624 lines
16 KiB
C
624 lines
16 KiB
C
/*-
|
||
* This code is derived from software copyrighted by the Free Software
|
||
* Foundation.
|
||
*
|
||
* Modified 1991 by Donn Seeley at UUNET Technologies, Inc.
|
||
* Modified 1990 by Van Jacobson at Lawrence Berkeley Laboratory.
|
||
*/
|
||
|
||
#ifndef lint
|
||
/*static char sccsid[] = "from: @(#)blockframe.c 6.4 (Berkeley) 5/11/91";*/
|
||
static char rcsid[] = "$Id: blockframe.c,v 1.2 1993/08/01 18:47:25 mycroft Exp $";
|
||
#endif /* not lint */
|
||
|
||
/* Get info from stack frames;
|
||
convert between frames, blocks, functions and pc values.
|
||
Copyright (C) 1986, 1987, 1988, 1989 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
GDB is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 1, or (at your option)
|
||
any later version.
|
||
|
||
GDB is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GDB; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "param.h"
|
||
#include "symtab.h"
|
||
#include "frame.h"
|
||
|
||
#include <obstack.h>
|
||
|
||
#if defined(NEWVM) && defined(KERNELDEBUG)
|
||
#include <sys/param.h> /* XXX for FRAME_CHAIN_VALID */
|
||
#endif
|
||
|
||
/* Start and end of object file containing the entry point.
|
||
STARTUP_FILE_END is the first address of the next file.
|
||
This file is assumed to be a startup file
|
||
and frames with pc's inside it
|
||
are treated as nonexistent.
|
||
|
||
Setting these variables is necessary so that backtraces do not fly off
|
||
the bottom of the stack. */
|
||
CORE_ADDR startup_file_start;
|
||
CORE_ADDR startup_file_end;
|
||
|
||
/* Is ADDR outside the startup file? */
|
||
int
|
||
outside_startup_file (addr)
|
||
CORE_ADDR addr;
|
||
{
|
||
return !(addr >= startup_file_start && addr < startup_file_end);
|
||
}
|
||
|
||
/* Address of innermost stack frame (contents of FP register) */
|
||
|
||
static FRAME current_frame;
|
||
|
||
struct block *block_for_pc ();
|
||
CORE_ADDR get_pc_function_start ();
|
||
|
||
/*
|
||
* Cache for frame addresses already read by gdb. Valid only while
|
||
* inferior is stopped. Control variables for the frame cache should
|
||
* be local to this module.
|
||
*/
|
||
struct obstack frame_cache_obstack;
|
||
|
||
/* Return the innermost (currently executing) stack frame. */
|
||
|
||
FRAME
|
||
get_current_frame ()
|
||
{
|
||
/* We assume its address is kept in a general register;
|
||
param.h says which register. */
|
||
|
||
return current_frame;
|
||
}
|
||
|
||
void
|
||
set_current_frame (frame)
|
||
FRAME frame;
|
||
{
|
||
current_frame = frame;
|
||
}
|
||
|
||
FRAME
|
||
create_new_frame (addr, pc)
|
||
FRAME_ADDR addr;
|
||
CORE_ADDR pc;
|
||
{
|
||
struct frame_info *fci; /* Same type as FRAME */
|
||
|
||
fci = (struct frame_info *)
|
||
obstack_alloc (&frame_cache_obstack,
|
||
sizeof (struct frame_info));
|
||
|
||
/* Arbitrary frame */
|
||
fci->next = (struct frame_info *) 0;
|
||
fci->prev = (struct frame_info *) 0;
|
||
fci->frame = addr;
|
||
fci->next_frame = 0; /* Since arbitrary */
|
||
fci->pc = pc;
|
||
|
||
#ifdef INIT_EXTRA_FRAME_INFO
|
||
INIT_EXTRA_FRAME_INFO (fci);
|
||
#endif
|
||
|
||
return fci;
|
||
}
|
||
|
||
/* Return the frame that called FRAME.
|
||
If FRAME is the original frame (it has no caller), return 0. */
|
||
|
||
FRAME
|
||
get_prev_frame (frame)
|
||
FRAME frame;
|
||
{
|
||
/* We're allowed to know that FRAME and "struct frame_info *" are
|
||
the same */
|
||
return get_prev_frame_info (frame);
|
||
}
|
||
|
||
/* Return the frame that FRAME calls (0 if FRAME is the innermost
|
||
frame). */
|
||
|
||
FRAME
|
||
get_next_frame (frame)
|
||
FRAME frame;
|
||
{
|
||
/* We're allowed to know that FRAME and "struct frame_info *" are
|
||
the same */
|
||
return frame->next;
|
||
}
|
||
|
||
/*
|
||
* Flush the entire frame cache.
|
||
*/
|
||
void
|
||
flush_cached_frames ()
|
||
{
|
||
/* Since we can't really be sure what the first object allocated was */
|
||
obstack_free (&frame_cache_obstack, 0);
|
||
obstack_init (&frame_cache_obstack);
|
||
|
||
current_frame = (struct frame_info *) 0; /* Invalidate cache */
|
||
}
|
||
|
||
/* Return a structure containing various interesting information
|
||
about a specified stack frame. */
|
||
/* How do I justify including this function? Well, the FRAME
|
||
identifier format has gone through several changes recently, and
|
||
it's not completely inconceivable that it could happen again. If
|
||
it does, have this routine around will help */
|
||
|
||
struct frame_info *
|
||
get_frame_info (frame)
|
||
FRAME frame;
|
||
{
|
||
return frame;
|
||
}
|
||
|
||
/* If a machine allows frameless functions, it should define a macro
|
||
FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) in param.h. FI is the struct
|
||
frame_info for the frame, and FRAMELESS should be set to nonzero
|
||
if it represents a frameless function invocation. */
|
||
|
||
/* Many machines which allow frameless functions can detect them using
|
||
this macro. Such machines should define FRAMELESS_FUNCTION_INVOCATION
|
||
to just call this macro. */
|
||
#define FRAMELESS_LOOK_FOR_PROLOGUE(FI, FRAMELESS) \
|
||
{ \
|
||
CORE_ADDR func_start, after_prologue; \
|
||
func_start = (get_pc_function_start ((FI)->pc) + \
|
||
FUNCTION_START_OFFSET); \
|
||
if (func_start) \
|
||
{ \
|
||
after_prologue = func_start; \
|
||
SKIP_PROLOGUE (after_prologue); \
|
||
(FRAMELESS) = (after_prologue == func_start); \
|
||
} \
|
||
else \
|
||
/* If we can't find the start of the function, we don't really */ \
|
||
/* know whether the function is frameless, but we should be */ \
|
||
/* able to get a reasonable (i.e. best we can do under the */ \
|
||
/* circumstances) backtrace by saying that it isn't. */ \
|
||
(FRAMELESS) = 0; \
|
||
}
|
||
|
||
/* Return a structure containing various interesting information
|
||
about the frame that called NEXT_FRAME. Returns NULL
|
||
if there is no such frame. */
|
||
|
||
struct frame_info *
|
||
get_prev_frame_info (next_frame)
|
||
FRAME next_frame;
|
||
{
|
||
FRAME_ADDR address;
|
||
struct frame_info *prev;
|
||
int fromleaf = 0;
|
||
|
||
/* If the requested entry is in the cache, return it.
|
||
Otherwise, figure out what the address should be for the entry
|
||
we're about to add to the cache. */
|
||
|
||
if (!next_frame)
|
||
{
|
||
if (!current_frame)
|
||
{
|
||
if (!have_inferior_p () && !have_core_file_p ())
|
||
fatal ("get_prev_frame_info: Called before cache primed. \"Shouldn't happen.\"");
|
||
else
|
||
error ("No inferior or core file.");
|
||
}
|
||
|
||
return current_frame;
|
||
}
|
||
|
||
/* If we have the prev one, return it */
|
||
if (next_frame->prev)
|
||
return next_frame->prev;
|
||
|
||
/* On some machines it is possible to call a function without
|
||
setting up a stack frame for it. On these machines, we
|
||
define this macro to take two args; a frameinfo pointer
|
||
identifying a frame and a variable to set or clear if it is
|
||
or isn't leafless. */
|
||
#ifdef FRAMELESS_FUNCTION_INVOCATION
|
||
/* Still don't want to worry about this except on the innermost
|
||
frame. This macro will set FROMLEAF if NEXT_FRAME is a
|
||
frameless function invocation. */
|
||
if (!(next_frame->next))
|
||
{
|
||
FRAMELESS_FUNCTION_INVOCATION (next_frame, fromleaf);
|
||
if (fromleaf)
|
||
address = next_frame->frame;
|
||
}
|
||
#endif
|
||
|
||
if (!fromleaf)
|
||
{
|
||
/* Two macros defined in param.h specify the machine-dependent
|
||
actions to be performed here.
|
||
First, get the frame's chain-pointer.
|
||
If that is zero, the frame is the outermost frame or a leaf
|
||
called by the outermost frame. This means that if start
|
||
calls main without a frame, we'll return 0 (which is fine
|
||
anyway).
|
||
|
||
Nope; there's a problem. This also returns when the current
|
||
routine is a leaf of main. This is unacceptable. We move
|
||
this to after the ffi test; I'd rather have backtraces from
|
||
start go curfluy than have an abort called from main not show
|
||
main. */
|
||
address = FRAME_CHAIN (next_frame);
|
||
if (!FRAME_CHAIN_VALID (address, next_frame))
|
||
return 0;
|
||
/* If this frame is a leaf, this will be superceeded by the
|
||
code below. */
|
||
address = FRAME_CHAIN_COMBINE (address, next_frame);
|
||
}
|
||
if (address == 0)
|
||
return 0;
|
||
|
||
prev = (struct frame_info *)
|
||
obstack_alloc (&frame_cache_obstack,
|
||
sizeof (struct frame_info));
|
||
|
||
if (next_frame)
|
||
next_frame->prev = prev;
|
||
prev->next = next_frame;
|
||
prev->prev = (struct frame_info *) 0;
|
||
prev->frame = address;
|
||
prev->next_frame = prev->next ? prev->next->frame : 0;
|
||
|
||
#ifdef INIT_EXTRA_FRAME_INFO
|
||
INIT_EXTRA_FRAME_INFO(prev);
|
||
#endif
|
||
|
||
/* This entry is in the frame queue now, which is good since
|
||
FRAME_SAVED_PC may use that queue to figure out it's value
|
||
(see m-sparc.h). We want the pc saved in the inferior frame. */
|
||
prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (next_frame) :
|
||
next_frame ? FRAME_SAVED_PC (next_frame) : read_pc ());
|
||
|
||
return prev;
|
||
}
|
||
|
||
CORE_ADDR
|
||
get_frame_pc (frame)
|
||
FRAME frame;
|
||
{
|
||
struct frame_info *fi;
|
||
fi = get_frame_info (frame);
|
||
return fi->pc;
|
||
}
|
||
|
||
/* Find the addresses in which registers are saved in FRAME. */
|
||
|
||
void
|
||
get_frame_saved_regs (frame_info_addr, saved_regs_addr)
|
||
struct frame_info *frame_info_addr;
|
||
struct frame_saved_regs *saved_regs_addr;
|
||
{
|
||
FRAME_FIND_SAVED_REGS (frame_info_addr, *saved_regs_addr);
|
||
}
|
||
|
||
/* Return the innermost lexical block in execution
|
||
in a specified stack frame. The frame address is assumed valid. */
|
||
|
||
struct block *
|
||
get_frame_block (frame)
|
||
FRAME frame;
|
||
{
|
||
struct frame_info *fi;
|
||
CORE_ADDR pc;
|
||
|
||
fi = get_frame_info (frame);
|
||
|
||
pc = fi->pc;
|
||
if (fi->next_frame != 0)
|
||
/* We are not in the innermost frame. We need to subtract one to
|
||
get the correct block, in case the call instruction was the
|
||
last instruction of the block. If there are any machines on
|
||
which the saved pc does not point to after the call insn, we
|
||
probably want to make fi->pc point after the call insn anyway. */
|
||
--pc;
|
||
return block_for_pc (pc);
|
||
}
|
||
|
||
struct block *
|
||
get_current_block ()
|
||
{
|
||
return block_for_pc (read_pc ());
|
||
}
|
||
|
||
CORE_ADDR
|
||
get_pc_function_start (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
register struct block *bl = block_for_pc (pc);
|
||
register struct symbol *symbol;
|
||
if (bl == 0 || (symbol = block_function (bl)) == 0)
|
||
{
|
||
register int misc_index = find_pc_misc_function (pc);
|
||
if (misc_index >= 0)
|
||
return misc_function_vector[misc_index].address;
|
||
return 0;
|
||
}
|
||
bl = SYMBOL_BLOCK_VALUE (symbol);
|
||
return BLOCK_START (bl);
|
||
}
|
||
|
||
/* Return the symbol for the function executing in frame FRAME. */
|
||
|
||
struct symbol *
|
||
get_frame_function (frame)
|
||
FRAME frame;
|
||
{
|
||
register struct block *bl = get_frame_block (frame);
|
||
if (bl == 0)
|
||
return 0;
|
||
return block_function (bl);
|
||
}
|
||
|
||
/* Return the innermost lexical block containing the specified pc value,
|
||
or 0 if there is none. */
|
||
|
||
extern struct symtab *psymtab_to_symtab ();
|
||
|
||
struct block *
|
||
block_for_pc (pc)
|
||
register CORE_ADDR pc;
|
||
{
|
||
register struct block *b;
|
||
register int bot, top, half;
|
||
register struct symtab *s;
|
||
register struct partial_symtab *ps;
|
||
struct blockvector *bl;
|
||
|
||
/* First search all symtabs for one whose file contains our pc */
|
||
|
||
for (s = symtab_list; s; s = s->next)
|
||
{
|
||
bl = BLOCKVECTOR (s);
|
||
b = BLOCKVECTOR_BLOCK (bl, 0);
|
||
if (BLOCK_START (b) <= pc
|
||
&& BLOCK_END (b) > pc)
|
||
break;
|
||
}
|
||
|
||
if (s == 0)
|
||
for (ps = partial_symtab_list; ps; ps = ps->next)
|
||
{
|
||
if (ps->textlow <= pc
|
||
&& ps->texthigh > pc)
|
||
{
|
||
if (ps->readin)
|
||
fatal ("Internal error: pc found in readin psymtab and not in any symtab.");
|
||
s = psymtab_to_symtab (ps);
|
||
bl = BLOCKVECTOR (s);
|
||
b = BLOCKVECTOR_BLOCK (bl, 0);
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (s == 0)
|
||
return 0;
|
||
|
||
/* Then search that symtab for the smallest block that wins. */
|
||
/* Use binary search to find the last block that starts before PC. */
|
||
|
||
bot = 0;
|
||
top = BLOCKVECTOR_NBLOCKS (bl);
|
||
|
||
while (top - bot > 1)
|
||
{
|
||
half = (top - bot + 1) >> 1;
|
||
b = BLOCKVECTOR_BLOCK (bl, bot + half);
|
||
if (BLOCK_START (b) <= pc)
|
||
bot += half;
|
||
else
|
||
top = bot + half;
|
||
}
|
||
|
||
/* Now search backward for a block that ends after PC. */
|
||
|
||
while (bot >= 0)
|
||
{
|
||
b = BLOCKVECTOR_BLOCK (bl, bot);
|
||
if (BLOCK_END (b) > pc)
|
||
return b;
|
||
bot--;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the function containing pc value PC.
|
||
Returns 0 if function is not known. */
|
||
|
||
struct symbol *
|
||
find_pc_function (pc)
|
||
CORE_ADDR pc;
|
||
{
|
||
register struct block *b = block_for_pc (pc);
|
||
if (b == 0)
|
||
return 0;
|
||
return block_function (b);
|
||
}
|
||
|
||
/* Finds the "function" (text symbol) that is smaller than PC
|
||
but greatest of all of the potential text symbols. Sets
|
||
*NAME and/or *ADDRESS conditionally if that pointer is non-zero.
|
||
Returns 0 if it couldn't find anything, 1 if it did. On a zero
|
||
return, *NAME and *ADDRESS are always set to zero. On a 1 return,
|
||
*NAME and *ADDRESS contain real information. */
|
||
|
||
int
|
||
find_pc_partial_function (pc, name, address)
|
||
CORE_ADDR pc;
|
||
char **name;
|
||
CORE_ADDR *address;
|
||
{
|
||
struct partial_symtab *pst = find_pc_psymtab (pc);
|
||
struct symbol *f;
|
||
int miscfunc;
|
||
struct partial_symbol *psb;
|
||
|
||
if (pst)
|
||
{
|
||
if (pst->readin)
|
||
{
|
||
/* The information we want has already been read in.
|
||
We can go to the already readin symbols and we'll get
|
||
the best possible answer. */
|
||
f = find_pc_function (pc);
|
||
if (!f)
|
||
{
|
||
return_error:
|
||
/* No availible symbol. */
|
||
if (name != 0)
|
||
*name = 0;
|
||
if (address != 0)
|
||
*address = 0;
|
||
return 0;
|
||
}
|
||
|
||
if (name)
|
||
*name = SYMBOL_NAME (f);
|
||
if (address)
|
||
*address = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
|
||
return 1;
|
||
}
|
||
|
||
/* Get the information from a combination of the pst
|
||
(static symbols), and the misc function vector (extern
|
||
symbols). */
|
||
miscfunc = find_pc_misc_function (pc);
|
||
psb = find_pc_psymbol (pst, pc);
|
||
|
||
if (!psb && miscfunc == -1)
|
||
{
|
||
goto return_error;
|
||
}
|
||
if (!psb
|
||
|| (miscfunc != -1
|
||
&& (SYMBOL_VALUE(psb)
|
||
< misc_function_vector[miscfunc].address)))
|
||
{
|
||
if (address)
|
||
*address = misc_function_vector[miscfunc].address;
|
||
if (name)
|
||
*name = misc_function_vector[miscfunc].name;
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
if (address)
|
||
*address = SYMBOL_VALUE (psb);
|
||
if (name)
|
||
*name = SYMBOL_NAME (psb);
|
||
return 1;
|
||
}
|
||
}
|
||
else
|
||
/* Must be in the misc function stuff. */
|
||
{
|
||
miscfunc = find_pc_misc_function (pc);
|
||
if (miscfunc == -1)
|
||
goto return_error;
|
||
if (address)
|
||
*address = misc_function_vector[miscfunc].address;
|
||
if (name)
|
||
*name = misc_function_vector[miscfunc].name;
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Find the misc function whose address is the largest
|
||
while being less than PC. Return its index in misc_function_vector.
|
||
Returns -1 if PC is not in suitable range. */
|
||
|
||
int
|
||
find_pc_misc_function (pc)
|
||
register CORE_ADDR pc;
|
||
{
|
||
register int lo = 0;
|
||
register int hi = misc_function_count-1;
|
||
register int new;
|
||
register int distance;
|
||
|
||
/* Note that the last thing in the vector is always _etext. */
|
||
/* Actually, "end", now that non-functions
|
||
go on the misc_function_vector. */
|
||
|
||
/* Above statement is not *always* true - fix for case where there are */
|
||
/* no misc functions at all (ie no symbol table has been read). */
|
||
if (hi < 0) return -1; /* no misc functions recorded */
|
||
|
||
/* trivial reject range test */
|
||
if (pc < misc_function_vector[0].address ||
|
||
pc > misc_function_vector[hi].address)
|
||
return -1;
|
||
|
||
/* Note that the following search will not return hi if
|
||
pc == misc_function_vector[hi].address. If "end" points to the
|
||
first unused location, this is correct and the above test
|
||
simply needs to be changed to
|
||
"pc >= misc_function_vector[hi].address". */
|
||
do {
|
||
new = (lo + hi) >> 1;
|
||
distance = misc_function_vector[new].address - pc;
|
||
if (distance == 0)
|
||
return new; /* an exact match */
|
||
else if (distance > 0)
|
||
hi = new;
|
||
else
|
||
lo = new;
|
||
} while (hi-lo != 1);
|
||
|
||
/* if here, we had no exact match, so return the lower choice */
|
||
return lo;
|
||
}
|
||
|
||
/* Return the innermost stack frame executing inside of the specified block,
|
||
or zero if there is no such frame. */
|
||
|
||
FRAME
|
||
block_innermost_frame (block)
|
||
struct block *block;
|
||
{
|
||
struct frame_info *fi;
|
||
register FRAME frame;
|
||
register CORE_ADDR start = BLOCK_START (block);
|
||
register CORE_ADDR end = BLOCK_END (block);
|
||
|
||
frame = 0;
|
||
while (1)
|
||
{
|
||
frame = get_prev_frame (frame);
|
||
if (frame == 0)
|
||
return 0;
|
||
fi = get_frame_info (frame);
|
||
if (fi->pc >= start && fi->pc < end)
|
||
return frame;
|
||
}
|
||
}
|
||
|
||
void
|
||
_initialize_blockframe ()
|
||
{
|
||
obstack_init (&frame_cache_obstack);
|
||
}
|