702 lines
18 KiB
C
702 lines
18 KiB
C
/* $NetBSD: ip_reass.c,v 1.7 2010/11/05 00:21:51 rmind Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1988, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ip_input.c 8.2 (Berkeley) 1/4/94
|
|
*/
|
|
|
|
/*
|
|
* IP reassembly.
|
|
*
|
|
* Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
|
|
* reassembly queue buffer managment.
|
|
*
|
|
* We keep a count of total IP fragments (NB: not fragmented packets),
|
|
* awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
|
|
* If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
|
|
* fragments in reassembly queues. This AIMD policy avoids repeatedly
|
|
* deleting single packets under heavy fragmentation load (e.g., from lossy
|
|
* NFS peers).
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.7 2010/11/05 00:21:51 rmind Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/in_proto.h>
|
|
#include <netinet/ip_private.h>
|
|
#include <netinet/in_var.h>
|
|
|
|
/*
|
|
* IP reassembly queue structures. Each fragment being reassembled is
|
|
* attached to one of these structures. They are timed out after TTL
|
|
* drops to 0, and may also be reclaimed if memory becomes tight.
|
|
*/
|
|
|
|
typedef struct ipfr_qent {
|
|
TAILQ_ENTRY(ipfr_qent) ipqe_q;
|
|
struct ip * ipqe_ip;
|
|
struct mbuf * ipqe_m;
|
|
bool ipqe_mff;
|
|
} ipfr_qent_t;
|
|
|
|
TAILQ_HEAD(ipfr_qent_head, ipfr_qent);
|
|
|
|
typedef struct ipfr_queue {
|
|
LIST_ENTRY(ipfr_queue) ipq_q; /* to other reass headers */
|
|
struct ipfr_qent_head ipq_fragq; /* queue of fragment entries */
|
|
uint8_t ipq_ttl; /* time for reass q to live */
|
|
uint8_t ipq_p; /* protocol of this fragment */
|
|
uint16_t ipq_id; /* sequence id for reassembly */
|
|
struct in_addr ipq_src;
|
|
struct in_addr ipq_dst;
|
|
uint16_t ipq_nfrags; /* frags in this queue entry */
|
|
uint8_t ipq_tos; /* TOS of this fragment */
|
|
} ipfr_queue_t;
|
|
|
|
/*
|
|
* Hash table of IP reassembly queues.
|
|
*/
|
|
#define IPREASS_HASH_SHIFT 6
|
|
#define IPREASS_HASH_SIZE (1 << IPREASS_HASH_SHIFT)
|
|
#define IPREASS_HASH_MASK (IPREASS_HASH_SIZE - 1)
|
|
#define IPREASS_HASH(x, y) \
|
|
(((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
|
|
|
|
static LIST_HEAD(, ipfr_queue) ip_frags[IPREASS_HASH_SIZE];
|
|
static pool_cache_t ipfren_cache;
|
|
static kmutex_t ipfr_lock;
|
|
|
|
/* Number of packets in reassembly queue and total number of fragments. */
|
|
static int ip_nfragpackets;
|
|
static int ip_nfrags;
|
|
|
|
/* Limits on packet and fragments. */
|
|
static int ip_maxfragpackets;
|
|
static int ip_maxfrags;
|
|
|
|
/*
|
|
* Cached copy of nmbclusters. If nbclusters is different, recalculate
|
|
* IP parameters derived from nmbclusters.
|
|
*/
|
|
static int ip_nmbclusters;
|
|
|
|
/*
|
|
* IP reassembly TTL machinery for multiplicative drop.
|
|
*/
|
|
static u_int fragttl_histo[IPFRAGTTL + 1];
|
|
|
|
static struct sysctllog *ip_reass_sysctllog;
|
|
|
|
void sysctl_ip_reass_setup(void);
|
|
static void ip_nmbclusters_changed(void);
|
|
|
|
static struct mbuf * ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
|
|
static u_int ip_reass_ttl_decr(u_int ticks);
|
|
static void ip_reass_drophalf(void);
|
|
static void ip_freef(ipfr_queue_t *);
|
|
|
|
/*
|
|
* ip_reass_init:
|
|
*
|
|
* Initialization of IP reassembly mechanism.
|
|
*/
|
|
void
|
|
ip_reass_init(void)
|
|
{
|
|
int i;
|
|
|
|
ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit,
|
|
0, 0, "ipfrenpl", NULL, IPL_NET, NULL, NULL, NULL);
|
|
mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_VM);
|
|
|
|
for (i = 0; i < IPREASS_HASH_SIZE; i++) {
|
|
LIST_INIT(&ip_frags[i]);
|
|
}
|
|
ip_maxfragpackets = 200;
|
|
ip_maxfrags = 0;
|
|
ip_nmbclusters_changed();
|
|
|
|
sysctl_ip_reass_setup();
|
|
}
|
|
|
|
void
|
|
sysctl_ip_reass_setup(void)
|
|
{
|
|
|
|
sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "net", NULL,
|
|
NULL, 0, NULL, 0,
|
|
CTL_NET, CTL_EOL);
|
|
sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "inet",
|
|
SYSCTL_DESCR("PF_INET related settings"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_NET, PF_INET, CTL_EOL);
|
|
sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "ip",
|
|
SYSCTL_DESCR("IPv4 related settings"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
|
|
|
|
sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "maxfragpackets",
|
|
SYSCTL_DESCR("Maximum number of fragments to retain for "
|
|
"possible reassembly"),
|
|
NULL, 0, &ip_maxfragpackets, 0,
|
|
CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
|
|
}
|
|
|
|
#define CHECK_NMBCLUSTER_PARAMS() \
|
|
do { \
|
|
if (__predict_false(ip_nmbclusters != nmbclusters)) \
|
|
ip_nmbclusters_changed(); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
/*
|
|
* Compute IP limits derived from the value of nmbclusters.
|
|
*/
|
|
static void
|
|
ip_nmbclusters_changed(void)
|
|
{
|
|
ip_maxfrags = nmbclusters / 4;
|
|
ip_nmbclusters = nmbclusters;
|
|
}
|
|
|
|
/*
|
|
* ip_reass:
|
|
*
|
|
* Take incoming datagram fragment and try to reassemble it into whole
|
|
* datagram. If a chain for reassembly of this datagram already exists,
|
|
* then it is given as 'fp'; otherwise have to make a chain.
|
|
*/
|
|
struct mbuf *
|
|
ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
|
|
{
|
|
struct ip *ip = ipqe->ipqe_ip, *qip;
|
|
const int hlen = ip->ip_hl << 2;
|
|
struct mbuf *m = ipqe->ipqe_m, *t;
|
|
ipfr_qent_t *nq, *p, *q;
|
|
int i, next;
|
|
|
|
KASSERT(mutex_owned(&ipfr_lock));
|
|
|
|
/*
|
|
* Presence of header sizes in mbufs would confuse code below.
|
|
*/
|
|
m->m_data += hlen;
|
|
m->m_len -= hlen;
|
|
|
|
#ifdef notyet
|
|
/* Make sure fragment limit is up-to-date. */
|
|
CHECK_NMBCLUSTER_PARAMS();
|
|
|
|
/* If we have too many fragments, drop the older half. */
|
|
if (ip_nfrags >= ip_maxfrags) {
|
|
ip_reass_drophalf(void);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We are about to add a fragment; increment frag count.
|
|
*/
|
|
ip_nfrags++;
|
|
|
|
/*
|
|
* If first fragment to arrive, create a reassembly queue.
|
|
*/
|
|
if (fp == NULL) {
|
|
/*
|
|
* Enforce upper bound on number of fragmented packets
|
|
* for which we attempt reassembly: a) if maxfrag is 0,
|
|
* never accept fragments b) if maxfrag is -1, accept
|
|
* all fragments without limitation.
|
|
*/
|
|
if (ip_maxfragpackets < 0)
|
|
;
|
|
else if (ip_nfragpackets >= ip_maxfragpackets) {
|
|
goto dropfrag;
|
|
}
|
|
ip_nfragpackets++;
|
|
fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
|
|
if (fp == NULL) {
|
|
goto dropfrag;
|
|
}
|
|
TAILQ_INIT(&fp->ipq_fragq);
|
|
fp->ipq_nfrags = 1;
|
|
fp->ipq_ttl = IPFRAGTTL;
|
|
fp->ipq_p = ip->ip_p;
|
|
fp->ipq_id = ip->ip_id;
|
|
fp->ipq_tos = ip->ip_tos;
|
|
fp->ipq_src = ip->ip_src;
|
|
fp->ipq_dst = ip->ip_dst;
|
|
LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
|
|
p = NULL;
|
|
goto insert;
|
|
} else {
|
|
fp->ipq_nfrags++;
|
|
}
|
|
|
|
/*
|
|
* Find a segment which begins after this one does.
|
|
*/
|
|
TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
|
|
if (ntohs(q->ipqe_ip->ip_off) > ntohs(ip->ip_off))
|
|
break;
|
|
}
|
|
if (q != NULL) {
|
|
p = TAILQ_PREV(q, ipfr_qent_head, ipqe_q);
|
|
} else {
|
|
p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
|
|
}
|
|
|
|
/*
|
|
* If there is a preceding segment, it may provide some of our
|
|
* data already. If so, drop the data from the incoming segment.
|
|
* If it provides all of our data, drop us.
|
|
*/
|
|
if (p != NULL) {
|
|
i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
|
|
ntohs(ip->ip_off);
|
|
if (i > 0) {
|
|
if (i >= ntohs(ip->ip_len)) {
|
|
goto dropfrag;
|
|
}
|
|
m_adj(ipqe->ipqe_m, i);
|
|
ip->ip_off = htons(ntohs(ip->ip_off) + i);
|
|
ip->ip_len = htons(ntohs(ip->ip_len) - i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* While we overlap succeeding segments trim them or, if they are
|
|
* completely covered, dequeue them.
|
|
*/
|
|
while (q != NULL) {
|
|
size_t end;
|
|
|
|
qip = q->ipqe_ip;
|
|
end = ntohs(ip->ip_off) + ntohs(ip->ip_len);
|
|
if (end <= ntohs(qip->ip_off)) {
|
|
break;
|
|
}
|
|
i = end - ntohs(qip->ip_off);
|
|
if (i < ntohs(qip->ip_len)) {
|
|
qip->ip_len = htons(ntohs(qip->ip_len) - i);
|
|
qip->ip_off = htons(ntohs(qip->ip_off) + i);
|
|
m_adj(q->ipqe_m, i);
|
|
break;
|
|
}
|
|
nq = TAILQ_NEXT(q, ipqe_q);
|
|
m_freem(q->ipqe_m);
|
|
TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
|
|
pool_cache_put(ipfren_cache, q);
|
|
fp->ipq_nfrags--;
|
|
ip_nfrags--;
|
|
q = nq;
|
|
}
|
|
|
|
insert:
|
|
/*
|
|
* Stick new segment in its place; check for complete reassembly.
|
|
*/
|
|
if (p == NULL) {
|
|
TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
|
|
} else {
|
|
TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
|
|
}
|
|
next = 0;
|
|
TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
|
|
qip = q->ipqe_ip;
|
|
if (ntohs(qip->ip_off) != next) {
|
|
mutex_exit(&ipfr_lock);
|
|
return NULL;
|
|
}
|
|
next += ntohs(qip->ip_len);
|
|
}
|
|
p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
|
|
if (p->ipqe_mff) {
|
|
mutex_exit(&ipfr_lock);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Reassembly is complete. Check for a bogus message size.
|
|
*/
|
|
q = TAILQ_FIRST(&fp->ipq_fragq);
|
|
ip = q->ipqe_ip;
|
|
if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
|
|
IP_STATINC(IP_STAT_TOOLONG);
|
|
ip_freef(fp);
|
|
mutex_exit(&ipfr_lock);
|
|
return NULL;
|
|
}
|
|
LIST_REMOVE(fp, ipq_q);
|
|
ip_nfrags -= fp->ipq_nfrags;
|
|
ip_nfragpackets--;
|
|
mutex_exit(&ipfr_lock);
|
|
|
|
/* Concatenate all fragments. */
|
|
m = q->ipqe_m;
|
|
t = m->m_next;
|
|
m->m_next = NULL;
|
|
m_cat(m, t);
|
|
nq = TAILQ_NEXT(q, ipqe_q);
|
|
pool_cache_put(ipfren_cache, q);
|
|
|
|
for (q = nq; q != NULL; q = nq) {
|
|
t = q->ipqe_m;
|
|
nq = TAILQ_NEXT(q, ipqe_q);
|
|
pool_cache_put(ipfren_cache, q);
|
|
m_cat(m, t);
|
|
}
|
|
|
|
/*
|
|
* Create header for new packet by modifying header of first
|
|
* packet. Dequeue and discard fragment reassembly header. Make
|
|
* header visible.
|
|
*/
|
|
ip->ip_len = htons((ip->ip_hl << 2) + next);
|
|
ip->ip_src = fp->ipq_src;
|
|
ip->ip_dst = fp->ipq_dst;
|
|
free(fp, M_FTABLE);
|
|
|
|
m->m_len += (ip->ip_hl << 2);
|
|
m->m_data -= (ip->ip_hl << 2);
|
|
|
|
/* Fix up mbuf. XXX This should be done elsewhere. */
|
|
if (m->m_flags & M_PKTHDR) {
|
|
int plen = 0;
|
|
for (t = m; t; t = t->m_next) {
|
|
plen += t->m_len;
|
|
}
|
|
m->m_pkthdr.len = plen;
|
|
m->m_pkthdr.csum_flags = 0;
|
|
}
|
|
return m;
|
|
|
|
dropfrag:
|
|
if (fp != NULL) {
|
|
fp->ipq_nfrags--;
|
|
}
|
|
ip_nfrags--;
|
|
IP_STATINC(IP_STAT_FRAGDROPPED);
|
|
mutex_exit(&ipfr_lock);
|
|
|
|
pool_cache_put(ipfren_cache, ipqe);
|
|
m_freem(m);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* ip_freef:
|
|
*
|
|
* Free a fragment reassembly header and all associated datagrams.
|
|
*/
|
|
static void
|
|
ip_freef(ipfr_queue_t *fp)
|
|
{
|
|
ipfr_qent_t *q;
|
|
|
|
KASSERT(mutex_owned(&ipfr_lock));
|
|
|
|
LIST_REMOVE(fp, ipq_q);
|
|
ip_nfrags -= fp->ipq_nfrags;
|
|
ip_nfragpackets--;
|
|
|
|
while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) {
|
|
TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
|
|
m_freem(q->ipqe_m);
|
|
pool_cache_put(ipfren_cache, q);
|
|
}
|
|
free(fp, M_FTABLE);
|
|
}
|
|
|
|
/*
|
|
* ip_reass_ttl_decr:
|
|
*
|
|
* Decrement TTL of all reasembly queue entries by `ticks'. Count
|
|
* number of distinct fragments (as opposed to partial, fragmented
|
|
* datagrams) inthe reassembly queue. While we traverse the entire
|
|
* reassembly queue, compute and return the median TTL over all
|
|
* fragments.
|
|
*/
|
|
static u_int
|
|
ip_reass_ttl_decr(u_int ticks)
|
|
{
|
|
u_int nfrags, median, dropfraction, keepfraction;
|
|
ipfr_queue_t *fp, *nfp;
|
|
int i;
|
|
|
|
nfrags = 0;
|
|
memset(fragttl_histo, 0, sizeof(fragttl_histo));
|
|
|
|
for (i = 0; i < IPREASS_HASH_SIZE; i++) {
|
|
for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
|
|
fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
|
|
0 : fp->ipq_ttl - ticks);
|
|
nfp = LIST_NEXT(fp, ipq_q);
|
|
if (fp->ipq_ttl == 0) {
|
|
IP_STATINC(IP_STAT_FRAGTIMEOUT);
|
|
ip_freef(fp);
|
|
} else {
|
|
nfrags += fp->ipq_nfrags;
|
|
fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
|
|
}
|
|
}
|
|
}
|
|
|
|
KASSERT(ip_nfrags == nfrags);
|
|
|
|
/* Find median (or other drop fraction) in histogram. */
|
|
dropfraction = (ip_nfrags / 2);
|
|
keepfraction = ip_nfrags - dropfraction;
|
|
for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
|
|
median += fragttl_histo[i];
|
|
if (median >= keepfraction)
|
|
break;
|
|
}
|
|
|
|
/* Return TTL of median (or other fraction). */
|
|
return (u_int)i;
|
|
}
|
|
|
|
static void
|
|
ip_reass_drophalf(void)
|
|
{
|
|
u_int median_ticks;
|
|
|
|
KASSERT(mutex_owned(&ipfr_lock));
|
|
|
|
/*
|
|
* Compute median TTL of all fragments, and count frags
|
|
* with that TTL or lower (roughly half of all fragments).
|
|
*/
|
|
median_ticks = ip_reass_ttl_decr(0);
|
|
|
|
/* Drop half. */
|
|
median_ticks = ip_reass_ttl_decr(median_ticks);
|
|
}
|
|
|
|
/*
|
|
* ip_reass_drain: drain off all datagram fragments. Do not acquire
|
|
* softnet_lock as can be called from hardware interrupt context.
|
|
*/
|
|
void
|
|
ip_reass_drain(void)
|
|
{
|
|
|
|
/*
|
|
* We may be called from a device's interrupt context. If
|
|
* the ipq is already busy, just bail out now.
|
|
*/
|
|
if (mutex_tryenter(&ipfr_lock)) {
|
|
/*
|
|
* Drop half the total fragments now. If more mbufs are
|
|
* needed, we will be called again soon.
|
|
*/
|
|
ip_reass_drophalf();
|
|
mutex_exit(&ipfr_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ip_reass_slowtimo:
|
|
*
|
|
* If a timer expires on a reassembly queue, discard it.
|
|
*/
|
|
void
|
|
ip_reass_slowtimo(void)
|
|
{
|
|
static u_int dropscanidx = 0;
|
|
u_int i, median_ttl;
|
|
|
|
mutex_enter(&ipfr_lock);
|
|
|
|
/* Age TTL of all fragments by 1 tick .*/
|
|
median_ttl = ip_reass_ttl_decr(1);
|
|
|
|
/* Make sure fragment limit is up-to-date. */
|
|
CHECK_NMBCLUSTER_PARAMS();
|
|
|
|
/* If we have too many fragments, drop the older half. */
|
|
if (ip_nfrags > ip_maxfrags) {
|
|
ip_reass_ttl_decr(median_ttl);
|
|
}
|
|
|
|
/*
|
|
* If we are over the maximum number of fragmented packets (due to
|
|
* the limit being lowered), drain off enough to get down to the
|
|
* new limit. Start draining from the reassembly hashqueue most
|
|
* recently drained.
|
|
*/
|
|
if (ip_maxfragpackets < 0)
|
|
;
|
|
else {
|
|
int wrapped = 0;
|
|
|
|
i = dropscanidx;
|
|
while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
|
|
while (LIST_FIRST(&ip_frags[i]) != NULL) {
|
|
ip_freef(LIST_FIRST(&ip_frags[i]));
|
|
}
|
|
if (++i >= IPREASS_HASH_SIZE) {
|
|
i = 0;
|
|
}
|
|
/*
|
|
* Do not scan forever even if fragment counters are
|
|
* wrong: stop after scanning entire reassembly queue.
|
|
*/
|
|
if (i == dropscanidx) {
|
|
wrapped = 1;
|
|
}
|
|
}
|
|
dropscanidx = i;
|
|
}
|
|
mutex_exit(&ipfr_lock);
|
|
}
|
|
|
|
/*
|
|
* ip_reass_packet: generic routine to perform IP reassembly.
|
|
*
|
|
* => Passed fragment should have IP_MF flag and/or offset set.
|
|
* => Fragment should not have other than IP_MF flags set.
|
|
*
|
|
* => Returns 0 on success or error otherwise.
|
|
* => On complete, m0 represents a constructed final packet.
|
|
*/
|
|
int
|
|
ip_reass_packet(struct mbuf **m0, struct ip *ip)
|
|
{
|
|
const int hlen = ip->ip_hl << 2;
|
|
const int len = ntohs(ip->ip_len);
|
|
struct mbuf *m = *m0;
|
|
ipfr_queue_t *fp;
|
|
ipfr_qent_t *ipqe;
|
|
u_int hash, off, flen;
|
|
bool mff;
|
|
|
|
/*
|
|
* Prevent TCP blind data attacks by not allowing non-initial
|
|
* fragments to start at less than 68 bytes (minimal fragment
|
|
* size) and making sure the first fragment is at least 68
|
|
* bytes.
|
|
*/
|
|
off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
|
|
if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
|
|
IP_STATINC(IP_STAT_BADFRAGS);
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Fragment length and MF flag. Make sure that fragments have
|
|
* a data length which is non-zero and multiple of 8 bytes.
|
|
*/
|
|
flen = ntohs(ip->ip_len) - hlen;
|
|
mff = (ip->ip_off & htons(IP_MF)) != 0;
|
|
if (mff && (flen == 0 || (flen & 0x7) != 0)) {
|
|
IP_STATINC(IP_STAT_BADFRAGS);
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Adjust total IP length to not reflect header and convert
|
|
* offset of this to bytes. XXX: clobbers struct ip.
|
|
*/
|
|
ip->ip_len = htons(flen);
|
|
ip->ip_off = htons(off);
|
|
|
|
/* Look for queue of fragments of this datagram. */
|
|
mutex_enter(&ipfr_lock);
|
|
hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
|
|
LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
|
|
if (ip->ip_id != fp->ipq_id)
|
|
continue;
|
|
if (!in_hosteq(ip->ip_src, fp->ipq_src))
|
|
continue;
|
|
if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
|
|
continue;
|
|
if (ip->ip_p != fp->ipq_p)
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
/* Make sure that TOS matches previous fragments. */
|
|
if (fp && fp->ipq_tos != ip->ip_tos) {
|
|
IP_STATINC(IP_STAT_BADFRAGS);
|
|
mutex_exit(&ipfr_lock);
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Create new entry and attempt to reassembly.
|
|
*/
|
|
IP_STATINC(IP_STAT_FRAGMENTS);
|
|
ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT);
|
|
if (ipqe == NULL) {
|
|
IP_STATINC(IP_STAT_RCVMEMDROP);
|
|
mutex_exit(&ipfr_lock);
|
|
return ENOMEM;
|
|
}
|
|
ipqe->ipqe_mff = mff;
|
|
ipqe->ipqe_m = m;
|
|
ipqe->ipqe_ip = ip;
|
|
|
|
*m0 = ip_reass(ipqe, fp, hash);
|
|
if (*m0) {
|
|
/* Note that finally reassembled. */
|
|
IP_STATINC(IP_STAT_REASSEMBLED);
|
|
}
|
|
return 0;
|
|
}
|