NetBSD/sys/dev/nor/cfi.c

921 lines
24 KiB
C

/* $NetBSD: cfi.c,v 1.8 2015/09/18 21:30:02 phx Exp $ */
/*-
* Copyright (c) 2011 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Cliff Neighbors.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "opt_flash.h"
#include "opt_nor.h"
#include "opt_cfi.h"
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cfi.c,v 1.8 2015/09/18 21:30:02 phx Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/cdefs.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <sys/bus.h>
#include <dev/nor/nor.h>
#include <dev/nor/cfi.h>
#include <dev/nor/cfi_0002.h>
static int cfi_scan_media(device_t self, struct nor_chip *chip);
static void cfi_init(device_t);
static void cfi_select(device_t, bool);
static void cfi_read_1(device_t, flash_off_t, uint8_t *);
static void cfi_read_2(device_t, flash_off_t, uint16_t *);
static void cfi_read_4(device_t, flash_off_t, uint32_t *);
static void cfi_read_buf_1(device_t, flash_off_t, uint8_t *, size_t);
static void cfi_read_buf_2(device_t, flash_off_t, uint16_t *, size_t);
static void cfi_read_buf_4(device_t, flash_off_t, uint32_t *, size_t);
static void cfi_write_1(device_t, flash_off_t, uint8_t);
static void cfi_write_2(device_t, flash_off_t, uint16_t);
static void cfi_write_4(device_t, flash_off_t, uint32_t);
static void cfi_write_buf_1(device_t, flash_off_t, const uint8_t *, size_t);
static void cfi_write_buf_2(device_t, flash_off_t, const uint16_t *, size_t);
static void cfi_write_buf_4(device_t, flash_off_t, const uint32_t *, size_t);
static uint8_t cfi_read_qry(struct cfi * const, bus_size_t);
static bool cfi_jedec_id(struct cfi * const);
static bool cfi_emulate(struct cfi * const);
static const struct cfi_jedec_tab * cfi_jedec_search(struct cfi *);
static void cfi_jedec_fill(struct cfi * const,
const struct cfi_jedec_tab *);
#if defined(CFI_DEBUG_JEDEC) || defined(CFI_DEBUG_QRY)
static void cfi_hexdump(flash_off_t, void * const, u_int, u_int);
#endif
#define LOG2_64K 16
#define LOG2_128K 17
#define LOG2_256K 18
#define LOG2_512K 19
#define LOG2_1M 20
#define LOG2_2M 21
#define LOG2_4M 22
#define LOG2_8M 23
#define LOG2_16M 24
#define LOG2_32M 25
#define LOG2_64M 26
#define LOG2_128M 27
#define LOG2_256M 28
#define LOG2_512M 29
#define LOG2_1G 30
#define LOG2_2G 31
const struct cfi_jedec_tab cfi_jedec_tab[] = {
{
.jt_name = "Pm39LV512",
.jt_mid = 0x9d,
.jt_did = 0x1b,
.jt_id_pri = 0, /* XXX */
.jt_id_alt = 0, /* XXX */
.jt_device_size = LOG2_64K,
.jt_interface_code_desc = CFI_IFCODE_X8,
.jt_erase_blk_regions = 1,
.jt_erase_blk_info = {
{ 4096/256, (64/4)-1 },
},
.jt_write_word_time_typ = 40,
.jt_write_nbyte_time_typ = 0,
.jt_erase_blk_time_typ = 55,
.jt_erase_chip_time_typ = 55,
.jt_write_word_time_max = 1,
.jt_write_nbyte_time_max = 0,
.jt_erase_blk_time_max = 1,
.jt_erase_chip_time_max = 1,
},
{
.jt_name = "Pm39LV010",
.jt_mid = 0x9d,
.jt_did = 0x1c,
.jt_id_pri = 0, /* XXX */
.jt_id_alt = 0, /* XXX */
.jt_device_size = LOG2_128K,
.jt_interface_code_desc = CFI_IFCODE_X8,
.jt_erase_blk_regions = 1,
.jt_erase_blk_info = {
{ 4096/256, (128/4)-1 },
},
.jt_write_word_time_typ = 40,
.jt_write_nbyte_time_typ = 0,
.jt_erase_blk_time_typ = 55,
.jt_erase_chip_time_typ = 55,
.jt_write_word_time_max = 1,
.jt_write_nbyte_time_max = 0,
.jt_erase_blk_time_max = 1,
.jt_erase_chip_time_max = 1,
},
};
const struct nor_interface nor_interface_cfi = {
.scan_media = cfi_scan_media,
.init = cfi_init,
.select = cfi_select,
.read_1 = cfi_read_1,
.read_2 = cfi_read_2,
.read_4 = cfi_read_4,
.read_buf_1 = cfi_read_buf_1,
.read_buf_2 = cfi_read_buf_2,
.read_buf_4 = cfi_read_buf_4,
.write_1 = cfi_write_1,
.write_2 = cfi_write_2,
.write_4 = cfi_write_4,
.write_buf_1 = cfi_write_buf_1,
.write_buf_2 = cfi_write_buf_2,
.write_buf_4 = cfi_write_buf_4,
.read_page = NULL, /* cmdset */
.program_page = NULL, /* cmdset */
.busy = NULL,
.private = NULL,
.access_width = -1,
.part_info = NULL,
.part_num = -1,
};
/* only data[7..0] are used regardless of chip width */
#define cfi_unpack_1(n) ((n) & 0xff)
/* construct uint16_t */
#define cfi_unpack_2(b0, b1) \
((cfi_unpack_1(b1) << 8) | cfi_unpack_1(b0))
/* construct uint32_t */
#define cfi_unpack_4(b0, b1, b2, b3) \
((cfi_unpack_1(b3) << 24) | \
(cfi_unpack_1(b2) << 16) | \
(cfi_unpack_1(b1) << 8) | \
(cfi_unpack_1(b0)))
#define cfi_unpack_qry(qryp, data) \
do { \
(qryp)->qry[0] = cfi_unpack_1(data[0x10]); \
(qryp)->qry[1] = cfi_unpack_1(data[0x11]); \
(qryp)->qry[2] = cfi_unpack_1(data[0x12]); \
(qryp)->id_pri = cfi_unpack_2(data[0x13], data[0x14]); \
(qryp)->addr_pri = cfi_unpack_2(data[0x15], data[0x16]); \
(qryp)->id_alt = cfi_unpack_2(data[0x17], data[0x18]); \
(qryp)->addr_alt = cfi_unpack_2(data[0x19], data[0x1a]); \
(qryp)->vcc_min = cfi_unpack_1(data[0x1b]); \
(qryp)->vcc_max = cfi_unpack_1(data[0x1c]); \
(qryp)->vpp_min = cfi_unpack_1(data[0x1d]); \
(qryp)->vpp_max = cfi_unpack_1(data[0x1e]); \
(qryp)->write_word_time_typ = cfi_unpack_1(data[0x1f]); \
(qryp)->write_nbyte_time_typ = cfi_unpack_1(data[0x20]); \
(qryp)->erase_blk_time_typ = cfi_unpack_1(data[0x21]); \
(qryp)->erase_chip_time_typ = cfi_unpack_1(data[0x22]); \
(qryp)->write_word_time_max = cfi_unpack_1(data[0x23]); \
(qryp)->write_nbyte_time_max = cfi_unpack_1(data[0x24]); \
(qryp)->erase_blk_time_max = cfi_unpack_1(data[0x25]); \
(qryp)->erase_chip_time_max = cfi_unpack_1(data[0x26]); \
(qryp)->device_size = cfi_unpack_1(data[0x27]); \
(qryp)->interface_code_desc = \
cfi_unpack_2(data[0x28], data[0x29]); \
(qryp)->write_nbyte_size_max = \
cfi_unpack_2(data[0x2a], data[0x2b]); \
(qryp)->erase_blk_regions = cfi_unpack_1(data[0x2c]); \
u_int _i = 0x2d; \
const u_int _n = (qryp)->erase_blk_regions; \
KASSERT(_n <= 4); \
for (u_int _r = 0; _r < _n; _r++, _i+=4) { \
(qryp)->erase_blk_info[_r].y = \
cfi_unpack_2(data[_i+0], data[_i+1]); \
(qryp)->erase_blk_info[_r].z = \
cfi_unpack_2(data[_i+2], data[_i+3]); \
} \
} while (0)
#define cfi_unpack_pri_0002(qryp, data) \
do { \
(qryp)->pri.cmd_0002.pri[0] = cfi_unpack_1(data[0x00]); \
(qryp)->pri.cmd_0002.pri[1] = cfi_unpack_1(data[0x01]); \
(qryp)->pri.cmd_0002.pri[2] = cfi_unpack_1(data[0x02]); \
(qryp)->pri.cmd_0002.version_maj = cfi_unpack_1(data[0x03]); \
(qryp)->pri.cmd_0002.version_min = cfi_unpack_1(data[0x04]); \
(qryp)->pri.cmd_0002.asupt = cfi_unpack_1(data[0x05]); \
(qryp)->pri.cmd_0002.erase_susp = cfi_unpack_1(data[0x06]); \
(qryp)->pri.cmd_0002.sector_prot = cfi_unpack_1(data[0x07]); \
(qryp)->pri.cmd_0002.tmp_sector_unprot = \
cfi_unpack_1(data[0x08]); \
(qryp)->pri.cmd_0002.sector_prot_scheme = \
cfi_unpack_1(data[0x09]); \
(qryp)->pri.cmd_0002.simul_op = cfi_unpack_1(data[0x0a]); \
(qryp)->pri.cmd_0002.burst_mode_type = cfi_unpack_1(data[0x0b]);\
(qryp)->pri.cmd_0002.page_mode_type = cfi_unpack_1(data[0x0c]); \
(qryp)->pri.cmd_0002.acc_min = cfi_unpack_1(data[0x0d]); \
(qryp)->pri.cmd_0002.acc_max = cfi_unpack_1(data[0x0e]); \
(qryp)->pri.cmd_0002.wp_prot = cfi_unpack_1(data[0x0f]); \
/* XXX 1.3 stops here */ \
(qryp)->pri.cmd_0002.prog_susp = cfi_unpack_1(data[0x10]); \
(qryp)->pri.cmd_0002.unlock_bypass = cfi_unpack_1(data[0x11]); \
(qryp)->pri.cmd_0002.sss_size = cfi_unpack_1(data[0x12]); \
(qryp)->pri.cmd_0002.soft_feat = cfi_unpack_1(data[0x13]); \
(qryp)->pri.cmd_0002.page_size = cfi_unpack_1(data[0x14]); \
(qryp)->pri.cmd_0002.erase_susp_time_max = \
cfi_unpack_1(data[0x15]); \
(qryp)->pri.cmd_0002.prog_susp_time_max = \
cfi_unpack_1(data[0x16]); \
(qryp)->pri.cmd_0002.embhwrst_time_max = \
cfi_unpack_1(data[0x38]); \
(qryp)->pri.cmd_0002.hwrst_time_max = \
cfi_unpack_1(data[0x39]); \
} while (0)
#define CFI_QRY_UNPACK_COMMON(cfi, data, type) \
do { \
struct cfi_query_data * const qryp = &cfi->cfi_qry_data; \
\
memset(qryp, 0, sizeof(*qryp)); \
cfi_unpack_qry(qryp, data); \
\
switch (qryp->id_pri) { \
case 0x0002: \
if ((cfi_unpack_1(data[qryp->addr_pri + 0]) == 'P') && \
(cfi_unpack_1(data[qryp->addr_pri + 1]) == 'R') && \
(cfi_unpack_1(data[qryp->addr_pri + 2]) == 'I')) { \
type *pri_data = &data[qryp->addr_pri]; \
cfi_unpack_pri_0002(qryp, pri_data); \
break; \
} \
} \
} while (0)
#ifdef CFI_DEBUG_QRY
# define CFI_DUMP_QRY(off, p, sz, stride) \
do { \
printf("%s: QRY data\n", __func__); \
cfi_hexdump(off, p, sz, stride); \
} while (0)
#else
# define CFI_DUMP_QRY(off, p, sz, stride)
#endif
#ifdef CFI_DEBUG_JEDEC
# define CFI_DUMP_JEDEC(off, p, sz, stride) \
do { \
printf("%s: JEDEC data\n", __func__); \
cfi_hexdump(off, p, sz, stride); \
} while (0)
#else
# define CFI_DUMP_JEDEC(off, p, sz, stride)
#endif
static void
cfi_chip_query_1(struct cfi * const cfi)
{
uint8_t data[0x80];
bus_space_read_region_1(cfi->cfi_bst, cfi->cfi_bsh, 0, data,
__arraycount(data));
CFI_DUMP_QRY(0, data, sizeof(data), 1);
CFI_QRY_UNPACK_COMMON(cfi, data, uint8_t);
}
static void
cfi_chip_query_2(struct cfi * const cfi)
{
uint16_t data[0x80];
bus_space_read_region_2(cfi->cfi_bst, cfi->cfi_bsh, 0, data,
__arraycount(data));
CFI_DUMP_QRY(0, data, sizeof(data), 2);
CFI_QRY_UNPACK_COMMON(cfi, data, uint16_t);
}
static void
cfi_chip_query_4(struct cfi * const cfi)
{
uint32_t data[0x80];
bus_space_read_region_4(cfi->cfi_bst, cfi->cfi_bsh, 0, data,
__arraycount(data));
CFI_DUMP_QRY(0, data, sizeof(data), 4);
CFI_QRY_UNPACK_COMMON(cfi, data, uint32_t);
}
static void
cfi_chip_query_8(struct cfi * const cfi)
{
#ifdef NOTYET
uint64_t data[0x80];
bus_space_read_region_8(cfi->cfi_bst, cfi->cfi_bsh, 0, data,
__arraycount(data));
CFI_DUMP_QRY(0, data, sizeof(data), 8);
CFI_QRY_UNPACK_COMMON(cfi, data, uint64_t);
#endif
}
/*
* cfi_chip_query - detect a CFI chip
*
* fill in the struct cfi as we discover what's there
*/
static bool
cfi_chip_query(struct cfi * const cfi)
{
const bus_size_t cfi_query_offset[] = {
CFI_QUERY_MODE_ADDR,
CFI_QUERY_MODE_ALT_ADDR
};
KASSERT(cfi != NULL);
KASSERT(cfi->cfi_bst != NULL);
for (int j=0; j < __arraycount(cfi_query_offset); j++) {
cfi_reset_default(cfi);
cfi_cmd(cfi, cfi_query_offset[j], CFI_QUERY_DATA);
if (cfi_read_qry(cfi, 0x10) == 'Q' &&
cfi_read_qry(cfi, 0x11) == 'R' &&
cfi_read_qry(cfi, 0x12) == 'Y') {
switch(cfi->cfi_portwidth) {
case 0:
cfi_chip_query_1(cfi);
break;
case 1:
cfi_chip_query_2(cfi);
break;
case 2:
cfi_chip_query_4(cfi);
break;
case 3:
cfi_chip_query_8(cfi);
break;
default:
panic("%s: bad portwidth %d\n",
__func__, cfi->cfi_portwidth);
}
switch (cfi->cfi_qry_data.id_pri) {
case 0x0002:
cfi->cfi_unlock_addr1 = CFI_AMD_UNLOCK_ADDR1;
cfi->cfi_unlock_addr2 = CFI_AMD_UNLOCK_ADDR2;
break;
default:
DPRINTF(("%s: unsupported CFI cmdset %#04x\n",
__func__, cfi->cfi_qry_data.id_pri));
return false;
}
cfi->cfi_emulated = false;
return true;
}
}
return false;
}
/*
* cfi_probe - search for a CFI NOR trying various port & chip widths
*
* - gather CFI QRY and PRI data
* - gather JEDEC ID data
* - if cfi_chip_query() fails, emulate CFI using table data if possible,
* otherwise fail.
*
* NOTE:
* striped NOR chips design not supported yet
*/
bool
cfi_probe(struct cfi * const cfi)
{
bool found;
KASSERT(cfi != NULL);
/* XXX set default unlock address for cfi_jedec_id() */
cfi->cfi_unlock_addr1 = CFI_AMD_UNLOCK_ADDR1;
cfi->cfi_unlock_addr2 = CFI_AMD_UNLOCK_ADDR2;
for (u_int pw = 0; pw < 3; pw++) {
for (u_int cw = 0; cw <= pw; cw++) {
cfi->cfi_portwidth = pw;
cfi->cfi_chipwidth = cw;
found = cfi_chip_query(cfi);
cfi_jedec_id(cfi);
if (! found)
found = cfi_emulate(cfi);
if (found)
goto exit_qry;
}
}
exit_qry:
cfi_reset_default(cfi); /* exit QRY mode */
return found;
}
bool
cfi_identify(struct cfi * const cfi)
{
const bus_space_tag_t bst = cfi->cfi_bst;
const bus_space_handle_t bsh = cfi->cfi_bsh;
KASSERT(cfi != NULL);
KASSERT(bst != NULL);
memset(cfi, 0, sizeof(struct cfi)); /* XXX clean slate */
cfi->cfi_bst = bst; /* restore bus space */
cfi->cfi_bsh = bsh; /* " " " */
return cfi_probe(cfi);
}
static int
cfi_scan_media(device_t self, struct nor_chip *chip)
{
struct nor_softc *sc = device_private(self);
KASSERT(sc != NULL);
KASSERT(sc->sc_nor_if != NULL);
struct cfi * const cfi = (struct cfi * const)sc->sc_nor_if->private;
KASSERT(cfi != NULL);
sc->sc_nor_if->access_width = cfi->cfi_portwidth;
chip->nc_manf_id = cfi->cfi_id_data.id_mid;
chip->nc_dev_id = cfi->cfi_id_data.id_did[0]; /* XXX 3 words */
chip->nc_size = 1 << cfi->cfi_qry_data.device_size;
/* size of line for Read Buf command */
chip->nc_line_size = 1 << cfi->cfi_qry_data.pri.cmd_0002.page_size;
/*
* size of erase block
* XXX depends on erase region
*/
chip->nc_num_luns = 1;
chip->nc_lun_blocks = cfi->cfi_qry_data.erase_blk_info[0].y + 1;
chip->nc_block_size = cfi->cfi_qry_data.erase_blk_info[0].z ?
cfi->cfi_qry_data.erase_blk_info[0].z * 256 : 128;
switch (cfi->cfi_qry_data.id_pri) {
case 0x0002:
cfi_0002_init(sc, cfi, chip);
break;
}
return 0;
}
void
cfi_init(device_t self)
{
/* nothing */
}
static void
cfi_select(device_t self, bool select)
{
/* nothing */
}
static void
cfi_read_1(device_t self, flash_off_t offset, uint8_t *datap)
{
}
static void
cfi_read_2(device_t self, flash_off_t offset, uint16_t *datap)
{
}
static void
cfi_read_4(device_t self, flash_off_t offset, uint32_t *datap)
{
}
static void
cfi_read_buf_1(device_t self, flash_off_t offset, uint8_t *datap, size_t size)
{
}
static void
cfi_read_buf_2(device_t self, flash_off_t offset, uint16_t *datap, size_t size)
{
}
static void
cfi_read_buf_4(device_t self, flash_off_t offset, uint32_t *datap, size_t size)
{
}
static void
cfi_write_1(device_t self, flash_off_t offset, uint8_t data)
{
}
static void
cfi_write_2(device_t self, flash_off_t offset, uint16_t data)
{
}
static void
cfi_write_4(device_t self, flash_off_t offset, uint32_t data)
{
}
static void
cfi_write_buf_1(device_t self, flash_off_t offset, const uint8_t *datap,
size_t size)
{
}
static void
cfi_write_buf_2(device_t self, flash_off_t offset, const uint16_t *datap,
size_t size)
{
}
static void
cfi_write_buf_4(device_t self, flash_off_t offset, const uint32_t *datap,
size_t size)
{
}
/*
* cfi_cmd - write a CFI command word.
*
* The offset 'off' is given for 64-bit port width and will be scaled
* down to the actual port width of the chip.
* The command word will be constructed out of 'val' regarding port- and
* chip width.
*/
void
cfi_cmd(struct cfi * const cfi, bus_size_t off, uint32_t val)
{
const bus_space_tag_t bst = cfi->cfi_bst;
bus_space_handle_t bsh = cfi->cfi_bsh;
uint64_t cmd;
int cw, pw;
off >>= 3 - cfi->cfi_portwidth;
pw = 1 << cfi->cfi_portwidth;
cw = 1 << cfi->cfi_chipwidth;
cmd = 0;
while (pw > 0) {
cmd <<= cw << 3;
cmd += val;
pw -= cw;
}
DPRINTF(("%s: %p %x %x %" PRIx64 "\n", __func__, bst, bsh, off, cmd));
switch (cfi->cfi_portwidth) {
case 0:
bus_space_write_1(bst, bsh, off, cmd);
break;
case 1:
bus_space_write_2(bst, bsh, off, cmd);
break;
case 2:
bus_space_write_4(bst, bsh, off, cmd);
break;
#ifdef NOTYET
case 3:
bus_space_write_8(bst, bsh, off, cmd);
break;
#endif
default:
panic("%s: bad portwidth %d bytes\n",
__func__, 1 << cfi->cfi_portwidth);
}
}
static uint8_t
cfi_read_qry(struct cfi * const cfi, bus_size_t off)
{
const bus_space_tag_t bst = cfi->cfi_bst;
bus_space_handle_t bsh = cfi->cfi_bsh;
uint8_t data;
off <<= cfi->cfi_portwidth;
switch (cfi->cfi_portwidth) {
case 0:
data = bus_space_read_1(bst, bsh, off);
break;
case 1:
data = bus_space_read_2(bst, bsh, off);
break;
case 2:
data = bus_space_read_4(bst, bsh, off);
break;
case 3:
data = bus_space_read_8(bst, bsh, off);
break;
default:
data = ~0;
break;
}
return data;
}
/*
* cfi_reset_default - when we don't know which command will work, use both
*/
void
cfi_reset_default(struct cfi * const cfi)
{
cfi_cmd(cfi, CFI_ADDR_ANY, CFI_RESET_DATA);
cfi_cmd(cfi, CFI_ADDR_ANY, CFI_ALT_RESET_DATA);
}
/*
* cfi_reset_std - use standard reset command
*/
void
cfi_reset_std(struct cfi * const cfi)
{
cfi_cmd(cfi, CFI_ADDR_ANY, CFI_RESET_DATA);
}
/*
* cfi_reset_alt - use "alternate" reset command
*/
void
cfi_reset_alt(struct cfi * const cfi)
{
cfi_cmd(cfi, CFI_ADDR_ANY, CFI_ALT_RESET_DATA);
}
static void
cfi_jedec_id_1(struct cfi * const cfi)
{
struct cfi_jedec_id_data *idp = &cfi->cfi_id_data;
uint8_t data[0x10];
bus_space_read_region_1(cfi->cfi_bst, cfi->cfi_bsh, 0, data,
__arraycount(data));
CFI_DUMP_JEDEC(0, data, sizeof(data), 1);
idp->id_mid = (uint16_t)data[0];
idp->id_did[0] = (uint16_t)data[1];
idp->id_did[1] = (uint16_t)data[0xe];
idp->id_did[2] = (uint16_t)data[0xf];
idp->id_prot_state = (uint16_t)data[2];
idp->id_indicators = (uint16_t)data[3];
/* software bits, upper and lower */
idp->id_swb_lo = data[0xc];
idp->id_swb_hi = data[0xd];
}
static void
cfi_jedec_id_2(struct cfi * const cfi)
{
struct cfi_jedec_id_data *idp = &cfi->cfi_id_data;
uint16_t data[0x10];
bus_space_read_region_2(cfi->cfi_bst, cfi->cfi_bsh, 0, data,
__arraycount(data));
CFI_DUMP_JEDEC(0, data, sizeof(data), 1);
idp->id_mid = data[0];
idp->id_did[0] = data[1];
idp->id_did[1] = data[0xe];
idp->id_did[2] = data[0xf];
idp->id_prot_state = data[2];
idp->id_indicators = data[3];
/* software bits, upper and lower
* - undefined on S29GL-P
* - defined on S29GL-S
*/
idp->id_swb_lo = data[0xc];
idp->id_swb_hi = data[0xd];
}
static void
cfi_jedec_id_4(struct cfi * const cfi)
{
struct cfi_jedec_id_data *idp = &cfi->cfi_id_data;
uint32_t data[0x10];
bus_space_read_region_4(cfi->cfi_bst, cfi->cfi_bsh, 0, data,
__arraycount(data));
CFI_DUMP_JEDEC(0, data, sizeof(data), 1);
idp->id_mid = data[0] & 0xffff;
idp->id_did[0] = data[1] & 0xffff;
idp->id_did[1] = data[0xe] & 0xffff;
idp->id_did[2] = data[0xf] & 0xffff;
idp->id_prot_state = data[2] & 0xffff;
idp->id_indicators = data[3] & 0xffff;
/* software bits, upper and lower
* - undefined on S29GL-P
* - defined on S29GL-S
*/
idp->id_swb_lo = data[0xc] & 0xffff;
idp->id_swb_hi = data[0xd] & 0xffff;
}
/*
* cfi_jedec_id - get JEDEC ID info
*/
static bool
cfi_jedec_id(struct cfi * const cfi)
{
DPRINTF(("%s\n", __func__));
cfi_reset_default(cfi);
cfi_cmd(cfi, cfi->cfi_unlock_addr1, 0xaa);
cfi_cmd(cfi, cfi->cfi_unlock_addr2, 0x55);
cfi_cmd(cfi, cfi->cfi_unlock_addr1, 0x90);
switch(cfi->cfi_portwidth) {
case 0:
cfi_jedec_id_1(cfi);
break;
case 1:
cfi_jedec_id_2(cfi);
break;
case 2:
cfi_jedec_id_4(cfi);
break;
#ifdef NOTYET
case 3:
cfi_jedec_id_8(cfi);
break;
#endif
default:
panic("%s: bad portwidth %d bytes\n",
__func__, 1 << cfi->cfi_portwidth);
}
return true;
}
static bool
cfi_emulate(struct cfi * const cfi)
{
bool found = false;
const struct cfi_jedec_tab *jt = cfi_jedec_search(cfi);
if (jt != NULL) {
found = true;
cfi->cfi_emulated = true;
cfi_jedec_fill(cfi, jt);
}
return found;
}
/*
* cfi_jedec_search - search cfi_jedec_tab[] for entry matching given JEDEC IDs
*/
static const struct cfi_jedec_tab *
cfi_jedec_search(struct cfi *cfi)
{
struct cfi_jedec_id_data *idp = &cfi->cfi_id_data;
for (u_int i=0; i < __arraycount(cfi_jedec_tab); i++) {
const struct cfi_jedec_tab *jt = &cfi_jedec_tab[i];
if ((jt->jt_mid == idp->id_mid) &&
(jt->jt_did == idp->id_did[0])) {
return jt;
}
}
return NULL;
}
/*
* cfi_jedec_fill - fill in cfi with info from table entry
*/
static void
cfi_jedec_fill(struct cfi *cfi, const struct cfi_jedec_tab *jt)
{
cfi->cfi_name = jt->jt_name;
struct cfi_query_data *qryp = &cfi->cfi_qry_data;
memset(&qryp, 0, sizeof(*qryp));
qryp->id_pri = jt->jt_id_pri;
qryp->id_alt = jt->jt_id_alt;
qryp->interface_code_desc = jt->jt_interface_code_desc;
qryp->write_word_time_typ = jt->jt_write_word_time_typ;
qryp->write_nbyte_time_typ = jt->jt_write_nbyte_time_typ;
qryp->erase_blk_time_typ = jt->jt_erase_blk_time_typ;
qryp->erase_chip_time_typ = jt->jt_erase_chip_time_typ;
qryp->write_word_time_max = jt->jt_write_word_time_max;
qryp->write_nbyte_time_max = jt->jt_write_nbyte_time_max;
qryp->erase_blk_time_max = jt->jt_erase_blk_time_max;
qryp->erase_chip_time_max = jt->jt_erase_chip_time_max;
qryp->device_size = jt->jt_device_size;
qryp->interface_code_desc = jt->jt_interface_code_desc;
qryp->write_nbyte_size_max = jt->jt_write_nbyte_size_max;
qryp->erase_blk_regions = jt->jt_erase_blk_regions;
for (u_int i=0; i < 4; i++)
qryp->erase_blk_info[i] = jt->jt_erase_blk_info[i];
}
void
cfi_print(device_t self, struct cfi * const cfi)
{
char pbuf[sizeof("XXXX MB")];
struct cfi_query_data * const qryp = &cfi->cfi_qry_data;
format_bytes(pbuf, sizeof(pbuf), 1 << qryp->device_size);
if (cfi->cfi_emulated) {
aprint_normal_dev(self, "%s NOR flash %s %s\n",
cfi->cfi_name, pbuf,
cfi_interface_desc_str(qryp->interface_code_desc));
} else {
aprint_normal_dev(self, "CFI NOR flash %s %s\n", pbuf,
cfi_interface_desc_str(qryp->interface_code_desc));
}
#ifdef NOR_VERBOSE
aprint_normal_dev(self, "manufacturer id %#x, device id %#x %#x %#x\n",
cfi->cfi_id_data.id_mid,
cfi->cfi_id_data.id_did[0],
cfi->cfi_id_data.id_did[1],
cfi->cfi_id_data.id_did[2]);
aprint_normal_dev(self, "x%u device operating in %u-bit mode\n",
8 << cfi->cfi_portwidth, 8 << cfi->cfi_chipwidth);
aprint_normal_dev(self, "sw bits lo=%#x hi=%#x\n",
cfi->cfi_id_data.id_swb_lo,
cfi->cfi_id_data.id_swb_hi);
aprint_normal_dev(self, "max multibyte write size %d\n",
1 << qryp->write_nbyte_size_max);
aprint_normal_dev(self, "%d Erase Block Region(s)\n",
qryp->erase_blk_regions);
for (u_int r=0; r < qryp->erase_blk_regions; r++) {
size_t sz = qryp->erase_blk_info[r].z ?
qryp->erase_blk_info[r].z * 256 : 128;
format_bytes(pbuf, sizeof(pbuf), sz);
aprint_normal(" %d: %d blocks, size %s\n", r,
qryp->erase_blk_info[r].y + 1, pbuf);
}
#endif
switch (cfi->cfi_qry_data.id_pri) {
case 0x0002:
cfi_0002_print(self, cfi);
break;
}
}
#if defined(CFI_DEBUG_JEDEC) || defined(CFI_DEBUG_QRY)
void
cfi_hexdump(flash_off_t offset, void * const v, u_int count, u_int stride)
{
uint8_t * const data = v;
for(int n=0; n < count; n+=16) {
int i;
printf("%08llx: ", (offset + n) / stride);
for(i=n; i < n+16; i++)
printf("%02x ", data[i]);
printf("\t");
for(i=n; i < n+16; i++) {
u_int c = (int)data[i];
if (c >= 0x20 && c < 0x7f)
printf("%c", c);
else
printf("%c", '.');
}
printf("\n");
}
}
#endif