NetBSD/sys/uvm/uvm_mmap.c

1252 lines
27 KiB
C

/* $NetBSD: uvm_mmap.c,v 1.144 2012/01/27 19:48:41 para Exp $ */
/*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* Copyright (c) 1991, 1993 The Regents of the University of California.
* Copyright (c) 1988 University of Utah.
*
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: vm_mmap.c 1.6 91/10/21$
* @(#)vm_mmap.c 8.5 (Berkeley) 5/19/94
* from: Id: uvm_mmap.c,v 1.1.2.14 1998/01/05 21:04:26 chuck Exp
*/
/*
* uvm_mmap.c: system call interface into VM system, plus kernel vm_mmap
* function.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uvm_mmap.c,v 1.144 2012/01/27 19:48:41 para Exp $");
#include "opt_compat_netbsd.h"
#include "opt_pax.h"
#include "veriexec.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/resourcevar.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/vnode.h>
#include <sys/conf.h>
#include <sys/stat.h>
#if NVERIEXEC > 0
#include <sys/verified_exec.h>
#endif /* NVERIEXEC > 0 */
#if defined(PAX_ASLR) || defined(PAX_MPROTECT)
#include <sys/pax.h>
#endif /* PAX_ASLR || PAX_MPROTECT */
#include <miscfs/specfs/specdev.h>
#include <sys/syscallargs.h>
#include <uvm/uvm.h>
#include <uvm/uvm_device.h>
#ifndef COMPAT_ZERODEV
#define COMPAT_ZERODEV(dev) (0)
#endif
static int
range_test(vaddr_t addr, vsize_t size, bool ismmap)
{
vaddr_t vm_min_address = VM_MIN_ADDRESS;
vaddr_t vm_max_address = VM_MAXUSER_ADDRESS;
vaddr_t eaddr = addr + size;
if (addr < vm_min_address)
return EINVAL;
if (eaddr > vm_max_address)
return ismmap ? EFBIG : EINVAL;
if (addr > eaddr) /* no wrapping! */
return ismmap ? EOVERFLOW : EINVAL;
return 0;
}
/*
* unimplemented VM system calls:
*/
/*
* sys_sbrk: sbrk system call.
*/
/* ARGSUSED */
int
sys_sbrk(struct lwp *l, const struct sys_sbrk_args *uap, register_t *retval)
{
/* {
syscallarg(intptr_t) incr;
} */
return (ENOSYS);
}
/*
* sys_sstk: sstk system call.
*/
/* ARGSUSED */
int
sys_sstk(struct lwp *l, const struct sys_sstk_args *uap, register_t *retval)
{
/* {
syscallarg(int) incr;
} */
return (ENOSYS);
}
/*
* sys_mincore: determine if pages are in core or not.
*/
/* ARGSUSED */
int
sys_mincore(struct lwp *l, const struct sys_mincore_args *uap,
register_t *retval)
{
/* {
syscallarg(void *) addr;
syscallarg(size_t) len;
syscallarg(char *) vec;
} */
struct proc *p = l->l_proc;
struct vm_page *pg;
char *vec, pgi;
struct uvm_object *uobj;
struct vm_amap *amap;
struct vm_anon *anon;
struct vm_map_entry *entry;
vaddr_t start, end, lim;
struct vm_map *map;
vsize_t len;
int error = 0, npgs;
map = &p->p_vmspace->vm_map;
start = (vaddr_t)SCARG(uap, addr);
len = SCARG(uap, len);
vec = SCARG(uap, vec);
if (start & PAGE_MASK)
return (EINVAL);
len = round_page(len);
end = start + len;
if (end <= start)
return (EINVAL);
/*
* Lock down vec, so our returned status isn't outdated by
* storing the status byte for a page.
*/
npgs = len >> PAGE_SHIFT;
error = uvm_vslock(p->p_vmspace, vec, npgs, VM_PROT_WRITE);
if (error) {
return error;
}
vm_map_lock_read(map);
if (uvm_map_lookup_entry(map, start, &entry) == false) {
error = ENOMEM;
goto out;
}
for (/* nothing */;
entry != &map->header && entry->start < end;
entry = entry->next) {
KASSERT(!UVM_ET_ISSUBMAP(entry));
KASSERT(start >= entry->start);
/* Make sure there are no holes. */
if (entry->end < end &&
(entry->next == &map->header ||
entry->next->start > entry->end)) {
error = ENOMEM;
goto out;
}
lim = end < entry->end ? end : entry->end;
/*
* Special case for objects with no "real" pages. Those
* are always considered resident (mapped devices).
*/
if (UVM_ET_ISOBJ(entry)) {
KASSERT(!UVM_OBJ_IS_KERN_OBJECT(entry->object.uvm_obj));
if (UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
for (/* nothing */; start < lim;
start += PAGE_SIZE, vec++)
subyte(vec, 1);
continue;
}
}
amap = entry->aref.ar_amap; /* upper layer */
uobj = entry->object.uvm_obj; /* lower layer */
if (amap != NULL)
amap_lock(amap);
if (uobj != NULL)
mutex_enter(uobj->vmobjlock);
for (/* nothing */; start < lim; start += PAGE_SIZE, vec++) {
pgi = 0;
if (amap != NULL) {
/* Check the upper layer first. */
anon = amap_lookup(&entry->aref,
start - entry->start);
/* Don't need to lock anon here. */
if (anon != NULL && anon->an_page != NULL) {
/*
* Anon has the page for this entry
* offset.
*/
pgi = 1;
}
}
if (uobj != NULL && pgi == 0) {
/* Check the lower layer. */
pg = uvm_pagelookup(uobj,
entry->offset + (start - entry->start));
if (pg != NULL) {
/*
* Object has the page for this entry
* offset.
*/
pgi = 1;
}
}
(void) subyte(vec, pgi);
}
if (uobj != NULL)
mutex_exit(uobj->vmobjlock);
if (amap != NULL)
amap_unlock(amap);
}
out:
vm_map_unlock_read(map);
uvm_vsunlock(p->p_vmspace, SCARG(uap, vec), npgs);
return (error);
}
/*
* sys_mmap: mmap system call.
*
* => file offset and address may not be page aligned
* - if MAP_FIXED, offset and address must have remainder mod PAGE_SIZE
* - if address isn't page aligned the mapping starts at trunc_page(addr)
* and the return value is adjusted up by the page offset.
*/
int
sys_mmap(struct lwp *l, const struct sys_mmap_args *uap, register_t *retval)
{
/* {
syscallarg(void *) addr;
syscallarg(size_t) len;
syscallarg(int) prot;
syscallarg(int) flags;
syscallarg(int) fd;
syscallarg(long) pad;
syscallarg(off_t) pos;
} */
struct proc *p = l->l_proc;
vaddr_t addr;
struct vattr va;
off_t pos;
vsize_t size, pageoff;
vm_prot_t prot, maxprot;
int flags, fd;
vaddr_t defaddr;
struct file *fp = NULL;
struct vnode *vp;
void *handle;
int error;
#ifdef PAX_ASLR
vaddr_t orig_addr;
#endif /* PAX_ASLR */
/*
* first, extract syscall args from the uap.
*/
addr = (vaddr_t)SCARG(uap, addr);
size = (vsize_t)SCARG(uap, len);
prot = SCARG(uap, prot) & VM_PROT_ALL;
flags = SCARG(uap, flags);
fd = SCARG(uap, fd);
pos = SCARG(uap, pos);
#ifdef PAX_ASLR
orig_addr = addr;
#endif /* PAX_ASLR */
/*
* Fixup the old deprecated MAP_COPY into MAP_PRIVATE, and
* validate the flags.
*/
if (flags & MAP_COPY)
flags = (flags & ~MAP_COPY) | MAP_PRIVATE;
if ((flags & (MAP_SHARED|MAP_PRIVATE)) == (MAP_SHARED|MAP_PRIVATE))
return (EINVAL);
/*
* align file position and save offset. adjust size.
*/
pageoff = (pos & PAGE_MASK);
pos -= pageoff;
size += pageoff; /* add offset */
size = (vsize_t)round_page(size); /* round up */
/*
* now check (MAP_FIXED) or get (!MAP_FIXED) the "addr"
*/
if (flags & MAP_FIXED) {
/* ensure address and file offset are aligned properly */
addr -= pageoff;
if (addr & PAGE_MASK)
return (EINVAL);
error = range_test(addr, size, true);
if (error)
return error;
} else if (addr == 0 || !(flags & MAP_TRYFIXED)) {
/*
* not fixed: make sure we skip over the largest
* possible heap for non-topdown mapping arrangements.
* we will refine our guess later (e.g. to account for
* VAC, etc)
*/
defaddr = p->p_emul->e_vm_default_addr(p,
(vaddr_t)p->p_vmspace->vm_daddr, size);
if (addr == 0 ||
!(p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN))
addr = MAX(addr, defaddr);
else
addr = MIN(addr, defaddr);
}
/*
* check for file mappings (i.e. not anonymous) and verify file.
*/
if ((flags & MAP_ANON) == 0) {
if ((fp = fd_getfile(fd)) == NULL)
return (EBADF);
if (fp->f_type != DTYPE_VNODE) {
fd_putfile(fd);
return (ENODEV); /* only mmap vnodes! */
}
vp = fp->f_data; /* convert to vnode */
if (vp->v_type != VREG && vp->v_type != VCHR &&
vp->v_type != VBLK) {
fd_putfile(fd);
return (ENODEV); /* only REG/CHR/BLK support mmap */
}
if (vp->v_type != VCHR && pos < 0) {
fd_putfile(fd);
return (EINVAL);
}
if (vp->v_type != VCHR && (off_t)(pos + size) < pos) {
fd_putfile(fd);
return (EOVERFLOW); /* no offset wrapping */
}
/* special case: catch SunOS style /dev/zero */
if (vp->v_type == VCHR
&& (vp->v_rdev == zerodev || COMPAT_ZERODEV(vp->v_rdev))) {
flags |= MAP_ANON;
fd_putfile(fd);
fp = NULL;
goto is_anon;
}
/*
* Old programs may not select a specific sharing type, so
* default to an appropriate one.
*
* XXX: how does MAP_ANON fit in the picture?
*/
if ((flags & (MAP_SHARED|MAP_PRIVATE)) == 0) {
#if defined(DEBUG)
printf("WARNING: defaulted mmap() share type to "
"%s (pid %d command %s)\n", vp->v_type == VCHR ?
"MAP_SHARED" : "MAP_PRIVATE", p->p_pid,
p->p_comm);
#endif
if (vp->v_type == VCHR)
flags |= MAP_SHARED; /* for a device */
else
flags |= MAP_PRIVATE; /* for a file */
}
/*
* MAP_PRIVATE device mappings don't make sense (and aren't
* supported anyway). However, some programs rely on this,
* so just change it to MAP_SHARED.
*/
if (vp->v_type == VCHR && (flags & MAP_PRIVATE) != 0) {
flags = (flags & ~MAP_PRIVATE) | MAP_SHARED;
}
/*
* now check protection
*/
maxprot = VM_PROT_EXECUTE;
/* check read access */
if (fp->f_flag & FREAD)
maxprot |= VM_PROT_READ;
else if (prot & PROT_READ) {
fd_putfile(fd);
return (EACCES);
}
/* check write access, shared case first */
if (flags & MAP_SHARED) {
/*
* if the file is writable, only add PROT_WRITE to
* maxprot if the file is not immutable, append-only.
* otherwise, if we have asked for PROT_WRITE, return
* EPERM.
*/
if (fp->f_flag & FWRITE) {
vn_lock(vp, LK_SHARED | LK_RETRY);
error = VOP_GETATTR(vp, &va, l->l_cred);
VOP_UNLOCK(vp);
if (error) {
fd_putfile(fd);
return (error);
}
if ((va.va_flags &
(SF_SNAPSHOT|IMMUTABLE|APPEND)) == 0)
maxprot |= VM_PROT_WRITE;
else if (prot & PROT_WRITE) {
fd_putfile(fd);
return (EPERM);
}
}
else if (prot & PROT_WRITE) {
fd_putfile(fd);
return (EACCES);
}
} else {
/* MAP_PRIVATE mappings can always write to */
maxprot |= VM_PROT_WRITE;
}
handle = vp;
} else { /* MAP_ANON case */
/*
* XXX What do we do about (MAP_SHARED|MAP_PRIVATE) == 0?
*/
if (fd != -1)
return (EINVAL);
is_anon: /* label for SunOS style /dev/zero */
handle = NULL;
maxprot = VM_PROT_ALL;
pos = 0;
}
#if NVERIEXEC > 0
if (handle != NULL) {
/*
* Check if the file can be executed indirectly.
*
* XXX: This gives false warnings about "Incorrect access type"
* XXX: if the mapping is not executable. Harmless, but will be
* XXX: fixed as part of other changes.
*/
if (veriexec_verify(l, handle, "(mmap)", VERIEXEC_INDIRECT,
NULL)) {
/*
* Don't allow executable mappings if we can't
* indirectly execute the file.
*/
if (prot & VM_PROT_EXECUTE) {
if (fp != NULL)
fd_putfile(fd);
return (EPERM);
}
/*
* Strip the executable bit from 'maxprot' to make sure
* it can't be made executable later.
*/
maxprot &= ~VM_PROT_EXECUTE;
}
}
#endif /* NVERIEXEC > 0 */
#ifdef PAX_MPROTECT
pax_mprotect(l, &prot, &maxprot);
#endif /* PAX_MPROTECT */
#ifdef PAX_ASLR
pax_aslr(l, &addr, orig_addr, flags);
#endif /* PAX_ASLR */
/*
* now let kernel internal function uvm_mmap do the work.
*/
error = uvm_mmap(&p->p_vmspace->vm_map, &addr, size, prot, maxprot,
flags, handle, pos, p->p_rlimit[RLIMIT_MEMLOCK].rlim_cur);
if (error == 0)
/* remember to add offset */
*retval = (register_t)(addr + pageoff);
if (fp != NULL)
fd_putfile(fd);
return (error);
}
/*
* sys___msync13: the msync system call (a front-end for flush)
*/
int
sys___msync13(struct lwp *l, const struct sys___msync13_args *uap,
register_t *retval)
{
/* {
syscallarg(void *) addr;
syscallarg(size_t) len;
syscallarg(int) flags;
} */
struct proc *p = l->l_proc;
vaddr_t addr;
vsize_t size, pageoff;
struct vm_map *map;
int error, rv, flags, uvmflags;
/*
* extract syscall args from the uap
*/
addr = (vaddr_t)SCARG(uap, addr);
size = (vsize_t)SCARG(uap, len);
flags = SCARG(uap, flags);
/* sanity check flags */
if ((flags & ~(MS_ASYNC | MS_SYNC | MS_INVALIDATE)) != 0 ||
(flags & (MS_ASYNC | MS_SYNC | MS_INVALIDATE)) == 0 ||
(flags & (MS_ASYNC | MS_SYNC)) == (MS_ASYNC | MS_SYNC))
return (EINVAL);
if ((flags & (MS_ASYNC | MS_SYNC)) == 0)
flags |= MS_SYNC;
/*
* align the address to a page boundary and adjust the size accordingly.
*/
pageoff = (addr & PAGE_MASK);
addr -= pageoff;
size += pageoff;
size = (vsize_t)round_page(size);
error = range_test(addr, size, false);
if (error)
return error;
/*
* get map
*/
map = &p->p_vmspace->vm_map;
/*
* XXXCDC: do we really need this semantic?
*
* XXX Gak! If size is zero we are supposed to sync "all modified
* pages with the region containing addr". Unfortunately, we
* don't really keep track of individual mmaps so we approximate
* by flushing the range of the map entry containing addr.
* This can be incorrect if the region splits or is coalesced
* with a neighbor.
*/
if (size == 0) {
struct vm_map_entry *entry;
vm_map_lock_read(map);
rv = uvm_map_lookup_entry(map, addr, &entry);
if (rv == true) {
addr = entry->start;
size = entry->end - entry->start;
}
vm_map_unlock_read(map);
if (rv == false)
return (EINVAL);
}
/*
* translate MS_ flags into PGO_ flags
*/
uvmflags = PGO_CLEANIT;
if (flags & MS_INVALIDATE)
uvmflags |= PGO_FREE;
if (flags & MS_SYNC)
uvmflags |= PGO_SYNCIO;
error = uvm_map_clean(map, addr, addr+size, uvmflags);
return error;
}
/*
* sys_munmap: unmap a users memory
*/
int
sys_munmap(struct lwp *l, const struct sys_munmap_args *uap, register_t *retval)
{
/* {
syscallarg(void *) addr;
syscallarg(size_t) len;
} */
struct proc *p = l->l_proc;
vaddr_t addr;
vsize_t size, pageoff;
struct vm_map *map;
struct vm_map_entry *dead_entries;
int error;
/*
* get syscall args.
*/
addr = (vaddr_t)SCARG(uap, addr);
size = (vsize_t)SCARG(uap, len);
/*
* align the address to a page boundary and adjust the size accordingly.
*/
pageoff = (addr & PAGE_MASK);
addr -= pageoff;
size += pageoff;
size = (vsize_t)round_page(size);
if (size == 0)
return (0);
error = range_test(addr, size, false);
if (error)
return error;
map = &p->p_vmspace->vm_map;
/*
* interesting system call semantic: make sure entire range is
* allocated before allowing an unmap.
*/
vm_map_lock(map);
#if 0
if (!uvm_map_checkprot(map, addr, addr + size, VM_PROT_NONE)) {
vm_map_unlock(map);
return (EINVAL);
}
#endif
uvm_unmap_remove(map, addr, addr + size, &dead_entries, 0);
vm_map_unlock(map);
if (dead_entries != NULL)
uvm_unmap_detach(dead_entries, 0);
return (0);
}
/*
* sys_mprotect: the mprotect system call
*/
int
sys_mprotect(struct lwp *l, const struct sys_mprotect_args *uap,
register_t *retval)
{
/* {
syscallarg(void *) addr;
syscallarg(size_t) len;
syscallarg(int) prot;
} */
struct proc *p = l->l_proc;
vaddr_t addr;
vsize_t size, pageoff;
vm_prot_t prot;
int error;
/*
* extract syscall args from uap
*/
addr = (vaddr_t)SCARG(uap, addr);
size = (vsize_t)SCARG(uap, len);
prot = SCARG(uap, prot) & VM_PROT_ALL;
/*
* align the address to a page boundary and adjust the size accordingly.
*/
pageoff = (addr & PAGE_MASK);
addr -= pageoff;
size += pageoff;
size = round_page(size);
error = range_test(addr, size, false);
if (error)
return error;
error = uvm_map_protect(&p->p_vmspace->vm_map, addr, addr + size, prot,
false);
return error;
}
/*
* sys_minherit: the minherit system call
*/
int
sys_minherit(struct lwp *l, const struct sys_minherit_args *uap,
register_t *retval)
{
/* {
syscallarg(void *) addr;
syscallarg(int) len;
syscallarg(int) inherit;
} */
struct proc *p = l->l_proc;
vaddr_t addr;
vsize_t size, pageoff;
vm_inherit_t inherit;
int error;
addr = (vaddr_t)SCARG(uap, addr);
size = (vsize_t)SCARG(uap, len);
inherit = SCARG(uap, inherit);
/*
* align the address to a page boundary and adjust the size accordingly.
*/
pageoff = (addr & PAGE_MASK);
addr -= pageoff;
size += pageoff;
size = (vsize_t)round_page(size);
error = range_test(addr, size, false);
if (error)
return error;
error = uvm_map_inherit(&p->p_vmspace->vm_map, addr, addr + size,
inherit);
return error;
}
/*
* sys_madvise: give advice about memory usage.
*/
/* ARGSUSED */
int
sys_madvise(struct lwp *l, const struct sys_madvise_args *uap,
register_t *retval)
{
/* {
syscallarg(void *) addr;
syscallarg(size_t) len;
syscallarg(int) behav;
} */
struct proc *p = l->l_proc;
vaddr_t addr;
vsize_t size, pageoff;
int advice, error;
addr = (vaddr_t)SCARG(uap, addr);
size = (vsize_t)SCARG(uap, len);
advice = SCARG(uap, behav);
/*
* align the address to a page boundary, and adjust the size accordingly
*/
pageoff = (addr & PAGE_MASK);
addr -= pageoff;
size += pageoff;
size = (vsize_t)round_page(size);
error = range_test(addr, size, false);
if (error)
return error;
switch (advice) {
case MADV_NORMAL:
case MADV_RANDOM:
case MADV_SEQUENTIAL:
error = uvm_map_advice(&p->p_vmspace->vm_map, addr, addr + size,
advice);
break;
case MADV_WILLNEED:
/*
* Activate all these pages, pre-faulting them in if
* necessary.
*/
error = uvm_map_willneed(&p->p_vmspace->vm_map,
addr, addr + size);
break;
case MADV_DONTNEED:
/*
* Deactivate all these pages. We don't need them
* any more. We don't, however, toss the data in
* the pages.
*/
error = uvm_map_clean(&p->p_vmspace->vm_map, addr, addr + size,
PGO_DEACTIVATE);
break;
case MADV_FREE:
/*
* These pages contain no valid data, and may be
* garbage-collected. Toss all resources, including
* any swap space in use.
*/
error = uvm_map_clean(&p->p_vmspace->vm_map, addr, addr + size,
PGO_FREE);
break;
case MADV_SPACEAVAIL:
/*
* XXXMRG What is this? I think it's:
*
* Ensure that we have allocated backing-store
* for these pages.
*
* This is going to require changes to the page daemon,
* as it will free swap space allocated to pages in core.
* There's also what to do for device/file/anonymous memory.
*/
return (EINVAL);
default:
return (EINVAL);
}
return error;
}
/*
* sys_mlock: memory lock
*/
int
sys_mlock(struct lwp *l, const struct sys_mlock_args *uap, register_t *retval)
{
/* {
syscallarg(const void *) addr;
syscallarg(size_t) len;
} */
struct proc *p = l->l_proc;
vaddr_t addr;
vsize_t size, pageoff;
int error;
/*
* extract syscall args from uap
*/
addr = (vaddr_t)SCARG(uap, addr);
size = (vsize_t)SCARG(uap, len);
/*
* align the address to a page boundary and adjust the size accordingly
*/
pageoff = (addr & PAGE_MASK);
addr -= pageoff;
size += pageoff;
size = (vsize_t)round_page(size);
error = range_test(addr, size, false);
if (error)
return error;
if (atop(size) + uvmexp.wired > uvmexp.wiredmax)
return (EAGAIN);
if (size + ptoa(pmap_wired_count(vm_map_pmap(&p->p_vmspace->vm_map))) >
p->p_rlimit[RLIMIT_MEMLOCK].rlim_cur)
return (EAGAIN);
error = uvm_map_pageable(&p->p_vmspace->vm_map, addr, addr+size, false,
0);
if (error == EFAULT)
error = ENOMEM;
return error;
}
/*
* sys_munlock: unlock wired pages
*/
int
sys_munlock(struct lwp *l, const struct sys_munlock_args *uap,
register_t *retval)
{
/* {
syscallarg(const void *) addr;
syscallarg(size_t) len;
} */
struct proc *p = l->l_proc;
vaddr_t addr;
vsize_t size, pageoff;
int error;
/*
* extract syscall args from uap
*/
addr = (vaddr_t)SCARG(uap, addr);
size = (vsize_t)SCARG(uap, len);
/*
* align the address to a page boundary, and adjust the size accordingly
*/
pageoff = (addr & PAGE_MASK);
addr -= pageoff;
size += pageoff;
size = (vsize_t)round_page(size);
error = range_test(addr, size, false);
if (error)
return error;
error = uvm_map_pageable(&p->p_vmspace->vm_map, addr, addr+size, true,
0);
if (error == EFAULT)
error = ENOMEM;
return error;
}
/*
* sys_mlockall: lock all pages mapped into an address space.
*/
int
sys_mlockall(struct lwp *l, const struct sys_mlockall_args *uap,
register_t *retval)
{
/* {
syscallarg(int) flags;
} */
struct proc *p = l->l_proc;
int error, flags;
flags = SCARG(uap, flags);
if (flags == 0 ||
(flags & ~(MCL_CURRENT|MCL_FUTURE)) != 0)
return (EINVAL);
error = uvm_map_pageable_all(&p->p_vmspace->vm_map, flags,
p->p_rlimit[RLIMIT_MEMLOCK].rlim_cur);
return (error);
}
/*
* sys_munlockall: unlock all pages mapped into an address space.
*/
int
sys_munlockall(struct lwp *l, const void *v, register_t *retval)
{
struct proc *p = l->l_proc;
(void) uvm_map_pageable_all(&p->p_vmspace->vm_map, 0, 0);
return (0);
}
/*
* uvm_mmap: internal version of mmap
*
* - used by sys_mmap and various framebuffers
* - handle is a vnode pointer or NULL for MAP_ANON
* - caller must page-align the file offset
*/
int
uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
vm_prot_t maxprot, int flags, void *handle, voff_t foff, vsize_t locklimit)
{
struct uvm_object *uobj;
struct vnode *vp;
vaddr_t align = 0;
int error;
int advice = UVM_ADV_NORMAL;
uvm_flag_t uvmflag = 0;
bool needwritemap;
/*
* check params
*/
if (size == 0)
return(0);
if (foff & PAGE_MASK)
return(EINVAL);
if ((prot & maxprot) != prot)
return(EINVAL);
/*
* for non-fixed mappings, round off the suggested address.
* for fixed mappings, check alignment and zap old mappings.
*/
if ((flags & MAP_FIXED) == 0) {
*addr = round_page(*addr);
} else {
if (*addr & PAGE_MASK)
return(EINVAL);
uvmflag |= UVM_FLAG_FIXED;
(void) uvm_unmap(map, *addr, *addr + size);
}
/*
* Try to see if any requested alignment can even be attemped.
* Make sure we can express the alignment (asking for a >= 4GB
* alignment on an ILP32 architecure make no sense) and the
* alignment is at least for a page sized quanitiy. If the
* request was for a fixed mapping, make sure supplied address
* adheres to the request alignment.
*/
align = (flags & MAP_ALIGNMENT_MASK) >> MAP_ALIGNMENT_SHIFT;
if (align) {
if (align >= sizeof(vaddr_t) * NBBY)
return(EINVAL);
align = 1L << align;
if (align < PAGE_SIZE)
return(EINVAL);
if (align >= vm_map_max(map))
return(ENOMEM);
if (flags & MAP_FIXED) {
if ((*addr & (align-1)) != 0)
return(EINVAL);
align = 0;
}
}
/*
* check resource limits
*/
if (!VM_MAP_IS_KERNEL(map) &&
(((rlim_t)curproc->p_vmspace->vm_map.size + (rlim_t)size) >
curproc->p_rlimit[RLIMIT_AS].rlim_cur))
return ENOMEM;
/*
* handle anon vs. non-anon mappings. for non-anon mappings attach
* to underlying vm object.
*/
if (flags & MAP_ANON) {
KASSERT(handle == NULL);
foff = UVM_UNKNOWN_OFFSET;
uobj = NULL;
if ((flags & MAP_SHARED) == 0)
/* XXX: defer amap create */
uvmflag |= UVM_FLAG_COPYONW;
else
/* shared: create amap now */
uvmflag |= UVM_FLAG_OVERLAY;
} else {
KASSERT(handle != NULL);
vp = (struct vnode *)handle;
/*
* Don't allow mmap for EXEC if the file system
* is mounted NOEXEC.
*/
if ((prot & PROT_EXEC) != 0 &&
(vp->v_mount->mnt_flag & MNT_NOEXEC) != 0)
return (EACCES);
if (vp->v_type != VCHR) {
error = VOP_MMAP(vp, prot, curlwp->l_cred);
if (error) {
return error;
}
vref(vp);
uobj = &vp->v_uobj;
/*
* If the vnode is being mapped with PROT_EXEC,
* then mark it as text.
*/
if (prot & PROT_EXEC) {
vn_markexec(vp);
}
} else {
int i = maxprot;
/*
* XXX Some devices don't like to be mapped with
* XXX PROT_EXEC or PROT_WRITE, but we don't really
* XXX have a better way of handling this, right now
*/
do {
uobj = udv_attach((void *) &vp->v_rdev,
(flags & MAP_SHARED) ? i :
(i & ~VM_PROT_WRITE), foff, size);
i--;
} while ((uobj == NULL) && (i > 0));
if (uobj == NULL)
return EINVAL;
advice = UVM_ADV_RANDOM;
}
if ((flags & MAP_SHARED) == 0) {
uvmflag |= UVM_FLAG_COPYONW;
}
/*
* Set vnode flags to indicate the new kinds of mapping.
* We take the vnode lock in exclusive mode here to serialize
* with direct I/O.
*
* Safe to check for these flag values without a lock, as
* long as a reference to the vnode is held.
*/
needwritemap = (vp->v_iflag & VI_WRMAP) == 0 &&
(flags & MAP_SHARED) != 0 &&
(maxprot & VM_PROT_WRITE) != 0;
if ((vp->v_vflag & VV_MAPPED) == 0 || needwritemap) {
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
vp->v_vflag |= VV_MAPPED;
if (needwritemap) {
mutex_enter(vp->v_interlock);
vp->v_iflag |= VI_WRMAP;
mutex_exit(vp->v_interlock);
}
VOP_UNLOCK(vp);
}
}
uvmflag = UVM_MAPFLAG(prot, maxprot,
(flags & MAP_SHARED) ? UVM_INH_SHARE : UVM_INH_COPY,
advice, uvmflag);
error = uvm_map(map, addr, size, uobj, foff, align, uvmflag);
if (error) {
if (uobj)
uobj->pgops->pgo_detach(uobj);
return error;
}
/*
* POSIX 1003.1b -- if our address space was configured
* to lock all future mappings, wire the one we just made.
*
* Also handle the MAP_WIRED flag here.
*/
if (prot == VM_PROT_NONE) {
/*
* No more work to do in this case.
*/
return (0);
}
if ((flags & MAP_WIRED) != 0 || (map->flags & VM_MAP_WIREFUTURE) != 0) {
vm_map_lock(map);
if (atop(size) + uvmexp.wired > uvmexp.wiredmax ||
(locklimit != 0 &&
size + ptoa(pmap_wired_count(vm_map_pmap(map))) >
locklimit)) {
vm_map_unlock(map);
uvm_unmap(map, *addr, *addr + size);
return ENOMEM;
}
/*
* uvm_map_pageable() always returns the map unlocked.
*/
error = uvm_map_pageable(map, *addr, *addr + size,
false, UVM_LK_ENTER);
if (error) {
uvm_unmap(map, *addr, *addr + size);
return error;
}
return (0);
}
return 0;
}
vaddr_t
uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
{
return VM_DEFAULT_ADDRESS(base, sz);
}