. */
rtwn_write_4(sc, R92C_HIMR, 0x00000000);
/* Pause MAC TX queue */
rtwn_write_1(sc, R92C_TXPAUSE, 0xff);
rtwn_write_1(sc, R92C_RF_CTRL, 0x00);
/* Reset BB state machine */
reg = rtwn_read_1(sc, R92C_SYS_FUNC_EN);
reg |= R92C_SYS_FUNC_EN_BB_GLB_RST;
rtwn_write_1(sc, R92C_SYS_FUNC_EN, reg);
reg &= ~R92C_SYS_FUNC_EN_BB_GLB_RST;
rtwn_write_1(sc, R92C_SYS_FUNC_EN, reg);
reg = rtwn_read_2(sc, R92C_CR);
reg &= ~(R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN |
R92C_CR_ENSEC);
rtwn_write_2(sc, R92C_CR, reg);
if (rtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RAM_DL_SEL)
rtwn_fw_reset(sc);
/* Reset MAC and Enable 8051 */
rtwn_write_1(sc, R92C_SYS_FUNC_EN + 1, 0x54);
/* TODO: linux does additional btcoex stuff here */
/* Disable AFE PLL */
rtwn_write_2(sc, R92C_AFE_PLL_CTRL, 0x80); /* linux magic number */
/* Enter PFM mode */
rtwn_write_1(sc, R92C_SPS0_CTRL, 0x23); /* ditto */
/* Gated AFE DIG_CLOCK */
rtwn_write_1(sc, R92C_AFE_XTAL_CTRL, 0x0e); /* different with btcoex */
rtwn_write_1(sc, R92C_RSV_CTRL, 0x0e);
rtwn_write_1(sc, R92C_APS_FSMCO, R92C_APS_FSMCO_PDN_EN);
for (i = 0; i < RTWN_NTXQUEUES; i++)
rtwn_reset_tx_list(sc, i);
rtwn_reset_rx_list(sc);
splx(s);
}
static int
rtwn_intr(void *xsc)
{
struct rtwn_softc *sc = xsc;
uint32_t status;
if (!ISSET(sc->sc_flags, RTWN_FLAG_FW_LOADED))
return 0;
status = rtwn_read_4(sc, R92C_HISR);
if (status == 0 || status == 0xffffffff)
return 0;
/* Disable interrupts. */
rtwn_write_4(sc, R92C_HIMR, 0x00000000);
softint_schedule(sc->sc_soft_ih);
return 1;
}
static void
rtwn_softintr(void *xsc)
{
struct rtwn_softc *sc = xsc;
uint32_t status;
int i, s;
if (!ISSET(sc->sc_flags, RTWN_FLAG_FW_LOADED))
return;
status = rtwn_read_4(sc, R92C_HISR);
if (status == 0 || status == 0xffffffff)
goto out;
/* Ack interrupts. */
rtwn_write_4(sc, R92C_HISR, status);
/* Vendor driver treats RX errors like ROK... */
if (status & RTWN_INT_ENABLE_RX) {
for (i = 0; i < RTWN_RX_LIST_COUNT; i++) {
struct r92c_rx_desc_pci *rx_desc = &sc->rx_ring.desc[i];
struct rtwn_rx_data *rx_data = &sc->rx_ring.rx_data[i];
if (le32toh(rx_desc->rxdw0) & R92C_RXDW0_OWN)
continue;
rtwn_rx_frame(sc, rx_desc, rx_data, i);
}
}
if (status & R92C_IMR_BDOK)
rtwn_tx_done(sc, RTWN_BEACON_QUEUE);
if (status & R92C_IMR_HIGHDOK)
rtwn_tx_done(sc, RTWN_HIGH_QUEUE);
if (status & R92C_IMR_MGNTDOK)
rtwn_tx_done(sc, RTWN_MGNT_QUEUE);
if (status & R92C_IMR_BKDOK)
rtwn_tx_done(sc, RTWN_BK_QUEUE);
if (status & R92C_IMR_BEDOK)
rtwn_tx_done(sc, RTWN_BE_QUEUE);
if (status & R92C_IMR_VIDOK)
rtwn_tx_done(sc, RTWN_VI_QUEUE);
if (status & R92C_IMR_VODOK)
rtwn_tx_done(sc, RTWN_VO_QUEUE);
if ((status & RTWN_INT_ENABLE_TX) && sc->qfullmsk == 0) {
struct ifnet *ifp = GET_IFP(sc);
s = splnet();
ifp->if_flags &= ~IFF_OACTIVE;
rtwn_start(ifp);
splx(s);
}
out:
/* Enable interrupts. */
rtwn_write_4(sc, R92C_HIMR, RTWN_INT_ENABLE);
}