NetBSD/sys/dev/pci/if_stge.c
2003-03-01 19:49:45 +00:00

2046 lines
52 KiB
C

/* $NetBSD: if_stge.c,v 1.19 2003/03/01 19:49:45 mjacob Exp $ */
/*-
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for the Sundance Tech. TC9021 10/100/1000
* Ethernet controller.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_stge.c,v 1.19 2003/03/01 19:49:45 mjacob Exp $");
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <uvm/uvm_extern.h> /* for PAGE_SIZE */
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_stgereg.h>
/* #define STGE_CU_BUG 1 */
#define STGE_VLAN_UNTAG 1
/* #define STGE_VLAN_CFI 1 */
/*
* Transmit descriptor list size.
*/
#define STGE_NTXDESC 256
#define STGE_NTXDESC_MASK (STGE_NTXDESC - 1)
#define STGE_NEXTTX(x) (((x) + 1) & STGE_NTXDESC_MASK)
/*
* Receive descriptor list size.
*/
#define STGE_NRXDESC 256
#define STGE_NRXDESC_MASK (STGE_NRXDESC - 1)
#define STGE_NEXTRX(x) (((x) + 1) & STGE_NRXDESC_MASK)
/*
* Only interrupt every N frames. Must be a power-of-two.
*/
#define STGE_TXINTR_SPACING 16
#define STGE_TXINTR_SPACING_MASK (STGE_TXINTR_SPACING - 1)
/*
* Control structures are DMA'd to the TC9021 chip. We allocate them in
* a single clump that maps to a single DMA segment to make several things
* easier.
*/
struct stge_control_data {
/*
* The transmit descriptors.
*/
struct stge_tfd scd_txdescs[STGE_NTXDESC];
/*
* The receive descriptors.
*/
struct stge_rfd scd_rxdescs[STGE_NRXDESC];
};
#define STGE_CDOFF(x) offsetof(struct stge_control_data, x)
#define STGE_CDTXOFF(x) STGE_CDOFF(scd_txdescs[(x)])
#define STGE_CDRXOFF(x) STGE_CDOFF(scd_rxdescs[(x)])
/*
* Software state for transmit and receive jobs.
*/
struct stge_descsoft {
struct mbuf *ds_mbuf; /* head of our mbuf chain */
bus_dmamap_t ds_dmamap; /* our DMA map */
};
/*
* Software state per device.
*/
struct stge_softc {
struct device sc_dev; /* generic device information */
bus_space_tag_t sc_st; /* bus space tag */
bus_space_handle_t sc_sh; /* bus space handle */
bus_dma_tag_t sc_dmat; /* bus DMA tag */
struct ethercom sc_ethercom; /* ethernet common data */
void *sc_sdhook; /* shutdown hook */
int sc_rev; /* silicon revision */
void *sc_ih; /* interrupt cookie */
struct mii_data sc_mii; /* MII/media information */
struct callout sc_tick_ch; /* tick callout */
bus_dmamap_t sc_cddmamap; /* control data DMA map */
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
/*
* Software state for transmit and receive descriptors.
*/
struct stge_descsoft sc_txsoft[STGE_NTXDESC];
struct stge_descsoft sc_rxsoft[STGE_NRXDESC];
/*
* Control data structures.
*/
struct stge_control_data *sc_control_data;
#define sc_txdescs sc_control_data->scd_txdescs
#define sc_rxdescs sc_control_data->scd_rxdescs
#ifdef STGE_EVENT_COUNTERS
/*
* Event counters.
*/
struct evcnt sc_ev_txstall; /* Tx stalled */
struct evcnt sc_ev_txdmaintr; /* Tx DMA interrupts */
struct evcnt sc_ev_txindintr; /* Tx Indicate interrupts */
struct evcnt sc_ev_rxintr; /* Rx interrupts */
struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
struct evcnt sc_ev_txcopy; /* Tx packets that we had to copy */
struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-bound */
struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
#endif /* STGE_EVENT_COUNTERS */
int sc_txpending; /* number of Tx requests pending */
int sc_txdirty; /* first dirty Tx descriptor */
int sc_txlast; /* last used Tx descriptor */
int sc_rxptr; /* next ready Rx descriptor/descsoft */
int sc_rxdiscard;
int sc_rxlen;
struct mbuf *sc_rxhead;
struct mbuf *sc_rxtail;
struct mbuf **sc_rxtailp;
int sc_txthresh; /* Tx threshold */
int sc_usefiber; /* if we're fiber */
uint32_t sc_DMACtrl; /* prototype DMACtrl register */
uint32_t sc_MACCtrl; /* prototype MacCtrl register */
uint16_t sc_IntEnable; /* prototype IntEnable register */
uint16_t sc_ReceiveMode; /* prototype ReceiveMode register */
uint8_t sc_PhyCtrl; /* prototype PhyCtrl register */
};
#define STGE_RXCHAIN_RESET(sc) \
do { \
(sc)->sc_rxtailp = &(sc)->sc_rxhead; \
*(sc)->sc_rxtailp = NULL; \
(sc)->sc_rxlen = 0; \
} while (/*CONSTCOND*/0)
#define STGE_RXCHAIN_LINK(sc, m) \
do { \
*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
(sc)->sc_rxtailp = &(m)->m_next; \
} while (/*CONSTCOND*/0)
#ifdef STGE_EVENT_COUNTERS
#define STGE_EVCNT_INCR(ev) (ev)->ev_count++
#else
#define STGE_EVCNT_INCR(ev) /* nothing */
#endif
#define STGE_CDTXADDR(sc, x) ((sc)->sc_cddma + STGE_CDTXOFF((x)))
#define STGE_CDRXADDR(sc, x) ((sc)->sc_cddma + STGE_CDRXOFF((x)))
#define STGE_CDTXSYNC(sc, x, ops) \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
STGE_CDTXOFF((x)), sizeof(struct stge_tfd), (ops))
#define STGE_CDRXSYNC(sc, x, ops) \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
STGE_CDRXOFF((x)), sizeof(struct stge_rfd), (ops))
#define STGE_INIT_RXDESC(sc, x) \
do { \
struct stge_descsoft *__ds = &(sc)->sc_rxsoft[(x)]; \
struct stge_rfd *__rfd = &(sc)->sc_rxdescs[(x)]; \
\
/* \
* Note: We scoot the packet forward 2 bytes in the buffer \
* so that the payload after the Ethernet header is aligned \
* to a 4-byte boundary. \
*/ \
__rfd->rfd_frag.frag_word0 = \
htole64(FRAG_ADDR(__ds->ds_dmamap->dm_segs[0].ds_addr + 2) |\
FRAG_LEN(MCLBYTES - 2)); \
__rfd->rfd_next = \
htole64((uint64_t)STGE_CDRXADDR((sc), STGE_NEXTRX((x)))); \
__rfd->rfd_status = 0; \
STGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
} while (/*CONSTCOND*/0)
#define STGE_TIMEOUT 1000
void stge_start(struct ifnet *);
void stge_watchdog(struct ifnet *);
int stge_ioctl(struct ifnet *, u_long, caddr_t);
int stge_init(struct ifnet *);
void stge_stop(struct ifnet *, int);
void stge_shutdown(void *);
void stge_reset(struct stge_softc *);
void stge_rxdrain(struct stge_softc *);
int stge_add_rxbuf(struct stge_softc *, int);
#if 0
void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
#endif
void stge_tick(void *);
void stge_stats_update(struct stge_softc *);
void stge_set_filter(struct stge_softc *);
int stge_intr(void *);
void stge_txintr(struct stge_softc *);
void stge_rxintr(struct stge_softc *);
int stge_mii_readreg(struct device *, int, int);
void stge_mii_writereg(struct device *, int, int, int);
void stge_mii_statchg(struct device *);
int stge_mediachange(struct ifnet *);
void stge_mediastatus(struct ifnet *, struct ifmediareq *);
int stge_match(struct device *, struct cfdata *, void *);
void stge_attach(struct device *, struct device *, void *);
int stge_copy_small = 0;
CFATTACH_DECL(stge, sizeof(struct stge_softc),
stge_match, stge_attach, NULL, NULL);
uint32_t stge_mii_bitbang_read(struct device *);
void stge_mii_bitbang_write(struct device *, uint32_t);
const struct mii_bitbang_ops stge_mii_bitbang_ops = {
stge_mii_bitbang_read,
stge_mii_bitbang_write,
{
PC_MgmtData, /* MII_BIT_MDO */
PC_MgmtData, /* MII_BIT_MDI */
PC_MgmtClk, /* MII_BIT_MDC */
PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
/*
* Devices supported by this driver.
*/
const struct stge_product {
pci_vendor_id_t stge_vendor;
pci_product_id_t stge_product;
const char *stge_name;
} stge_products[] = {
{ PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_SUNDANCETI_ST2021,
"Sundance ST-2021 Gigabit Ethernet" },
{ PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021,
"Tamarack TC9021 Gigabit Ethernet" },
{ PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT,
"Tamarack TC9021 Gigabit Ethernet" },
/*
* The Sundance sample boards use the Sundance vendor ID,
* but the Tamarack product ID.
*/
{ PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021,
"Sundance TC9021 Gigabit Ethernet" },
{ PCI_VENDOR_SUNDANCETI, PCI_PRODUCT_TAMARACK_TC9021_ALT,
"Sundance TC9021 Gigabit Ethernet" },
{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DL4000,
"D-Link DL-4000 Gigabit Ethernet" },
{ PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021,
"Antares Gigabit Ethernet" },
{ 0, 0,
NULL },
};
static const struct stge_product *
stge_lookup(const struct pci_attach_args *pa)
{
const struct stge_product *sp;
for (sp = stge_products; sp->stge_name != NULL; sp++) {
if (PCI_VENDOR(pa->pa_id) == sp->stge_vendor &&
PCI_PRODUCT(pa->pa_id) == sp->stge_product)
return (sp);
}
return (NULL);
}
int
stge_match(struct device *parent, struct cfdata *cf, void *aux)
{
struct pci_attach_args *pa = aux;
if (stge_lookup(pa) != NULL)
return (1);
return (0);
}
void
stge_attach(struct device *parent, struct device *self, void *aux)
{
struct stge_softc *sc = (struct stge_softc *) self;
struct pci_attach_args *pa = aux;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
bus_space_tag_t iot, memt;
bus_space_handle_t ioh, memh;
bus_dma_segment_t seg;
int ioh_valid, memh_valid;
int i, rseg, error;
const struct stge_product *sp;
pcireg_t pmode;
uint8_t enaddr[ETHER_ADDR_LEN];
int pmreg;
callout_init(&sc->sc_tick_ch);
sp = stge_lookup(pa);
if (sp == NULL) {
printf("\n");
panic("ste_attach: impossible");
}
sc->sc_rev = PCI_REVISION(pa->pa_class);
printf(": %s, rev. %d\n", sp->stge_name, sc->sc_rev);
/*
* Map the device.
*/
ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
PCI_MAPREG_TYPE_IO, 0,
&iot, &ioh, NULL, NULL) == 0);
memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
&memt, &memh, NULL, NULL) == 0);
if (memh_valid) {
sc->sc_st = memt;
sc->sc_sh = memh;
} else if (ioh_valid) {
sc->sc_st = iot;
sc->sc_sh = ioh;
} else {
printf("%s: unable to map device registers\n",
sc->sc_dev.dv_xname);
return;
}
sc->sc_dmat = pa->pa_dmat;
/* Enable bus mastering. */
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
PCI_COMMAND_MASTER_ENABLE);
/* Get it out of power save mode if needed. */
if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
PCI_PMCSR_STATE_MASK;
if (pmode == PCI_PMCSR_STATE_D3) {
/*
* The card has lost all configuration data in
* this state, so punt.
*/
printf("%s: unable to wake up from power state D3\n",
sc->sc_dev.dv_xname);
return;
}
if (pmode != 0) {
printf("%s: waking up from power state D%d\n",
sc->sc_dev.dv_xname, pmode);
pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
PCI_PMCSR_STATE_D0);
}
}
/*
* Map and establish our interrupt.
*/
if (pci_intr_map(pa, &ih)) {
printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
return;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc);
if (sc->sc_ih == NULL) {
printf("%s: unable to establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
0)) != 0) {
printf("%s: unable to allocate control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
BUS_DMA_COHERENT)) != 0) {
printf("%s: unable to map control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct stge_control_data), 1,
sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
printf("%s: unable to create control data DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct stge_control_data), NULL,
0)) != 0) {
printf("%s: unable to load control data DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_3;
}
/*
* Create the transmit buffer DMA maps. Note that rev B.3
* and earlier seem to have a bug regarding multi-fragment
* packets. We need to limit the number of Tx segments on
* such chips to 1.
*/
for (i = 0; i < STGE_NTXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat,
ETHER_MAX_LEN_JUMBO, STGE_NTXFRAGS, MCLBYTES, 0, 0,
&sc->sc_txsoft[i].ds_dmamap)) != 0) {
printf("%s: unable to create tx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_4;
}
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < STGE_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
printf("%s: unable to create rx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_5;
}
sc->sc_rxsoft[i].ds_mbuf = NULL;
}
/*
* Determine if we're copper or fiber. It affects how we
* reset the card.
*/
if (bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
AC_PhyMedia)
sc->sc_usefiber = 1;
else
sc->sc_usefiber = 0;
/*
* Reset the chip to a known state.
*/
stge_reset(sc);
/*
* Reading the station address from the EEPROM doesn't seem
* to work, at least on my sample boards. Instread, since
* the reset sequence does AutoInit, read it from the station
* address registers.
*/
enaddr[0] = bus_space_read_2(sc->sc_st, sc->sc_sh,
STGE_StationAddress0) & 0xff;
enaddr[1] = bus_space_read_2(sc->sc_st, sc->sc_sh,
STGE_StationAddress0) >> 8;
enaddr[2] = bus_space_read_2(sc->sc_st, sc->sc_sh,
STGE_StationAddress1) & 0xff;
enaddr[3] = bus_space_read_2(sc->sc_st, sc->sc_sh,
STGE_StationAddress1) >> 8;
enaddr[4] = bus_space_read_2(sc->sc_st, sc->sc_sh,
STGE_StationAddress2) & 0xff;
enaddr[5] = bus_space_read_2(sc->sc_st, sc->sc_sh,
STGE_StationAddress2) >> 8;
printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
ether_sprintf(enaddr));
/*
* Read some important bits from the PhyCtrl register.
*/
sc->sc_PhyCtrl = bus_space_read_1(sc->sc_st, sc->sc_sh,
STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
/*
* Initialize our media structures and probe the MII.
*/
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = stge_mii_readreg;
sc->sc_mii.mii_writereg = stge_mii_writereg;
sc->sc_mii.mii_statchg = stge_mii_statchg;
ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, stge_mediachange,
stge_mediastatus);
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, MIIF_DOPAUSE);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
ifp = &sc->sc_ethercom.ec_if;
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = stge_ioctl;
ifp->if_start = stge_start;
ifp->if_watchdog = stge_watchdog;
ifp->if_init = stge_init;
ifp->if_stop = stge_stop;
IFQ_SET_READY(&ifp->if_snd);
/*
* The manual recommends disabling early transmit, so we
* do. It's disabled anyway, if using IP checksumming,
* since the entire packet must be in the FIFO in order
* for the chip to perform the checksum.
*/
sc->sc_txthresh = 0x0fff;
/*
* Disable MWI if the PCI layer tells us to.
*/
sc->sc_DMACtrl = 0;
if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
sc->sc_DMACtrl |= DMAC_MWIDisable;
/*
* We can support 802.1Q VLAN-sized frames and jumbo
* Ethernet frames.
*
* XXX Figure out how to do hw-assisted VLAN tagging in
* XXX a reasonable way on this chip.
*/
sc->sc_ethercom.ec_capabilities |=
ETHERCAP_VLAN_MTU | /* XXX ETHERCAP_JUMBO_MTU | */
ETHERCAP_VLAN_HWTAGGING;
/*
* We can do IPv4/TCPv4/UDPv4 checksums in hardware.
*/
sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
/*
* Attach the interface.
*/
if_attach(ifp);
ether_ifattach(ifp, enaddr);
#ifdef STGE_EVENT_COUNTERS
/*
* Attach event counters.
*/
evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txstall");
evcnt_attach_dynamic(&sc->sc_ev_txdmaintr, EVCNT_TYPE_INTR,
NULL, sc->sc_dev.dv_xname, "txdmaintr");
evcnt_attach_dynamic(&sc->sc_ev_txindintr, EVCNT_TYPE_INTR,
NULL, sc->sc_dev.dv_xname, "txindintr");
evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
NULL, sc->sc_dev.dv_xname, "rxintr");
evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txseg1");
evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txseg2");
evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txseg3");
evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txseg4");
evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txseg5");
evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txsegmore");
evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txcopy");
evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "rxipsum");
evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "rxtcpsum");
evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "rxudpsum");
evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txipsum");
evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txtcpsum");
evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txudpsum");
#endif /* STGE_EVENT_COUNTERS */
/*
* Make sure the interface is shutdown during reboot.
*/
sc->sc_sdhook = shutdownhook_establish(stge_shutdown, sc);
if (sc->sc_sdhook == NULL)
printf("%s: WARNING: unable to establish shutdown hook\n",
sc->sc_dev.dv_xname);
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_5:
for (i = 0; i < STGE_NRXDESC; i++) {
if (sc->sc_rxsoft[i].ds_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_rxsoft[i].ds_dmamap);
}
fail_4:
for (i = 0; i < STGE_NTXDESC; i++) {
if (sc->sc_txsoft[i].ds_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_txsoft[i].ds_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
sizeof(struct stge_control_data));
fail_1:
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
fail_0:
return;
}
/*
* stge_shutdown:
*
* Make sure the interface is stopped at reboot time.
*/
void
stge_shutdown(void *arg)
{
struct stge_softc *sc = arg;
stge_stop(&sc->sc_ethercom.ec_if, 1);
}
static void
stge_dma_wait(struct stge_softc *sc)
{
int i;
for (i = 0; i < STGE_TIMEOUT; i++) {
delay(2);
if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl) &
DMAC_TxDMAInProg) == 0)
break;
}
if (i == STGE_TIMEOUT)
printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
}
/*
* stge_start: [ifnet interface function]
*
* Start packet transmission on the interface.
*/
void
stge_start(struct ifnet *ifp)
{
struct stge_softc *sc = ifp->if_softc;
struct mbuf *m0;
struct stge_descsoft *ds;
struct stge_tfd *tfd;
bus_dmamap_t dmamap;
int error, firsttx, nexttx, opending, seg, totlen;
uint64_t csum_flags;
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Remember the previous number of pending transmissions
* and the first descriptor we will use.
*/
opending = sc->sc_txpending;
firsttx = STGE_NEXTTX(sc->sc_txlast);
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
for (;;) {
struct m_tag *mtag;
uint64_t tfc;
/*
* Grab a packet off the queue.
*/
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
/*
* Leave one unused descriptor at the end of the
* list to prevent wrapping completely around.
*/
if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
STGE_EVCNT_INCR(&sc->sc_ev_txstall);
break;
}
/*
* See if we have any VLAN stuff.
*/
mtag = sc->sc_ethercom.ec_nvlans ?
m_tag_find(m0, PACKET_TAG_VLAN, NULL) : NULL;
/*
* Get the last and next available transmit descriptor.
*/
nexttx = STGE_NEXTTX(sc->sc_txlast);
tfd = &sc->sc_txdescs[nexttx];
ds = &sc->sc_txsoft[nexttx];
dmamap = ds->ds_dmamap;
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the alloted number of segments, or we
* were short on resources. For the too-may-segments
* case, we simply report an error and drop the packet,
* since we can't sanely copy a jumbo packet to a single
* buffer.
*/
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_NOWAIT);
if (error) {
if (error == EFBIG) {
printf("%s: Tx packet consumes too many "
"DMA segments, dropping...\n",
sc->sc_dev.dv_xname);
IFQ_DEQUEUE(&ifp->if_snd, m0);
m_freem(m0);
continue;
}
/*
* Short on resources, just stop for now.
*/
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/* Initialize the fragment list. */
for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
tfd->tfd_frags[seg].frag_word0 =
htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
FRAG_LEN(dmamap->dm_segs[seg].ds_len));
totlen += dmamap->dm_segs[seg].ds_len;
}
#ifdef STGE_EVENT_COUNTERS
switch (dmamap->dm_nsegs) {
case 1:
STGE_EVCNT_INCR(&sc->sc_ev_txseg1);
break;
case 2:
STGE_EVCNT_INCR(&sc->sc_ev_txseg2);
break;
case 3:
STGE_EVCNT_INCR(&sc->sc_ev_txseg3);
break;
case 4:
STGE_EVCNT_INCR(&sc->sc_ev_txseg4);
break;
case 5:
STGE_EVCNT_INCR(&sc->sc_ev_txseg5);
break;
default:
STGE_EVCNT_INCR(&sc->sc_ev_txsegmore);
break;
}
#endif /* STGE_EVENT_COUNTERS */
/*
* Initialize checksumming flags in the descriptor.
* Byte-swap constants so the compiler can optimize.
*/
csum_flags = 0;
if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
STGE_EVCNT_INCR(&sc->sc_ev_txipsum);
csum_flags |= htole64(TFD_IPChecksumEnable);
}
if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
STGE_EVCNT_INCR(&sc->sc_ev_txtcpsum);
csum_flags |= htole64(TFD_TCPChecksumEnable);
} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
STGE_EVCNT_INCR(&sc->sc_ev_txudpsum);
csum_flags |= htole64(TFD_UDPChecksumEnable);
}
/*
* Initialize the descriptor and give it to the chip.
* Check to see if we have a VLAN tag to insert.
*/
tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
TFD_FragCount(seg) | csum_flags |
(((nexttx & STGE_TXINTR_SPACING_MASK) == 0) ?
TFD_TxDMAIndicate : 0);
if (mtag) {
#if 0
struct ether_header *eh =
mtod(m0, struct ether_header *);
u_int16_t etype = ntohs(eh->ether_type);
printf("%s: xmit (tag %d) etype %x\n",
ifp->if_xname, *mtod(n, int *), etype);
#endif
tfc |= TFD_VLANTagInsert |
#ifdef STGE_VLAN_CFI
TFD_CFI |
#endif
TFD_VID((*(u_int *)(mtag + 1)));
}
tfd->tfd_control = htole64(tfc);
/* Sync the descriptor. */
STGE_CDTXSYNC(sc, nexttx,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Kick the transmit DMA logic.
*/
bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_DMACtrl,
sc->sc_DMACtrl | DMAC_TxDMAPollNow);
/*
* Store a pointer to the packet so we can free it later.
*/
ds->ds_mbuf = m0;
/* Advance the tx pointer. */
sc->sc_txpending++;
sc->sc_txlast = nexttx;
#if NBPFILTER > 0
/*
* Pass the packet to any BPF listeners.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif /* NBPFILTER > 0 */
}
if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (sc->sc_txpending != opending) {
/*
* We enqueued packets. If the transmitter was idle,
* reset the txdirty pointer.
*/
if (opending == 0)
sc->sc_txdirty = firsttx;
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
}
}
/*
* stge_watchdog: [ifnet interface function]
*
* Watchdog timer handler.
*/
void
stge_watchdog(struct ifnet *ifp)
{
struct stge_softc *sc = ifp->if_softc;
/*
* Sweep up first, since we don't interrupt every frame.
*/
stge_txintr(sc);
if (sc->sc_txpending != 0) {
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
ifp->if_oerrors++;
(void) stge_init(ifp);
/* Try to get more packets going. */
stge_start(ifp);
}
}
/*
* stge_ioctl: [ifnet interface function]
*
* Handle control requests from the operator.
*/
int
stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct stge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error;
s = splnet();
switch (cmd) {
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
stge_set_filter(sc);
error = 0;
}
break;
}
/* Try to get more packets going. */
stge_start(ifp);
splx(s);
return (error);
}
/*
* stge_intr:
*
* Interrupt service routine.
*/
int
stge_intr(void *arg)
{
struct stge_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint32_t txstat;
int wantinit;
uint16_t isr;
if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatus) &
IS_InterruptStatus) == 0)
return (0);
for (wantinit = 0; wantinit == 0;) {
isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_IntStatusAck);
if ((isr & sc->sc_IntEnable) == 0)
break;
/* Host interface errors. */
if (isr & IS_HostError) {
printf("%s: Host interface error\n",
sc->sc_dev.dv_xname);
wantinit = 1;
continue;
}
/* Receive interrupts. */
if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
STGE_EVCNT_INCR(&sc->sc_ev_rxintr);
stge_rxintr(sc);
if (isr & IS_RFDListEnd) {
printf("%s: receive ring overflow\n",
sc->sc_dev.dv_xname);
/*
* XXX Should try to recover from this
* XXX more gracefully.
*/
wantinit = 1;
}
}
/* Transmit interrupts. */
if (isr & (IS_TxDMAComplete|IS_TxComplete)) {
#ifdef STGE_EVENT_COUNTERS
if (isr & IS_TxDMAComplete)
STGE_EVCNT_INCR(&sc->sc_ev_txdmaintr);
#endif
stge_txintr(sc);
}
/* Statistics overflow. */
if (isr & IS_UpdateStats)
stge_stats_update(sc);
/* Transmission errors. */
if (isr & IS_TxComplete) {
STGE_EVCNT_INCR(&sc->sc_ev_txindintr);
for (;;) {
txstat = bus_space_read_4(sc->sc_st, sc->sc_sh,
STGE_TxStatus);
if ((txstat & TS_TxComplete) == 0)
break;
if (txstat & TS_TxUnderrun) {
sc->sc_txthresh++;
if (sc->sc_txthresh > 0x0fff)
sc->sc_txthresh = 0x0fff;
printf("%s: transmit underrun, new "
"threshold: %d bytes\n",
sc->sc_dev.dv_xname,
sc->sc_txthresh << 5);
}
if (txstat & TS_MaxCollisions)
printf("%s: excessive collisions\n",
sc->sc_dev.dv_xname);
}
wantinit = 1;
}
}
if (wantinit)
stge_init(ifp);
bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable,
sc->sc_IntEnable);
/* Try to get more packets going. */
stge_start(ifp);
return (1);
}
/*
* stge_txintr:
*
* Helper; handle transmit interrupts.
*/
void
stge_txintr(struct stge_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct stge_descsoft *ds;
uint64_t control;
int i;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
for (i = sc->sc_txdirty; sc->sc_txpending != 0;
i = STGE_NEXTTX(i), sc->sc_txpending--) {
ds = &sc->sc_txsoft[i];
STGE_CDTXSYNC(sc, i,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
control = le64toh(sc->sc_txdescs[i].tfd_control);
if ((control & TFD_TFDDone) == 0)
break;
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
m_freem(ds->ds_mbuf);
ds->ds_mbuf = NULL;
}
/* Update the dirty transmit buffer pointer. */
sc->sc_txdirty = i;
/*
* If there are no more pending transmissions, cancel the watchdog
* timer.
*/
if (sc->sc_txpending == 0)
ifp->if_timer = 0;
}
/*
* stge_rxintr:
*
* Helper; handle receive interrupts.
*/
void
stge_rxintr(struct stge_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct stge_descsoft *ds;
struct mbuf *m, *tailm;
uint64_t status;
int i, len;
for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
ds = &sc->sc_rxsoft[i];
STGE_CDRXSYNC(sc, i,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
status = le64toh(sc->sc_rxdescs[i].rfd_status);
if ((status & RFD_RFDDone) == 0)
break;
if (__predict_false(sc->sc_rxdiscard)) {
STGE_INIT_RXDESC(sc, i);
if (status & RFD_FrameEnd) {
/* Reset our state. */
sc->sc_rxdiscard = 0;
}
continue;
}
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
m = ds->ds_mbuf;
/*
* Add a new receive buffer to the ring.
*/
if (stge_add_rxbuf(sc, i) != 0) {
/*
* Failed, throw away what we've done so
* far, and discard the rest of the packet.
*/
ifp->if_ierrors++;
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
STGE_INIT_RXDESC(sc, i);
if ((status & RFD_FrameEnd) == 0)
sc->sc_rxdiscard = 1;
if (sc->sc_rxhead != NULL)
m_freem(sc->sc_rxhead);
STGE_RXCHAIN_RESET(sc);
continue;
}
#ifdef DIAGNOSTIC
if (status & RFD_FrameStart) {
KASSERT(sc->sc_rxhead == NULL);
KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
}
#endif
STGE_RXCHAIN_LINK(sc, m);
/*
* If this is not the end of the packet, keep
* looking.
*/
if ((status & RFD_FrameEnd) == 0) {
sc->sc_rxlen += m->m_len;
continue;
}
/*
* Okay, we have the entire packet now...
*/
*sc->sc_rxtailp = NULL;
m = sc->sc_rxhead;
tailm = sc->sc_rxtail;
STGE_RXCHAIN_RESET(sc);
/*
* If the packet had an error, drop it. Note we
* count the error later in the periodic stats update.
*/
if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
RFD_RxAlignmentError | RFD_RxFCSError |
RFD_RxLengthError)) {
m_freem(m);
continue;
}
/*
* No errors.
*
* Note we have configured the chip to not include
* the CRC at the end of the packet.
*/
len = RFD_RxDMAFrameLen(status);
tailm->m_len = len - sc->sc_rxlen;
/*
* If the packet is small enough to fit in a
* single header mbuf, allocate one and copy
* the data into it. This greatly reduces
* memory consumption when we receive lots
* of small packets.
*/
if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
struct mbuf *nm;
MGETHDR(nm, M_DONTWAIT, MT_DATA);
if (nm == NULL) {
ifp->if_ierrors++;
m_freem(m);
continue;
}
nm->m_data += 2;
nm->m_pkthdr.len = nm->m_len = len;
m_copydata(m, 0, len, mtod(nm, caddr_t));
m_freem(m);
m = nm;
}
/*
* Set the incoming checksum information for the packet.
*/
if (status & RFD_IPDetected) {
STGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
if (status & RFD_IPError)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
if (status & RFD_TCPDetected) {
STGE_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
if (status & RFD_TCPError)
m->m_pkthdr.csum_flags |=
M_CSUM_TCP_UDP_BAD;
} else if (status & RFD_UDPDetected) {
STGE_EVCNT_INCR(&sc->sc_ev_rxudpsum);
m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
if (status & RFD_UDPError)
m->m_pkthdr.csum_flags |=
M_CSUM_TCP_UDP_BAD;
}
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = len;
#if NBPFILTER > 0
/*
* Pass this up to any BPF listeners, but only
* pass if up the stack if it's for us.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif /* NBPFILTER > 0 */
#ifdef STGE_VLAN_UNTAG
/*
* Check for VLAN tagged packets
*/
if (status & RFD_VLANDetected) {
struct m_tag *mtag =
m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
if (mtag == NULL) {
printf("%s: no mbuf for VLAN tag\n",
ifp->if_xname);
m_freem(m);
continue;
}
*(u_int *)(mtag + 1) = RFD_TCI(status);
m_tag_prepend(m, mtag);
}
#endif
#if 0
if (status & RFD_VLANDetected) {
struct ether_header *eh;
u_int16_t etype;
eh = mtod(m, struct ether_header *);
etype = ntohs(eh->ether_type);
printf("%s: VLANtag detected (TCI %d) etype %x\n",
ifp->if_xname, (u_int16_t) RFD_TCI(status),
etype);
}
#endif
/* Pass it on. */
(*ifp->if_input)(ifp, m);
}
/* Update the receive pointer. */
sc->sc_rxptr = i;
}
/*
* stge_tick:
*
* One second timer, used to tick the MII.
*/
void
stge_tick(void *arg)
{
struct stge_softc *sc = arg;
int s;
s = splnet();
mii_tick(&sc->sc_mii);
stge_stats_update(sc);
splx(s);
callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
}
/*
* stge_stats_update:
*
* Read the TC9021 statistics counters.
*/
void
stge_stats_update(struct stge_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
(void) bus_space_read_4(st, sh, STGE_OctetRcvOk);
ifp->if_ipackets +=
bus_space_read_4(st, sh, STGE_FramesRcvdOk);
ifp->if_ierrors +=
(u_int) bus_space_read_2(st, sh, STGE_FramesLostRxErrors);
(void) bus_space_read_4(st, sh, STGE_OctetXmtdOk);
ifp->if_opackets +=
bus_space_read_4(st, sh, STGE_FramesXmtdOk);
ifp->if_collisions +=
bus_space_read_4(st, sh, STGE_LateCollisions) +
bus_space_read_4(st, sh, STGE_MultiColFrames) +
bus_space_read_4(st, sh, STGE_SingleColFrames);
ifp->if_oerrors +=
(u_int) bus_space_read_2(st, sh, STGE_FramesAbortXSColls) +
(u_int) bus_space_read_2(st, sh, STGE_FramesWEXDeferal);
}
/*
* stge_reset:
*
* Perform a soft reset on the TC9021.
*/
void
stge_reset(struct stge_softc *sc)
{
uint32_t ac;
int i;
ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl);
/*
* Only assert RstOut if we're fiber. We need GMII clocks
* to be present in order for the reset to complete on fiber
* cards.
*/
bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl,
ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
(sc->sc_usefiber ? AC_RstOut : 0));
delay(50000);
for (i = 0; i < STGE_TIMEOUT; i++) {
delay(5000);
if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STGE_AsicCtrl) &
AC_ResetBusy) == 0)
break;
}
if (i == STGE_TIMEOUT)
printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
delay(1000);
}
/*
* stge_init: [ ifnet interface function ]
*
* Initialize the interface. Must be called at splnet().
*/
int
stge_init(struct ifnet *ifp)
{
struct stge_softc *sc = ifp->if_softc;
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
struct stge_descsoft *ds;
int i, error = 0;
/*
* Cancel any pending I/O.
*/
stge_stop(ifp, 0);
/*
* Reset the chip to a known state.
*/
stge_reset(sc);
/*
* Initialize the transmit descriptor ring.
*/
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
for (i = 0; i < STGE_NTXDESC; i++) {
sc->sc_txdescs[i].tfd_next =
(uint64_t) STGE_CDTXADDR(sc, STGE_NEXTTX(i));
sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
}
sc->sc_txpending = 0;
sc->sc_txdirty = 0;
sc->sc_txlast = STGE_NTXDESC - 1;
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
for (i = 0; i < STGE_NRXDESC; i++) {
ds = &sc->sc_rxsoft[i];
if (ds->ds_mbuf == NULL) {
if ((error = stge_add_rxbuf(sc, i)) != 0) {
printf("%s: unable to allocate or map rx "
"buffer %d, error = %d\n",
sc->sc_dev.dv_xname, i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
stge_rxdrain(sc);
goto out;
}
} else
STGE_INIT_RXDESC(sc, i);
}
sc->sc_rxptr = 0;
sc->sc_rxdiscard = 0;
STGE_RXCHAIN_RESET(sc);
/* Set the station address. */
bus_space_write_2(st, sh, STGE_StationAddress0,
LLADDR(ifp->if_sadl)[0] | (LLADDR(ifp->if_sadl)[1] << 8));
bus_space_write_2(st, sh, STGE_StationAddress1,
LLADDR(ifp->if_sadl)[2] | (LLADDR(ifp->if_sadl)[3] << 8));
bus_space_write_2(st, sh, STGE_StationAddress2,
LLADDR(ifp->if_sadl)[4] | (LLADDR(ifp->if_sadl)[5] << 8));
/*
* Set the statistics masks. Disable all the RMON stats,
* and disable selected stats in the non-RMON stats registers.
*/
bus_space_write_4(st, sh, STGE_RMONStatisticsMask, 0xffffffff);
bus_space_write_4(st, sh, STGE_StatisticsMask,
(1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
(1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
(1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
(1U << 21));
/* Set up the receive filter. */
stge_set_filter(sc);
/*
* Give the transmit and receive ring to the chip.
*/
bus_space_write_4(st, sh, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
bus_space_write_4(st, sh, STGE_TFDListPtrLo,
STGE_CDTXADDR(sc, sc->sc_txdirty));
bus_space_write_4(st, sh, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
bus_space_write_4(st, sh, STGE_RFDListPtrLo,
STGE_CDRXADDR(sc, sc->sc_rxptr));
/*
* Initialize the Tx auto-poll period. It's OK to make this number
* large (255 is the max, but we use 127) -- we explicitly kick the
* transmit engine when there's actually a packet.
*/
bus_space_write_1(st, sh, STGE_TxDMAPollPeriod, 127);
/* ..and the Rx auto-poll period. */
bus_space_write_1(st, sh, STGE_RxDMAPollPeriod, 64);
/* Initialize the Tx start threshold. */
bus_space_write_2(st, sh, STGE_TxStartThresh, sc->sc_txthresh);
/*
* Initialize the Rx DMA interrupt control register. We
* request an interrupt after every incoming packet, but
* defer it for 32us (64 * 512 ns). When the number of
* interrupts pending reaches 8, we stop deferring the
* interrupt, and signal it immediately.
*/
bus_space_write_4(st, sh, STGE_RxDMAIntCtrl,
RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
/*
* Initialize the interrupt mask.
*/
sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
bus_space_write_2(st, sh, STGE_IntStatus, 0xffff);
bus_space_write_2(st, sh, STGE_IntEnable, sc->sc_IntEnable);
/*
* Configure the DMA engine.
* XXX Should auto-tune TxBurstLimit.
*/
bus_space_write_4(st, sh, STGE_DMACtrl, sc->sc_DMACtrl |
DMAC_TxBurstLimit(3));
/*
* Send a PAUSE frame when we reach 29,696 bytes in the Rx
* FIFO, and send an un-PAUSE frame when the FIFO is totally
* empty again.
*/
bus_space_write_2(st, sh, STGE_FlowOnTresh, 29696 / 16);
bus_space_write_2(st, sh, STGE_FlowOffThresh, 0);
/*
* Set the maximum frame size.
*/
bus_space_write_2(st, sh, STGE_MaxFrameSize,
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
ETHER_VLAN_ENCAP_LEN : 0));
/*
* Initialize MacCtrl -- do it before setting the media,
* as setting the media will actually program the register.
*
* Note: We have to poke the IFS value before poking
* anything else.
*/
sc->sc_MACCtrl = MC_IFSSelect(0);
bus_space_write_4(st, sh, STGE_MACCtrl, sc->sc_MACCtrl);
sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
#ifdef STGE_VLAN_UNTAG
sc->sc_MACCtrl |= MC_AutoVLANuntagging;
#endif
if (sc->sc_rev >= 6) { /* >= B.2 */
/* Multi-frag frame bug work-around. */
bus_space_write_2(st, sh, STGE_DebugCtrl,
bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0200);
/* Tx Poll Now bug work-around. */
bus_space_write_2(st, sh, STGE_DebugCtrl,
bus_space_read_2(st, sh, STGE_DebugCtrl) | 0x0010);
}
/*
* Set the current media.
*/
mii_mediachg(&sc->sc_mii);
/*
* Start the one second MII clock.
*/
callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
/*
* ...all done!
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
out:
if (error)
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
return (error);
}
/*
* stge_drain:
*
* Drain the receive queue.
*/
void
stge_rxdrain(struct stge_softc *sc)
{
struct stge_descsoft *ds;
int i;
for (i = 0; i < STGE_NRXDESC; i++) {
ds = &sc->sc_rxsoft[i];
if (ds->ds_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
ds->ds_mbuf->m_next = NULL;
m_freem(ds->ds_mbuf);
ds->ds_mbuf = NULL;
}
}
}
/*
* stge_stop: [ ifnet interface function ]
*
* Stop transmission on the interface.
*/
void
stge_stop(struct ifnet *ifp, int disable)
{
struct stge_softc *sc = ifp->if_softc;
struct stge_descsoft *ds;
int i;
/*
* Stop the one second clock.
*/
callout_stop(&sc->sc_tick_ch);
/* Down the MII. */
mii_down(&sc->sc_mii);
/*
* Disable interrupts.
*/
bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_IntEnable, 0);
/*
* Stop receiver, transmitter, and stats update.
*/
bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl,
MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
/*
* Stop the transmit and receive DMA.
*/
stge_dma_wait(sc);
bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrHi, 0);
bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_TFDListPtrLo, 0);
bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrHi, 0);
bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_RFDListPtrLo, 0);
/*
* Release any queued transmit buffers.
*/
for (i = 0; i < STGE_NTXDESC; i++) {
ds = &sc->sc_txsoft[i];
if (ds->ds_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
m_freem(ds->ds_mbuf);
ds->ds_mbuf = NULL;
}
}
if (disable)
stge_rxdrain(sc);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
#if 0
static int
stge_eeprom_wait(struct stge_softc *sc)
{
int i;
for (i = 0; i < STGE_TIMEOUT; i++) {
delay(1000);
if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl) &
EC_EepromBusy) == 0)
return (0);
}
return (1);
}
/*
* stge_read_eeprom:
*
* Read data from the serial EEPROM.
*/
void
stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
{
if (stge_eeprom_wait(sc))
printf("%s: EEPROM failed to come ready\n",
sc->sc_dev.dv_xname);
bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_EepromCtrl,
EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
if (stge_eeprom_wait(sc))
printf("%s: EEPROM read timed out\n",
sc->sc_dev.dv_xname);
*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STGE_EepromData);
}
#endif /* 0 */
/*
* stge_add_rxbuf:
*
* Add a receive buffer to the indicated descriptor.
*/
int
stge_add_rxbuf(struct stge_softc *sc, int idx)
{
struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
m->m_data = m->m_ext.ext_buf + 2;
m->m_len = MCLBYTES - 2;
if (ds->ds_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
ds->ds_mbuf = m;
error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't load rx DMA map %d, error = %d\n",
sc->sc_dev.dv_xname, idx, error);
panic("stge_add_rxbuf"); /* XXX */
}
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
STGE_INIT_RXDESC(sc, idx);
return (0);
}
/*
* stge_set_filter:
*
* Set up the receive filter.
*/
void
stge_set_filter(struct stge_softc *sc)
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t crc;
uint32_t mchash[2];
sc->sc_ReceiveMode = RM_ReceiveUnicast;
if (ifp->if_flags & IFF_BROADCAST)
sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
#ifdef STGE_CU_BUG
/*
* Some cards (Sundance TI, copper) only seem to work
* right now if we put them into promiscuous mode. It
* probably is the Marvell PHY stuff that isn't quite
* right.
*/
ifp->if_flags |= IFF_PROMISC;
#endif
if (ifp->if_flags & IFF_PROMISC) {
sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
goto allmulti;
}
/*
* Set up the multicast address filter by passing all multicast
* addresses through a CRC generator, and then using the low-order
* 6 bits as an index into the 64 bit multicast hash table. The
* high order bits select the register, while the rest of the bits
* select the bit within the register.
*/
memset(mchash, 0, sizeof(mchash));
ETHER_FIRST_MULTI(step, ec, enm);
if (enm == NULL)
goto done;
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
/* Just want the 6 least significant bits. */
crc &= 0x3f;
/* Set the corresponding bit in the hash table. */
mchash[crc >> 5] |= 1 << (crc & 0x1f);
ETHER_NEXT_MULTI(step, enm);
}
sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
ifp->if_flags &= ~IFF_ALLMULTI;
goto done;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
sc->sc_ReceiveMode |= RM_ReceiveMulticast;
done:
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
/*
* Program the multicast hash table.
*/
bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable0,
mchash[0]);
bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_HashTable1,
mchash[1]);
}
bus_space_write_2(sc->sc_st, sc->sc_sh, STGE_ReceiveMode,
sc->sc_ReceiveMode);
}
/*
* stge_mii_readreg: [mii interface function]
*
* Read a PHY register on the MII of the TC9021.
*/
int
stge_mii_readreg(struct device *self, int phy, int reg)
{
return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
}
/*
* stge_mii_writereg: [mii interface function]
*
* Write a PHY register on the MII of the TC9021.
*/
void
stge_mii_writereg(struct device *self, int phy, int reg, int val)
{
mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
}
/*
* stge_mii_statchg: [mii interface function]
*
* Callback from MII layer when media changes.
*/
void
stge_mii_statchg(struct device *self)
{
struct stge_softc *sc = (struct stge_softc *) self;
if (sc->sc_mii.mii_media_active & IFM_FDX)
sc->sc_MACCtrl |= MC_DuplexSelect;
else
sc->sc_MACCtrl &= ~MC_DuplexSelect;
/* XXX 802.1x flow-control? */
bus_space_write_4(sc->sc_st, sc->sc_sh, STGE_MACCtrl, sc->sc_MACCtrl);
}
/*
* sste_mii_bitbang_read: [mii bit-bang interface function]
*
* Read the MII serial port for the MII bit-bang module.
*/
uint32_t
stge_mii_bitbang_read(struct device *self)
{
struct stge_softc *sc = (void *) self;
return (bus_space_read_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl));
}
/*
* stge_mii_bitbang_write: [mii big-bang interface function]
*
* Write the MII serial port for the MII bit-bang module.
*/
void
stge_mii_bitbang_write(struct device *self, uint32_t val)
{
struct stge_softc *sc = (void *) self;
bus_space_write_1(sc->sc_st, sc->sc_sh, STGE_PhyCtrl,
val | sc->sc_PhyCtrl);
}
/*
* stge_mediastatus: [ifmedia interface function]
*
* Get the current interface media status.
*/
void
stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct stge_softc *sc = ifp->if_softc;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_status = sc->sc_mii.mii_media_status;
ifmr->ifm_active = sc->sc_mii.mii_media_active;
}
/*
* stge_mediachange: [ifmedia interface function]
*
* Set hardware to newly-selected media.
*/
int
stge_mediachange(struct ifnet *ifp)
{
struct stge_softc *sc = ifp->if_softc;
if (ifp->if_flags & IFF_UP)
mii_mediachg(&sc->sc_mii);
return (0);
}