NetBSD/sys/fs/udf/udf_allocation.c

3212 lines
85 KiB
C

/* $NetBSD: udf_allocation.c,v 1.47 2022/05/22 11:27:36 andvar Exp $ */
/*
* Copyright (c) 2006, 2008 Reinoud Zandijk
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
#ifndef lint
__KERNEL_RCSID(0, "$NetBSD: udf_allocation.c,v 1.47 2022/05/22 11:27:36 andvar Exp $");
#endif /* not lint */
#if defined(_KERNEL_OPT)
#include "opt_compat_netbsd.h"
#endif
/* TODO strip */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/vnode.h>
#include <miscfs/genfs/genfs_node.h>
#include <sys/mount.h>
#include <sys/buf.h>
#include <sys/file.h>
#include <sys/device.h>
#include <sys/disklabel.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/dirent.h>
#include <sys/stat.h>
#include <sys/conf.h>
#include <sys/kauth.h>
#include <sys/kthread.h>
#include <dev/clock_subr.h>
#include <fs/udf/ecma167-udf.h>
#include <fs/udf/udf_mount.h>
#include "udf.h"
#include "udf_subr.h"
#include "udf_bswap.h"
#define VTOI(vnode) ((struct udf_node *) vnode->v_data)
static void udf_record_allocation_in_node(struct udf_mount *ump,
struct buf *buf, uint16_t vpart_num, uint64_t *mapping,
struct long_ad *node_ad_cpy);
static void udf_collect_free_space_for_vpart(struct udf_mount *ump,
uint16_t vpart_num, uint32_t num_lb);
static int udf_ads_merge(uint32_t max_len, uint32_t lb_size, struct long_ad *a1, struct long_ad *a2);
static void udf_wipe_adslots(struct udf_node *udf_node);
static void udf_count_alloc_exts(struct udf_node *udf_node);
/* --------------------------------------------------------------------- */
#if 0
#if 1
static void
udf_node_dump(struct udf_node *udf_node) {
struct file_entry *fe;
struct extfile_entry *efe;
struct icb_tag *icbtag;
struct long_ad s_ad;
uint64_t inflen;
uint32_t icbflags, addr_type;
uint32_t len, lb_num;
uint32_t flags;
int part_num;
int lb_size, eof, slot;
if ((udf_verbose & UDF_DEBUG_NODEDUMP) == 0)
return;
lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
fe = udf_node->fe;
efe = udf_node->efe;
if (fe) {
icbtag = &fe->icbtag;
inflen = udf_rw64(fe->inf_len);
} else {
icbtag = &efe->icbtag;
inflen = udf_rw64(efe->inf_len);
}
icbflags = udf_rw16(icbtag->flags);
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
printf("udf_node_dump %p :\n", udf_node);
if (addr_type == UDF_ICB_INTERN_ALLOC) {
printf("\tIntern alloc, len = %"PRIu64"\n", inflen);
return;
}
printf("\tInflen = %"PRIu64"\n", inflen);
printf("\t\t");
slot = 0;
for (;;) {
udf_get_adslot(udf_node, slot, &s_ad, &eof);
if (eof)
break;
part_num = udf_rw16(s_ad.loc.part_num);
lb_num = udf_rw32(s_ad.loc.lb_num);
len = udf_rw32(s_ad.len);
flags = UDF_EXT_FLAGS(len);
len = UDF_EXT_LEN(len);
printf("[");
if (part_num >= 0)
printf("part %d, ", part_num);
printf("lb_num %d, len %d", lb_num, len);
if (flags)
printf(", flags %d", flags>>30);
printf("] ");
if (flags == UDF_EXT_REDIRECT) {
printf("\n\textent END\n\tallocation extent\n\t\t");
}
slot++;
}
printf("\n\tl_ad END\n\n");
}
#else
#define udf_node_dump(a)
#endif
static void
udf_assert_allocated(struct udf_mount *ump, uint16_t vpart_num,
uint32_t lb_num, uint32_t num_lb)
{
struct udf_bitmap *bitmap;
struct part_desc *pdesc;
uint32_t ptov;
uint32_t bitval;
uint8_t *bpos;
int bit;
int phys_part;
int ok;
DPRINTF(PARANOIA, ("udf_assert_allocated: check virt lbnum %d "
"part %d + %d sect\n", lb_num, vpart_num, num_lb));
/* get partition backing up this vpart_num */
pdesc = ump->partitions[ump->vtop[vpart_num]];
switch (ump->vtop_tp[vpart_num]) {
case UDF_VTOP_TYPE_PHYS :
case UDF_VTOP_TYPE_SPARABLE :
/* free space to freed or unallocated space bitmap */
ptov = udf_rw32(pdesc->start_loc);
phys_part = ump->vtop[vpart_num];
/* use unallocated bitmap */
bitmap = &ump->part_unalloc_bits[phys_part];
/* if no bitmaps are defined, bail out */
if (bitmap->bits == NULL)
break;
/* check bits */
KASSERT(bitmap->bits);
ok = 1;
bpos = bitmap->bits + lb_num/8;
bit = lb_num % 8;
while (num_lb > 0) {
bitval = (1 << bit);
DPRINTF(PARANOIA, ("XXX : check %d, %p, bit %d\n",
lb_num, bpos, bit));
KASSERT(bitmap->bits + lb_num/8 == bpos);
if (*bpos & bitval) {
printf("\tlb_num %d is NOT marked busy\n",
lb_num);
ok = 0;
}
lb_num++; num_lb--;
bit = (bit + 1) % 8;
if (bit == 0)
bpos++;
}
if (!ok) {
/* KASSERT(0); */
}
break;
case UDF_VTOP_TYPE_VIRT :
/* TODO check space */
KASSERT(num_lb == 1);
break;
case UDF_VTOP_TYPE_META :
/* TODO check space in the metadata bitmap */
default:
/* not implemented */
break;
}
}
static void
udf_node_sanity_check(struct udf_node *udf_node,
uint64_t *cnt_inflen, uint64_t *cnt_logblksrec)
{
union dscrptr *dscr;
struct file_entry *fe;
struct extfile_entry *efe;
struct icb_tag *icbtag;
struct long_ad s_ad;
uint64_t inflen, logblksrec;
uint32_t icbflags, addr_type;
uint32_t len, lb_num, l_ea, l_ad, max_l_ad;
uint16_t part_num;
uint8_t *data_pos;
int dscr_size, lb_size, flags, whole_lb;
int i, slot, eof;
// KASSERT(mutex_owned(&udf_node->ump->allocate_mutex));
if (1)
udf_node_dump(udf_node);
lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
fe = udf_node->fe;
efe = udf_node->efe;
if (fe) {
dscr = (union dscrptr *) fe;
icbtag = &fe->icbtag;
inflen = udf_rw64(fe->inf_len);
dscr_size = sizeof(struct file_entry) -1;
logblksrec = udf_rw64(fe->logblks_rec);
l_ad = udf_rw32(fe->l_ad);
l_ea = udf_rw32(fe->l_ea);
} else {
dscr = (union dscrptr *) efe;
icbtag = &efe->icbtag;
inflen = udf_rw64(efe->inf_len);
dscr_size = sizeof(struct extfile_entry) -1;
logblksrec = udf_rw64(efe->logblks_rec);
l_ad = udf_rw32(efe->l_ad);
l_ea = udf_rw32(efe->l_ea);
}
data_pos = (uint8_t *) dscr + dscr_size + l_ea;
max_l_ad = lb_size - dscr_size - l_ea;
icbflags = udf_rw16(icbtag->flags);
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
/* check if tail is zero */
DPRINTF(PARANOIA, ("Sanity check blank tail\n"));
for (i = l_ad; i < max_l_ad; i++) {
if (data_pos[i] != 0)
printf( "sanity_check: violation: node byte %d "
"has value %d\n", i, data_pos[i]);
}
/* reset counters */
*cnt_inflen = 0;
*cnt_logblksrec = 0;
if (addr_type == UDF_ICB_INTERN_ALLOC) {
KASSERT(l_ad <= max_l_ad);
KASSERT(l_ad == inflen);
*cnt_inflen = inflen;
return;
}
/* start counting */
whole_lb = 1;
slot = 0;
for (;;) {
udf_get_adslot(udf_node, slot, &s_ad, &eof);
if (eof)
break;
KASSERT(whole_lb == 1);
part_num = udf_rw16(s_ad.loc.part_num);
lb_num = udf_rw32(s_ad.loc.lb_num);
len = udf_rw32(s_ad.len);
flags = UDF_EXT_FLAGS(len);
len = UDF_EXT_LEN(len);
if (flags != UDF_EXT_REDIRECT) {
*cnt_inflen += len;
if (flags == UDF_EXT_ALLOCATED) {
*cnt_logblksrec += (len + lb_size -1) / lb_size;
}
} else {
KASSERT(len == lb_size);
}
/* check allocation */
if (flags == UDF_EXT_ALLOCATED)
udf_assert_allocated(udf_node->ump, part_num, lb_num,
(len + lb_size - 1) / lb_size);
/* check whole lb */
whole_lb = ((len % lb_size) == 0);
slot++;
}
/* rest should be zero (ad_off > l_ad < max_l_ad - adlen) */
KASSERT(*cnt_inflen == inflen);
KASSERT(*cnt_logblksrec == logblksrec);
// KASSERT(mutex_owned(&udf_node->ump->allocate_mutex));
}
#else
static void
udf_node_sanity_check(struct udf_node *udf_node,
uint64_t *cnt_inflen, uint64_t *cnt_logblksrec) {
struct file_entry *fe;
struct extfile_entry *efe;
uint64_t inflen, logblksrec;
fe = udf_node->fe;
efe = udf_node->efe;
if (fe) {
inflen = udf_rw64(fe->inf_len);
logblksrec = udf_rw64(fe->logblks_rec);
} else {
inflen = udf_rw64(efe->inf_len);
logblksrec = udf_rw64(efe->logblks_rec);
}
*cnt_logblksrec = logblksrec;
*cnt_inflen = inflen;
}
#endif
/* --------------------------------------------------------------------- */
void
udf_calc_freespace(struct udf_mount *ump, uint64_t *sizeblks, uint64_t *freeblks)
{
struct logvol_int_desc *lvid;
uint32_t *pos1, *pos2;
int vpart, num_vpart;
lvid = ump->logvol_integrity;
*freeblks = *sizeblks = 0;
/*
* Sequential media reports free space directly (CD/DVD/BD-R), for the
* other media we need the logical volume integrity.
*
* We sum all free space up here regardless of type.
*/
KASSERT(lvid);
num_vpart = udf_rw32(lvid->num_part);
if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
/* use track info directly summing if there are 2 open */
/* XXX assumption at most two tracks open */
*freeblks = ump->data_track.free_blocks;
if (ump->data_track.tracknr != ump->metadata_track.tracknr)
*freeblks += ump->metadata_track.free_blocks;
*sizeblks = ump->discinfo.last_possible_lba;
} else {
/* free and used space for mountpoint based on logvol integrity */
for (vpart = 0; vpart < num_vpart; vpart++) {
pos1 = &lvid->tables[0] + vpart;
pos2 = &lvid->tables[0] + num_vpart + vpart;
if (udf_rw32(*pos1) != (uint32_t) -1) {
*freeblks += udf_rw32(*pos1);
*sizeblks += udf_rw32(*pos2);
}
}
}
/* adjust for accounted uncommitted blocks */
for (vpart = 0; vpart < num_vpart; vpart++)
*freeblks -= ump->uncommitted_lbs[vpart];
if (*freeblks > UDF_DISC_SLACK) {
*freeblks -= UDF_DISC_SLACK;
} else {
*freeblks = 0;
}
}
static void
udf_calc_vpart_freespace(struct udf_mount *ump, uint16_t vpart_num, uint64_t *freeblks)
{
struct logvol_int_desc *lvid;
uint32_t *pos1;
lvid = ump->logvol_integrity;
*freeblks = 0;
/*
* Sequential media reports free space directly (CD/DVD/BD-R), for the
* other media we need the logical volume integrity.
*
* We sum all free space up here regardless of type.
*/
KASSERT(lvid);
if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
/* XXX assumption at most two tracks open */
if (vpart_num == ump->data_part) {
*freeblks = ump->data_track.free_blocks;
} else {
*freeblks = ump->metadata_track.free_blocks;
}
} else {
/* free and used space for mountpoint based on logvol integrity */
pos1 = &lvid->tables[0] + vpart_num;
if (udf_rw32(*pos1) != (uint32_t) -1)
*freeblks += udf_rw32(*pos1);
}
/* adjust for accounted uncommitted blocks */
if (*freeblks > ump->uncommitted_lbs[vpart_num]) {
*freeblks -= ump->uncommitted_lbs[vpart_num];
} else {
*freeblks = 0;
}
}
/* --------------------------------------------------------------------- */
int
udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
uint32_t *lb_numres, uint32_t *extres)
{
struct part_desc *pdesc;
struct spare_map_entry *sme;
struct long_ad s_icb_loc;
uint64_t foffset, end_foffset;
uint32_t lb_size, len;
uint32_t lb_num, lb_rel, lb_packet;
uint32_t udf_rw32_lbmap, ext_offset;
uint16_t vpart;
int rel, part, error, eof, slot, flags;
assert(ump && icb_loc && lb_numres);
vpart = udf_rw16(icb_loc->loc.part_num);
lb_num = udf_rw32(icb_loc->loc.lb_num);
if (vpart > UDF_VTOP_RAWPART)
return EINVAL;
translate_again:
part = ump->vtop[vpart];
pdesc = ump->partitions[part];
switch (ump->vtop_tp[vpart]) {
case UDF_VTOP_TYPE_RAW :
/* 1:1 to the end of the device */
*lb_numres = lb_num;
*extres = INT_MAX;
return 0;
case UDF_VTOP_TYPE_PHYS :
/* transform into its disc logical block */
if (lb_num > udf_rw32(pdesc->part_len))
return EINVAL;
*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
/* extent from here to the end of the partition */
*extres = udf_rw32(pdesc->part_len) - lb_num;
return 0;
case UDF_VTOP_TYPE_VIRT :
/* only maps one logical block, lookup in VAT */
if (lb_num >= ump->vat_entries) /* XXX > or >= ? */
return EINVAL;
/* lookup in virtual allocation table file */
mutex_enter(&ump->allocate_mutex);
error = udf_vat_read(ump->vat_node,
(uint8_t *) &udf_rw32_lbmap, 4,
ump->vat_offset + lb_num * 4);
mutex_exit(&ump->allocate_mutex);
if (error)
return error;
lb_num = udf_rw32(udf_rw32_lbmap);
/* transform into its disc logical block */
if (lb_num > udf_rw32(pdesc->part_len))
return EINVAL;
*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
/* just one logical block */
*extres = 1;
return 0;
case UDF_VTOP_TYPE_SPARABLE :
/* check if the packet containing the lb_num is remapped */
lb_packet = lb_num / ump->sparable_packet_size;
lb_rel = lb_num % ump->sparable_packet_size;
for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
sme = &ump->sparing_table->entries[rel];
if (lb_packet == udf_rw32(sme->org)) {
/* NOTE maps to absolute disc logical block! */
*lb_numres = udf_rw32(sme->map) + lb_rel;
*extres = ump->sparable_packet_size - lb_rel;
return 0;
}
}
/* transform into its disc logical block */
if (lb_num > udf_rw32(pdesc->part_len))
return EINVAL;
*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
/* rest of block */
*extres = ump->sparable_packet_size - lb_rel;
return 0;
case UDF_VTOP_TYPE_META :
/* we have to look into the file's allocation descriptors */
/* use metadatafile allocation mutex */
lb_size = udf_rw32(ump->logical_vol->lb_size);
UDF_LOCK_NODE(ump->metadata_node, 0);
/* get first overlapping extent */
foffset = 0;
slot = 0;
for (;;) {
udf_get_adslot(ump->metadata_node,
slot, &s_icb_loc, &eof);
DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, "
"len = %d, lb_num = %d, part = %d\n",
slot, eof,
UDF_EXT_FLAGS(udf_rw32(s_icb_loc.len)),
UDF_EXT_LEN(udf_rw32(s_icb_loc.len)),
udf_rw32(s_icb_loc.loc.lb_num),
udf_rw16(s_icb_loc.loc.part_num)));
if (eof) {
DPRINTF(TRANSLATE,
("Meta partition translation "
"failed: can't seek location\n"));
UDF_UNLOCK_NODE(ump->metadata_node, 0);
return EINVAL;
}
len = udf_rw32(s_icb_loc.len);
flags = UDF_EXT_FLAGS(len);
len = UDF_EXT_LEN(len);
if (flags == UDF_EXT_REDIRECT) {
slot++;
continue;
}
end_foffset = foffset + len;
if (end_foffset > (uint64_t) lb_num * lb_size)
break; /* found */
foffset = end_foffset;
slot++;
}
/* found overlapping slot */
ext_offset = lb_num * lb_size - foffset;
/* process extent offset */
lb_num = udf_rw32(s_icb_loc.loc.lb_num);
vpart = udf_rw16(s_icb_loc.loc.part_num);
lb_num += (ext_offset + lb_size -1) / lb_size;
ext_offset = 0;
UDF_UNLOCK_NODE(ump->metadata_node, 0);
if (flags != UDF_EXT_ALLOCATED) {
DPRINTF(TRANSLATE, ("Metadata partition translation "
"failed: not allocated\n"));
return EINVAL;
}
/*
* vpart and lb_num are updated, translate again since we
* might be mapped on sparable media
*/
goto translate_again;
default:
printf("UDF vtop translation scheme %d unimplemented yet\n",
ump->vtop_tp[vpart]);
}
return EINVAL;
}
/* XXX provisional primitive braindead version */
/* TODO use ext_res */
void
udf_translate_vtop_list(struct udf_mount *ump, uint32_t sectors,
uint16_t vpart_num, uint64_t *lmapping, uint64_t *pmapping)
{
struct long_ad loc;
uint32_t lb_numres, ext_res;
int sector;
for (sector = 0; sector < sectors; sector++) {
memset(&loc, 0, sizeof(struct long_ad));
loc.loc.part_num = udf_rw16(vpart_num);
loc.loc.lb_num = udf_rw32(*lmapping);
udf_translate_vtop(ump, &loc, &lb_numres, &ext_res);
*pmapping = lb_numres;
lmapping++; pmapping++;
}
}
/* --------------------------------------------------------------------- */
/*
* Translate an extent (in logical_blocks) into logical block numbers; used
* for read and write operations. DOESN'T check extents.
*/
int
udf_translate_file_extent(struct udf_node *udf_node,
uint32_t from, uint32_t num_lb,
uint64_t *map)
{
struct udf_mount *ump;
struct icb_tag *icbtag;
struct long_ad t_ad, s_ad;
uint64_t transsec;
uint64_t foffset, end_foffset;
uint32_t transsec32;
uint32_t lb_size;
uint32_t ext_offset;
uint32_t lb_num, len;
uint32_t overlap, translen;
uint16_t vpart_num;
int eof, error, flags;
int slot, addr_type, icbflags;
if (!udf_node)
return ENOENT;
KASSERT(num_lb > 0);
UDF_LOCK_NODE(udf_node, 0);
/* initialise derivative vars */
ump = udf_node->ump;
lb_size = udf_rw32(ump->logical_vol->lb_size);
if (udf_node->fe) {
icbtag = &udf_node->fe->icbtag;
} else {
icbtag = &udf_node->efe->icbtag;
}
icbflags = udf_rw16(icbtag->flags);
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
/* do the work */
if (addr_type == UDF_ICB_INTERN_ALLOC) {
*map = UDF_TRANS_INTERN;
UDF_UNLOCK_NODE(udf_node, 0);
return 0;
}
/* find first overlapping extent */
foffset = 0;
slot = 0;
for (;;) {
udf_get_adslot(udf_node, slot, &s_ad, &eof);
DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
"lb_num = %d, part = %d\n", slot, eof,
UDF_EXT_FLAGS(udf_rw32(s_ad.len)),
UDF_EXT_LEN(udf_rw32(s_ad.len)),
udf_rw32(s_ad.loc.lb_num),
udf_rw16(s_ad.loc.part_num)));
if (eof) {
DPRINTF(TRANSLATE,
("Translate file extent "
"failed: can't seek location\n"));
UDF_UNLOCK_NODE(udf_node, 0);
return EINVAL;
}
len = udf_rw32(s_ad.len);
flags = UDF_EXT_FLAGS(len);
len = UDF_EXT_LEN(len);
lb_num = udf_rw32(s_ad.loc.lb_num);
if (flags == UDF_EXT_REDIRECT) {
slot++;
continue;
}
end_foffset = foffset + len;
if (end_foffset > (uint64_t) from * lb_size)
break; /* found */
foffset = end_foffset;
slot++;
}
/* found overlapping slot */
ext_offset = (uint64_t) from * lb_size - foffset;
for (;;) {
udf_get_adslot(udf_node, slot, &s_ad, &eof);
DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
"lb_num = %d, part = %d\n", slot, eof,
UDF_EXT_FLAGS(udf_rw32(s_ad.len)),
UDF_EXT_LEN(udf_rw32(s_ad.len)),
udf_rw32(s_ad.loc.lb_num),
udf_rw16(s_ad.loc.part_num)));
if (eof) {
DPRINTF(TRANSLATE,
("Translate file extent "
"failed: past eof\n"));
UDF_UNLOCK_NODE(udf_node, 0);
return EINVAL;
}
len = udf_rw32(s_ad.len);
flags = UDF_EXT_FLAGS(len);
len = UDF_EXT_LEN(len);
lb_num = udf_rw32(s_ad.loc.lb_num);
vpart_num = udf_rw16(s_ad.loc.part_num);
end_foffset = foffset + len;
/* process extent, don't forget to advance on ext_offset! */
lb_num += (ext_offset + lb_size -1) / lb_size;
overlap = (len - ext_offset + lb_size -1) / lb_size;
ext_offset = 0;
/*
* note that the while(){} is necessary for the extent that
* the udf_translate_vtop() returns doesn't have to span the
* whole extent.
*/
overlap = MIN(overlap, num_lb);
while (overlap && (flags != UDF_EXT_REDIRECT)) {
switch (flags) {
case UDF_EXT_FREE :
case UDF_EXT_ALLOCATED_BUT_NOT_USED :
transsec = UDF_TRANS_ZERO;
translen = overlap;
while (overlap && num_lb && translen) {
*map++ = transsec;
lb_num++;
overlap--; num_lb--; translen--;
}
break;
case UDF_EXT_ALLOCATED :
t_ad.loc.lb_num = udf_rw32(lb_num);
t_ad.loc.part_num = udf_rw16(vpart_num);
error = udf_translate_vtop(ump,
&t_ad, &transsec32, &translen);
transsec = transsec32;
if (error) {
UDF_UNLOCK_NODE(udf_node, 0);
return error;
}
while (overlap && num_lb && translen) {
*map++ = transsec;
lb_num++; transsec++;
overlap--; num_lb--; translen--;
}
break;
default:
DPRINTF(TRANSLATE,
("Translate file extent "
"failed: bad flags %x\n", flags));
UDF_UNLOCK_NODE(udf_node, 0);
return EINVAL;
}
}
if (num_lb == 0)
break;
if (flags != UDF_EXT_REDIRECT)
foffset = end_foffset;
slot++;
}
UDF_UNLOCK_NODE(udf_node, 0);
return 0;
}
/* --------------------------------------------------------------------- */
static int
udf_search_free_vatloc(struct udf_mount *ump, uint32_t *lbnumres)
{
uint32_t lb_size, lb_num, lb_map, udf_rw32_lbmap;
uint8_t *blob;
int entry, chunk, found, error;
KASSERT(ump);
KASSERT(ump->logical_vol);
lb_size = udf_rw32(ump->logical_vol->lb_size);
blob = malloc(lb_size, M_UDFTEMP, M_WAITOK);
/* TODO static allocation of search chunk */
lb_num = MIN(ump->vat_entries, ump->vat_last_free_lb);
found = 0;
error = 0;
entry = 0;
do {
chunk = MIN(lb_size, (ump->vat_entries - lb_num) * 4);
if (chunk <= 0)
break;
/* load in chunk */
error = udf_vat_read(ump->vat_node, blob, chunk,
ump->vat_offset + lb_num * 4);
if (error)
break;
/* search this chunk */
for (entry=0; entry < chunk /4; entry++, lb_num++) {
udf_rw32_lbmap = *((uint32_t *) (blob + entry * 4));
lb_map = udf_rw32(udf_rw32_lbmap);
if (lb_map == 0xffffffff) {
found = 1;
break;
}
}
} while (!found);
if (error) {
printf("udf_search_free_vatloc: error reading in vat chunk "
"(lb %d, size %d)\n", lb_num, chunk);
}
if (!found) {
/* extend VAT */
DPRINTF(WRITE, ("udf_search_free_vatloc: extending\n"));
lb_num = ump->vat_entries;
ump->vat_entries++;
}
/* mark entry with non free-space initialiser just in case */
lb_map = udf_rw32(0xfffffffe);
udf_vat_write(ump->vat_node, (uint8_t *) &lb_map, 4,
ump->vat_offset + lb_num *4);
ump->vat_last_free_lb = lb_num;
free(blob, M_UDFTEMP);
*lbnumres = lb_num;
return 0;
}
static void
udf_bitmap_allocate(struct udf_bitmap *bitmap, int ismetadata,
uint32_t *num_lb, uint64_t *lmappos)
{
uint32_t offset, lb_num, bit;
int32_t diff;
uint8_t *bpos;
int pass;
if (!ismetadata) {
/* heuristic to keep the two pointers not too close */
diff = bitmap->data_pos - bitmap->metadata_pos;
if ((diff >= 0) && (diff < 1024))
bitmap->data_pos = bitmap->metadata_pos + 1024;
}
offset = ismetadata ? bitmap->metadata_pos : bitmap->data_pos;
offset &= ~7;
for (pass = 0; pass < 2; pass++) {
if (offset >= bitmap->max_offset)
offset = 0;
while (offset < bitmap->max_offset) {
if (*num_lb == 0)
break;
/* use first bit not set */
bpos = bitmap->bits + offset/8;
bit = ffs(*bpos); /* returns 0 or 1..8 */
if (bit == 0) {
offset += 8;
continue;
}
/* check for ffs overshoot */
if (offset + bit-1 >= bitmap->max_offset) {
offset = bitmap->max_offset;
break;
}
DPRINTF(PARANOIA, ("XXX : allocate %d, %p, bit %d\n",
offset + bit -1, bpos, bit-1));
*bpos &= ~(1 << (bit-1));
lb_num = offset + bit-1;
*lmappos++ = lb_num;
*num_lb = *num_lb - 1;
// offset = (offset & ~7);
}
}
if (ismetadata) {
bitmap->metadata_pos = offset;
} else {
bitmap->data_pos = offset;
}
}
static void
udf_bitmap_free(struct udf_bitmap *bitmap, uint32_t lb_num, uint32_t num_lb)
{
uint32_t offset;
uint32_t bit, bitval;
uint8_t *bpos;
offset = lb_num;
/* starter bits */
bpos = bitmap->bits + offset/8;
bit = offset % 8;
while ((bit != 0) && (num_lb > 0)) {
bitval = (1 << bit);
KASSERT((*bpos & bitval) == 0);
DPRINTF(PARANOIA, ("XXX : free %d, %p, %d\n",
offset, bpos, bit));
*bpos |= bitval;
offset++; num_lb--;
bit = (bit + 1) % 8;
}
if (num_lb == 0)
return;
/* whole bytes */
KASSERT(bit == 0);
bpos = bitmap->bits + offset / 8;
while (num_lb >= 8) {
KASSERT((*bpos == 0));
DPRINTF(PARANOIA, ("XXX : free %d + 8, %p\n", offset, bpos));
*bpos = 255;
offset += 8; num_lb -= 8;
bpos++;
}
/* stop bits */
KASSERT(num_lb < 8);
bit = 0;
while (num_lb > 0) {
bitval = (1 << bit);
KASSERT((*bpos & bitval) == 0);
DPRINTF(PARANOIA, ("XXX : free %d, %p, %d\n",
offset, bpos, bit));
*bpos |= bitval;
offset++; num_lb--;
bit = (bit + 1) % 8;
}
}
static uint32_t
udf_bitmap_check_trunc_free(struct udf_bitmap *bitmap, uint32_t to_trunc)
{
uint32_t seq_free, offset;
uint8_t *bpos;
uint8_t bit, bitval;
DPRINTF(RESERVE, ("\ttrying to trunc %d bits from bitmap\n", to_trunc));
offset = bitmap->max_offset - to_trunc;
/* starter bits (if any) */
bpos = bitmap->bits + offset/8;
bit = offset % 8;
seq_free = 0;
while (to_trunc > 0) {
seq_free++;
bitval = (1 << bit);
if (!(*bpos & bitval))
seq_free = 0;
to_trunc--;
bit++;
if (bit == 8) {
bpos++;
bit = 0;
}
}
DPRINTF(RESERVE, ("\tfound %d sequential free bits in bitmap\n", seq_free));
return seq_free;
}
/* --------------------------------------------------------------------- */
/*
* We check for overall disc space with a margin to prevent critical
* conditions. If disc space is low we try to force a sync() to improve our
* estimates. When confronted with meta-data partition size shortage we know
* we have to check if it can be extended and we need to extend it when
* needed.
*
* A 2nd strategy we could use when disc space is getting low on a disc
* formatted with a meta-data partition is to see if there are sparse areas in
* the meta-data partition and free blocks there for extra data.
*/
void
udf_do_reserve_space(struct udf_mount *ump, struct udf_node *udf_node,
uint16_t vpart_num, uint32_t num_lb)
{
ump->uncommitted_lbs[vpart_num] += num_lb;
if (udf_node)
udf_node->uncommitted_lbs += num_lb;
}
void
udf_do_unreserve_space(struct udf_mount *ump, struct udf_node *udf_node,
uint16_t vpart_num, uint32_t num_lb)
{
ump->uncommitted_lbs[vpart_num] -= num_lb;
if (ump->uncommitted_lbs[vpart_num] < 0) {
DPRINTF(RESERVE, ("UDF: underflow on partition reservation, "
"part %d: %d\n", vpart_num,
ump->uncommitted_lbs[vpart_num]));
ump->uncommitted_lbs[vpart_num] = 0;
}
if (udf_node) {
udf_node->uncommitted_lbs -= num_lb;
if (udf_node->uncommitted_lbs < 0) {
DPRINTF(RESERVE, ("UDF: underflow of node "
"reservation : %d\n",
udf_node->uncommitted_lbs));
udf_node->uncommitted_lbs = 0;
}
}
}
int
udf_reserve_space(struct udf_mount *ump, struct udf_node *udf_node,
int udf_c_type, uint16_t vpart_num, uint32_t num_lb, int can_fail)
{
uint64_t freeblks;
uint64_t slack;
int i, error;
slack = 0;
if (can_fail)
slack = UDF_DISC_SLACK;
error = 0;
mutex_enter(&ump->allocate_mutex);
/* check if there is enough space available */
for (i = 0; i < 3; i++) { /* XXX arbitrary number */
udf_calc_vpart_freespace(ump, vpart_num, &freeblks);
if (num_lb + slack < freeblks)
break;
/* issue SYNC */
DPRINTF(RESERVE, ("udf_reserve_space: issuing sync\n"));
mutex_exit(&ump->allocate_mutex);
udf_do_sync(ump, FSCRED, 0);
/* 1/8 second wait */
kpause("udfsync2", false, hz/8, NULL);
mutex_enter(&ump->allocate_mutex);
}
/* check if there is enough space available now */
udf_calc_vpart_freespace(ump, vpart_num, &freeblks);
if (num_lb + slack >= freeblks) {
DPRINTF(RESERVE, ("udf_reserve_space: try to redistribute "
"partition space\n"));
DPRINTF(RESERVE, ("\tvpart %d, type %d is full\n",
vpart_num, ump->vtop_alloc[vpart_num]));
/* Try to redistribute space if possible */
udf_collect_free_space_for_vpart(ump, vpart_num, num_lb + slack);
}
/* check if there is enough space available now */
udf_calc_vpart_freespace(ump, vpart_num, &freeblks);
if (num_lb + slack <= freeblks) {
udf_do_reserve_space(ump, udf_node, vpart_num, num_lb);
} else {
DPRINTF(RESERVE, ("udf_reserve_space: out of disc space\n"));
error = ENOSPC;
}
mutex_exit(&ump->allocate_mutex);
return error;
}
void
udf_cleanup_reservation(struct udf_node *udf_node)
{
struct udf_mount *ump = udf_node->ump;
int vpart_num;
mutex_enter(&ump->allocate_mutex);
/* compensate for overlapping blocks */
DPRINTF(RESERVE, ("UDF: overlapped %d blocks in count\n", udf_node->uncommitted_lbs));
vpart_num = udf_get_record_vpart(ump, udf_get_c_type(udf_node));
udf_do_unreserve_space(ump, udf_node, vpart_num, udf_node->uncommitted_lbs);
DPRINTF(RESERVE, ("\ttotal now %d\n", ump->uncommitted_lbs[vpart_num]));
/* sanity */
if (ump->uncommitted_lbs[vpart_num] < 0)
ump->uncommitted_lbs[vpart_num] = 0;
mutex_exit(&ump->allocate_mutex);
}
/* --------------------------------------------------------------------- */
/*
* Allocate an extent of given length on given virt. partition. It doesn't
* have to be one stretch.
*/
int
udf_allocate_space(struct udf_mount *ump, struct udf_node *udf_node,
int udf_c_type, uint16_t vpart_num, uint32_t num_lb, uint64_t *lmapping)
{
struct mmc_trackinfo *alloc_track, *other_track;
struct udf_bitmap *bitmap;
struct part_desc *pdesc;
struct logvol_int_desc *lvid;
uint64_t *lmappos;
uint32_t ptov, lb_num, *freepos, free_lbs;
int lb_size __diagused, alloc_num_lb;
int alloc_type, error;
int is_node;
DPRINTF(CALL, ("udf_allocate_space(ctype %d, vpart %d, num_lb %d\n",
udf_c_type, vpart_num, num_lb));
mutex_enter(&ump->allocate_mutex);
lb_size = udf_rw32(ump->logical_vol->lb_size);
KASSERT(lb_size == ump->discinfo.sector_size);
alloc_type = ump->vtop_alloc[vpart_num];
is_node = (udf_c_type == UDF_C_NODE);
lmappos = lmapping;
error = 0;
switch (alloc_type) {
case UDF_ALLOC_VAT :
/* search empty slot in VAT file */
KASSERT(num_lb == 1);
error = udf_search_free_vatloc(ump, &lb_num);
if (!error) {
*lmappos = lb_num;
/* reserve on the backing sequential partition since
* that partition is credited back later */
udf_do_reserve_space(ump, udf_node,
ump->vtop[vpart_num], num_lb);
}
break;
case UDF_ALLOC_SEQUENTIAL :
/* sequential allocation on recordable media */
/* get partition backing up this vpart_num_num */
pdesc = ump->partitions[ump->vtop[vpart_num]];
/* calculate offset from physical base partition */
ptov = udf_rw32(pdesc->start_loc);
/* get our track descriptors */
if (vpart_num == ump->node_part) {
alloc_track = &ump->metadata_track;
other_track = &ump->data_track;
} else {
alloc_track = &ump->data_track;
other_track = &ump->metadata_track;
}
/* allocate */
for (lb_num = 0; lb_num < num_lb; lb_num++) {
*lmappos++ = alloc_track->next_writable - ptov;
alloc_track->next_writable++;
alloc_track->free_blocks--;
}
/* keep other track up-to-date */
if (alloc_track->tracknr == other_track->tracknr)
memcpy(other_track, alloc_track,
sizeof(struct mmc_trackinfo));
break;
case UDF_ALLOC_SPACEMAP :
/* try to allocate on unallocated bits */
alloc_num_lb = num_lb;
bitmap = &ump->part_unalloc_bits[vpart_num];
udf_bitmap_allocate(bitmap, is_node, &alloc_num_lb, lmappos);
ump->lvclose |= UDF_WRITE_PART_BITMAPS;
/* have we allocated all? */
if (alloc_num_lb) {
/* TODO convert freed to unalloc and try again */
/* free allocated piece for now */
lmappos = lmapping;
for (lb_num=0; lb_num < num_lb-alloc_num_lb; lb_num++) {
udf_bitmap_free(bitmap, *lmappos++, 1);
}
error = ENOSPC;
}
if (!error) {
/* adjust freecount */
lvid = ump->logvol_integrity;
freepos = &lvid->tables[0] + vpart_num;
free_lbs = udf_rw32(*freepos);
*freepos = udf_rw32(free_lbs - num_lb);
}
break;
case UDF_ALLOC_METABITMAP : /* UDF 2.50, 2.60 BluRay-RE */
/* allocate on metadata unallocated bits */
alloc_num_lb = num_lb;
bitmap = &ump->metadata_unalloc_bits;
udf_bitmap_allocate(bitmap, is_node, &alloc_num_lb, lmappos);
ump->lvclose |= UDF_WRITE_PART_BITMAPS;
/* have we allocated all? */
if (alloc_num_lb) {
/* YIKES! TODO we need to extend the metadata partition */
/* free allocated piece for now */
lmappos = lmapping;
for (lb_num=0; lb_num < num_lb-alloc_num_lb; lb_num++) {
udf_bitmap_free(bitmap, *lmappos++, 1);
}
error = ENOSPC;
}
if (!error) {
/* adjust freecount */
lvid = ump->logvol_integrity;
freepos = &lvid->tables[0] + vpart_num;
free_lbs = udf_rw32(*freepos);
*freepos = udf_rw32(free_lbs - num_lb);
}
break;
case UDF_ALLOC_METASEQUENTIAL : /* UDF 2.60 BluRay-R */
case UDF_ALLOC_RELAXEDSEQUENTIAL : /* UDF 2.50/~meta BluRay-R */
printf("ALERT: udf_allocate_space : allocation %d "
"not implemented yet!\n", alloc_type);
/* TODO implement, doesn't have to be contiguous */
error = ENOSPC;
break;
}
if (!error) {
/* credit our partition since we have committed the space */
udf_do_unreserve_space(ump, udf_node, vpart_num, num_lb);
}
#ifdef DEBUG
if (udf_verbose & UDF_DEBUG_ALLOC) {
lmappos = lmapping;
printf("udf_allocate_space, allocated logical lba :\n");
for (lb_num = 0; lb_num < num_lb; lb_num++) {
printf("%s %"PRIu64, (lb_num > 0)?",":"",
*lmappos++);
}
printf("\n");
}
#endif
mutex_exit(&ump->allocate_mutex);
return error;
}
/* --------------------------------------------------------------------- */
void
udf_free_allocated_space(struct udf_mount *ump, uint32_t lb_num,
uint16_t vpart_num, uint32_t num_lb)
{
struct udf_bitmap *bitmap;
struct logvol_int_desc *lvid;
uint32_t lb_map, udf_rw32_lbmap;
uint32_t *freepos, free_lbs;
int phys_part;
int error __diagused;
DPRINTF(ALLOC, ("udf_free_allocated_space: freeing virt lbnum %d "
"part %d + %d sect\n", lb_num, vpart_num, num_lb));
/* no use freeing zero length */
if (num_lb == 0)
return;
mutex_enter(&ump->allocate_mutex);
switch (ump->vtop_tp[vpart_num]) {
case UDF_VTOP_TYPE_PHYS :
case UDF_VTOP_TYPE_SPARABLE :
/* free space to freed or unallocated space bitmap */
phys_part = ump->vtop[vpart_num];
/* first try freed space bitmap */
bitmap = &ump->part_freed_bits[phys_part];
/* if not defined, use unallocated bitmap */
if (bitmap->bits == NULL)
bitmap = &ump->part_unalloc_bits[phys_part];
/* if no bitmaps are defined, bail out; XXX OK? */
if (bitmap->bits == NULL)
break;
/* free bits if its defined */
KASSERT(bitmap->bits);
ump->lvclose |= UDF_WRITE_PART_BITMAPS;
udf_bitmap_free(bitmap, lb_num, num_lb);
/* adjust freecount */
lvid = ump->logvol_integrity;
freepos = &lvid->tables[0] + vpart_num;
free_lbs = udf_rw32(*freepos);
*freepos = udf_rw32(free_lbs + num_lb);
break;
case UDF_VTOP_TYPE_VIRT :
/* free this VAT entry */
KASSERT(num_lb == 1);
lb_map = 0xffffffff;
udf_rw32_lbmap = udf_rw32(lb_map);
error = udf_vat_write(ump->vat_node,
(uint8_t *) &udf_rw32_lbmap, 4,
ump->vat_offset + lb_num * 4);
KASSERT(error == 0);
ump->vat_last_free_lb = MIN(ump->vat_last_free_lb, lb_num);
break;
case UDF_VTOP_TYPE_META :
/* free space in the metadata bitmap */
bitmap = &ump->metadata_unalloc_bits;
KASSERT(bitmap->bits);
ump->lvclose |= UDF_WRITE_PART_BITMAPS;
udf_bitmap_free(bitmap, lb_num, num_lb);
/* adjust freecount */
lvid = ump->logvol_integrity;
freepos = &lvid->tables[0] + vpart_num;
free_lbs = udf_rw32(*freepos);
*freepos = udf_rw32(free_lbs + num_lb);
break;
default:
printf("ALERT: udf_free_allocated_space : allocation %d "
"not implemented yet!\n", ump->vtop_tp[vpart_num]);
break;
}
mutex_exit(&ump->allocate_mutex);
}
/* --------------------------------------------------------------------- */
/*
* Special function to synchronise the metadatamirror file when they change on
* resizing. When the metadatafile is actually duplicated, this action is a
* no-op since they describe different extents on the disc.
*/
void
udf_synchronise_metadatamirror_node(struct udf_mount *ump)
{
struct udf_node *meta_node, *metamirror_node;
struct long_ad s_ad;
uint32_t len, flags;
int slot, cpy_slot;
int error, eof;
if (ump->metadata_flags & METADATA_DUPLICATED)
return;
meta_node = ump->metadata_node;
metamirror_node = ump->metadatamirror_node;
/* 1) wipe mirror node */
udf_wipe_adslots(metamirror_node);
/* 2) copy all node descriptors from the meta_node */
slot = 0;
cpy_slot = 0;
for (;;) {
udf_get_adslot(meta_node, slot, &s_ad, &eof);
if (eof)
break;
len = udf_rw32(s_ad.len);
flags = UDF_EXT_FLAGS(len);
len = UDF_EXT_LEN(len);
if (flags == UDF_EXT_REDIRECT) {
slot++;
continue;
}
error = udf_append_adslot(metamirror_node, &cpy_slot, &s_ad);
if (error) {
/* WTF, this shouldn't happen, what to do now? */
panic("udf_synchronise_metadatamirror_node failed!");
}
cpy_slot++;
slot++;
}
/* 3) adjust metamirror_node size */
if (meta_node->fe) {
KASSERT(metamirror_node->fe);
metamirror_node->fe->inf_len = meta_node->fe->inf_len;
} else {
KASSERT(meta_node->efe);
KASSERT(metamirror_node->efe);
metamirror_node->efe->inf_len = meta_node->efe->inf_len;
metamirror_node->efe->obj_size = meta_node->efe->obj_size;
}
/* for sanity */
udf_count_alloc_exts(metamirror_node);
}
/* --------------------------------------------------------------------- */
/*
* When faced with an out of space but there is still space available on other
* partitions, try to redistribute the space. This is only defined for media
* using Metadata partitions.
*
* There are two formats to deal with. Either its a `normal' metadata
* partition and we can move blocks between a metadata bitmap and its
* companion data spacemap OR its a UDF 2.60 formatted BluRay-R disc with POW
* and a metadata partition.
*/
/* implementation limit: ump->datapart is the companion partition */
static uint32_t
udf_trunc_metadatapart(struct udf_mount *ump, uint32_t num_lb)
{
struct udf_node *bitmap_node;
struct udf_bitmap *bitmap;
struct space_bitmap_desc *sbd, *new_sbd;
struct logvol_int_desc *lvid;
uint64_t inf_len;
uint64_t meta_free_lbs, data_free_lbs, to_trunc;
uint32_t *freepos, *sizepos;
uint32_t unit, lb_size;
uint16_t meta_vpart_num, data_vpart_num, num_vpart;
int err __diagused;
unit = ump->metadata_alloc_unit_size;
lb_size = udf_rw32(ump->logical_vol->lb_size);
lvid = ump->logvol_integrity;
/* XXX
*
* the following checks will fail for BD-R UDF 2.60! but they are
* read-only for now anyway! Its even doubtful if it is to be allowed
* for these discs.
*/
/* lookup vpart for metadata partition */
meta_vpart_num = ump->node_part;
KASSERT(ump->vtop_alloc[meta_vpart_num] == UDF_ALLOC_METABITMAP);
/* lookup vpart for data partition */
data_vpart_num = ump->data_part;
KASSERT(ump->vtop_alloc[data_vpart_num] == UDF_ALLOC_SPACEMAP);
udf_calc_vpart_freespace(ump, data_vpart_num, &data_free_lbs);
udf_calc_vpart_freespace(ump, meta_vpart_num, &meta_free_lbs);
DPRINTF(RESERVE, ("\tfree space on data partition %"PRIu64" blks\n", data_free_lbs));
DPRINTF(RESERVE, ("\tfree space on metadata partition %"PRIu64" blks\n", meta_free_lbs));
/* give away some of the free meta space, in unit block sizes */
to_trunc = meta_free_lbs/4; /* give out a quarter */
to_trunc = MAX(to_trunc, num_lb);
to_trunc = unit * ((to_trunc + unit-1) / unit); /* round up */
/* scale down if needed and bail out when out of space */
if (to_trunc >= meta_free_lbs)
return num_lb;
/* check extent of bits marked free at the end of the map */
bitmap = &ump->metadata_unalloc_bits;
to_trunc = udf_bitmap_check_trunc_free(bitmap, to_trunc);
to_trunc = unit * (to_trunc / unit); /* round down again */
if (to_trunc == 0)
return num_lb;
DPRINTF(RESERVE, ("\ttruncating %"PRIu64" lbs from the metadata bitmap\n",
to_trunc));
/* get length of the metadata bitmap node file */
bitmap_node = ump->metadatabitmap_node;
if (bitmap_node->fe) {
inf_len = udf_rw64(bitmap_node->fe->inf_len);
} else {
KASSERT(bitmap_node->efe);
inf_len = udf_rw64(bitmap_node->efe->inf_len);
}
inf_len -= to_trunc/8;
/* as per [UDF 2.60/2.2.13.6] : */
/* 1) update the SBD in the metadata bitmap file */
sbd = (struct space_bitmap_desc *) bitmap->blob;
sbd->num_bits = udf_rw32(udf_rw32(sbd->num_bits) - to_trunc);
sbd->num_bytes = udf_rw32(udf_rw32(sbd->num_bytes) - to_trunc/8);
bitmap->max_offset = udf_rw32(sbd->num_bits);
num_vpart = udf_rw32(lvid->num_part);
freepos = &lvid->tables[0] + meta_vpart_num;
sizepos = &lvid->tables[0] + num_vpart + meta_vpart_num;
*freepos = udf_rw32(*freepos) - to_trunc;
*sizepos = udf_rw32(*sizepos) - to_trunc;
/* realloc bitmap for better memory usage */
new_sbd = realloc(sbd, inf_len, M_UDFVOLD, M_WAITOK);
if (new_sbd) {
/* update pointers */
ump->metadata_unalloc_dscr = new_sbd;
bitmap->blob = (uint8_t *) new_sbd;
}
ump->lvclose |= UDF_WRITE_PART_BITMAPS;
/*
* The truncated space is secured now and can't be allocated anymore.
* Release the allocated mutex so we can shrink the nodes the normal
* way.
*/
mutex_exit(&ump->allocate_mutex);
/* 2) trunc the metadata bitmap information file, freeing blocks */
err = udf_shrink_node(bitmap_node, inf_len);
KASSERT(err == 0);
/* 3) trunc the metadata file and mirror file, freeing blocks */
inf_len = (uint64_t) udf_rw32(sbd->num_bits) * lb_size; /* [4/14.12.4] */
err = udf_shrink_node(ump->metadata_node, inf_len);
KASSERT(err == 0);
if (ump->metadatamirror_node) {
if (ump->metadata_flags & METADATA_DUPLICATED) {
err = udf_shrink_node(ump->metadatamirror_node, inf_len);
} else {
/* extents will be copied on writeout */
}
KASSERT(err == 0);
}
ump->lvclose |= UDF_WRITE_METAPART_NODES;
/* relock before exit */
mutex_enter(&ump->allocate_mutex);
if (to_trunc > num_lb)
return 0;
return num_lb - to_trunc;
}
static void
udf_sparsify_metadatapart(struct udf_mount *ump, uint32_t num_lb)
{
/* NOT IMPLEMENTED, fail */
}
static void
udf_collect_free_space_for_vpart(struct udf_mount *ump,
uint16_t vpart_num, uint32_t num_lb)
{
/* allocated mutex is held */
/* only defined for metadata partitions */
if (ump->vtop_tp[ump->node_part] != UDF_VTOP_TYPE_META) {
DPRINTF(RESERVE, ("\tcan't grow/shrink; no metadata partitioning\n"));
return;
}
/* UDF 2.60 BD-R+POW? */
if (ump->vtop_alloc[ump->node_part] == UDF_ALLOC_METASEQUENTIAL) {
DPRINTF(RESERVE, ("\tUDF 2.60 BD-R+POW track grow not implemented yet\n"));
return;
}
if (ump->vtop_tp[vpart_num] == UDF_VTOP_TYPE_META) {
/* try to grow the meta partition */
DPRINTF(RESERVE, ("\ttrying to grow the meta partition\n"));
/* as per [UDF 2.60/2.2.13.5] : extend bitmap and metadata file(s) */
DPRINTF(NOTIMPL, ("\tgrowing meta partition not implemented yet\n"));
} else {
/* try to shrink the metadata partition */
DPRINTF(RESERVE, ("\ttrying to shrink the meta partition\n"));
/* as per [UDF 2.60/2.2.13.6] : either trunc or make sparse */
num_lb = udf_trunc_metadatapart(ump, num_lb);
if (num_lb)
udf_sparsify_metadatapart(ump, num_lb);
}
/* allocated mutex should still be held */
}
/* --------------------------------------------------------------------- */
/*
* Allocate a buf on disc for direct write out. The space doesn't have to be
* contiguous as the caller takes care of this.
*/
void
udf_late_allocate_buf(struct udf_mount *ump, struct buf *buf,
uint64_t *lmapping, struct long_ad *node_ad_cpy, uint16_t *vpart_nump)
{
struct udf_node *udf_node = VTOI(buf->b_vp);
int lb_size, udf_c_type;
int vpart_num, num_lb;
int error, s;
/*
* for each sector in the buf, allocate a sector on disc and record
* its position in the provided mapping array.
*
* If its userdata or FIDs, record its location in its node.
*/
lb_size = udf_rw32(ump->logical_vol->lb_size);
num_lb = (buf->b_bcount + lb_size -1) / lb_size;
udf_c_type = buf->b_udf_c_type;
KASSERT(lb_size == ump->discinfo.sector_size);
/* select partition to record the buffer on */
vpart_num = *vpart_nump = udf_get_record_vpart(ump, udf_c_type);
if (udf_c_type == UDF_C_NODE) {
/* if not VAT, its already allocated */
if (ump->vtop_alloc[ump->node_part] != UDF_ALLOC_VAT)
return;
/* allocate on its backing sequential partition */
vpart_num = ump->data_part;
}
/* XXX can this still happen? */
/* do allocation on the selected partition */
error = udf_allocate_space(ump, udf_node, udf_c_type,
vpart_num, num_lb, lmapping);
if (error) {
/*
* ARGH! we haven't done our accounting right! it should
* always succeed.
*/
panic("UDF disc allocation accounting gone wrong");
}
/* If its userdata or FIDs, record its allocation in its node. */
if ((udf_c_type == UDF_C_USERDATA) ||
(udf_c_type == UDF_C_FIDS) ||
(udf_c_type == UDF_C_METADATA_SBM))
{
udf_record_allocation_in_node(ump, buf, vpart_num, lmapping,
node_ad_cpy);
/* decrement our outstanding bufs counter */
s = splbio();
udf_node->outstanding_bufs--;
splx(s);
}
}
/* --------------------------------------------------------------------- */
/*
* Try to merge a1 with the new piece a2. udf_ads_merge returns error when not
* possible (anymore); a2 returns the rest piece.
*/
static int
udf_ads_merge(uint32_t max_len, uint32_t lb_size, struct long_ad *a1, struct long_ad *a2)
{
uint32_t merge_len;
uint32_t a1_len, a2_len;
uint32_t a1_flags, a2_flags;
uint32_t a1_lbnum, a2_lbnum;
uint16_t a1_part, a2_part;
a1_flags = UDF_EXT_FLAGS(udf_rw32(a1->len));
a1_len = UDF_EXT_LEN(udf_rw32(a1->len));
a1_lbnum = udf_rw32(a1->loc.lb_num);
a1_part = udf_rw16(a1->loc.part_num);
a2_flags = UDF_EXT_FLAGS(udf_rw32(a2->len));
a2_len = UDF_EXT_LEN(udf_rw32(a2->len));
a2_lbnum = udf_rw32(a2->loc.lb_num);
a2_part = udf_rw16(a2->loc.part_num);
/* defines same space */
if (a1_flags != a2_flags)
return 1;
if (a1_flags != UDF_EXT_FREE) {
/* the same partition */
if (a1_part != a2_part)
return 1;
/* a2 is successor of a1 */
if (a1_lbnum * lb_size + a1_len != a2_lbnum * lb_size)
return 1;
}
/* merge as most from a2 if possible */
merge_len = MIN(a2_len, max_len - a1_len);
a1_len += merge_len;
a2_len -= merge_len;
a2_lbnum += merge_len/lb_size;
a1->len = udf_rw32(a1_len | a1_flags);
a2->len = udf_rw32(a2_len | a2_flags);
a2->loc.lb_num = udf_rw32(a2_lbnum);
if (a2_len > 0)
return 1;
/* there is space over to merge */
return 0;
}
/* --------------------------------------------------------------------- */
static void
udf_wipe_adslots(struct udf_node *udf_node)
{
struct file_entry *fe;
struct extfile_entry *efe;
struct alloc_ext_entry *ext;
uint32_t lb_size, dscr_size, l_ea, max_l_ad, crclen;
uint8_t *data_pos;
int extnr;
lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
fe = udf_node->fe;
efe = udf_node->efe;
if (fe) {
dscr_size = sizeof(struct file_entry) -1;
l_ea = udf_rw32(fe->l_ea);
data_pos = (uint8_t *) fe + dscr_size + l_ea;
} else {
dscr_size = sizeof(struct extfile_entry) -1;
l_ea = udf_rw32(efe->l_ea);
data_pos = (uint8_t *) efe + dscr_size + l_ea;
}
max_l_ad = lb_size - dscr_size - l_ea;
/* wipe fe/efe */
memset(data_pos, 0, max_l_ad);
crclen = dscr_size - UDF_DESC_TAG_LENGTH + l_ea;
if (fe) {
fe->l_ad = udf_rw32(0);
fe->logblks_rec = udf_rw64(0);
fe->tag.desc_crc_len = udf_rw16(crclen);
} else {
efe->l_ad = udf_rw32(0);
efe->logblks_rec = udf_rw64(0);
efe->tag.desc_crc_len = udf_rw16(crclen);
}
/* wipe all allocation extent entries */
for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
ext = udf_node->ext[extnr];
dscr_size = sizeof(struct alloc_ext_entry) -1;
data_pos = (uint8_t *) ext->data;
max_l_ad = lb_size - dscr_size;
memset(data_pos, 0, max_l_ad);
ext->l_ad = udf_rw32(0);
crclen = dscr_size - UDF_DESC_TAG_LENGTH;
ext->tag.desc_crc_len = udf_rw16(crclen);
}
udf_node->i_flags |= IN_NODE_REBUILD;
}
/* --------------------------------------------------------------------- */
void
udf_get_adslot(struct udf_node *udf_node, int slot, struct long_ad *icb,
int *eof) {
struct file_entry *fe;
struct extfile_entry *efe;
struct alloc_ext_entry *ext;
struct icb_tag *icbtag;
struct short_ad *short_ad;
struct long_ad *long_ad, l_icb;
uint32_t offset;
uint32_t dscr_size, l_ea, l_ad, flags;
uint8_t *data_pos;
int icbflags, addr_type, adlen, extnr;
fe = udf_node->fe;
efe = udf_node->efe;
if (fe) {
icbtag = &fe->icbtag;
dscr_size = sizeof(struct file_entry) -1;
l_ea = udf_rw32(fe->l_ea);
l_ad = udf_rw32(fe->l_ad);
data_pos = (uint8_t *) fe + dscr_size + l_ea;
} else {
icbtag = &efe->icbtag;
dscr_size = sizeof(struct extfile_entry) -1;
l_ea = udf_rw32(efe->l_ea);
l_ad = udf_rw32(efe->l_ad);
data_pos = (uint8_t *) efe + dscr_size + l_ea;
}
icbflags = udf_rw16(icbtag->flags);
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
/* just in case we're called on an intern, its EOF */
if (addr_type == UDF_ICB_INTERN_ALLOC) {
memset(icb, 0, sizeof(struct long_ad));
*eof = 1;
return;
}
adlen = 0;
if (addr_type == UDF_ICB_SHORT_ALLOC) {
adlen = sizeof(struct short_ad);
} else if (addr_type == UDF_ICB_LONG_ALLOC) {
adlen = sizeof(struct long_ad);
}
/* if offset too big, we go to the allocation extensions */
offset = slot * adlen;
extnr = -1;
while (offset >= l_ad) {
/* check if our last entry is a redirect */
if (addr_type == UDF_ICB_SHORT_ALLOC) {
short_ad = (struct short_ad *) (data_pos + l_ad-adlen);
l_icb.len = short_ad->len;
l_icb.loc.part_num = udf_node->loc.loc.part_num;
l_icb.loc.lb_num = short_ad->lb_num;
} else {
KASSERT(addr_type == UDF_ICB_LONG_ALLOC);
long_ad = (struct long_ad *) (data_pos + l_ad-adlen);
l_icb = *long_ad;
}
flags = UDF_EXT_FLAGS(udf_rw32(l_icb.len));
if (flags != UDF_EXT_REDIRECT) {
l_ad = 0; /* force EOF */
break;
}
/* advance to next extent */
extnr++;
if (extnr >= udf_node->num_extensions) {
l_ad = 0; /* force EOF */
break;
}
offset = offset - l_ad;
ext = udf_node->ext[extnr];
dscr_size = sizeof(struct alloc_ext_entry) -1;
l_ad = udf_rw32(ext->l_ad);
data_pos = (uint8_t *) ext + dscr_size;
}
/* XXX l_ad == 0 should be enough to check */
*eof = (offset >= l_ad) || (l_ad == 0);
if (*eof) {
DPRINTF(PARANOIDADWLK, ("returning EOF, extnr %d, offset %d, "
"l_ad %d\n", extnr, offset, l_ad));
memset(icb, 0, sizeof(struct long_ad));
return;
}
/* get the element */
if (addr_type == UDF_ICB_SHORT_ALLOC) {
short_ad = (struct short_ad *) (data_pos + offset);
icb->len = short_ad->len;
icb->loc.part_num = udf_node->loc.loc.part_num;
icb->loc.lb_num = short_ad->lb_num;
} else if (addr_type == UDF_ICB_LONG_ALLOC) {
long_ad = (struct long_ad *) (data_pos + offset);
*icb = *long_ad;
}
DPRINTF(PARANOIDADWLK, ("returning element : v %d, lb %d, len %d, "
"flags %d\n", icb->loc.part_num, icb->loc.lb_num,
UDF_EXT_LEN(icb->len), UDF_EXT_FLAGS(icb->len)));
}
/* --------------------------------------------------------------------- */
int
udf_append_adslot(struct udf_node *udf_node, int *slot, struct long_ad *icb) {
struct udf_mount *ump = udf_node->ump;
union dscrptr *dscr, *extdscr;
struct file_entry *fe;
struct extfile_entry *efe;
struct alloc_ext_entry *ext;
struct icb_tag *icbtag;
struct short_ad *short_ad;
struct long_ad *long_ad, o_icb, l_icb;
uint64_t logblks_rec, *logblks_rec_p;
uint64_t lmapping;
uint32_t offset, rest, len, lb_num;
uint32_t lb_size, dscr_size, l_ea, l_ad, *l_ad_p, max_l_ad, crclen;
uint32_t flags;
uint16_t vpart_num;
uint8_t *data_pos;
int icbflags, addr_type, adlen, extnr;
int error;
lb_size = udf_rw32(ump->logical_vol->lb_size);
vpart_num = udf_rw16(udf_node->loc.loc.part_num);
/* determine what descriptor we are in */
fe = udf_node->fe;
efe = udf_node->efe;
if (fe) {
icbtag = &fe->icbtag;
dscr = (union dscrptr *) fe;
dscr_size = sizeof(struct file_entry) -1;
l_ea = udf_rw32(fe->l_ea);
l_ad_p = &fe->l_ad;
logblks_rec_p = &fe->logblks_rec;
} else {
icbtag = &efe->icbtag;
dscr = (union dscrptr *) efe;
dscr_size = sizeof(struct extfile_entry) -1;
l_ea = udf_rw32(efe->l_ea);
l_ad_p = &efe->l_ad;
logblks_rec_p = &efe->logblks_rec;
}
data_pos = (uint8_t *) dscr + dscr_size + l_ea;
max_l_ad = lb_size - dscr_size - l_ea;
icbflags = udf_rw16(icbtag->flags);
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
/* just in case we're called on an intern, its EOF */
if (addr_type == UDF_ICB_INTERN_ALLOC) {
panic("udf_append_adslot on UDF_ICB_INTERN_ALLOC\n");
}
adlen = 0;
if (addr_type == UDF_ICB_SHORT_ALLOC) {
adlen = sizeof(struct short_ad);
} else if (addr_type == UDF_ICB_LONG_ALLOC) {
adlen = sizeof(struct long_ad);
}
/* clean up given long_ad since it can be a synthesized one */
flags = UDF_EXT_FLAGS(udf_rw32(icb->len));
if (flags == UDF_EXT_FREE) {
icb->loc.part_num = udf_rw16(0);
icb->loc.lb_num = udf_rw32(0);
}
/* if offset too big, we go to the allocation extensions */
l_ad = udf_rw32(*l_ad_p);
offset = (*slot) * adlen;
extnr = -1;
while (offset >= l_ad) {
/* check if our last entry is a redirect */
if (addr_type == UDF_ICB_SHORT_ALLOC) {
short_ad = (struct short_ad *) (data_pos + l_ad-adlen);
l_icb.len = short_ad->len;
l_icb.loc.part_num = udf_node->loc.loc.part_num;
l_icb.loc.lb_num = short_ad->lb_num;
} else {
KASSERT(addr_type == UDF_ICB_LONG_ALLOC);
long_ad = (struct long_ad *) (data_pos + l_ad-adlen);
l_icb = *long_ad;
}
flags = UDF_EXT_FLAGS(udf_rw32(l_icb.len));
if (flags != UDF_EXT_REDIRECT) {
/* only one past the last one is adressable */
break;
}
/* advance to next extent */
extnr++;
KASSERT(extnr < udf_node->num_extensions);
offset = offset - l_ad;
ext = udf_node->ext[extnr];
dscr = (union dscrptr *) ext;
dscr_size = sizeof(struct alloc_ext_entry) -1;
max_l_ad = lb_size - dscr_size;
l_ad_p = &ext->l_ad;
l_ad = udf_rw32(*l_ad_p);
data_pos = (uint8_t *) ext + dscr_size;
}
DPRINTF(PARANOIDADWLK, ("append, ext %d, offset %d, l_ad %d\n",
extnr, offset, udf_rw32(*l_ad_p)));
KASSERT(l_ad == udf_rw32(*l_ad_p));
/* offset is offset within the current (E)FE/AED */
l_ad = udf_rw32(*l_ad_p);
crclen = udf_rw16(dscr->tag.desc_crc_len);
logblks_rec = udf_rw64(*logblks_rec_p);
/* overwriting old piece? */
if (offset < l_ad) {
/* overwrite entry; compensate for the old element */
if (addr_type == UDF_ICB_SHORT_ALLOC) {
short_ad = (struct short_ad *) (data_pos + offset);
o_icb.len = short_ad->len;
o_icb.loc.part_num = udf_rw16(0); /* ignore */
o_icb.loc.lb_num = short_ad->lb_num;
} else if (addr_type == UDF_ICB_LONG_ALLOC) {
long_ad = (struct long_ad *) (data_pos + offset);
o_icb = *long_ad;
} else {
panic("Invalid address type in udf_append_adslot\n");
}
len = udf_rw32(o_icb.len);
if (UDF_EXT_FLAGS(len) == UDF_EXT_ALLOCATED) {
/* adjust counts */
len = UDF_EXT_LEN(len);
logblks_rec -= (len + lb_size -1) / lb_size;
}
}
/* check if we're not appending a redirection */
flags = UDF_EXT_FLAGS(udf_rw32(icb->len));
KASSERT(flags != UDF_EXT_REDIRECT);
/* round down available space */
rest = adlen * ((max_l_ad - offset) / adlen);
if (rest <= adlen) {
/* have to append aed, see if we already have a spare one */
extnr++;
ext = udf_node->ext[extnr];
l_icb = udf_node->ext_loc[extnr];
if (ext == NULL) {
DPRINTF(ALLOC,("adding allocation extent %d\n", extnr));
error = udf_reserve_space(ump, NULL, UDF_C_NODE,
vpart_num, 1, /* can fail */ false);
if (error) {
printf("UDF: couldn't reserve space for AED!\n");
return error;
}
error = udf_allocate_space(ump, NULL, UDF_C_NODE,
vpart_num, 1, &lmapping);
lb_num = lmapping;
if (error)
panic("UDF: couldn't allocate AED!\n");
/* initialise pointer to location */
memset(&l_icb, 0, sizeof(struct long_ad));
l_icb.len = udf_rw32(lb_size | UDF_EXT_REDIRECT);
l_icb.loc.lb_num = udf_rw32(lb_num);
l_icb.loc.part_num = udf_rw16(vpart_num);
/* create new aed descriptor */
udf_create_logvol_dscr(ump, udf_node, &l_icb, &extdscr);
ext = &extdscr->aee;
udf_inittag(ump, &ext->tag, TAGID_ALLOCEXTENT, lb_num);
dscr_size = sizeof(struct alloc_ext_entry) -1;
max_l_ad = lb_size - dscr_size;
memset(ext->data, 0, max_l_ad);
ext->l_ad = udf_rw32(0);
ext->tag.desc_crc_len =
udf_rw16(dscr_size - UDF_DESC_TAG_LENGTH);
/* declare aed */
udf_node->num_extensions++;
udf_node->ext_loc[extnr] = l_icb;
udf_node->ext[extnr] = ext;
}
/* add redirect and adjust l_ad and crclen for old descr */
if (addr_type == UDF_ICB_SHORT_ALLOC) {
short_ad = (struct short_ad *) (data_pos + offset);
short_ad->len = l_icb.len;
short_ad->lb_num = l_icb.loc.lb_num;
} else if (addr_type == UDF_ICB_LONG_ALLOC) {
long_ad = (struct long_ad *) (data_pos + offset);
*long_ad = l_icb;
}
l_ad += adlen;
crclen += adlen;
dscr->tag.desc_crc_len = udf_rw16(crclen);
*l_ad_p = udf_rw32(l_ad);
/* advance to the new extension */
KASSERT(ext != NULL);
dscr = (union dscrptr *) ext;
dscr_size = sizeof(struct alloc_ext_entry) -1;
max_l_ad = lb_size - dscr_size;
data_pos = (uint8_t *) dscr + dscr_size;
l_ad_p = &ext->l_ad;
l_ad = udf_rw32(*l_ad_p);
crclen = udf_rw16(dscr->tag.desc_crc_len);
offset = 0;
/* adjust callees slot count for link insert */
*slot += 1;
}
/* write out the element */
DPRINTF(PARANOIDADWLK, ("adding element : %p : v %d, lb %d, "
"len %d, flags %d\n", data_pos + offset,
icb->loc.part_num, icb->loc.lb_num,
UDF_EXT_LEN(icb->len), UDF_EXT_FLAGS(icb->len)));
if (addr_type == UDF_ICB_SHORT_ALLOC) {
short_ad = (struct short_ad *) (data_pos + offset);
short_ad->len = icb->len;
short_ad->lb_num = icb->loc.lb_num;
} else if (addr_type == UDF_ICB_LONG_ALLOC) {
long_ad = (struct long_ad *) (data_pos + offset);
*long_ad = *icb;
}
/* adjust logblks recorded count */
len = udf_rw32(icb->len);
flags = UDF_EXT_FLAGS(len);
if (flags == UDF_EXT_ALLOCATED)
logblks_rec += (UDF_EXT_LEN(len) + lb_size -1) / lb_size;
*logblks_rec_p = udf_rw64(logblks_rec);
/* adjust l_ad and crclen when needed */
if (offset >= l_ad) {
l_ad += adlen;
crclen += adlen;
dscr->tag.desc_crc_len = udf_rw16(crclen);
*l_ad_p = udf_rw32(l_ad);
}
return 0;
}
/* --------------------------------------------------------------------- */
static void
udf_count_alloc_exts(struct udf_node *udf_node)
{
struct long_ad s_ad;
uint32_t lb_num, len, flags;
uint16_t vpart_num;
int slot, eof;
int num_extents, extnr;
if (udf_node->num_extensions == 0)
return;
/* count number of allocation extents in use */
num_extents = 0;
slot = 0;
for (;;) {
udf_get_adslot(udf_node, slot, &s_ad, &eof);
if (eof)
break;
len = udf_rw32(s_ad.len);
flags = UDF_EXT_FLAGS(len);
if (flags == UDF_EXT_REDIRECT)
num_extents++;
slot++;
}
DPRINTF(ALLOC, ("udf_count_alloc_ext counted %d live extents\n",
num_extents));
/* XXX choice: we could delay freeing them on node writeout */
/* free excess entries */
extnr = num_extents;
for (;extnr < udf_node->num_extensions; extnr++) {
DPRINTF(ALLOC, ("freeing alloc ext %d\n", extnr));
/* free dscriptor */
s_ad = udf_node->ext_loc[extnr];
udf_free_logvol_dscr(udf_node->ump, &s_ad,
udf_node->ext[extnr]);
udf_node->ext[extnr] = NULL;
/* free disc space */
lb_num = udf_rw32(s_ad.loc.lb_num);
vpart_num = udf_rw16(s_ad.loc.part_num);
udf_free_allocated_space(udf_node->ump, lb_num, vpart_num, 1);
memset(&udf_node->ext_loc[extnr], 0, sizeof(struct long_ad));
}
/* set our new number of allocation extents */
udf_node->num_extensions = num_extents;
}
/* --------------------------------------------------------------------- */
/*
* Adjust the node's allocation descriptors to reflect the new mapping; do
* take note that we might glue to existing allocation descriptors.
*
* XXX Note there can only be one allocation being recorded/mount; maybe
* explicit allocation in schedule thread?
*/
static void
udf_record_allocation_in_node(struct udf_mount *ump, struct buf *buf,
uint16_t vpart_num, uint64_t *mapping, struct long_ad *node_ad_cpy)
{
struct vnode *vp = buf->b_vp;
struct udf_node *udf_node = VTOI(vp);
struct file_entry *fe;
struct extfile_entry *efe;
struct icb_tag *icbtag;
struct long_ad s_ad, c_ad;
uint64_t inflen, from, till;
uint64_t foffset, end_foffset, restart_foffset;
uint64_t orig_inflen, orig_lbrec, new_inflen, new_lbrec;
uint32_t max_len;
uint32_t num_lb, len, flags, lb_num;
uint32_t run_start;
uint32_t slot_offset, replace_len, replace;
int addr_type, icbflags;
// int udf_c_type = buf->b_udf_c_type;
int lb_size, run_length, eof;
int slot, cpy_slot, cpy_slots, restart_slot;
int error;
DPRINTF(ALLOC, ("udf_record_allocation_in_node\n"));
#if 0
/* XXX disable sanity check for now */
/* sanity check ... should be panic ? */
if ((udf_c_type != UDF_C_USERDATA) && (udf_c_type != UDF_C_FIDS))
return;
#endif
lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
max_len = ((UDF_EXT_MAXLEN / lb_size) * lb_size);
/* do the job */
UDF_LOCK_NODE(udf_node, 0); /* XXX can deadlock ? */
udf_node_sanity_check(udf_node, &orig_inflen, &orig_lbrec);
fe = udf_node->fe;
efe = udf_node->efe;
if (fe) {
icbtag = &fe->icbtag;
inflen = udf_rw64(fe->inf_len);
} else {
icbtag = &efe->icbtag;
inflen = udf_rw64(efe->inf_len);
}
/* do check if `till' is not past file information length */
from = buf->b_lblkno * lb_size;
till = MIN(inflen, from + buf->b_resid);
num_lb = (till - from + lb_size -1) / lb_size;
DPRINTF(ALLOC, ("record allocation from %"PRIu64" + %d\n", from, buf->b_bcount));
icbflags = udf_rw16(icbtag->flags);
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
if (addr_type == UDF_ICB_INTERN_ALLOC) {
/* nothing to do */
/* XXX clean up rest of node? just in case? */
UDF_UNLOCK_NODE(udf_node, 0);
return;
}
slot = 0;
cpy_slot = 0;
foffset = 0;
/* 1) copy till first overlap piece to the rewrite buffer */
for (;;) {
udf_get_adslot(udf_node, slot, &s_ad, &eof);
if (eof) {
DPRINTF(WRITE,
("Record allocation in node "
"failed: encountered EOF\n"));
UDF_UNLOCK_NODE(udf_node, 0);
buf->b_error = EINVAL;
return;
}
len = udf_rw32(s_ad.len);
flags = UDF_EXT_FLAGS(len);
len = UDF_EXT_LEN(len);
if (flags == UDF_EXT_REDIRECT) {
slot++;
continue;
}
end_foffset = foffset + len;
if (end_foffset > from)
break; /* found */
node_ad_cpy[cpy_slot++] = s_ad;
DPRINTF(ALLOC, ("\t1: vp %d, lb %d, len %d, flags %d "
"-> stack\n",
udf_rw16(s_ad.loc.part_num),
udf_rw32(s_ad.loc.lb_num),
UDF_EXT_LEN(udf_rw32(s_ad.len)),
UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
foffset = end_foffset;
slot++;
}
restart_slot = slot;
restart_foffset = foffset;
/* 2) trunc overlapping slot at overlap and copy it */
slot_offset = from - foffset;
if (slot_offset > 0) {
DPRINTF(ALLOC, ("\tslot_offset = %d, flags = %d (%d)\n",
slot_offset, flags >> 30, flags));
s_ad.len = udf_rw32(slot_offset | flags);
node_ad_cpy[cpy_slot++] = s_ad;
DPRINTF(ALLOC, ("\t2: vp %d, lb %d, len %d, flags %d "
"-> stack\n",
udf_rw16(s_ad.loc.part_num),
udf_rw32(s_ad.loc.lb_num),
UDF_EXT_LEN(udf_rw32(s_ad.len)),
UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
}
foffset += slot_offset;
/* 3) insert new mappings */
memset(&s_ad, 0, sizeof(struct long_ad));
lb_num = 0;
for (lb_num = 0; lb_num < num_lb; lb_num++) {
run_start = mapping[lb_num];
run_length = 1;
while (lb_num < num_lb-1) {
if (mapping[lb_num+1] != mapping[lb_num]+1)
if (mapping[lb_num+1] != mapping[lb_num])
break;
run_length++;
lb_num++;
}
/* insert slot for this mapping */
len = run_length * lb_size;
/* bounds checking */
if (foffset + len > till)
len = till - foffset;
KASSERT(foffset + len <= inflen);
s_ad.len = udf_rw32(len | UDF_EXT_ALLOCATED);
s_ad.loc.part_num = udf_rw16(vpart_num);
s_ad.loc.lb_num = udf_rw32(run_start);
foffset += len;
/* paranoia */
if (len == 0) {
DPRINTF(WRITE,
("Record allocation in node "
"failed: insert failed\n"));
UDF_UNLOCK_NODE(udf_node, 0);
buf->b_error = EINVAL;
return;
}
node_ad_cpy[cpy_slot++] = s_ad;
DPRINTF(ALLOC, ("\t3: insert new mapping vp %d lb %d, len %d, "
"flags %d -> stack\n",
udf_rw16(s_ad.loc.part_num), udf_rw32(s_ad.loc.lb_num),
UDF_EXT_LEN(udf_rw32(s_ad.len)),
UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
}
/* 4) pop replaced length */
slot = restart_slot;
foffset = restart_foffset;
replace_len = till - foffset; /* total amount of bytes to pop */
slot_offset = from - foffset; /* offset in first encounted slot */
KASSERT((slot_offset % lb_size) == 0);
for (;;) {
udf_get_adslot(udf_node, slot, &s_ad, &eof);
if (eof)
break;
len = udf_rw32(s_ad.len);
flags = UDF_EXT_FLAGS(len);
len = UDF_EXT_LEN(len);
lb_num = udf_rw32(s_ad.loc.lb_num);
if (flags == UDF_EXT_REDIRECT) {
slot++;
continue;
}
DPRINTF(ALLOC, ("\t4i: got slot %d, slot_offset %d, "
"replace_len %d, "
"vp %d, lb %d, len %d, flags %d\n",
slot, slot_offset, replace_len,
udf_rw16(s_ad.loc.part_num),
udf_rw32(s_ad.loc.lb_num),
UDF_EXT_LEN(udf_rw32(s_ad.len)),
UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
/* adjust for slot offset */
if (slot_offset) {
DPRINTF(ALLOC, ("\t4s: skipping %d\n", slot_offset));
lb_num += slot_offset / lb_size;
len -= slot_offset;
foffset += slot_offset;
replace_len -= slot_offset;
/* mark adjusted */
slot_offset = 0;
}
/* advance for (the rest of) this slot */
replace = MIN(len, replace_len);
DPRINTF(ALLOC, ("\t4d: replacing %d\n", replace));
/* advance for this slot */
if (replace) {
/* note: dont round DOWN on num_lb since we then
* forget the last partial one */
num_lb = (replace + lb_size - 1) / lb_size;
if (flags != UDF_EXT_FREE) {
udf_free_allocated_space(ump, lb_num,
udf_rw16(s_ad.loc.part_num), num_lb);
}
lb_num += num_lb;
len -= replace;
foffset += replace;
replace_len -= replace;
}
/* do we have a slot tail ? */
if (len) {
KASSERT(foffset % lb_size == 0);
/* we arrived at our point, push remainder */
s_ad.len = udf_rw32(len | flags);
s_ad.loc.lb_num = udf_rw32(lb_num);
if (flags == UDF_EXT_FREE)
s_ad.loc.lb_num = udf_rw32(0);
node_ad_cpy[cpy_slot++] = s_ad;
foffset += len;
slot++;
DPRINTF(ALLOC, ("\t4: vp %d, lb %d, len %d, flags %d "
"-> stack\n",
udf_rw16(s_ad.loc.part_num),
udf_rw32(s_ad.loc.lb_num),
UDF_EXT_LEN(udf_rw32(s_ad.len)),
UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
break;
}
slot++;
}
/* 5) copy remainder */
for (;;) {
udf_get_adslot(udf_node, slot, &s_ad, &eof);
if (eof)
break;
len = udf_rw32(s_ad.len);
flags = UDF_EXT_FLAGS(len);
len = UDF_EXT_LEN(len);
if (flags == UDF_EXT_REDIRECT) {
slot++;
continue;
}
node_ad_cpy[cpy_slot++] = s_ad;
DPRINTF(ALLOC, ("\t5: insert new mapping "
"vp %d lb %d, len %d, flags %d "
"-> stack\n",
udf_rw16(s_ad.loc.part_num),
udf_rw32(s_ad.loc.lb_num),
UDF_EXT_LEN(udf_rw32(s_ad.len)),
UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
slot++;
}
/* 6) reset node descriptors */
udf_wipe_adslots(udf_node);
/* 7) copy back extents; merge when possible. Recounting on the fly */
cpy_slots = cpy_slot;
c_ad = node_ad_cpy[0];
slot = 0;
DPRINTF(ALLOC, ("\t7s: stack -> got mapping vp %d "
"lb %d, len %d, flags %d\n",
udf_rw16(c_ad.loc.part_num),
udf_rw32(c_ad.loc.lb_num),
UDF_EXT_LEN(udf_rw32(c_ad.len)),
UDF_EXT_FLAGS(udf_rw32(c_ad.len)) >> 30));
for (cpy_slot = 1; cpy_slot < cpy_slots; cpy_slot++) {
s_ad = node_ad_cpy[cpy_slot];
DPRINTF(ALLOC, ("\t7i: stack -> got mapping vp %d "
"lb %d, len %d, flags %d\n",
udf_rw16(s_ad.loc.part_num),
udf_rw32(s_ad.loc.lb_num),
UDF_EXT_LEN(udf_rw32(s_ad.len)),
UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
/* see if we can merge */
if (udf_ads_merge(max_len, lb_size, &c_ad, &s_ad)) {
/* not mergable (anymore) */
DPRINTF(ALLOC, ("\t7: appending vp %d lb %d, "
"len %d, flags %d\n",
udf_rw16(c_ad.loc.part_num),
udf_rw32(c_ad.loc.lb_num),
UDF_EXT_LEN(udf_rw32(c_ad.len)),
UDF_EXT_FLAGS(udf_rw32(c_ad.len)) >> 30));
error = udf_append_adslot(udf_node, &slot, &c_ad);
if (error) {
buf->b_error = error;
goto out;
}
c_ad = s_ad;
slot++;
}
}
/* 8) push rest slot (if any) */
if (UDF_EXT_LEN(c_ad.len) > 0) {
DPRINTF(ALLOC, ("\t8: last append vp %d lb %d, "
"len %d, flags %d\n",
udf_rw16(c_ad.loc.part_num),
udf_rw32(c_ad.loc.lb_num),
UDF_EXT_LEN(udf_rw32(c_ad.len)),
UDF_EXT_FLAGS(udf_rw32(c_ad.len)) >> 30));
error = udf_append_adslot(udf_node, &slot, &c_ad);
if (error) {
buf->b_error = error;
goto out;
}
}
out:
udf_count_alloc_exts(udf_node);
/* the node's descriptors should now be sane */
udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec);
UDF_UNLOCK_NODE(udf_node, 0);
KASSERT(orig_inflen == new_inflen);
KASSERT(new_lbrec >= orig_lbrec);
return;
}
/* --------------------------------------------------------------------- */
int
udf_grow_node(struct udf_node *udf_node, uint64_t new_size)
{
struct vnode *vp = udf_node->vnode;
struct udf_mount *ump = udf_node->ump;
struct file_entry *fe;
struct extfile_entry *efe;
struct icb_tag *icbtag;
struct long_ad c_ad, s_ad;
uint64_t size_diff, old_size, inflen, objsize, chunk, append_len;
uint64_t foffset, end_foffset;
uint64_t orig_inflen, orig_lbrec, new_inflen, new_lbrec;
uint32_t lb_size, unit_size, dscr_size, crclen, lastblock_grow;
uint32_t icbflags, len, flags, max_len;
uint32_t max_l_ad, l_ad, l_ea;
uint16_t my_part, dst_part;
uint8_t *evacuated_data;
int addr_type;
int slot;
int eof, error;
DPRINTF(ALLOC, ("udf_grow_node\n"));
UDF_LOCK_NODE(udf_node, 0);
udf_node_sanity_check(udf_node, &orig_inflen, &orig_lbrec);
lb_size = udf_rw32(ump->logical_vol->lb_size);
/* max_len in unit's IFF its a metadata node or metadata mirror node */
unit_size = lb_size;
if ((udf_node == ump->metadata_node) || (udf_node == ump->metadatamirror_node))
unit_size = ump->metadata_alloc_unit_size * lb_size;
max_len = ((UDF_EXT_MAXLEN / unit_size) * unit_size);
fe = udf_node->fe;
efe = udf_node->efe;
if (fe) {
icbtag = &fe->icbtag;
inflen = udf_rw64(fe->inf_len);
objsize = inflen;
dscr_size = sizeof(struct file_entry) -1;
l_ea = udf_rw32(fe->l_ea);
l_ad = udf_rw32(fe->l_ad);
} else {
icbtag = &efe->icbtag;
inflen = udf_rw64(efe->inf_len);
objsize = udf_rw64(efe->obj_size);
dscr_size = sizeof(struct extfile_entry) -1;
l_ea = udf_rw32(efe->l_ea);
l_ad = udf_rw32(efe->l_ad);
}
max_l_ad = lb_size - dscr_size - l_ea;
icbflags = udf_rw16(icbtag->flags);
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
old_size = inflen;
size_diff = new_size - old_size;
DPRINTF(ALLOC, ("\tfrom %"PRIu64" to %"PRIu64"\n", old_size, new_size));
evacuated_data = NULL;
if (addr_type == UDF_ICB_INTERN_ALLOC) {
if (l_ad + size_diff <= max_l_ad) {
/* only reflect size change directly in the node */
inflen += size_diff;
objsize += size_diff;
l_ad += size_diff;
crclen = dscr_size - UDF_DESC_TAG_LENGTH + l_ea + l_ad;
if (fe) {
fe->inf_len = udf_rw64(inflen);
fe->l_ad = udf_rw32(l_ad);
fe->tag.desc_crc_len = udf_rw16(crclen);
} else {
efe->inf_len = udf_rw64(inflen);
efe->obj_size = udf_rw64(objsize);
efe->l_ad = udf_rw32(l_ad);
efe->tag.desc_crc_len = udf_rw16(crclen);
}
error = 0;
/* set new size for uvm */
uvm_vnp_setwritesize(vp, new_size);
uvm_vnp_setsize(vp, new_size);
#if 0
/* zero append space in buffer */
ubc_zerorange(&vp->v_uobj, old_size,
new_size - old_size, UBC_VNODE_FLAGS(vp));
#endif
udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec);
/* unlock */
UDF_UNLOCK_NODE(udf_node, 0);
KASSERT(new_inflen == orig_inflen + size_diff);
KASSERT(new_lbrec == orig_lbrec);
KASSERT(new_lbrec == 0);
return 0;
}
DPRINTF(ALLOC, ("\tCONVERT from internal\n"));
if (old_size > 0) {
/* allocate some space and copy in the stuff to keep */
evacuated_data = malloc(lb_size, M_UDFTEMP, M_WAITOK);
memset(evacuated_data, 0, lb_size);
/* node is locked, so safe to exit mutex */
UDF_UNLOCK_NODE(udf_node, 0);
/* read in using the `normal' vn_rdwr() */
error = vn_rdwr(UIO_READ, udf_node->vnode,
evacuated_data, old_size, 0,
UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
FSCRED, NULL, NULL);
/* enter again */
UDF_LOCK_NODE(udf_node, 0);
}
/* convert to a normal alloc and select type */
my_part = udf_rw16(udf_node->loc.loc.part_num);
dst_part = udf_get_record_vpart(ump, udf_get_c_type(udf_node));
addr_type = UDF_ICB_SHORT_ALLOC;
if (dst_part != my_part)
addr_type = UDF_ICB_LONG_ALLOC;
icbflags &= ~UDF_ICB_TAG_FLAGS_ALLOC_MASK;
icbflags |= addr_type;
icbtag->flags = udf_rw16(icbflags);
/* wipe old descriptor space */
udf_wipe_adslots(udf_node);
memset(&c_ad, 0, sizeof(struct long_ad));
c_ad.len = udf_rw32(old_size | UDF_EXT_FREE);
c_ad.loc.part_num = udf_rw16(0); /* not relevant */
c_ad.loc.lb_num = udf_rw32(0); /* not relevant */
slot = 0;
} else {
/* goto the last entry (if any) */
slot = 0;
foffset = 0;
memset(&c_ad, 0, sizeof(struct long_ad));
for (;;) {
udf_get_adslot(udf_node, slot, &c_ad, &eof);
if (eof)
break;
len = udf_rw32(c_ad.len);
flags = UDF_EXT_FLAGS(len);
len = UDF_EXT_LEN(len);
end_foffset = foffset + len;
if (flags != UDF_EXT_REDIRECT)
foffset = end_foffset;
slot++;
}
/* at end of adslots */
/* special case if the old size was zero, then there is no last slot */
if (old_size == 0) {
c_ad.len = udf_rw32(0 | UDF_EXT_FREE);
c_ad.loc.part_num = udf_rw16(0); /* not relevant */
c_ad.loc.lb_num = udf_rw32(0); /* not relevant */
} else {
/* refetch last slot */
slot--;
udf_get_adslot(udf_node, slot, &c_ad, &eof);
}
}
/*
* If the length of the last slot is not a multiple of lb_size, adjust
* length so that it is; don't forget to adjust `append_len'! relevant for
* extending existing files
*/
len = udf_rw32(c_ad.len);
flags = UDF_EXT_FLAGS(len);
len = UDF_EXT_LEN(len);
lastblock_grow = 0;
if (len % lb_size > 0) {
lastblock_grow = lb_size - (len % lb_size);
lastblock_grow = MIN(size_diff, lastblock_grow);
len += lastblock_grow;
c_ad.len = udf_rw32(len | flags);
/* TODO zero appended space in buffer! */
/* using ubc_zerorange(&vp->v_uobj, old_size, */
/* new_size - old_size, UBC_VNODE_FLAGS(vp)); ? */
}
memset(&s_ad, 0, sizeof(struct long_ad));
/* size_diff can be bigger than allowed, so grow in chunks */
append_len = size_diff - lastblock_grow;
while (append_len > 0) {
chunk = MIN(append_len, max_len);
s_ad.len = udf_rw32(chunk | UDF_EXT_FREE);
s_ad.loc.part_num = udf_rw16(0);
s_ad.loc.lb_num = udf_rw32(0);
if (udf_ads_merge(max_len, lb_size, &c_ad, &s_ad)) {
/* not mergable (anymore) */
error = udf_append_adslot(udf_node, &slot, &c_ad);
if (error)
goto errorout;
slot++;
c_ad = s_ad;
memset(&s_ad, 0, sizeof(struct long_ad));
}
append_len -= chunk;
}
/* if there is a rest piece in the accumulator, append it */
if (UDF_EXT_LEN(udf_rw32(c_ad.len)) > 0) {
error = udf_append_adslot(udf_node, &slot, &c_ad);
if (error)
goto errorout;
slot++;
}
/* if there is a rest piece that didn't fit, append it */
if (UDF_EXT_LEN(udf_rw32(s_ad.len)) > 0) {
error = udf_append_adslot(udf_node, &slot, &s_ad);
if (error)
goto errorout;
slot++;
}
inflen += size_diff;
objsize += size_diff;
if (fe) {
fe->inf_len = udf_rw64(inflen);
} else {
efe->inf_len = udf_rw64(inflen);
efe->obj_size = udf_rw64(objsize);
}
error = 0;
if (evacuated_data) {
/* set new write size for uvm */
uvm_vnp_setwritesize(vp, old_size);
/* write out evacuated data */
error = vn_rdwr(UIO_WRITE, udf_node->vnode,
evacuated_data, old_size, 0,
UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
FSCRED, NULL, NULL);
uvm_vnp_setsize(vp, old_size);
}
errorout:
if (evacuated_data)
free(evacuated_data, M_UDFTEMP);
udf_count_alloc_exts(udf_node);
udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec);
UDF_UNLOCK_NODE(udf_node, 0);
KASSERT(new_inflen == orig_inflen + size_diff);
KASSERT(new_lbrec == orig_lbrec);
return error;
}
/* --------------------------------------------------------------------- */
int
udf_shrink_node(struct udf_node *udf_node, uint64_t new_size)
{
struct vnode *vp = udf_node->vnode;
struct udf_mount *ump = udf_node->ump;
struct file_entry *fe;
struct extfile_entry *efe;
struct icb_tag *icbtag;
struct long_ad c_ad, s_ad, *node_ad_cpy;
uint64_t size_diff, old_size, inflen, objsize;
uint64_t foffset, end_foffset;
uint64_t orig_inflen, orig_lbrec, new_inflen, new_lbrec;
uint32_t lb_size, unit_size, dscr_size, crclen;
uint32_t slot_offset, slot_offset_lb;
uint32_t len, flags, max_len;
uint32_t num_lb, lb_num;
uint32_t max_l_ad, l_ad, l_ea;
uint16_t vpart_num;
uint8_t *data_pos;
int icbflags, addr_type;
int slot, cpy_slot, cpy_slots;
int eof, error;
DPRINTF(ALLOC, ("udf_shrink_node\n"));
UDF_LOCK_NODE(udf_node, 0);
udf_node_sanity_check(udf_node, &orig_inflen, &orig_lbrec);
lb_size = udf_rw32(ump->logical_vol->lb_size);
/* max_len in unit's IFF its a metadata node or metadata mirror node */
unit_size = lb_size;
if ((udf_node == ump->metadata_node) || (udf_node == ump->metadatamirror_node))
unit_size = ump->metadata_alloc_unit_size * lb_size;
max_len = ((UDF_EXT_MAXLEN / unit_size) * unit_size);
/* do the work */
fe = udf_node->fe;
efe = udf_node->efe;
if (fe) {
icbtag = &fe->icbtag;
inflen = udf_rw64(fe->inf_len);
objsize = inflen;
dscr_size = sizeof(struct file_entry) -1;
l_ea = udf_rw32(fe->l_ea);
l_ad = udf_rw32(fe->l_ad);
data_pos = (uint8_t *) fe + dscr_size + l_ea;
} else {
icbtag = &efe->icbtag;
inflen = udf_rw64(efe->inf_len);
objsize = udf_rw64(efe->obj_size);
dscr_size = sizeof(struct extfile_entry) -1;
l_ea = udf_rw32(efe->l_ea);
l_ad = udf_rw32(efe->l_ad);
data_pos = (uint8_t *) efe + dscr_size + l_ea;
}
max_l_ad = lb_size - dscr_size - l_ea;
icbflags = udf_rw16(icbtag->flags);
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
old_size = inflen;
size_diff = old_size - new_size;
DPRINTF(ALLOC, ("\tfrom %"PRIu64" to %"PRIu64"\n", old_size, new_size));
/* shrink the node to its new size */
if (addr_type == UDF_ICB_INTERN_ALLOC) {
/* only reflect size change directly in the node */
KASSERT(new_size <= max_l_ad);
inflen -= size_diff;
objsize -= size_diff;
l_ad -= size_diff;
crclen = dscr_size - UDF_DESC_TAG_LENGTH + l_ea + l_ad;
if (fe) {
fe->inf_len = udf_rw64(inflen);
fe->l_ad = udf_rw32(l_ad);
fe->tag.desc_crc_len = udf_rw16(crclen);
} else {
efe->inf_len = udf_rw64(inflen);
efe->obj_size = udf_rw64(objsize);
efe->l_ad = udf_rw32(l_ad);
efe->tag.desc_crc_len = udf_rw16(crclen);
}
error = 0;
/* clear the space in the descriptor */
KASSERT(old_size >= new_size);
memset(data_pos + new_size, 0, old_size - new_size);
/* TODO zero appended space in buffer! */
/* using ubc_zerorange(&vp->v_uobj, old_size, */
/* old_size - new_size, UBC_VNODE_FLAGS(vp)); ? */
/* set new size for uvm */
uvm_vnp_setsize(vp, new_size);
udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec);
UDF_UNLOCK_NODE(udf_node, 0);
KASSERT(new_inflen == orig_inflen - size_diff);
KASSERT(new_lbrec == orig_lbrec);
KASSERT(new_lbrec == 0);
return 0;
}
/* setup node cleanup extents copy space */
node_ad_cpy = malloc(lb_size * UDF_MAX_ALLOC_EXTENTS,
M_UDFMNT, M_WAITOK);
memset(node_ad_cpy, 0, lb_size * UDF_MAX_ALLOC_EXTENTS);
/*
* Shrink the node by releasing the allocations and truncate the last
* allocation to the new size. If the new size fits into the
* allocation descriptor itself, transform it into an
* UDF_ICB_INTERN_ALLOC.
*/
slot = 0;
cpy_slot = 0;
foffset = 0;
/* 1) copy till first overlap piece to the rewrite buffer */
for (;;) {
udf_get_adslot(udf_node, slot, &s_ad, &eof);
if (eof) {
DPRINTF(WRITE,
("Shrink node failed: "
"encountered EOF\n"));
error = EINVAL;
goto errorout; /* panic? */
}
len = udf_rw32(s_ad.len);
flags = UDF_EXT_FLAGS(len);
len = UDF_EXT_LEN(len);
if (flags == UDF_EXT_REDIRECT) {
slot++;
continue;
}
end_foffset = foffset + len;
if (end_foffset > new_size)
break; /* found */
node_ad_cpy[cpy_slot++] = s_ad;
DPRINTF(ALLOC, ("\t1: vp %d, lb %d, len %d, flags %d "
"-> stack\n",
udf_rw16(s_ad.loc.part_num),
udf_rw32(s_ad.loc.lb_num),
UDF_EXT_LEN(udf_rw32(s_ad.len)),
UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
foffset = end_foffset;
slot++;
}
slot_offset = new_size - foffset;
/* 2) trunc overlapping slot at overlap and copy it */
if (slot_offset > 0) {
lb_num = udf_rw32(s_ad.loc.lb_num);
vpart_num = udf_rw16(s_ad.loc.part_num);
if (flags == UDF_EXT_ALLOCATED) {
/* calculate extent in lb, and offset in lb */
num_lb = (len + lb_size -1) / lb_size;
slot_offset_lb = (slot_offset + lb_size -1) / lb_size;
/* adjust our slot */
lb_num += slot_offset_lb;
num_lb -= slot_offset_lb;
udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
}
s_ad.len = udf_rw32(slot_offset | flags);
node_ad_cpy[cpy_slot++] = s_ad;
slot++;
DPRINTF(ALLOC, ("\t2: vp %d, lb %d, len %d, flags %d "
"-> stack\n",
udf_rw16(s_ad.loc.part_num),
udf_rw32(s_ad.loc.lb_num),
UDF_EXT_LEN(udf_rw32(s_ad.len)),
UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
}
/* 3) delete remainder */
for (;;) {
udf_get_adslot(udf_node, slot, &s_ad, &eof);
if (eof)
break;
len = udf_rw32(s_ad.len);
flags = UDF_EXT_FLAGS(len);
len = UDF_EXT_LEN(len);
if (flags == UDF_EXT_REDIRECT) {
slot++;
continue;
}
DPRINTF(ALLOC, ("\t3: delete remainder "
"vp %d lb %d, len %d, flags %d\n",
udf_rw16(s_ad.loc.part_num),
udf_rw32(s_ad.loc.lb_num),
UDF_EXT_LEN(udf_rw32(s_ad.len)),
UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
if (flags == UDF_EXT_ALLOCATED) {
lb_num = udf_rw32(s_ad.loc.lb_num);
vpart_num = udf_rw16(s_ad.loc.part_num);
num_lb = (len + lb_size - 1) / lb_size;
udf_free_allocated_space(ump, lb_num, vpart_num,
num_lb);
}
slot++;
}
/* 4) if it will fit into the descriptor then convert */
if (new_size < max_l_ad) {
/*
* rescue/evacuate old piece by reading it in, and convert it
* to internal alloc.
*/
if (new_size == 0) {
/* XXX/TODO only for zero sizing now */
udf_wipe_adslots(udf_node);
icbflags &= ~UDF_ICB_TAG_FLAGS_ALLOC_MASK;
icbflags |= UDF_ICB_INTERN_ALLOC;
icbtag->flags = udf_rw16(icbflags);
inflen -= size_diff; KASSERT(inflen == 0);
objsize -= size_diff;
l_ad = new_size;
crclen = dscr_size - UDF_DESC_TAG_LENGTH + l_ea + l_ad;
if (fe) {
fe->inf_len = udf_rw64(inflen);
fe->l_ad = udf_rw32(l_ad);
fe->tag.desc_crc_len = udf_rw16(crclen);
} else {
efe->inf_len = udf_rw64(inflen);
efe->obj_size = udf_rw64(objsize);
efe->l_ad = udf_rw32(l_ad);
efe->tag.desc_crc_len = udf_rw16(crclen);
}
/* eventually copy in evacuated piece */
/* set new size for uvm */
uvm_vnp_setsize(vp, new_size);
free(node_ad_cpy, M_UDFMNT);
udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec);
UDF_UNLOCK_NODE(udf_node, 0);
KASSERT(new_inflen == orig_inflen - size_diff);
KASSERT(new_inflen == 0);
KASSERT(new_lbrec == 0);
return 0;
}
printf("UDF_SHRINK_NODE: could convert to internal alloc!\n");
}
/* 5) reset node descriptors */
udf_wipe_adslots(udf_node);
/* 6) copy back extents; merge when possible. Recounting on the fly */
cpy_slots = cpy_slot;
c_ad = node_ad_cpy[0];
slot = 0;
for (cpy_slot = 1; cpy_slot < cpy_slots; cpy_slot++) {
s_ad = node_ad_cpy[cpy_slot];
DPRINTF(ALLOC, ("\t6: stack -> got mapping vp %d "
"lb %d, len %d, flags %d\n",
udf_rw16(s_ad.loc.part_num),
udf_rw32(s_ad.loc.lb_num),
UDF_EXT_LEN(udf_rw32(s_ad.len)),
UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
/* see if we can merge */
if (udf_ads_merge(max_len, lb_size, &c_ad, &s_ad)) {
/* not mergable (anymore) */
DPRINTF(ALLOC, ("\t6: appending vp %d lb %d, "
"len %d, flags %d\n",
udf_rw16(c_ad.loc.part_num),
udf_rw32(c_ad.loc.lb_num),
UDF_EXT_LEN(udf_rw32(c_ad.len)),
UDF_EXT_FLAGS(udf_rw32(c_ad.len)) >> 30));
error = udf_append_adslot(udf_node, &slot, &c_ad);
if (error)
goto errorout; /* panic? */
c_ad = s_ad;
slot++;
}
}
/* 7) push rest slot (if any) */
if (UDF_EXT_LEN(c_ad.len) > 0) {
DPRINTF(ALLOC, ("\t7: last append vp %d lb %d, "
"len %d, flags %d\n",
udf_rw16(c_ad.loc.part_num),
udf_rw32(c_ad.loc.lb_num),
UDF_EXT_LEN(udf_rw32(c_ad.len)),
UDF_EXT_FLAGS(udf_rw32(c_ad.len)) >> 30));
error = udf_append_adslot(udf_node, &slot, &c_ad);
if (error)
goto errorout; /* panic? */
;
}
inflen -= size_diff;
objsize -= size_diff;
if (fe) {
fe->inf_len = udf_rw64(inflen);
} else {
efe->inf_len = udf_rw64(inflen);
efe->obj_size = udf_rw64(objsize);
}
error = 0;
/* set new size for uvm */
uvm_vnp_setsize(vp, new_size);
errorout:
free(node_ad_cpy, M_UDFMNT);
udf_count_alloc_exts(udf_node);
udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec);
UDF_UNLOCK_NODE(udf_node, 0);
KASSERT(new_inflen == orig_inflen - size_diff);
return error;
}