2360 lines
63 KiB
C
2360 lines
63 KiB
C
/*
|
|
* Device driver for National Semiconductor DS8390/WD83C690 based ethernet
|
|
* adapters.
|
|
*
|
|
* Copyright (c) 1994 Charles Hannum.
|
|
*
|
|
* Copyright (C) 1993, David Greenman. This software may be used, modified,
|
|
* copied, distributed, and sold, in both source and binary form provided that
|
|
* the above copyright and these terms are retained. Under no circumstances is
|
|
* the author responsible for the proper functioning of this software, nor does
|
|
* the author assume any responsibility for damages incurred with its use.
|
|
*
|
|
* Currently supports the Western Digital/SMC 8003 and 8013 series, the 3Com
|
|
* 3c503, the NE1000 and NE2000, and a variety of similar clones.
|
|
*
|
|
* $Id: if_ed.c,v 1.38 1994/03/08 12:21:19 mycroft Exp $
|
|
*/
|
|
|
|
#include "ed.h"
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/netisr.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#ifdef NS
|
|
#include <netns/ns.h>
|
|
#include <netns/ns_if.h>
|
|
#endif
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#include <net/bpfdesc.h>
|
|
#endif
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/pio.h>
|
|
|
|
#include <i386/isa/isa.h>
|
|
#include <i386/isa/isa_device.h>
|
|
#include <i386/isa/icu.h>
|
|
#include <i386/isa/if_edreg.h>
|
|
|
|
/*
|
|
* ed_softc: per line info and status
|
|
*/
|
|
struct ed_softc {
|
|
struct device sc_dev;
|
|
|
|
struct arpcom sc_arpcom; /* ethernet common */
|
|
|
|
char *type_str; /* pointer to type string */
|
|
u_char vendor; /* interface vendor */
|
|
u_char type; /* interface type code */
|
|
|
|
u_short asic_addr; /* ASIC I/O bus address */
|
|
u_short nic_addr; /* NIC (DS8390) I/O bus address */
|
|
|
|
/*
|
|
* The following 'proto' variable is part of a work-around for 8013EBT asics
|
|
* being write-only. It's sort of a prototype/shadow of the real thing.
|
|
*/
|
|
u_char wd_laar_proto;
|
|
u_char ed_cr_rd2; /* ED_CR_RD2 if not 790; 0 if 790 */
|
|
u_char isa16bit; /* width of access to card 0=8 or 1=16 */
|
|
u_char is790; /* set by probe if NIC is a 790 */
|
|
|
|
caddr_t bpf; /* BPF "magic cookie" */
|
|
caddr_t mem_start; /* NIC memory start address */
|
|
caddr_t mem_end; /* NIC memory end address */
|
|
u_long mem_size; /* total NIC memory size */
|
|
caddr_t mem_ring; /* start of RX ring-buffer (in NIC mem) */
|
|
|
|
u_char mem_shared; /* NIC memory is shared with host */
|
|
u_char xmit_busy; /* transmitter is busy */
|
|
u_char txb_cnt; /* number of transmit buffers */
|
|
u_char txb_inuse; /* number of TX buffers currently in-use*/
|
|
|
|
u_char txb_new; /* pointer to where new buffer will be added */
|
|
u_char txb_next_tx; /* pointer to next buffer ready to xmit */
|
|
u_short txb_len[8]; /* buffered xmit buffer lengths */
|
|
u_char tx_page_start; /* first page of TX buffer area */
|
|
u_char rec_page_start; /* first page of RX ring-buffer */
|
|
u_char rec_page_stop; /* last page of RX ring-buffer */
|
|
u_char next_packet; /* pointer to next unread RX packet */
|
|
} ed_softc[NED];
|
|
|
|
int ed_probe __P((struct isa_device *));
|
|
int ed_attach __P((struct isa_device *));
|
|
int edintr __P((int));
|
|
int ed_ioctl __P((struct ifnet *, int, caddr_t));
|
|
int ed_start __P((struct ifnet *));
|
|
int ed_watchdog __P((/* short */));
|
|
void ed_reset __P((struct ed_softc *));
|
|
void ed_init __P((struct ed_softc *));
|
|
void ed_stop __P((struct ed_softc *));
|
|
void ed_getmcaf __P((struct arpcom *, u_long *));
|
|
|
|
#define inline /* XXX for debugging porpoises */
|
|
|
|
void ed_get_packet __P((/* struct ed_softc *, caddr_t, u_short */));
|
|
static inline void ed_rint __P((struct ed_softc *));
|
|
static inline void ed_xmit __P((struct ed_softc *));
|
|
static inline caddr_t ed_ring_copy __P((/* struct ed_Softc *, caddr_t, caddr_t,
|
|
u_short */));
|
|
|
|
void ed_pio_readmem __P((/* struct ed_softc *, u_short, caddr_t, u_short */));
|
|
void ed_pio_writemem __P((/* struct ed_softc *, caddr_t, u_short, u_short */));
|
|
u_short ed_pio_write_mbufs __P((/* struct ed_softc *, struct mbuf *, u_short */));
|
|
|
|
struct trailer_header {
|
|
u_short ether_type;
|
|
u_short ether_residual;
|
|
};
|
|
|
|
struct isa_driver eddriver = {
|
|
ed_probe,
|
|
ed_attach,
|
|
"ed"
|
|
};
|
|
|
|
/*
|
|
* Interrupt conversion table for WD/SMC ASIC.
|
|
* (IRQ* are defined in icu.h.)
|
|
*/
|
|
static u_short ed_intr_mask[] = {
|
|
IRQ9,
|
|
IRQ3,
|
|
IRQ5,
|
|
IRQ7,
|
|
IRQ10,
|
|
IRQ11,
|
|
IRQ15,
|
|
IRQ4
|
|
};
|
|
|
|
static u_short ed_790_intr_mask[] = {
|
|
0,
|
|
IRQ9,
|
|
IRQ3,
|
|
IRQ5,
|
|
IRQ7,
|
|
IRQ10,
|
|
IRQ11,
|
|
IRQ15
|
|
};
|
|
|
|
#define ETHER_MIN_LEN 64
|
|
#define ETHER_MAX_LEN 1518
|
|
#define ETHER_ADDR_LEN 6
|
|
|
|
/*
|
|
* Determine if the device is present.
|
|
*/
|
|
int
|
|
ed_probe(isa_dev)
|
|
struct isa_device *isa_dev;
|
|
{
|
|
struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
|
|
int nports;
|
|
|
|
/* XXX HACK */
|
|
sprintf(sc->sc_dev.dv_xname, "%s%d", eddriver.name, isa_dev->id_unit);
|
|
sc->sc_dev.dv_unit = isa_dev->id_unit;
|
|
|
|
if (nports = ed_probe_WD80x3(isa_dev))
|
|
return nports;
|
|
if (nports = ed_probe_3Com(isa_dev))
|
|
return nports;
|
|
if (nports = ed_probe_Novell(isa_dev))
|
|
return nports;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Generic probe routine for testing for the existance of a DS8390. Must be
|
|
* called after the NIC has just been reset. This routine works by looking at
|
|
* certain register values that are gauranteed to be initialized a certain way
|
|
* after power-up or reset. Seems not to currently work on the 83C690.
|
|
*
|
|
* Specifically:
|
|
*
|
|
* Register reset bits set bits
|
|
* Command Register (CR) TXP, STA RD2, STP
|
|
* Interrupt Status (ISR) RST
|
|
* Interrupt Mask (IMR) All bits
|
|
* Data Control (DCR) LAS
|
|
* Transmit Config. (TCR) LB1, LB0
|
|
*
|
|
* We only look at the CR and ISR registers, however, because looking at the
|
|
* others would require changing register pages (which would be intrusive if
|
|
* this isn't an 8390).
|
|
*
|
|
* Return 1 if 8390 was found, 0 if not.
|
|
*/
|
|
|
|
int
|
|
ed_probe_generic8390(sc)
|
|
struct ed_softc *sc;
|
|
{
|
|
if ((inb(sc->nic_addr + ED_P0_CR) &
|
|
(ED_CR_RD2 | ED_CR_TXP | ED_CR_STA | ED_CR_STP)) !=
|
|
(ED_CR_RD2 | ED_CR_STP))
|
|
return 0;
|
|
if ((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RST) != ED_ISR_RST)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Probe and vendor-specific initialization routine for SMC/WD80x3 boards.
|
|
*/
|
|
int
|
|
ed_probe_WD80x3(isa_dev)
|
|
struct isa_device *isa_dev;
|
|
{
|
|
struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
|
|
int i;
|
|
u_int memsize;
|
|
u_char iptr, isa16bit, sum;
|
|
|
|
sc->asic_addr = isa_dev->id_iobase;
|
|
sc->nic_addr = sc->asic_addr + ED_WD_NIC_OFFSET;
|
|
sc->is790 = 0;
|
|
|
|
#ifdef TOSH_ETHER
|
|
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_POW);
|
|
delay(10000);
|
|
#endif
|
|
|
|
/*
|
|
* Attempt to do a checksum over the station address PROM. If it
|
|
* fails, it's probably not a SMC/WD board. There is a problem with
|
|
* this, though: some clone WD boards don't pass the checksum test.
|
|
* Danpex boards for one.
|
|
*/
|
|
for (sum = 0, i = 0; i < 8; ++i)
|
|
sum += inb(sc->asic_addr + ED_WD_PROM + i);
|
|
|
|
if (sum != ED_WD_ROM_CHECKSUM_TOTAL) {
|
|
/*
|
|
* Checksum is invalid. This often happens with cheap WD8003E
|
|
* clones. In this case, the checksum byte (the eighth byte)
|
|
* seems to always be zero.
|
|
*/
|
|
if (inb(sc->asic_addr + ED_WD_CARD_ID) != ED_TYPE_WD8003E ||
|
|
inb(sc->asic_addr + ED_WD_PROM + 7) != 0)
|
|
return 0;
|
|
}
|
|
|
|
/* Reset card to force it into a known state. */
|
|
#ifdef TOSH_ETHER
|
|
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST | ED_WD_MSR_POW);
|
|
#else
|
|
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST);
|
|
#endif
|
|
delay(100);
|
|
outb(sc->asic_addr + ED_WD_MSR,
|
|
inb(sc->asic_addr + ED_WD_MSR) & ~ED_WD_MSR_RST);
|
|
/* Wait in the case this card is reading it's EEROM. */
|
|
delay(5000);
|
|
|
|
sc->vendor = ED_VENDOR_WD_SMC;
|
|
sc->type = inb(sc->asic_addr + ED_WD_CARD_ID);
|
|
|
|
/* Set initial values for width/size. */
|
|
memsize = 8192;
|
|
isa16bit = 0;
|
|
switch (sc->type) {
|
|
case ED_TYPE_WD8003S:
|
|
sc->type_str = "WD8003S";
|
|
break;
|
|
case ED_TYPE_WD8003E:
|
|
sc->type_str = "WD8003E";
|
|
break;
|
|
case ED_TYPE_WD8003EB:
|
|
sc->type_str = "WD8003EB";
|
|
break;
|
|
case ED_TYPE_WD8003W:
|
|
sc->type_str = "WD8003W";
|
|
break;
|
|
case ED_TYPE_WD8013EBT:
|
|
sc->type_str = "WD8013EBT";
|
|
memsize = 16384;
|
|
isa16bit = 1;
|
|
break;
|
|
case ED_TYPE_WD8013W:
|
|
sc->type_str = "WD8013W";
|
|
memsize = 16384;
|
|
isa16bit = 1;
|
|
break;
|
|
case ED_TYPE_WD8013EP: /* also WD8003EP */
|
|
if (inb(sc->asic_addr + ED_WD_ICR) & ED_WD_ICR_16BIT) {
|
|
isa16bit = 1;
|
|
memsize = 16384;
|
|
sc->type_str = "WD8013EP";
|
|
} else
|
|
sc->type_str = "WD8003EP";
|
|
break;
|
|
case ED_TYPE_WD8013WC:
|
|
sc->type_str = "WD8013WC";
|
|
memsize = 16384;
|
|
isa16bit = 1;
|
|
break;
|
|
case ED_TYPE_WD8013EBP:
|
|
sc->type_str = "WD8013EBP";
|
|
memsize = 16384;
|
|
isa16bit = 1;
|
|
break;
|
|
case ED_TYPE_WD8013EPC:
|
|
sc->type_str = "WD8013EPC";
|
|
memsize = 16384;
|
|
isa16bit = 1;
|
|
break;
|
|
case ED_TYPE_SMC8216C:
|
|
sc->type_str = "SMC8216/SMC8216C";
|
|
memsize = 16384;
|
|
isa16bit = 1;
|
|
sc->is790 = 1;
|
|
break;
|
|
case ED_TYPE_SMC8216T:
|
|
sc->type_str = "SMC8216T";
|
|
memsize = 16384;
|
|
isa16bit = 1;
|
|
sc->is790 = 1;
|
|
break;
|
|
#ifdef TOSH_ETHER
|
|
case ED_TYPE_TOSHIBA1:
|
|
sc->type_str = "Toshiba1";
|
|
memsize = 32768;
|
|
isa16bit = 1;
|
|
break;
|
|
case ED_TYPE_TOSHIBA4:
|
|
sc->type_str = "Toshiba4";
|
|
memsize = 32768;
|
|
isa16bit = 1;
|
|
break;
|
|
#endif
|
|
default:
|
|
sc->type_str = NULL;
|
|
break;
|
|
}
|
|
/*
|
|
* Make some adjustments to initial values depending on what is found
|
|
* in the ICR.
|
|
*/
|
|
if (isa16bit && (sc->type != ED_TYPE_WD8013EBT) &&
|
|
#ifdef TOSH_ETHER
|
|
(sc->type != ED_TYPE_TOSHIBA1) && (sc->type != ED_TYPE_TOSHIBA4) &&
|
|
#endif
|
|
((inb(sc->asic_addr + ED_WD_ICR) & ED_WD_ICR_16BIT) == 0)) {
|
|
isa16bit = 0;
|
|
memsize = 8192;
|
|
}
|
|
|
|
#ifdef ED_DEBUG
|
|
printf("type=%x type_str=%s isa16bit=%d memsize=%d id_msize=%d\n",
|
|
sc->type, sc->type_str ?: "unknown", isa16bit, memsize,
|
|
isa_dev->id_msize);
|
|
for (i = 0; i < 8; i++)
|
|
printf("%x -> %x\n", i, inb(sc->asic_addr + i));
|
|
#endif
|
|
/* Allow the user to override the autoconfiguration. */
|
|
if (isa_dev->id_msize)
|
|
memsize = isa_dev->id_msize;
|
|
/*
|
|
* (Note that if the user specifies both of the following flags that
|
|
* '8-bit' mode intentionally has precedence.)
|
|
*/
|
|
if (isa_dev->id_flags & ED_FLAGS_FORCE_16BIT_MODE)
|
|
isa16bit = 1;
|
|
if (isa_dev->id_flags & ED_FLAGS_FORCE_8BIT_MODE)
|
|
isa16bit = 0;
|
|
|
|
/*
|
|
* Check 83C584 interrupt configuration register if this board has one
|
|
* XXX - We could also check the IO address register. But why
|
|
* bother... if we get past this, it *has* to be correct.
|
|
*/
|
|
sc->ed_cr_rd2 = ED_CR_RD2;
|
|
if (sc->is790) {
|
|
sc->ed_cr_rd2 = 0;
|
|
/* Assemble together the encoded interrupt number. */
|
|
outb(isa_dev->id_iobase + 0x04, inb(isa_dev->id_iobase + 0x04)
|
|
| 0x80);
|
|
iptr = ((inb(isa_dev->id_iobase + 0x0d) & 0x0c) >> 2) |
|
|
((inb(isa_dev->id_iobase + 0x0d) & 0x40) >> 4);
|
|
outb(isa_dev->id_iobase + 0x04, inb(isa_dev->id_iobase + 0x04)
|
|
& ~0x80);
|
|
/*
|
|
* Translate it using translation table, and check for
|
|
* correctness.
|
|
*/
|
|
if (ed_790_intr_mask[iptr] != isa_dev->id_irq) {
|
|
printf("%s: kernel configured irq %d doesn't match board configured irq %d\n",
|
|
sc->sc_dev.dv_xname, ffs(isa_dev->id_irq) - 1,
|
|
ffs(ed_790_intr_mask[iptr]) - 1);
|
|
return 0;
|
|
}
|
|
/* Enable the interrupt. */
|
|
outb(isa_dev->id_iobase + 0x06, inb(isa_dev->id_iobase + 0x06)
|
|
| 0x01);
|
|
} else if (sc->type & ED_WD_SOFTCONFIG) {
|
|
/* Assemble together the encoded interrupt number. */
|
|
iptr = (inb(isa_dev->id_iobase + ED_WD_ICR) & ED_WD_ICR_IR2) |
|
|
((inb(isa_dev->id_iobase + ED_WD_IRR) &
|
|
(ED_WD_IRR_IR0 | ED_WD_IRR_IR1)) >> 5);
|
|
/*
|
|
* Translate it using translation table, and check for
|
|
* correctness.
|
|
*/
|
|
if (ed_intr_mask[iptr] != isa_dev->id_irq) {
|
|
printf("%s: kernel configured irq %d doesn't match board configured irq %d\n",
|
|
sc->sc_dev.dv_xname, ffs(isa_dev->id_irq) - 1,
|
|
ffs(ed_intr_mask[iptr]) - 1);
|
|
return 0;
|
|
}
|
|
/* Enable the interrupt. */
|
|
outb(isa_dev->id_iobase + ED_WD_IRR,
|
|
inb(isa_dev->id_iobase + ED_WD_IRR) | ED_WD_IRR_IEN);
|
|
}
|
|
|
|
sc->isa16bit = isa16bit;
|
|
|
|
#ifdef notyet /* XXX - I'm not sure if PIO mode is even possible on WD/SMC boards */
|
|
/*
|
|
* The following allows the WD/SMC boards to be used in Programmed I/O
|
|
* mode - without mapping the NIC memory shared. ...Not the prefered
|
|
* way, but it might be the only way.
|
|
*/
|
|
if (isa_dev->id_flags & ED_FLAGS_FORCE_PIO) {
|
|
sc->mem_shared = 0;
|
|
isa_dev->id_maddr = 0;
|
|
} else
|
|
sc->mem_shared = 1;
|
|
#else
|
|
sc->mem_shared = 1;
|
|
#endif
|
|
isa_dev->id_msize = memsize;
|
|
|
|
sc->mem_start = (caddr_t)isa_dev->id_maddr;
|
|
|
|
/* Allocate one xmit buffer if < 16k, two buffers otherwise. */
|
|
if ((memsize < 16384) ||
|
|
(isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING))
|
|
sc->txb_cnt = 1;
|
|
else
|
|
sc->txb_cnt = 2;
|
|
|
|
sc->tx_page_start = ED_WD_PAGE_OFFSET;
|
|
sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE;
|
|
sc->rec_page_stop = sc->tx_page_start + memsize / ED_PAGE_SIZE;
|
|
sc->mem_ring = sc->mem_start + sc->rec_page_start * ED_PAGE_SIZE;
|
|
sc->mem_size = memsize;
|
|
sc->mem_end = sc->mem_start + memsize;
|
|
|
|
/* Get station address from on-board ROM. */
|
|
for (i = 0; i < ETHER_ADDR_LEN; ++i)
|
|
sc->sc_arpcom.ac_enaddr[i] =
|
|
inb(sc->asic_addr + ED_WD_PROM + i);
|
|
|
|
if (sc->mem_shared) {
|
|
/* Set address and enable interface shared memory. */
|
|
if (!sc->is790) {
|
|
#ifdef TOSH_ETHER
|
|
outb(sc->asic_addr + ED_WD_MSR + 1,
|
|
((kvtop(sc->mem_start) >> 8) & 0xe0) | 4);
|
|
outb(sc->asic_addr + ED_WD_MSR + 2,
|
|
((kvtop(sc->mem_start) >> 16) & 0x0f));
|
|
outb(sc->asic_addr + ED_WD_MSR,
|
|
ED_WD_MSR_MENB | ED_WD_MSR_POW);
|
|
#else
|
|
outb(sc->asic_addr + ED_WD_MSR,
|
|
((kvtop(sc->mem_start) >> 13) & ED_WD_MSR_ADDR) |
|
|
ED_WD_MSR_MENB);
|
|
#endif
|
|
} else {
|
|
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_MENB);
|
|
outb(sc->asic_addr + 0x04,
|
|
inb(sc->asic_addr + 0x04) | 0x80);
|
|
outb(sc->asic_addr + 0x0b,
|
|
((kvtop(sc->mem_start) >> 13) & 0x0f) |
|
|
((kvtop(sc->mem_start) >> 11) & 0x40) |
|
|
(inb(sc->asic_addr + 0x0b) & 0xb0));
|
|
outb(sc->asic_addr + 0x04,
|
|
inb(sc->asic_addr + 0x04) & ~0x80);
|
|
}
|
|
|
|
/*
|
|
* Set upper address bits and 8/16 bit access to shared memory.
|
|
*/
|
|
if (isa16bit) {
|
|
if (sc->is790) {
|
|
sc->wd_laar_proto =
|
|
inb(sc->asic_addr + ED_WD_LAAR);
|
|
outb(sc->asic_addr + ED_WD_LAAR,
|
|
ED_WD_LAAR_M16EN);
|
|
} else {
|
|
sc->wd_laar_proto =
|
|
ED_WD_LAAR_L16EN | ED_WD_LAAR_M16EN |
|
|
((kvtop(sc->mem_start) >> 19) &
|
|
ED_WD_LAAR_ADDRHI);
|
|
outb(sc->asic_addr + ED_WD_LAAR,
|
|
sc->wd_laar_proto);
|
|
}
|
|
} else {
|
|
if ((sc->type & ED_WD_SOFTCONFIG) ||
|
|
#ifdef TOSH_ETHER
|
|
(sc->type == ED_TYPE_TOSHIBA1) ||
|
|
(sc->type == ED_TYPE_TOSHIBA4) ||
|
|
#endif
|
|
(sc->type == ED_TYPE_WD8013EBT) &&
|
|
!sc->is790) {
|
|
sc->wd_laar_proto =
|
|
((kvtop(sc->mem_start) >> 19) &
|
|
ED_WD_LAAR_ADDRHI);
|
|
outb(sc->asic_addr + ED_WD_LAAR,
|
|
sc->wd_laar_proto);
|
|
}
|
|
}
|
|
|
|
/* Now zero memory and verify that it is clear. */
|
|
bzero(sc->mem_start, memsize);
|
|
|
|
for (i = 0; i < memsize; ++i)
|
|
if (sc->mem_start[i]) {
|
|
printf("%s: failed to clear shared memory at %x - check configuration\n",
|
|
sc->sc_dev.dv_xname,
|
|
kvtop(sc->mem_start + i));
|
|
|
|
/* Disable 16 bit access to shared memory. */
|
|
if (isa16bit) {
|
|
sc->wd_laar_proto &= ~ED_WD_LAAR_M16EN;
|
|
outb(sc->asic_addr + ED_WD_LAAR,
|
|
sc->wd_laar_proto);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Disable 16bit access to shared memory - we leave it disabled
|
|
* so that 1) machines reboot properly when the board is set 16
|
|
* 16 bit mode and there are conflicting 8bit devices/ROMS in
|
|
* the same 128k address space as this boards shared memory,
|
|
* and 2) so that other 8 bit devices with shared memory can be
|
|
* used in this 128k region, too.
|
|
*/
|
|
if (isa16bit) {
|
|
sc->wd_laar_proto &= ~ED_WD_LAAR_M16EN;
|
|
outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto);
|
|
}
|
|
}
|
|
|
|
return ED_WD_IO_PORTS;
|
|
}
|
|
|
|
/*
|
|
* Probe and vendor-specific initialization routine for 3Com 3c503 boards.
|
|
*/
|
|
int
|
|
ed_probe_3Com(isa_dev)
|
|
struct isa_device *isa_dev;
|
|
{
|
|
struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
|
|
int i;
|
|
u_int memsize;
|
|
u_char isa16bit, sum;
|
|
|
|
sc->asic_addr = isa_dev->id_iobase + ED_3COM_ASIC_OFFSET;
|
|
sc->nic_addr = isa_dev->id_iobase + ED_3COM_NIC_OFFSET;
|
|
sc->ed_cr_rd2 = ED_CR_RD2;
|
|
|
|
/*
|
|
* Verify that the kernel configured I/O address matches the board
|
|
* configured address.
|
|
*
|
|
* This is really only useful to see if something that looks like the
|
|
* board is there; after all, we are already talking it at that
|
|
* address.
|
|
*/
|
|
switch (inb(sc->asic_addr + ED_3COM_BCFR)) {
|
|
case ED_3COM_BCFR_300:
|
|
if (isa_dev->id_iobase != 0x300)
|
|
return 0;
|
|
break;
|
|
case ED_3COM_BCFR_310:
|
|
if (isa_dev->id_iobase != 0x310)
|
|
return 0;
|
|
break;
|
|
case ED_3COM_BCFR_330:
|
|
if (isa_dev->id_iobase != 0x330)
|
|
return 0;
|
|
break;
|
|
case ED_3COM_BCFR_350:
|
|
if (isa_dev->id_iobase != 0x350)
|
|
return 0;
|
|
break;
|
|
case ED_3COM_BCFR_250:
|
|
if (isa_dev->id_iobase != 0x250)
|
|
return 0;
|
|
break;
|
|
case ED_3COM_BCFR_280:
|
|
if (isa_dev->id_iobase != 0x280)
|
|
return 0;
|
|
break;
|
|
case ED_3COM_BCFR_2A0:
|
|
if (isa_dev->id_iobase != 0x2a0)
|
|
return 0;
|
|
break;
|
|
case ED_3COM_BCFR_2E0:
|
|
if (isa_dev->id_iobase != 0x2e0)
|
|
return 0;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Verify that the kernel shared memory address matches the board
|
|
* configured address.
|
|
*/
|
|
switch (inb(sc->asic_addr + ED_3COM_PCFR)) {
|
|
case ED_3COM_PCFR_DC000:
|
|
if (kvtop(isa_dev->id_maddr) != 0xdc000)
|
|
return 0;
|
|
break;
|
|
case ED_3COM_PCFR_D8000:
|
|
if (kvtop(isa_dev->id_maddr) != 0xd8000)
|
|
return 0;
|
|
break;
|
|
case ED_3COM_PCFR_CC000:
|
|
if (kvtop(isa_dev->id_maddr) != 0xcc000)
|
|
return 0;
|
|
break;
|
|
case ED_3COM_PCFR_C8000:
|
|
if (kvtop(isa_dev->id_maddr) != 0xc8000)
|
|
return 0;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Reset NIC and ASIC. Enable on-board transceiver throughout reset
|
|
* sequence because it'll lock up if the cable isn't connected if we
|
|
* don't.
|
|
*/
|
|
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_RST | ED_3COM_CR_XSEL);
|
|
|
|
/* Wait for a while, then un-reset it. */
|
|
delay(50);
|
|
/*
|
|
* The 3Com ASIC defaults to rather strange settings for the CR after a
|
|
* reset - it's important to set it again after the following outb
|
|
* (this is done when we map the PROM below).
|
|
*/
|
|
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
|
|
|
|
/* Wait a bit for the NIC to recover from the reset. */
|
|
delay(5000);
|
|
|
|
sc->vendor = ED_VENDOR_3COM;
|
|
sc->type_str = "3c503";
|
|
|
|
sc->mem_shared = 1;
|
|
|
|
/*
|
|
* Hmmm...a 16bit 3Com board has 16k of memory, but only an 8k window
|
|
* to it.
|
|
*/
|
|
memsize = 8192;
|
|
|
|
/*
|
|
* Get station address from on-board ROM.
|
|
*
|
|
* First, map ethernet address PROM over the top of where the NIC
|
|
* registers normally appear.
|
|
*/
|
|
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_EALO | ED_3COM_CR_XSEL);
|
|
|
|
for (i = 0; i < ETHER_ADDR_LEN; ++i)
|
|
sc->sc_arpcom.ac_enaddr[i] = inb(sc->nic_addr + i);
|
|
|
|
/*
|
|
* Unmap PROM - select NIC registers. The proper setting of the
|
|
* tranceiver is set in ed_init so that the attach code is given a
|
|
* chance to set the default based on a compile-time config option.
|
|
*/
|
|
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
|
|
|
|
/* Determine if this is an 8bit or 16bit board. */
|
|
|
|
/* Select page 0 registers. */
|
|
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STP);
|
|
|
|
/*
|
|
* Attempt to clear WTS bit. If it doesn't clear, then this is a
|
|
* 16-bit board.
|
|
*/
|
|
outb(sc->nic_addr + ED_P0_DCR, 0);
|
|
|
|
/* Select page 2 registers. */
|
|
outb(sc->nic_addr + ED_P0_CR, ED_CR_PAGE_2 | ED_CR_RD2 | ED_CR_STP);
|
|
|
|
/* The 3c503 forces the WTS bit to a one if this is a 16bit board. */
|
|
if (inb(sc->nic_addr + ED_P2_DCR) & ED_DCR_WTS)
|
|
isa16bit = 1;
|
|
else
|
|
isa16bit = 0;
|
|
|
|
/* Select page 0 registers. */
|
|
outb(sc->nic_addr + ED_P2_CR, ED_CR_RD2 | ED_CR_STP);
|
|
|
|
sc->mem_start = (caddr_t)isa_dev->id_maddr;
|
|
sc->mem_size = memsize;
|
|
sc->mem_end = sc->mem_start + memsize;
|
|
|
|
/*
|
|
* We have an entire 8k window to put the transmit buffers on the
|
|
* 16-bit boards. But since the 16bit 3c503's shared memory is only
|
|
* fast enough to overlap the loading of one full-size packet, trying
|
|
* to load more than 2 buffers can actually leave the transmitter idle
|
|
* during the load. So 2 seems the best value. (Although a mix of
|
|
* variable-sized packets might change this assumption. Nonetheless,
|
|
* we optimize for linear transfers of same-size packets.)
|
|
*/
|
|
if (isa16bit) {
|
|
if (isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING)
|
|
sc->txb_cnt = 1;
|
|
else
|
|
sc->txb_cnt = 2;
|
|
|
|
sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_16BIT;
|
|
sc->rec_page_start = ED_3COM_RX_PAGE_OFFSET_16BIT;
|
|
sc->rec_page_stop =
|
|
memsize / ED_PAGE_SIZE + ED_3COM_RX_PAGE_OFFSET_16BIT;
|
|
sc->mem_ring = sc->mem_start;
|
|
} else {
|
|
sc->txb_cnt = 1;
|
|
sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_8BIT;
|
|
sc->rec_page_start =
|
|
ED_TXBUF_SIZE + ED_3COM_TX_PAGE_OFFSET_8BIT;
|
|
sc->rec_page_stop =
|
|
memsize / ED_PAGE_SIZE + ED_3COM_TX_PAGE_OFFSET_8BIT;
|
|
sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * ED_TXBUF_SIZE);
|
|
}
|
|
|
|
sc->isa16bit = isa16bit;
|
|
|
|
/*
|
|
* Initialize GA page start/stop registers. Probably only needed if
|
|
* doing DMA, but what the Hell.
|
|
*/
|
|
outb(sc->asic_addr + ED_3COM_PSTR, sc->rec_page_start);
|
|
outb(sc->asic_addr + ED_3COM_PSPR, sc->rec_page_stop);
|
|
|
|
/* Set IRQ. 3c503 only allows a choice of irq 3-5 or 9. */
|
|
switch (isa_dev->id_irq) {
|
|
case IRQ9:
|
|
outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ2);
|
|
break;
|
|
case IRQ3:
|
|
outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ3);
|
|
break;
|
|
case IRQ4:
|
|
outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ4);
|
|
break;
|
|
case IRQ5:
|
|
outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ5);
|
|
break;
|
|
default:
|
|
printf("%s: invalid irq configuration (%d) must be 3-5 or 9 for 3c503\n",
|
|
sc->sc_dev.dv_xname, ffs(isa_dev->id_irq) - 1);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize GA configuration register. Set bank and enable shared
|
|
* mem.
|
|
*/
|
|
outb(sc->asic_addr + ED_3COM_GACFR,
|
|
ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0);
|
|
|
|
/*
|
|
* Initialize "Vector Pointer" registers. These gawd-awful things are
|
|
* compared to 20 bits of the address on ISA, and if they match, the
|
|
* shared memory is disabled. We set them to 0xffff0...allegedly the
|
|
* reset vector.
|
|
*/
|
|
outb(sc->asic_addr + ED_3COM_VPTR2, 0xff);
|
|
outb(sc->asic_addr + ED_3COM_VPTR1, 0xff);
|
|
outb(sc->asic_addr + ED_3COM_VPTR0, 0x00);
|
|
|
|
/* Zero memory and verify that it is clear. */
|
|
bzero(sc->mem_start, memsize);
|
|
|
|
for (i = 0; i < memsize; ++i)
|
|
if (sc->mem_start[i]) {
|
|
printf("%s: failed to clear shared memory at %x - check configuration\n",
|
|
sc->sc_dev.dv_xname, kvtop(sc->mem_start + i));
|
|
return 0;
|
|
}
|
|
|
|
isa_dev->id_msize = memsize;
|
|
return ED_3COM_IO_PORTS;
|
|
}
|
|
|
|
/*
|
|
* Probe and vendor-specific initialization routine for NE1000/2000 boards.
|
|
*/
|
|
int
|
|
ed_probe_Novell(isa_dev)
|
|
struct isa_device *isa_dev;
|
|
{
|
|
struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
|
|
u_int memsize, n;
|
|
u_char romdata[16], isa16bit = 0, tmp;
|
|
static u_char test_pattern[32] = "THIS is A memory TEST pattern";
|
|
u_char test_buffer[32];
|
|
|
|
sc->asic_addr = isa_dev->id_iobase + ED_NOVELL_ASIC_OFFSET;
|
|
sc->nic_addr = isa_dev->id_iobase + ED_NOVELL_NIC_OFFSET;
|
|
sc->ed_cr_rd2 = ED_CR_RD2;
|
|
|
|
/* XXX - do Novell-specific probe here */
|
|
|
|
/* Reset the board. */
|
|
tmp = inb(sc->asic_addr + ED_NOVELL_RESET);
|
|
|
|
#if 0
|
|
/*
|
|
* This total and completely screwy thing is to work around braindamage
|
|
* in some NE compatible boards. Why it works, I have *no* idea. It
|
|
* appears that the boards watch the ISA bus for an outb, and will lock
|
|
* up the ISA bus if they see an inb first. Weird.
|
|
*/
|
|
outb(0x84, 0);
|
|
#endif
|
|
|
|
/*
|
|
* I don't know if this is necessary; probably cruft leftover from
|
|
* Clarkson packet driver code. Doesn't do a thing on the boards I've
|
|
* tested. -DG [note that a outb(0x84, 0) seems to work here, and is
|
|
* non-invasive...but some boards don't seem to reset and I don't have
|
|
* complete documentation on what the 'right' thing to do is...so we do
|
|
* the invasive thing for now. Yuck.]
|
|
*/
|
|
outb(sc->asic_addr + ED_NOVELL_RESET, tmp);
|
|
delay(5000);
|
|
|
|
/*
|
|
* This is needed because some NE clones apparently don't reset the NIC
|
|
* properly (or the NIC chip doesn't reset fully on power-up)
|
|
* XXX - this makes the probe invasive! ...Done against my better
|
|
* judgement. -DLG
|
|
*/
|
|
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STP);
|
|
|
|
delay(5000);
|
|
|
|
/* Make sure that we really have an 8390 based board. */
|
|
if (!ed_probe_generic8390(sc))
|
|
return 0;
|
|
|
|
sc->vendor = ED_VENDOR_NOVELL;
|
|
sc->mem_shared = 0;
|
|
isa_dev->id_maddr = 0;
|
|
|
|
/*
|
|
* Test the ability to read and write to the NIC memory. This has the
|
|
* side affect of determining if this is an NE1000 or an NE2000.
|
|
*/
|
|
|
|
/*
|
|
* This prevents packets from being stored in the NIC memory when the
|
|
* readmem routine turns on the start bit in the CR.
|
|
*/
|
|
outb(sc->nic_addr + ED_P0_RCR, ED_RCR_MON);
|
|
|
|
/* Temporarily initialize DCR for byte operations. */
|
|
outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
|
|
|
|
outb(sc->nic_addr + ED_P0_PSTART, 8192 / ED_PAGE_SIZE);
|
|
outb(sc->nic_addr + ED_P0_PSTOP, 16384 / ED_PAGE_SIZE);
|
|
|
|
sc->isa16bit = 0;
|
|
|
|
/*
|
|
* Write a test pattern in byte mode. If this fails, then there
|
|
* probably isn't any memory at 8k - which likely means that the board
|
|
* is an NE2000.
|
|
*/
|
|
ed_pio_writemem(sc, test_pattern, 8192, sizeof(test_pattern));
|
|
ed_pio_readmem(sc, 8192, test_buffer, sizeof(test_pattern));
|
|
|
|
if (bcmp(test_pattern, test_buffer, sizeof(test_pattern))) {
|
|
/* not an NE1000 - try NE2000 */
|
|
|
|
outb(sc->nic_addr + ED_P0_DCR,
|
|
ED_DCR_WTS | ED_DCR_FT1 | ED_DCR_LS);
|
|
outb(sc->nic_addr + ED_P0_PSTART, 16384 / ED_PAGE_SIZE);
|
|
outb(sc->nic_addr + ED_P0_PSTOP, 32768 / ED_PAGE_SIZE);
|
|
|
|
sc->isa16bit = 1;
|
|
/*
|
|
* Write a test pattern in word mode. If this also fails, then
|
|
* we don't know what this board is.
|
|
*/
|
|
ed_pio_writemem(sc, test_pattern, 16384, sizeof(test_pattern));
|
|
ed_pio_readmem(sc, 16384, test_buffer, sizeof(test_pattern));
|
|
|
|
if (bcmp(test_pattern, test_buffer, sizeof(test_pattern)))
|
|
return 0; /* not an NE2000 either */
|
|
|
|
sc->type = ED_TYPE_NE2000;
|
|
sc->type_str = "NE2000";
|
|
} else {
|
|
sc->type = ED_TYPE_NE1000;
|
|
sc->type_str = "NE1000";
|
|
}
|
|
|
|
/* 8k of memory plus an additional 8k if 16-bit. */
|
|
memsize = 8192 + sc->isa16bit * 8192;
|
|
|
|
#if 0 /* probably not useful - NE boards only come two ways */
|
|
/* Allow kernel config file overrides. */
|
|
if (isa_dev->id_msize)
|
|
memsize = isa_dev->id_msize;
|
|
#endif
|
|
|
|
sc->mem_size = memsize;
|
|
|
|
/* NIC memory doesn't start at zero on an NE board. */
|
|
/* The start address is tied to the bus width. */
|
|
sc->mem_start = (caddr_t) 8192 + sc->isa16bit * 8192;
|
|
sc->mem_end = sc->mem_start + memsize;
|
|
sc->tx_page_start = memsize / ED_PAGE_SIZE;
|
|
|
|
/*
|
|
* Use one xmit buffer if < 16k, two buffers otherwise (if not told
|
|
* otherwise).
|
|
*/
|
|
if ((memsize < 16384) ||
|
|
(isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING))
|
|
sc->txb_cnt = 1;
|
|
else
|
|
sc->txb_cnt = 2;
|
|
|
|
sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE;
|
|
sc->rec_page_stop = sc->tx_page_start + memsize / ED_PAGE_SIZE;
|
|
|
|
sc->mem_ring =
|
|
sc->mem_start + sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE;
|
|
|
|
ed_pio_readmem(sc, 0, romdata, 16);
|
|
for (n = 0; n < ETHER_ADDR_LEN; n++)
|
|
sc->sc_arpcom.ac_enaddr[n] = romdata[n*(sc->isa16bit+1)];
|
|
|
|
/* Clear any pending interrupts that might have occurred above. */
|
|
outb(sc->nic_addr + ED_P0_ISR, 0xff);
|
|
|
|
return ED_NOVELL_IO_PORTS;
|
|
}
|
|
|
|
/*
|
|
* Install interface into kernel networking data structures.
|
|
*/
|
|
int
|
|
ed_attach(isa_dev)
|
|
struct isa_device *isa_dev;
|
|
{
|
|
struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
struct ifaddr *ifa;
|
|
struct sockaddr_dl *sdl;
|
|
|
|
/* Set interface to stopped condition (reset). */
|
|
ed_stop(sc);
|
|
|
|
/* Initialize ifnet structure. */
|
|
ifp->if_unit = sc->sc_dev.dv_unit;
|
|
ifp->if_name = eddriver.name;
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_output = ether_output;
|
|
ifp->if_start = ed_start;
|
|
ifp->if_ioctl = ed_ioctl;
|
|
ifp->if_watchdog = ed_watchdog;
|
|
ifp->if_flags =
|
|
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
|
|
|
|
/*
|
|
* Set default state for LINK0 flag (used to disable the tranceiver
|
|
* for AUI operation), based on compile-time config option.
|
|
*/
|
|
if (isa_dev->id_flags & ED_FLAGS_DISABLE_TRANCEIVER)
|
|
ifp->if_flags |= IFF_LINK0;
|
|
|
|
/* Attach the interface. */
|
|
if_attach(ifp);
|
|
|
|
/*
|
|
* Search down the ifa address list looking for the AF_LINK type entry
|
|
* and initialize it.
|
|
*/
|
|
ifa = ifp->if_addrlist;
|
|
while (ifa && ifa->ifa_addr) {
|
|
if (ifa->ifa_addr->sa_family == AF_LINK) {
|
|
/*
|
|
* Fill in the link-level address for this interface.
|
|
*/
|
|
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
|
|
sdl->sdl_type = IFT_ETHER;
|
|
sdl->sdl_alen = ETHER_ADDR_LEN;
|
|
sdl->sdl_slen = 0;
|
|
bcopy(sc->sc_arpcom.ac_enaddr, LLADDR(sdl),
|
|
ETHER_ADDR_LEN);
|
|
break;
|
|
} else
|
|
ifa = ifa->ifa_next;
|
|
}
|
|
|
|
/* Print additional info when attached. */
|
|
printf("%s: address %s, ", sc->sc_dev.dv_xname,
|
|
ether_sprintf(sc->sc_arpcom.ac_enaddr));
|
|
|
|
if (sc->type_str && (*sc->type_str != '\0'))
|
|
printf("type %s ", sc->type_str);
|
|
else
|
|
printf("type unknown (0x%x) ", sc->type);
|
|
|
|
printf("%s", sc->isa16bit ? "(16-bit)" : "(8-bit)");
|
|
|
|
printf("%s\n", ((sc->vendor == ED_VENDOR_3COM) &&
|
|
(ifp->if_flags & IFF_LINK0)) ? " tranceiver disabled" : "");
|
|
|
|
#if NBPFILTER > 0
|
|
bpfattach(&sc->bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
#endif
|
|
|
|
}
|
|
|
|
/*
|
|
* Reset interface.
|
|
*/
|
|
void
|
|
ed_reset(sc)
|
|
struct ed_softc *sc;
|
|
{
|
|
int s;
|
|
|
|
s = splimp();
|
|
ed_stop(sc);
|
|
ed_init(sc);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Take interface offline.
|
|
*/
|
|
void
|
|
ed_stop(sc)
|
|
struct ed_softc *sc;
|
|
{
|
|
int n = 5000;
|
|
|
|
/* Stop everything on the interface, and select page 0 registers. */
|
|
outb(sc->nic_addr + ED_P0_CR, ED_CR_STP | sc->ed_cr_rd2);
|
|
|
|
/*
|
|
* Wait for interface to enter stopped state, but limit # of checks to
|
|
* to 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's,
|
|
* but just in case it's an old one.
|
|
*/
|
|
while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RST) == 0) && --n);
|
|
}
|
|
|
|
/*
|
|
* Device timeout/watchdog routine. Entered if the device neglects to generate
|
|
* an interrupt after a transmit has been started on it.
|
|
*/
|
|
int
|
|
ed_watchdog(unit)
|
|
short unit;
|
|
{
|
|
struct ed_softc *sc = &ed_softc[unit];
|
|
|
|
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
|
|
++sc->sc_arpcom.ac_if.if_oerrors;
|
|
|
|
ed_reset(sc);
|
|
}
|
|
|
|
/*
|
|
* Initialize device.
|
|
*/
|
|
void
|
|
ed_init(sc)
|
|
struct ed_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
int i, s;
|
|
u_char command;
|
|
u_long mcaf[2];
|
|
|
|
/* Address not known. */
|
|
if (ifp->if_addrlist == 0)
|
|
return;
|
|
|
|
/*
|
|
* Initialize the NIC in the exact order outlined in the NS manual.
|
|
* This init procedure is "mandatory"...don't change what or when
|
|
* things happen.
|
|
*/
|
|
s = splimp();
|
|
|
|
/* Reset transmitter flags. */
|
|
sc->xmit_busy = 0;
|
|
sc->sc_arpcom.ac_if.if_timer = 0;
|
|
|
|
sc->txb_inuse = 0;
|
|
sc->txb_new = 0;
|
|
sc->txb_next_tx = 0;
|
|
|
|
/* This variable is used below - don't move this assignment. */
|
|
sc->next_packet = sc->rec_page_start + 1;
|
|
|
|
/* Set interface for page 0, remote DMA complete, stopped. */
|
|
outb(sc->nic_addr + ED_P0_CR, ED_CR_STP | sc->ed_cr_rd2);
|
|
|
|
if (sc->isa16bit) {
|
|
/*
|
|
* Set FIFO threshold to 8, No auto-init Remote DMA, byte
|
|
* order=80x86, word-wide DMA xfers,
|
|
*/
|
|
outb(sc->nic_addr + ED_P0_DCR,
|
|
ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS);
|
|
} else {
|
|
/* Same as above, but byte-wide DMA xfers. */
|
|
outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
|
|
}
|
|
|
|
/* Clear remote byte count registers. */
|
|
outb(sc->nic_addr + ED_P0_RBCR0, 0);
|
|
outb(sc->nic_addr + ED_P0_RBCR1, 0);
|
|
|
|
/* Tell RCR to do nothing for now. */
|
|
outb(sc->nic_addr + ED_P0_RCR, ED_RCR_MON);
|
|
|
|
/* Place NIC in internal loopback mode. */
|
|
outb(sc->nic_addr + ED_P0_TCR, ED_TCR_LB0);
|
|
|
|
/* Initialize transmit/receive (ring-buffer) page start. */
|
|
outb(sc->nic_addr + ED_P0_TPSR, sc->tx_page_start);
|
|
outb(sc->nic_addr + ED_P0_PSTART, sc->rec_page_start);
|
|
|
|
/* Set lower bits of byte addressable framing to 0. */
|
|
if (sc->is790)
|
|
outb(sc->nic_addr + 0x09, 0);
|
|
|
|
/* Initialize receiver (ring-buffer) page stop and boundary. */
|
|
outb(sc->nic_addr + ED_P0_PSTOP, sc->rec_page_stop);
|
|
outb(sc->nic_addr + ED_P0_BNRY, sc->rec_page_start);
|
|
|
|
/*
|
|
* Clear all interrupts. A '1' in each bit position clears the
|
|
* corresponding flag.
|
|
*/
|
|
outb(sc->nic_addr + ED_P0_ISR, 0xff);
|
|
|
|
/*
|
|
* Enable the following interrupts: receive/transmit complete,
|
|
* receive/transmit error, and Receiver OverWrite.
|
|
*
|
|
* Counter overflow and Remote DMA complete are *not* enabled.
|
|
*/
|
|
outb(sc->nic_addr + ED_P0_IMR,
|
|
ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE |
|
|
ED_IMR_OVWE);
|
|
|
|
/* Program command register for page 1. */
|
|
outb(sc->nic_addr + ED_P0_CR,
|
|
ED_CR_PAGE_1 | ED_CR_STP | sc->ed_cr_rd2);
|
|
|
|
/* Copy out our station address. */
|
|
for (i = 0; i < ETHER_ADDR_LEN; ++i)
|
|
outb(sc->nic_addr + ED_P1_PAR0 + i, sc->sc_arpcom.ac_enaddr[i]);
|
|
|
|
/* Set multicast filter on chip. */
|
|
ed_getmcaf(&sc->sc_arpcom, mcaf);
|
|
for (i = 0; i < 8; i++)
|
|
outb(sc->nic_addr + ED_P1_MAR0 + i, ((u_char *)mcaf)[i]);
|
|
|
|
/* Set current page pointer to next_packet (initialized above). */
|
|
outb(sc->nic_addr + ED_P1_CURR, sc->next_packet);
|
|
|
|
/*
|
|
* Set command register for page 0, remote DMA complete, and interface
|
|
* start.
|
|
*/
|
|
outb(sc->nic_addr + ED_P1_CR, ED_CR_STA | sc->ed_cr_rd2);
|
|
|
|
/* Clear all interrupts. */
|
|
outb(sc->nic_addr + ED_P0_ISR, 0xff);
|
|
|
|
/* Take interface out of loopback. */
|
|
outb(sc->nic_addr + ED_P0_TCR, 0);
|
|
|
|
/*
|
|
* If this is a 3Com board, the tranceiver must be software enabled
|
|
* (there is no settable hardware default).
|
|
*/
|
|
if (sc->vendor == ED_VENDOR_3COM) {
|
|
if (ifp->if_flags & IFF_LINK0)
|
|
outb(sc->asic_addr + ED_3COM_CR, 0);
|
|
else
|
|
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
|
|
}
|
|
|
|
i = ED_RCR_AB | ED_RCR_AM;
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
/*
|
|
* Set promiscuous mode. Multicast filter was set earlier so
|
|
* that we should receive all multicast packets.
|
|
*/
|
|
i |= ED_RCR_PRO;
|
|
}
|
|
outb(sc->nic_addr + ED_P0_RCR, i);
|
|
|
|
/* Set 'running' flag, and clear output active flag. */
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/* ...and attempt to start output. */
|
|
ed_start(ifp);
|
|
|
|
(void) splx(s);
|
|
}
|
|
|
|
/*
|
|
* This routine actually starts the transmission on the interface.
|
|
*/
|
|
static inline void
|
|
ed_xmit(sc)
|
|
struct ed_softc *sc;
|
|
{
|
|
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
|
|
u_short len;
|
|
|
|
len = sc->txb_len[sc->txb_next_tx];
|
|
|
|
/* Set NIC for page 0 register access. */
|
|
outb(sc->nic_addr + ED_P0_CR, ED_CR_STA | sc->ed_cr_rd2);
|
|
|
|
/* Set TX buffer start page. */
|
|
outb(sc->nic_addr + ED_P0_TPSR, sc->tx_page_start +
|
|
sc->txb_next_tx * ED_TXBUF_SIZE);
|
|
|
|
/* Set TX length. */
|
|
outb(sc->nic_addr + ED_P0_TBCR0, len);
|
|
outb(sc->nic_addr + ED_P0_TBCR1, len >> 8);
|
|
|
|
/* Set page 0, remote DMA complete, transmit packet, and *start*. */
|
|
outb(sc->nic_addr + ED_P0_CR, ED_CR_TXP | ED_CR_STA | sc->ed_cr_rd2);
|
|
|
|
sc->xmit_busy = 1;
|
|
|
|
/* Point to next transmit buffer slot and wrap if necessary. */
|
|
sc->txb_next_tx++;
|
|
if (sc->txb_next_tx == sc->txb_cnt)
|
|
sc->txb_next_tx = 0;
|
|
|
|
/* Set a timer just in case we never hear from the board again. */
|
|
ifp->if_timer = 2;
|
|
}
|
|
|
|
/*
|
|
* Start output on interface.
|
|
* We make two assumptions here:
|
|
* 1) that the current priority is set to splimp _before_ this code
|
|
* is called *and* is returned to the appropriate priority after
|
|
* return
|
|
* 2) that the IFF_OACTIVE flag is checked before this code is called
|
|
* (i.e. that the output part of the interface is idle)
|
|
*/
|
|
int
|
|
ed_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct ed_softc *sc = &ed_softc[ifp->if_unit];
|
|
struct mbuf *m0, *m;
|
|
caddr_t buffer;
|
|
int len;
|
|
|
|
outloop:
|
|
/*
|
|
* First, see if there are buffered packets and an idle transmitter -
|
|
* should never happen at this point.
|
|
*/
|
|
if (sc->txb_inuse && (sc->xmit_busy == 0)) {
|
|
printf("%s: packets buffers, but transmitter idle\n",
|
|
sc->sc_dev.dv_xname);
|
|
ed_xmit(sc);
|
|
}
|
|
|
|
/* See if there is room to put another packet in the buffer. */
|
|
if (sc->txb_inuse == sc->txb_cnt) {
|
|
/* No room. Indicate this to the outside world and exit. */
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
return;
|
|
}
|
|
|
|
IF_DEQUEUE(&sc->sc_arpcom.ac_if.if_snd, m);
|
|
if (m == 0) {
|
|
/*
|
|
* We are using the !OACTIVE flag to indicate to the outside
|
|
* world that we can accept an additional packet rather than
|
|
* that the transmitter is _actually_ active. Indeed, the
|
|
* transmitter may be active, but if we haven't filled all
|
|
* the buffers with data then we still want to accept more.
|
|
*/
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
return;
|
|
}
|
|
|
|
/* Copy the mbuf chain into the transmit buffer. */
|
|
m0 = m;
|
|
|
|
/* txb_new points to next open buffer slot. */
|
|
buffer = sc->mem_start + (sc->txb_new * ED_TXBUF_SIZE * ED_PAGE_SIZE);
|
|
|
|
if (sc->mem_shared) {
|
|
/* Special case setup for 16 bit boards... */
|
|
if (sc->isa16bit) {
|
|
switch (sc->vendor) {
|
|
/*
|
|
* For 16bit 3Com boards (which have 16k of memory), we
|
|
* have the xmit buffers in a different page of memory
|
|
* ('page 0') - so change pages.
|
|
*/
|
|
case ED_VENDOR_3COM:
|
|
outb(sc->asic_addr + ED_3COM_GACFR,
|
|
ED_3COM_GACFR_RSEL);
|
|
break;
|
|
/*
|
|
* Enable 16bit access to shared memory on WD/SMC
|
|
* boards don't update wd_laar_proto because we want to
|
|
* restore the previous state (because an arp reply in
|
|
* the input code may cause a call-back to ed_start).
|
|
* XXX - the call-back to 'start' is a bug, IMHO.
|
|
*/
|
|
case ED_VENDOR_WD_SMC:
|
|
outb(sc->asic_addr + ED_WD_LAAR,
|
|
(sc->wd_laar_proto | ED_WD_LAAR_M16EN));
|
|
}
|
|
}
|
|
|
|
for (len = 0; m; m = m->m_next) {
|
|
bcopy(mtod(m, caddr_t), buffer, m->m_len);
|
|
buffer += m->m_len;
|
|
len += m->m_len;
|
|
}
|
|
|
|
/* Restore previous shared memory access. */
|
|
if (sc->isa16bit) {
|
|
switch (sc->vendor) {
|
|
case ED_VENDOR_3COM:
|
|
outb(sc->asic_addr + ED_3COM_GACFR,
|
|
ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0);
|
|
break;
|
|
case ED_VENDOR_WD_SMC:
|
|
outb(sc->asic_addr + ED_WD_LAAR,
|
|
sc->wd_laar_proto);
|
|
break;
|
|
}
|
|
}
|
|
} else
|
|
len = ed_pio_write_mbufs(sc, m, (u_short)buffer);
|
|
|
|
sc->txb_len[sc->txb_new] = MAX(len, ETHER_MIN_LEN);
|
|
|
|
sc->txb_inuse++;
|
|
|
|
/* Point to next buffer slot and wrap if necessary. */
|
|
if (++sc->txb_new == sc->txb_cnt)
|
|
sc->txb_new = 0;
|
|
|
|
if (sc->xmit_busy == 0)
|
|
ed_xmit(sc);
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* If there is BPF support in the configuration, tap off here.
|
|
* The following has support for converting trailer packets back to
|
|
* normal.
|
|
* XXX - Support for trailer packets in BPF should be moved into the
|
|
* bpf code proper to avoid code duplication in all of the drivers.
|
|
*/
|
|
if (sc->bpf) {
|
|
u_short etype;
|
|
int off, datasize, resid;
|
|
struct ether_header *eh;
|
|
struct trailer_header trailer_header;
|
|
u_char ether_packet[ETHER_MAX_LEN], *ep;
|
|
|
|
ep = ether_packet;
|
|
|
|
/*
|
|
* We handle trailers below:
|
|
* Copy ether header first, then residual data, then data. Put
|
|
* all this in a temporary buffer 'ether_packet' and send off
|
|
* to bpf. Since the system has generated this packet, we
|
|
* assume that all of the offsets in the packet are correct; if
|
|
* they're not, the system will almost certainly crash in
|
|
* m_copydata. We make no assumptions about how the data is
|
|
* arranged in the mbuf chain (i.e. how much data is in each
|
|
* mbuf, if mbuf clusters are used, etc.), which is why we use
|
|
* m_copydata to get the ether header rather than assume that
|
|
* this is located in the first mbuf.
|
|
*/
|
|
/* copy ether header */
|
|
m_copydata(m0, 0, sizeof(struct ether_header), ep);
|
|
eh = (struct ether_header *) ep;
|
|
ep += sizeof(struct ether_header);
|
|
etype = ntohs(eh->ether_type);
|
|
if (etype >= ETHERTYPE_TRAIL &&
|
|
etype < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
|
|
datasize = (etype - ETHERTYPE_TRAIL) << 9;
|
|
off = datasize + sizeof(struct ether_header);
|
|
|
|
/* copy trailer_header into a data structure */
|
|
m_copydata(m0, off, sizeof(struct trailer_header),
|
|
&trailer_header.ether_type);
|
|
|
|
/* copy residual data */
|
|
m_copydata(m0, off+sizeof(struct trailer_header),
|
|
resid = ntohs(trailer_header.ether_residual) -
|
|
sizeof(struct trailer_header), ep);
|
|
ep += resid;
|
|
|
|
/* copy data */
|
|
m_copydata(m0, sizeof(struct ether_header), datasize,
|
|
ep);
|
|
ep += datasize;
|
|
|
|
/* restore original ether packet type */
|
|
eh->ether_type = trailer_header.ether_type;
|
|
|
|
bpf_tap(sc->bpf, ether_packet, ep - ether_packet);
|
|
} else
|
|
bpf_mtap(sc->bpf, m0);
|
|
}
|
|
#endif
|
|
|
|
m_freem(m0);
|
|
|
|
/* Loop back to the top to possibly buffer more packets. */
|
|
goto outloop;
|
|
}
|
|
|
|
/*
|
|
* Ethernet interface receiver interrupt.
|
|
*/
|
|
static inline void
|
|
ed_rint(sc)
|
|
struct ed_softc *sc;
|
|
{
|
|
u_char boundary, current;
|
|
u_short len;
|
|
struct ed_ring packet_hdr;
|
|
caddr_t packet_ptr;
|
|
|
|
/* Set NIC to page 1 registers to get 'current' pointer. */
|
|
outb(sc->nic_addr + ED_P0_CR,
|
|
ED_CR_PAGE_1 | ED_CR_STA | sc->ed_cr_rd2);
|
|
|
|
/*
|
|
* 'sc->next_packet' is the logical beginning of the ring-buffer - i.e.
|
|
* it points to where new data has been buffered. The 'CURR' (current)
|
|
* register points to the logical end of the ring-buffer - i.e. it
|
|
* points to where additional new data will be added. We loop here
|
|
* until the logical beginning equals the logical end (or in other
|
|
* words, until the ring-buffer is empty).
|
|
*/
|
|
while (sc->next_packet != inb(sc->nic_addr + ED_P1_CURR)) {
|
|
|
|
/* Get pointer to this buffer's header structure. */
|
|
packet_ptr = sc->mem_ring +
|
|
(sc->next_packet - sc->rec_page_start) * ED_PAGE_SIZE;
|
|
|
|
/*
|
|
* The byte count includes the FCS - Frame Check Sequence (a
|
|
* 32 bit CRC).
|
|
*/
|
|
if (sc->mem_shared)
|
|
packet_hdr = *(struct ed_ring *)packet_ptr;
|
|
else
|
|
ed_pio_readmem(sc, (u_short)packet_ptr,
|
|
(caddr_t) &packet_hdr, sizeof(packet_hdr));
|
|
len = packet_hdr.count;
|
|
if ((len >= ETHER_MIN_LEN) && (len <= ETHER_MAX_LEN)) {
|
|
/* Go get packet. len - 4 removes CRC from length. */
|
|
ed_get_packet(sc, packet_ptr + 4, len - 4);
|
|
++sc->sc_arpcom.ac_if.if_ipackets;
|
|
} else {
|
|
/*
|
|
* Really BAD...probably indicates that the ring
|
|
* pointers are corrupted. Also seen on early rev
|
|
* chips under high load - the byte order of the length
|
|
* gets switched.
|
|
*/
|
|
log(LOG_ERR,
|
|
"%s: NIC memory corrupt - invalid packet length %d\n",
|
|
sc->sc_dev.dv_xname, len);
|
|
++sc->sc_arpcom.ac_if.if_ierrors;
|
|
ed_reset(sc);
|
|
return;
|
|
}
|
|
|
|
/* Update next packet pointer. */
|
|
sc->next_packet = packet_hdr.next_packet;
|
|
|
|
/*
|
|
* Update NIC boundary pointer - being careful to keep it one
|
|
* buffer behind (as recommended by NS databook).
|
|
*/
|
|
boundary = sc->next_packet - 1;
|
|
if (boundary < sc->rec_page_start)
|
|
boundary = sc->rec_page_stop - 1;
|
|
|
|
/* Set NIC to page 0 registers to update boundary register. */
|
|
outb(sc->nic_addr + ED_P0_CR, ED_CR_STA | sc->ed_cr_rd2);
|
|
outb(sc->nic_addr + ED_P0_BNRY, boundary);
|
|
|
|
/*
|
|
* Set NIC to page 1 registers before looping to top (prepare
|
|
* to get 'CURR' current pointer).
|
|
*/
|
|
outb(sc->nic_addr + ED_P0_CR,
|
|
ED_CR_PAGE_1 | ED_CR_STA | sc->ed_cr_rd2);
|
|
}
|
|
}
|
|
|
|
/* Ethernet interface interrupt processor. */
|
|
int
|
|
edintr(unit)
|
|
int unit;
|
|
{
|
|
struct ed_softc *sc = &ed_softc[unit];
|
|
u_char isr;
|
|
|
|
/* Set NIC to page 0 registers. */
|
|
outb(sc->nic_addr + ED_P0_CR, ED_CR_STA | sc->ed_cr_rd2);
|
|
|
|
/* Loop until there are no more new interrupts. */
|
|
while (isr = inb(sc->nic_addr + ED_P0_ISR)) {
|
|
/*
|
|
* Reset all the bits that we are 'acknowledging' by writing a
|
|
* '1' to each bit position that was set.
|
|
* (Writing a '1' *clears* the bit.)
|
|
*/
|
|
outb(sc->nic_addr + ED_P0_ISR, isr);
|
|
|
|
/*
|
|
* Handle transmitter interrupts. Handle these first because
|
|
* the receiver will reset the board under some conditions.
|
|
*/
|
|
if (isr & (ED_ISR_PTX | ED_ISR_TXE)) {
|
|
u_char collisions =
|
|
inb(sc->nic_addr + ED_P0_NCR) & 0x0f;
|
|
|
|
/*
|
|
* Check for transmit error. If a TX completed with an
|
|
* error, we end up throwing the packet away. Really
|
|
* the only error that is possible is excessive
|
|
* collisions, and in this case it is best to allow the
|
|
* automatic mechanisms of TCP to backoff the flow. Of
|
|
* course, with UDP we're screwed, but this is expected
|
|
* when a network is heavily loaded.
|
|
*/
|
|
(void) inb(sc->nic_addr + ED_P0_TSR);
|
|
if (isr & ED_ISR_TXE) {
|
|
/*
|
|
* Excessive collisions (16).
|
|
*/
|
|
if ((inb(sc->nic_addr + ED_P0_TSR) & ED_TSR_ABT)
|
|
&& (collisions == 0)) {
|
|
/*
|
|
* When collisions total 16, the P0_NCR
|
|
* will indicate 0, and the TSR_ABT is
|
|
* set.
|
|
*/
|
|
collisions = 16;
|
|
}
|
|
|
|
/* Update output errors counter. */
|
|
++sc->sc_arpcom.ac_if.if_oerrors;
|
|
} else {
|
|
/*
|
|
* Update total number of successfully
|
|
* transmitted packets.
|
|
*/
|
|
++sc->sc_arpcom.ac_if.if_opackets;
|
|
}
|
|
|
|
/* Reset TX busy and output active flags. */
|
|
sc->xmit_busy = 0;
|
|
sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
|
|
|
|
/* Clear watchdog timer. */
|
|
sc->sc_arpcom.ac_if.if_timer = 0;
|
|
|
|
/*
|
|
* Add in total number of collisions on last
|
|
* transmission.
|
|
*/
|
|
sc->sc_arpcom.ac_if.if_collisions += collisions;
|
|
|
|
/*
|
|
* Decrement buffer in-use count if not zero (can only
|
|
* be zero if a transmitter interrupt occured while not
|
|
* actually transmitting).
|
|
* If data is ready to transmit, start it transmitting,
|
|
* otherwise defer until after handling receiver.
|
|
*/
|
|
if (sc->txb_inuse && --sc->txb_inuse)
|
|
ed_xmit(sc);
|
|
}
|
|
|
|
/* Handle receiver interrupts. */
|
|
if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) {
|
|
/*
|
|
* Overwrite warning. In order to make sure that a
|
|
* lockup of the local DMA hasn't occurred, we reset
|
|
* and re-init the NIC. The NSC manual suggests only a
|
|
* partial reset/re-init is necessary - but some chips
|
|
* seem to want more. The DMA lockup has been seen
|
|
* only with early rev chips - Methinks this bug was
|
|
* fixed in later revs. -DG
|
|
*/
|
|
if (isr & ED_ISR_OVW) {
|
|
++sc->sc_arpcom.ac_if.if_ierrors;
|
|
#ifdef DIAGNOSTIC
|
|
log(LOG_WARNING,
|
|
"%s: warning - receiver ring buffer overrun\n",
|
|
sc->sc_dev.dv_xname);
|
|
#endif
|
|
/* Stop/reset/re-init NIC. */
|
|
ed_reset(sc);
|
|
} else {
|
|
/*
|
|
* Receiver Error. One or more of: CRC error,
|
|
* frame alignment error FIFO overrun, or
|
|
* missed packet.
|
|
*/
|
|
if (isr & ED_ISR_RXE) {
|
|
++sc->sc_arpcom.ac_if.if_ierrors;
|
|
#ifdef ED_DEBUG
|
|
printf("%s: receive error %x\n",
|
|
sc->sc_dev.dv_xname,
|
|
inb(sc->nic_addr + ED_P0_RSR));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Go get the packet(s).
|
|
* XXX - Doing this on an error is dubious
|
|
* because there shouldn't be any data to get
|
|
* (we've configured the interface to not
|
|
* accept packets with errors).
|
|
*/
|
|
|
|
/*
|
|
* Enable 16bit access to shared memory first
|
|
* on WD/SMC boards.
|
|
*/
|
|
if (sc->isa16bit &&
|
|
sc->vendor == ED_VENDOR_WD_SMC) {
|
|
sc->wd_laar_proto |= ED_WD_LAAR_M16EN;
|
|
outb(sc->asic_addr + ED_WD_LAAR,
|
|
sc->wd_laar_proto);
|
|
}
|
|
|
|
ed_rint(sc);
|
|
|
|
/* Disable 16-bit access. */
|
|
if (sc->isa16bit &&
|
|
sc->vendor == ED_VENDOR_WD_SMC) {
|
|
sc->wd_laar_proto &= ~ED_WD_LAAR_M16EN;
|
|
outb(sc->asic_addr + ED_WD_LAAR,
|
|
sc->wd_laar_proto);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If it looks like the transmitter can take more data, attempt
|
|
* to start output on the interface. This is done after
|
|
* handling the receiver to give the receiver priority.
|
|
*/
|
|
if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
|
|
ed_start(&sc->sc_arpcom.ac_if);
|
|
|
|
/*
|
|
* Return NIC CR to standard state: page 0, remote DMA
|
|
* complete, start (toggling the TXP bit off, even if was just
|
|
* set in the transmit routine, is *okay* - it is 'edge'
|
|
* triggered from low to high).
|
|
*/
|
|
outb(sc->nic_addr + ED_P0_CR, ED_CR_STA | sc->ed_cr_rd2);
|
|
|
|
/*
|
|
* If the Network Talley Counters overflow, read them to reset
|
|
* them. It appears that old 8390's won't clear the ISR flag
|
|
* otherwise - resulting in an infinite loop.
|
|
*/
|
|
if (isr & ED_ISR_CNT) {
|
|
(void) inb(sc->nic_addr + ED_P0_CNTR0);
|
|
(void) inb(sc->nic_addr + ED_P0_CNTR1);
|
|
(void) inb(sc->nic_addr + ED_P0_CNTR2);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process an ioctl request. This code needs some work - it looks pretty ugly.
|
|
*/
|
|
int
|
|
ed_ioctl(ifp, command, data)
|
|
register struct ifnet *ifp;
|
|
int command;
|
|
caddr_t data;
|
|
{
|
|
struct ed_softc *sc = &ed_softc[ifp->if_unit];
|
|
register struct ifaddr *ifa = (struct ifaddr *)data;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int s, error = 0;
|
|
|
|
s = splimp();
|
|
|
|
switch (command) {
|
|
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
ed_init(sc); /* before arpwhohas */
|
|
/*
|
|
* See if another station has *our* IP address.
|
|
* i.e.: There is an address conflict! If a
|
|
* conflict exists, a message is sent to the
|
|
* console.
|
|
*/
|
|
sc->sc_arpcom.ac_ipaddr = IA_SIN(ifa)->sin_addr;
|
|
arpwhohas(&sc->sc_arpcom, &IA_SIN(ifa)->sin_addr);
|
|
break;
|
|
#endif
|
|
#ifdef NS
|
|
/* XXX - This code is probably wrong. */
|
|
case AF_NS:
|
|
{
|
|
register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
|
|
|
|
if (ns_nullhost(*ina))
|
|
ina->x_host =
|
|
*(union ns_host *)(sc->sc_arpcom.ac_enaddr);
|
|
else {
|
|
/*
|
|
*
|
|
*/
|
|
bcopy(ina->x_host.c_host,
|
|
sc->sc_arpcom.ac_enaddr,
|
|
sizeof(sc->sc_arpcom.ac_enaddr));
|
|
}
|
|
/* Set new address. */
|
|
ed_init(sc);
|
|
break;
|
|
}
|
|
#endif
|
|
default:
|
|
ed_init(sc);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
if ((ifp->if_flags & IFF_UP) == 0 &&
|
|
(ifp->if_flags & IFF_RUNNING) != 0) {
|
|
/*
|
|
* If interface is marked down and it is running, then
|
|
* stop it.
|
|
*/
|
|
ed_stop(sc);
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
} else if ((ifp->if_flags & IFF_UP) != 0 &&
|
|
(ifp->if_flags & IFF_RUNNING) == 0) {
|
|
/*
|
|
* If interface is marked up and it is stopped, then
|
|
* start it.
|
|
*/
|
|
ed_init(sc);
|
|
} else {
|
|
/*
|
|
* Reset the interface to pick up changes in any other
|
|
* flags that affect hardware registers.
|
|
*/
|
|
ed_stop(sc);
|
|
ed_init(sc);
|
|
}
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
/* Update our multicast list. */
|
|
error = (command == SIOCADDMULTI) ?
|
|
ether_addmulti(ifr, &sc->sc_arpcom) :
|
|
ether_delmulti(ifr, &sc->sc_arpcom);
|
|
|
|
if (error == ENETRESET) {
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
ed_stop(sc); /* XXX for ds_setmcaf? */
|
|
ed_init(sc);
|
|
error = 0;
|
|
}
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
}
|
|
(void) splx(s);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Macro to calculate a new address within shared memory when given an offset
|
|
* from an address, taking into account ring-wrap.
|
|
*/
|
|
#define ringoffset(sc, start, off, type) \
|
|
((type)( ((caddr_t)(start)+(off) >= (sc)->mem_end) ? \
|
|
(((caddr_t)(start)+(off))) - (sc)->mem_end \
|
|
+ (sc)->mem_ring: \
|
|
((caddr_t)(start)+(off)) ))
|
|
|
|
/*
|
|
* Retreive packet from shared memory and send to the next level up via
|
|
* ether_input(). If there is a BPF listener, give a copy to BPF, too.
|
|
*/
|
|
void
|
|
ed_get_packet(sc, buf, len)
|
|
struct ed_softc *sc;
|
|
caddr_t buf;
|
|
u_short len;
|
|
{
|
|
struct ether_header *eh;
|
|
struct mbuf *m, *head = 0, *ed_ring_to_mbuf();
|
|
u_short off;
|
|
int resid;
|
|
u_short etype;
|
|
struct trailer_header trailer_header;
|
|
|
|
/* Allocate a header mbuf. */
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0)
|
|
goto bad;
|
|
m->m_pkthdr.rcvif = &sc->sc_arpcom.ac_if;
|
|
m->m_pkthdr.len = len;
|
|
m->m_len = 0;
|
|
head = m;
|
|
|
|
/* The following sillines is to make NFS happy. */
|
|
#define EROUND ((sizeof(struct ether_header) + 3) & ~3)
|
|
#define EOFF (EROUND - sizeof(struct ether_header))
|
|
|
|
/*
|
|
* The following assumes there is room for the ether header in the
|
|
* header mbuf.
|
|
*/
|
|
head->m_data += EOFF;
|
|
eh = mtod(head, struct ether_header *);
|
|
|
|
if (sc->mem_shared)
|
|
bcopy(buf, mtod(head, caddr_t), sizeof(struct ether_header));
|
|
else
|
|
ed_pio_readmem(sc, (u_short)buf, mtod(head, caddr_t),
|
|
sizeof(struct ether_header));
|
|
buf += sizeof(struct ether_header);
|
|
head->m_len += sizeof(struct ether_header);
|
|
len -= sizeof(struct ether_header);
|
|
|
|
etype = ntohs(eh->ether_type);
|
|
|
|
/*
|
|
* Deal with trailer protocol:
|
|
* If trailer protocol, calculate the datasize as 'off', which is also
|
|
* the offset to the trailer header. Set resid to the amount of packet
|
|
* data following the trailer header. Finally, copy residual data into
|
|
* mbuf chain.
|
|
*/
|
|
if (etype >= ETHERTYPE_TRAIL &&
|
|
etype < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
|
|
off = (etype - ETHERTYPE_TRAIL) << 9;
|
|
if ((off + sizeof(struct trailer_header)) > len)
|
|
goto bad; /* insanity */
|
|
|
|
/*
|
|
* If we have shared memory, we can get info directly from the
|
|
* stored packet, otherwise we must get a local copy of the
|
|
* trailer header using PIO.
|
|
*/
|
|
if (sc->mem_shared) {
|
|
eh->ether_type = *ringoffset(sc, buf, off, u_short *);
|
|
resid = ntohs(*ringoffset(sc, buf, off+2, u_short *));
|
|
} else {
|
|
struct trailer_header trailer_header;
|
|
ed_pio_readmem(sc,
|
|
(u_short)ringoffset(sc, buf, off, caddr_t),
|
|
(caddr_t) &trailer_header, sizeof(trailer_header));
|
|
eh->ether_type = trailer_header.ether_type;
|
|
resid = trailer_header.ether_residual;
|
|
}
|
|
|
|
if ((off + resid) > len)
|
|
goto bad; /* insanity */
|
|
|
|
resid -= sizeof(struct trailer_header);
|
|
if (resid < 0)
|
|
goto bad; /* insanity */
|
|
|
|
m = ed_ring_to_mbuf(sc, ringoffset(sc, buf, off+4, caddr_t),
|
|
head, resid);
|
|
if (m == 0)
|
|
goto bad;
|
|
|
|
len = off;
|
|
head->m_pkthdr.len -= 4; /* subtract trailer header */
|
|
}
|
|
|
|
/*
|
|
* Pull packet off interface. Or if this was a trailer packet, the
|
|
* data portion is appended.
|
|
*/
|
|
m = ed_ring_to_mbuf(sc, buf, m, len);
|
|
if (m == 0) goto bad;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Check if there's a BPF listener on this interface. If so, hand off
|
|
* the raw packet to bpf.
|
|
*/
|
|
if (sc->bpf) {
|
|
bpf_mtap(sc->bpf, head);
|
|
|
|
/*
|
|
* Note that the interface cannot be in promiscuous mode if
|
|
* there are no BPF listeners. And if we are in promiscuous
|
|
* mode, we have to check if this packet is really ours.
|
|
*/
|
|
if ((sc->sc_arpcom.ac_if.if_flags & IFF_PROMISC) &&
|
|
(eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
|
|
bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
|
|
sizeof(eh->ether_dhost)) != 0) {
|
|
m_freem(head);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Fix up data start offset in mbuf to point past ether header. */
|
|
m_adj(head, sizeof(struct ether_header));
|
|
ether_input(&sc->sc_arpcom.ac_if, eh, head);
|
|
return;
|
|
|
|
bad: if (head)
|
|
m_freem(head);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Supporting routines.
|
|
*/
|
|
|
|
/*
|
|
* Given a NIC memory source address and a host memory destination address,
|
|
* copy 'amount' from NIC to host using Programmed I/O. The 'amount' is
|
|
* rounded up to a word - okay as long as mbufs are word sized.
|
|
* This routine is currently Novell-specific.
|
|
*/
|
|
void
|
|
ed_pio_readmem(sc, src, dst, amount)
|
|
struct ed_softc *sc;
|
|
u_short src;
|
|
caddr_t dst;
|
|
u_short amount;
|
|
{
|
|
u_short tmp_amount;
|
|
|
|
/* Select page 0 registers. */
|
|
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
|
|
|
|
/* Round up to a word. */
|
|
tmp_amount = amount;
|
|
if (amount & 1)
|
|
++amount;
|
|
|
|
/* Set up DMA byte count. */
|
|
outb(sc->nic_addr + ED_P0_RBCR0, amount);
|
|
outb(sc->nic_addr + ED_P0_RBCR1, amount>>8);
|
|
|
|
/* Set up source address in NIC mem. */
|
|
outb(sc->nic_addr + ED_P0_RSAR0, src);
|
|
outb(sc->nic_addr + ED_P0_RSAR1, src>>8);
|
|
|
|
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD0 | ED_CR_STA);
|
|
|
|
if (sc->isa16bit)
|
|
insw(sc->asic_addr + ED_NOVELL_DATA, dst, amount/2);
|
|
else
|
|
insb(sc->asic_addr + ED_NOVELL_DATA, dst, amount);
|
|
|
|
}
|
|
|
|
/*
|
|
* Stripped down routine for writing a linear buffer to NIC memory. Only used
|
|
* in the probe routine to test the memory. 'len' must be even.
|
|
*/
|
|
void
|
|
ed_pio_writemem(sc, src, dst, len)
|
|
struct ed_softc *sc;
|
|
caddr_t src;
|
|
u_short dst;
|
|
u_short len;
|
|
{
|
|
int maxwait = 100; /* about 120us */
|
|
|
|
/* Select page 0 registers. */
|
|
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
|
|
|
|
/* Reset remote DMA complete flag. */
|
|
outb(sc->nic_addr + ED_P0_ISR, ED_ISR_RDC);
|
|
|
|
/* Set up DMA byte count. */
|
|
outb(sc->nic_addr + ED_P0_RBCR0, len);
|
|
outb(sc->nic_addr + ED_P0_RBCR1, len>>8);
|
|
|
|
/* Set up destination address in NIC mem. */
|
|
outb(sc->nic_addr + ED_P0_RSAR0, dst);
|
|
outb(sc->nic_addr + ED_P0_RSAR1, dst>>8);
|
|
|
|
/* Set remote DMA write. */
|
|
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD1 | ED_CR_STA);
|
|
|
|
if (sc->isa16bit)
|
|
outsw(sc->asic_addr + ED_NOVELL_DATA, src, len/2);
|
|
else
|
|
outsb(sc->asic_addr + ED_NOVELL_DATA, src, len);
|
|
|
|
/*
|
|
* Wait for remote DMA complete. This is necessary because on the
|
|
* transmit side, data is handled internally by the NIC in bursts and
|
|
* we can't start another remote DMA until this one completes. Not
|
|
* waiting causes really bad things to happen - like the NIC
|
|
* irrecoverably jamming the ISA bus.
|
|
*/
|
|
while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait);
|
|
}
|
|
|
|
/*
|
|
* Write an mbuf chain to the destination NIC memory address using programmed
|
|
* I/O.
|
|
*/
|
|
u_short
|
|
ed_pio_write_mbufs(sc, m, dst)
|
|
struct ed_softc *sc;
|
|
struct mbuf *m;
|
|
u_short dst;
|
|
{
|
|
u_short len, mb_offset;
|
|
struct mbuf *mp;
|
|
u_char residual[2];
|
|
int maxwait = 100; /* about 120us */
|
|
|
|
/* First, count up the total number of bytes to copy. */
|
|
for (len = 0, mp = m; mp; mp = mp->m_next)
|
|
len += mp->m_len;
|
|
|
|
/* Select page 0 registers. */
|
|
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
|
|
|
|
/* Reset remote DMA complete flag. */
|
|
outb(sc->nic_addr + ED_P0_ISR, ED_ISR_RDC);
|
|
|
|
/* Set up DMA byte count. */
|
|
outb(sc->nic_addr + ED_P0_RBCR0, len);
|
|
outb(sc->nic_addr + ED_P0_RBCR1, len>>8);
|
|
|
|
/* Set up destination address in NIC mem. */
|
|
outb(sc->nic_addr + ED_P0_RSAR0, dst);
|
|
outb(sc->nic_addr + ED_P0_RSAR1, dst>>8);
|
|
|
|
/* Set remote DMA write. */
|
|
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD1 | ED_CR_STA);
|
|
|
|
mb_offset = 0;
|
|
/*
|
|
* Transfer the mbuf chain to the NIC memory.
|
|
* The following code isn't too pretty. The problem is that we can
|
|
* only transfer words to the board, and if an mbuf has an odd number
|
|
* of bytes in it, this is a problem. It's not a simple matter of just
|
|
* removing a byte from the next mbuf (adjusting data++ and len--)
|
|
* because this will hose-over the mbuf chain which might be needed
|
|
* later for BPF. Instead, we maintain an offset (mb_offset) which
|
|
* let's us skip over the first byte in the following mbuf.
|
|
*/
|
|
while (m) {
|
|
if (m->m_len - mb_offset) {
|
|
if (sc->isa16bit) {
|
|
if ((m->m_len - mb_offset) > 1)
|
|
outsw(sc->asic_addr + ED_NOVELL_DATA,
|
|
mtod(m, caddr_t) + mb_offset,
|
|
(m->m_len - mb_offset) / 2);
|
|
|
|
/*
|
|
* if odd number of bytes, get the odd byte from
|
|
* the next mbuf with data
|
|
*/
|
|
if ((m->m_len - mb_offset) & 1) {
|
|
/* First the last byte in current mbuf */
|
|
residual[0] = *(mtod(m, caddr_t) +
|
|
m->m_len - 1);
|
|
|
|
/* Advance past any empty mbufs. */
|
|
while (m->m_next &&
|
|
(m->m_next->m_len == 0))
|
|
m = m->m_next;
|
|
|
|
if (m->m_next) {
|
|
/* Remove first byte in next mbuf. */
|
|
residual[1] = *(mtod(m->m_next,
|
|
caddr_t));
|
|
mb_offset = 1;
|
|
}
|
|
|
|
outw(sc->asic_addr + ED_NOVELL_DATA,
|
|
*((u_short *) residual));
|
|
} else
|
|
mb_offset = 0;
|
|
} else
|
|
outsb(sc->asic_addr + ED_NOVELL_DATA,
|
|
m->m_data, m->m_len);
|
|
}
|
|
m = m->m_next;
|
|
}
|
|
|
|
/*
|
|
* Wait for remote DMA complete. This is necessary because on the
|
|
* transmit side, data is handled internally by the NIC in bursts and
|
|
* we can't start another remote DMA until this one completes. Not
|
|
* waiting causes really bad things to happen - like the NIC
|
|
* irrecoverably jamming the ISA bus.
|
|
*/
|
|
while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait);
|
|
|
|
if (!maxwait) {
|
|
log(LOG_WARNING,
|
|
"%s: remote transmit DMA failed to complete\n",
|
|
sc->sc_dev.dv_xname);
|
|
ed_reset(sc);
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Given a source and destination address, copy 'amount' of a packet from the
|
|
* ring buffer into a linear destination buffer. Takes into account ring-wrap.
|
|
*/
|
|
static inline char *
|
|
ed_ring_copy(sc, src, dst, amount)
|
|
struct ed_softc *sc;
|
|
char *src;
|
|
char *dst;
|
|
u_short amount;
|
|
{
|
|
u_short tmp_amount;
|
|
|
|
/* Does copy wrap to lower addr in ring buffer? */
|
|
if (src + amount > sc->mem_end) {
|
|
tmp_amount = sc->mem_end - src;
|
|
|
|
/* Copy amount up to end of NIC memory. */
|
|
if (sc->mem_shared)
|
|
bcopy(src, dst, tmp_amount);
|
|
else
|
|
ed_pio_readmem(sc, (u_short)src, dst, tmp_amount);
|
|
|
|
amount -= tmp_amount;
|
|
src = sc->mem_ring;
|
|
dst += tmp_amount;
|
|
}
|
|
|
|
if (sc->mem_shared)
|
|
bcopy(src, dst, amount);
|
|
else
|
|
ed_pio_readmem(sc, (u_short)src, dst, amount);
|
|
|
|
return src + amount;
|
|
}
|
|
|
|
/*
|
|
* Copy data from receive buffer to end of mbuf chain allocate additional mbufs
|
|
* as needed. Return pointer to last mbuf in chain.
|
|
* sc = ed info (softc)
|
|
* src = pointer in ed ring buffer
|
|
* dst = pointer to last mbuf in mbuf chain to copy to
|
|
* amount = amount of data to copy
|
|
*/
|
|
struct mbuf *
|
|
ed_ring_to_mbuf(sc, src, dst, total_len)
|
|
struct ed_softc *sc;
|
|
caddr_t src;
|
|
struct mbuf *dst;
|
|
u_short total_len;
|
|
{
|
|
register struct mbuf *m = dst;
|
|
|
|
while (total_len) {
|
|
register u_short amount = min(total_len, M_TRAILINGSPACE(m));
|
|
|
|
if (amount == 0) {
|
|
/*
|
|
* No more data in this mbuf; alloc another.
|
|
*
|
|
* If there is enough data for an mbuf cluster, attempt
|
|
* to allocate one of those, otherwise, a regular mbuf
|
|
* will do.
|
|
* Note that a regular mbuf is always required, even if
|
|
* we get a cluster - getting a cluster does not
|
|
* allocate any mbufs, and one is needed to assign the
|
|
* cluster to. The mbuf that has a cluster extension
|
|
* can not be used to contain data - only the cluster
|
|
* can contain data.
|
|
*/
|
|
dst = m;
|
|
MGET(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0)
|
|
return 0;
|
|
|
|
if (total_len >= MINCLSIZE)
|
|
MCLGET(m, M_DONTWAIT);
|
|
|
|
m->m_len = 0;
|
|
dst->m_next = m;
|
|
amount = min(total_len, M_TRAILINGSPACE(m));
|
|
}
|
|
|
|
src = ed_ring_copy(sc, src, mtod(m, caddr_t) + m->m_len,
|
|
amount);
|
|
|
|
m->m_len += amount;
|
|
total_len -= amount;
|
|
|
|
}
|
|
return m;
|
|
}
|
|
|
|
/*
|
|
* Compute the multicast address filter from the list of multicast addresses we
|
|
* need to listen to.
|
|
*/
|
|
void
|
|
ed_getmcaf(ac, af)
|
|
struct arpcom *ac;
|
|
u_long *af;
|
|
{
|
|
struct ifnet *ifp = &ac->ac_if;
|
|
struct ether_multi *enm;
|
|
register u_char *cp, c;
|
|
register u_long crc;
|
|
register int i, len;
|
|
struct ether_multistep step;
|
|
|
|
/*
|
|
* Set up multicast address filter by passing all multicast addresses
|
|
* through a crc generator, and then using the high order 6 bits as an
|
|
* index into the 64 bit logical address filter. The high order bit
|
|
* selects the word, while the rest of the bits select the bit within
|
|
* the word.
|
|
*/
|
|
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
af[0] = af[1] = 0xffffffff;
|
|
return;
|
|
}
|
|
|
|
af[0] = af[1] = 0;
|
|
ETHER_FIRST_MULTI(step, ac, enm);
|
|
while (enm != NULL) {
|
|
if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
|
|
sizeof(enm->enm_addrlo)) != 0) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
af[0] = af[1] = 0xffffffff;
|
|
return;
|
|
}
|
|
|
|
cp = enm->enm_addrlo;
|
|
crc = 0xffffffff;
|
|
for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
|
|
c = *cp++;
|
|
for (i = 8; --i >= 0;) {
|
|
if (((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01)) {
|
|
crc <<= 1;
|
|
crc ^= 0x04c11db6 | 1;
|
|
} else
|
|
crc <<= 1;
|
|
c >>= 1;
|
|
}
|
|
}
|
|
/* Just want the 6 most significant bits. */
|
|
crc >>= 26;
|
|
|
|
/* Turn on the corresponding bit in the filter. */
|
|
af[crc >> 5] |= 1 << ((crc & 0x1f) ^ 24);
|
|
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
}
|