NetBSD/sys/dev/ic/ath.c
dyoung 3644406951 Attach the ath(4) sysctls:
ath.dwell: channel dwell time (ms) for AP/station scanning
ath.calibrate: chip calibration interval (secs)
ath.outdoor: enable/disable outdoor operation
ath.countrycode: (opaque?) country code
ath.regdomain: (opaque?) regulatory domain
ath.debug: 0 (no debug messages), 1 (some messages), 2 (all messages)
2004-03-01 01:19:45 +00:00

3553 lines
95 KiB
C

/* $NetBSD: ath.c,v 1.20 2004/03/01 01:19:45 dyoung Exp $ */
/*-
* Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
#include <sys/cdefs.h>
#ifdef __FreeBSD__
__FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.36 2003/11/29 01:23:59 sam Exp $");
#endif
#ifdef __NetBSD__
__KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.20 2004/03/01 01:19:45 dyoung Exp $");
#endif
/*
* Driver for the Atheros Wireless LAN controller.
*
* This software is derived from work of Atsushi Onoe; his contribution
* is greatly appreciated.
*/
#include "opt_inet.h"
#ifdef __NetBSD__
#include "bpfilter.h"
#endif /* __NetBSD__ */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#ifdef __FreeBSD__
#include <sys/mutex.h>
#endif
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/errno.h>
#include <sys/callout.h>
#ifdef __FreeBSD__
#include <sys/bus.h>
#else
#include <machine/bus.h>
#endif
#include <sys/endian.h>
#include <machine/bus.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_arp.h>
#ifdef __FreeBSD__
#include <net/ethernet.h>
#else
#include <net/if_ether.h>
#endif
#include <net/if_llc.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_compat.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#ifdef INET
#include <netinet/in.h>
#endif
#include <dev/ic/athcompat.h>
#define AR_DEBUG
#ifdef __FreeBSD__
#include <dev/ath/if_athvar.h>
#include <contrib/dev/ath/ah_desc.h>
#else
#include <dev/ic/athvar.h>
#include <../contrib/sys/dev/ic/athhal_desc.h>
#endif
/* unaligned little endian access */
#define LE_READ_2(p) \
((u_int16_t) \
((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
#define LE_READ_4(p) \
((u_int32_t) \
((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
(((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
#ifdef __FreeBSD__
static void ath_init(void *);
#else
static int ath_init(struct ifnet *);
#endif
static int ath_init1(struct ath_softc *);
static int ath_intr1(struct ath_softc *);
static void ath_stop(struct ifnet *);
static void ath_start(struct ifnet *);
static void ath_reset(struct ath_softc *);
static int ath_media_change(struct ifnet *);
static void ath_watchdog(struct ifnet *);
static int ath_ioctl(struct ifnet *, u_long, caddr_t);
static void ath_fatal_proc(void *, int);
static void ath_rxorn_proc(void *, int);
static void ath_bmiss_proc(void *, int);
static void ath_initkeytable(struct ath_softc *);
static void ath_mode_init(struct ath_softc *);
static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
static void ath_beacon_proc(void *, int);
static void ath_beacon_free(struct ath_softc *);
static void ath_beacon_config(struct ath_softc *);
static int ath_desc_alloc(struct ath_softc *);
static void ath_desc_free(struct ath_softc *);
static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
static void ath_node_free(struct ieee80211com *, struct ieee80211_node *);
static void ath_node_copy(struct ieee80211com *,
struct ieee80211_node *, const struct ieee80211_node *);
static u_int8_t ath_node_getrssi(struct ieee80211com *,
struct ieee80211_node *);
static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
static void ath_rx_proc(void *, int);
static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
struct ath_buf *, struct mbuf *);
static void ath_tx_proc(void *, int);
static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
static void ath_draintxq(struct ath_softc *);
static void ath_stoprecv(struct ath_softc *);
static int ath_startrecv(struct ath_softc *);
static void ath_next_scan(void *);
static void ath_calibrate(void *);
static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
static void ath_newassoc(struct ieee80211com *,
struct ieee80211_node *, int);
static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
static int ath_rate_setup(struct ath_softc *sc, u_int mode);
static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
static void ath_rate_ctl(void *, struct ieee80211_node *);
#ifdef __NetBSD__
int ath_enable(struct ath_softc *);
void ath_disable(struct ath_softc *);
void ath_power(int, void *);
#endif
#ifdef __FreeBSD__
SYSCTL_DECL(_hw_ath);
/* XXX validate sysctl values */
SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
0, "channel dwell time (ms) for AP/station scanning");
SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
0, "chip calibration interval (secs)");
SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
0, "enable/disable outdoor operation");
SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
0, "country code");
SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
0, "regulatory domain");
#endif /* __FreeBSD__ */
#ifdef __NetBSD__
static struct sysctlnode *ath_node_root;
static int ath_dwelltime_nodenum, ath_calibrate_nodenum, ath_outdoor_nodenum,
ath_countrycode_nodenum, ath_regdomain_nodenum, ath_debug_nodenum;
#endif /* __NetBSD__ */
static int ath_dwelltime = 200; /* 5 channels/second */
static int ath_calinterval = 30; /* calibrate every 30 secs */
static int ath_outdoor = AH_TRUE; /* outdoor operation */
static int ath_countrycode = CTRY_DEFAULT; /* country code */
static int ath_regdomain = 0; /* regulatory domain */
#ifdef AR_DEBUG
int ath_debug = 0;
#ifdef __FreeBSD__
SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
0, "control debugging printfs");
#endif /* __FreeBSD__ */
#define IFF_DUMPPKTS(_ifp) \
(ath_debug || \
((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
static void ath_printrxbuf(struct ath_buf *bf, int);
static void ath_printtxbuf(struct ath_buf *bf, int);
#define DPRINTF(X) if (ath_debug) printf X
#define DPRINTF2(X) if (ath_debug > 1) printf X
#else
#define IFF_DUMPPKTS(_ifp) \
(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
#define DPRINTF(X)
#define DPRINTF2(X)
#endif
#ifdef __NetBSD__
int
ath_activate(struct device *self, enum devact act)
{
struct ath_softc *sc = (struct ath_softc *)self;
int rv = 0, s;
s = splnet();
switch (act) {
case DVACT_ACTIVATE:
rv = EOPNOTSUPP;
break;
case DVACT_DEACTIVATE:
if_deactivate(&sc->sc_ic.ic_if);
break;
}
splx(s);
return rv;
}
int
ath_enable(struct ath_softc *sc)
{
if (ATH_IS_ENABLED(sc) == 0) {
if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
printf("%s: device enable failed\n",
sc->sc_dev.dv_xname);
return (EIO);
}
sc->sc_flags |= ATH_ENABLED;
}
return (0);
}
void
ath_disable(struct ath_softc *sc)
{
if (!ATH_IS_ENABLED(sc))
return;
if (sc->sc_disable != NULL)
(*sc->sc_disable)(sc);
sc->sc_flags &= ~ATH_ENABLED;
}
static int
sysctl_ath_verify(SYSCTLFN_ARGS)
{
int error, t;
struct sysctlnode node;
node = *rnode;
t = *(int*)rnode->sysctl_data;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
node.sysctl_num, rnode->sysctl_num));
if (node.sysctl_num == ath_dwelltime_nodenum) {
if (t <= 0)
return (EINVAL);
} else if (node.sysctl_num == ath_calibrate_nodenum) {
if (t <= 0)
return (EINVAL);
#ifdef AR_DEBUG
} else if (node.sysctl_num == ath_debug_nodenum) {
if (t < 0 || t > 2)
return (EINVAL);
#endif /* AR_DEBUG */
} else
return (EINVAL);
*(int*)rnode->sysctl_data = t;
return (0);
}
/*
* Setup sysctl(3) MIB, ath.*.
*
* TBD condition SYSCTL_PERMANENT on being an LKM or not
*/
SYSCTL_SETUP(sysctl_ath, "sysctl ath subtree setup")
{
int rc;
struct sysctlnode *node = NULL;
if ((rc = sysctl_createv(SYSCTL_PERMANENT, CTLTYPE_NODE, "ath",
&node, NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
goto err;
ath_node_root = node;
node = NULL;
/* channel dwell time (ms) for AP/station scanning */
if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
CTLTYPE_INT, "dwell", &node, sysctl_ath_verify, 0, &ath_dwelltime,
0, ath_node_root->sysctl_num, CTL_CREATE, CTL_EOL)) != 0)
goto err;
ath_dwelltime_nodenum = node->sysctl_num;
node = NULL;
/* chip calibration interval (secs) */
if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
CTLTYPE_INT, "calibrate", &node, sysctl_ath_verify,
0, &ath_calinterval, 0, ath_node_root->sysctl_num, CTL_CREATE,
CTL_EOL)) != 0)
goto err;
ath_calibrate_nodenum = node->sysctl_num;
node = NULL;
/* enable/disable outdoor operation */
if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READONLY, CTLTYPE_INT,
"outdoor", &node, NULL, 0, &ath_outdoor, 0,
ath_node_root->sysctl_num, CTL_CREATE, CTL_EOL)) != 0)
goto err;
ath_outdoor_nodenum = node->sysctl_num;
node = NULL;
/* country code */
if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READONLY, CTLTYPE_INT,
"countrycode", &node, NULL, 0, &ath_countrycode, 0,
ath_node_root->sysctl_num, CTL_CREATE, CTL_EOL)) != 0)
goto err;
ath_countrycode_nodenum = node->sysctl_num;
node = NULL;
/* regulatory domain */
if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READONLY, CTLTYPE_INT,
"regdomain", &node, NULL, 0, &ath_regdomain, 0,
ath_node_root->sysctl_num, CTL_CREATE, CTL_EOL)) != 0)
goto err;
ath_regdomain_nodenum = node->sysctl_num;
#ifdef AR_DEBUG
node = NULL;
/* control debugging printfs */
if ((rc = sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE, CTLTYPE_INT,
"debug", &node, sysctl_ath_verify, 0, &ath_debug, 0,
ath_node_root->sysctl_num, CTL_CREATE, CTL_EOL)) != 0)
goto err;
ath_debug_nodenum = node->sysctl_num;
#endif /* AR_DEBUG */
return;
err:
printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
}
#endif /* __NetBSD__ */
int
ath_attach(u_int16_t devid, struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct ath_hal *ah;
HAL_STATUS status;
int error = 0;
DPRINTF(("ath_attach: devid 0x%x\n", devid));
#ifdef __FreeBSD__
/* set these up early for if_printf use */
if_initname(ifp, device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev));
#else
memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
#endif
ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
if (ah == NULL) {
if_printf(ifp, "unable to attach hardware; HAL status %u\n",
status);
error = ENXIO;
goto bad;
}
if (ah->ah_abi != HAL_ABI_VERSION) {
if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
ah->ah_abi, HAL_ABI_VERSION);
error = ENXIO;
goto bad;
}
if_printf(ifp, "mac %d.%d phy %d.%d",
ah->ah_macVersion, ah->ah_macRev,
ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
if (ah->ah_analog5GhzRev)
printf(" 5ghz radio %d.%d",
ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
if (ah->ah_analog2GhzRev)
printf(" 2ghz radio %d.%d",
ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
printf("\n");
sc->sc_ah = ah;
sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
/*
* Collect the channel list using the default country
* code and including outdoor channels. The 802.11 layer
* is resposible for filtering this list based on settings
* like the phy mode.
*/
error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
if (error != 0)
goto bad;
/*
* Copy these back; they are set as a side effect
* of constructing the channel list.
*/
ath_regdomain = ath_hal_getregdomain(ah);
ath_countrycode = ath_hal_getcountrycode(ah);
/*
* Setup rate tables for all potential media types.
*/
ath_rate_setup(sc, IEEE80211_MODE_11A);
ath_rate_setup(sc, IEEE80211_MODE_11B);
ath_rate_setup(sc, IEEE80211_MODE_11G);
ath_rate_setup(sc, IEEE80211_MODE_TURBO);
error = ath_desc_alloc(sc);
if (error != 0) {
if_printf(ifp, "failed to allocate descriptors: %d\n", error);
goto bad;
}
ATH_CALLOUT_INIT(&sc->sc_scan_ch);
ATH_CALLOUT_INIT(&sc->sc_cal_ch);
#ifdef __FreeBSD__
ATH_TXBUF_LOCK_INIT(sc);
ATH_TXQ_LOCK_INIT(sc);
#endif
ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc);
ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
/*
* For now just pre-allocate one data queue and one
* beacon queue. Note that the HAL handles resetting
* them at the needed time. Eventually we'll want to
* allocate more tx queues for splitting management
* frames and for QOS support.
*/
sc->sc_txhalq = ath_hal_setuptxqueue(ah,
HAL_TX_QUEUE_DATA,
AH_TRUE /* enable interrupts */
);
if (sc->sc_txhalq == (u_int) -1) {
if_printf(ifp, "unable to setup a data xmit queue!\n");
goto bad;
}
sc->sc_bhalq = ath_hal_setuptxqueue(ah,
HAL_TX_QUEUE_BEACON,
AH_TRUE /* enable interrupts */
);
if (sc->sc_bhalq == (u_int) -1) {
if_printf(ifp, "unable to setup a beacon xmit queue!\n");
goto bad;
}
ifp->if_softc = sc;
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
ifp->if_start = ath_start;
ifp->if_watchdog = ath_watchdog;
ifp->if_ioctl = ath_ioctl;
ifp->if_init = ath_init;
#ifdef __FreeBSD__
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
#else
#if 0
ifp->if_stop = ath_stop; /* XXX */
#endif
IFQ_SET_READY(&ifp->if_snd);
#endif
ic->ic_softc = sc;
ic->ic_newassoc = ath_newassoc;
/* XXX not right but it's not used anywhere important */
ic->ic_phytype = IEEE80211_T_OFDM;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_caps = IEEE80211_C_WEP /* wep supported */
| IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
| IEEE80211_C_HOSTAP /* hostap mode */
| IEEE80211_C_MONITOR /* monitor mode */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_RCVMGT; /* recv management frames */
/* get mac address from hardware */
ath_hal_getmac(ah, ic->ic_myaddr);
#ifdef __NetBSD__
if_attach(ifp);
#endif
/* call MI attach routine. */
ieee80211_ifattach(ifp);
/* override default methods */
ic->ic_node_alloc = ath_node_alloc;
ic->ic_node_free = ath_node_free;
ic->ic_node_copy = ath_node_copy;
ic->ic_node_getrssi = ath_node_getrssi;
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = ath_newstate;
/* complete initialization */
ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
#if NBPFILTER > 0
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
&sc->sc_drvbpf);
#endif
/*
* Initialize constant fields.
*
* NB: the channel is setup each time we transition to the
* RUN state to avoid filling it in for each frame.
*/
sc->sc_tx_th.wt_ihdr.it_len = sizeof(sc->sc_tx_th);
sc->sc_tx_th.wt_ihdr.it_present = ATH_TX_RADIOTAP_PRESENT;
sc->sc_rx_th.wr_ihdr.it_len = sizeof(sc->sc_rx_th);
sc->sc_rx_th.wr_ihdr.it_present = ATH_RX_RADIOTAP_PRESENT;
if_printf(ifp, "802.11 address: %s\n", ether_sprintf(ic->ic_myaddr));
#ifdef __NetBSD__
sc->sc_flags |= ATH_ATTACHED;
/*
* Make sure the interface is shutdown during reboot.
*/
sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
if (sc->sc_sdhook == NULL)
printf("%s: WARNING: unable to establish shutdown hook\n",
sc->sc_dev.dv_xname);
sc->sc_powerhook = powerhook_establish(ath_power, sc);
if (sc->sc_powerhook == NULL)
printf("%s: WARNING: unable to establish power hook\n",
sc->sc_dev.dv_xname);
#endif
return 0;
bad:
if (ah)
ath_hal_detach(ah);
sc->sc_invalid = 1;
return error;
}
int
ath_detach(struct ath_softc *sc)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
ath_softc_critsect_decl(s);
DPRINTF(("ath_detach: if_flags %x\n", ifp->if_flags));
if ((sc->sc_flags & ATH_ATTACHED) == 0)
return (0);
ath_softc_critsect_begin(sc, s);
ath_stop(ifp);
#if NBPFILTER > 0
bpfdetach(ifp);
#endif
ath_desc_free(sc);
ath_hal_detach(sc->sc_ah);
ieee80211_ifdetach(ifp);
#ifdef __NetBSD__
if_detach(ifp);
#endif /* __NetBSD__ */
ath_softc_critsect_end(sc, s);
#ifdef __NetBSD__
powerhook_disestablish(sc->sc_powerhook);
shutdownhook_disestablish(sc->sc_sdhook);
#endif /* __NetBSD__ */
#ifdef __FreeBSD__
ATH_TXBUF_LOCK_DESTROY(sc);
ATH_TXQ_LOCK_DESTROY(sc);
#endif /* __FreeBSD__ */
return 0;
}
#ifdef __NetBSD__
void
ath_power(int why, void *arg)
{
struct ath_softc *sc = arg;
int s;
DPRINTF(("ath_power(%d)\n", why));
s = splnet();
switch (why) {
case PWR_SUSPEND:
case PWR_STANDBY:
ath_suspend(sc, why);
break;
case PWR_RESUME:
ath_resume(sc, why);
break;
case PWR_SOFTSUSPEND:
case PWR_SOFTSTANDBY:
case PWR_SOFTRESUME:
break;
}
splx(s);
}
#endif
void
ath_suspend(struct ath_softc *sc, int why)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
DPRINTF(("ath_suspend: if_flags %x\n", ifp->if_flags));
ath_stop(ifp);
if (sc->sc_power != NULL)
(*sc->sc_power)(sc, why);
}
void
ath_resume(struct ath_softc *sc, int why)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
DPRINTF(("ath_resume: if_flags %x\n", ifp->if_flags));
if (ifp->if_flags & IFF_UP) {
ath_init(ifp);
#if 0
(void)ath_intr(sc);
#endif
if (sc->sc_power != NULL)
(*sc->sc_power)(sc, why);
if (ifp->if_flags & IFF_RUNNING)
ath_start(ifp);
}
}
#ifdef __NetBSD__
void
ath_shutdown(void *arg)
{
struct ath_softc *sc = arg;
ath_stop(&sc->sc_ic.ic_if);
}
#else
void
ath_shutdown(struct ath_softc *sc)
{
#if 1
return;
#else
struct ifnet *ifp = &sc->sc_ic.ic_if;
DPRINTF(("ath_shutdown: if_flags %x\n", ifp->if_flags));
ath_stop(ifp);
#endif
}
#endif
#ifdef __NetBSD__
int
ath_intr(void *arg)
{
return ath_intr1((struct ath_softc *)arg);
}
#else
void
ath_intr(void *arg)
{
(void)ath_intr1((struct ath_softc *)arg);
}
#endif
static int
ath_intr1(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct ath_hal *ah = sc->sc_ah;
HAL_INT status;
if (sc->sc_invalid) {
/*
* The hardware is not ready/present, don't touch anything.
* Note this can happen early on if the IRQ is shared.
*/
DPRINTF(("ath_intr: invalid; ignored\n"));
return 0;
}
if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
DPRINTF(("ath_intr: if_flags 0x%x\n", ifp->if_flags));
ath_hal_getisr(ah, &status); /* clear ISR */
ath_hal_intrset(ah, 0); /* disable further intr's */
return 1; /* XXX */
}
ath_hal_getisr(ah, &status); /* NB: clears ISR too */
DPRINTF2(("ath_intr: status 0x%x\n", status));
#ifdef AR_DEBUG
if (ath_debug &&
(status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
if_printf(ifp, "ath_intr: status 0x%x\n", status);
ath_hal_dumpstate(ah);
}
#endif /* AR_DEBUG */
status &= sc->sc_imask; /* discard unasked for bits */
if (status & HAL_INT_FATAL) {
sc->sc_stats.ast_hardware++;
ath_hal_intrset(ah, 0); /* disable intr's until reset */
ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
} else if (status & HAL_INT_RXORN) {
sc->sc_stats.ast_rxorn++;
ath_hal_intrset(ah, 0); /* disable intr's until reset */
ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
} else {
if (status & HAL_INT_RXEOL) {
/*
* NB: the hardware should re-read the link when
* RXE bit is written, but it doesn't work at
* least on older hardware revs.
*/
sc->sc_stats.ast_rxeol++;
sc->sc_rxlink = NULL;
}
if (status & HAL_INT_TXURN) {
sc->sc_stats.ast_txurn++;
/* bump tx trigger level */
ath_hal_updatetxtriglevel(ah, AH_TRUE);
}
if (status & HAL_INT_RX)
ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
if (status & HAL_INT_TX)
ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
if (status & HAL_INT_SWBA)
ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask);
if (status & HAL_INT_BMISS) {
sc->sc_stats.ast_bmiss++;
ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
}
}
return 1;
}
static void
ath_fatal_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
device_printf(sc->sc_dev, "hardware error; resetting\n");
ath_reset(sc);
}
static void
ath_rxorn_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
ath_reset(sc);
}
static void
ath_bmiss_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
DPRINTF(("ath_bmiss_proc: pending %u\n", pending));
if (ic->ic_opmode != IEEE80211_M_STA)
return;
if (ic->ic_state == IEEE80211_S_RUN) {
/*
* Rather than go directly to scan state, try to
* reassociate first. If that fails then the state
* machine will drop us into scanning after timing
* out waiting for a probe response.
*/
ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
}
}
static u_int
ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
{
enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
switch (mode) {
case IEEE80211_MODE_AUTO:
return 0;
case IEEE80211_MODE_11A:
return CHANNEL_A;
case IEEE80211_MODE_11B:
return CHANNEL_B;
case IEEE80211_MODE_11G:
return CHANNEL_PUREG;
case IEEE80211_MODE_TURBO:
return CHANNEL_T;
default:
panic("%s: unsupported mode %d\n", __func__, mode);
return 0;
}
}
#ifdef __NetBSD__
static int
ath_init(struct ifnet *ifp)
{
return ath_init1((struct ath_softc *)ifp->if_softc);
}
#else
static void
ath_init(void *arg)
{
(void)ath_init1((struct ath_softc *)arg);
}
#endif
static int
ath_init1(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct ieee80211_node *ni;
enum ieee80211_phymode mode;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
HAL_CHANNEL hchan;
int error = 0;
ath_softc_critsect_decl(s);
DPRINTF(("ath_init: if_flags 0x%x\n", ifp->if_flags));
#ifdef __NetBSD__
if ((error = ath_enable(sc)) != 0)
return error;
#endif
ath_softc_critsect_begin(sc, s);
/*
* Stop anything previously setup. This is safe
* whether this is the first time through or not.
*/
ath_stop(ifp);
/*
* The basic interface to setting the hardware in a good
* state is ``reset''. On return the hardware is known to
* be powered up and with interrupts disabled. This must
* be followed by initialization of the appropriate bits
* and then setup of the interrupt mask.
*/
hchan.channel = ic->ic_ibss_chan->ic_freq;
hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
if_printf(ifp, "unable to reset hardware; hal status %u\n",
status);
error = -1;
goto done;
}
/*
* Setup the hardware after reset: the key cache
* is filled as needed and the receive engine is
* set going. Frame transmit is handled entirely
* in the frame output path; there's nothing to do
* here except setup the interrupt mask.
*/
if (ic->ic_flags & IEEE80211_F_WEPON)
ath_initkeytable(sc);
if ((error = ath_startrecv(sc)) != 0) {
if_printf(ifp, "unable to start recv logic\n");
goto done;
}
/*
* Enable interrupts.
*/
sc->sc_imask = HAL_INT_RX | HAL_INT_TX
| HAL_INT_RXEOL | HAL_INT_RXORN
| HAL_INT_FATAL | HAL_INT_GLOBAL;
ath_hal_intrset(ah, sc->sc_imask);
ifp->if_flags |= IFF_RUNNING;
ic->ic_state = IEEE80211_S_INIT;
/*
* The hardware should be ready to go now so it's safe
* to kick the 802.11 state machine as it's likely to
* immediately call back to us to send mgmt frames.
*/
ni = ic->ic_bss;
ni->ni_chan = ic->ic_ibss_chan;
mode = ieee80211_chan2mode(ic, ni->ni_chan);
if (mode != sc->sc_curmode)
ath_setcurmode(sc, mode);
if (ic->ic_opmode != IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
else
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
done:
ath_softc_critsect_end(sc, s);
return error;
}
static void
ath_stop(struct ifnet *ifp)
{
struct ieee80211com *ic = (struct ieee80211com *) ifp;
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
ath_softc_critsect_decl(s);
DPRINTF(("ath_stop: invalid %u if_flags 0x%x\n",
sc->sc_invalid, ifp->if_flags));
ath_softc_critsect_begin(sc, s);
if (ifp->if_flags & IFF_RUNNING) {
/*
* Shutdown the hardware and driver:
* disable interrupts
* turn off timers
* clear transmit machinery
* clear receive machinery
* drain and release tx queues
* reclaim beacon resources
* reset 802.11 state machine
* power down hardware
*
* Note that some of this work is not possible if the
* hardware is gone (invalid).
*/
ifp->if_flags &= ~IFF_RUNNING;
ifp->if_timer = 0;
if (!sc->sc_invalid)
ath_hal_intrset(ah, 0);
ath_draintxq(sc);
if (!sc->sc_invalid)
ath_stoprecv(sc);
else
sc->sc_rxlink = NULL;
#ifdef __FreeBSD__
IF_DRAIN(&ifp->if_snd);
#else
IF_PURGE(&ifp->if_snd);
#endif
ath_beacon_free(sc);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
if (!sc->sc_invalid) {
ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
}
#ifdef __NetBSD__
ath_disable(sc);
#endif
}
ath_softc_critsect_end(sc, s);
}
/*
* Reset the hardware w/o losing operational state. This is
* basically a more efficient way of doing ath_stop, ath_init,
* followed by state transitions to the current 802.11
* operational state. Used to recover from errors rx overrun
* and to reset the hardware when rf gain settings must be reset.
*/
static void
ath_reset(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct ath_hal *ah = sc->sc_ah;
struct ieee80211_channel *c;
HAL_STATUS status;
HAL_CHANNEL hchan;
/*
* Convert to a HAL channel description with the flags
* constrained to reflect the current operating mode.
*/
c = ic->ic_ibss_chan;
hchan.channel = c->ic_freq;
hchan.channelFlags = ath_chan2flags(ic, c);
ath_hal_intrset(ah, 0); /* disable interrupts */
ath_draintxq(sc); /* stop xmit side */
ath_stoprecv(sc); /* stop recv side */
/* NB: indicate channel change so we do a full reset */
if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
__func__, status);
ath_hal_intrset(ah, sc->sc_imask);
if (ath_startrecv(sc) != 0) /* restart recv */
if_printf(ifp, "%s: unable to start recv logic\n", __func__);
ath_start(ifp); /* restart xmit */
if (ic->ic_state == IEEE80211_S_RUN)
ath_beacon_config(sc); /* restart beacons */
}
static void
ath_start(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct ath_buf *bf;
struct mbuf *m;
struct ieee80211_frame *wh;
ath_txbuf_critsect_decl(s);
if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
return;
for (;;) {
/*
* Grab a TX buffer and associated resources.
*/
ath_txbuf_critsect_begin(sc, s);
bf = TAILQ_FIRST(&sc->sc_txbuf);
if (bf != NULL)
TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
ath_txbuf_critsect_end(sc, s);
if (bf == NULL) {
DPRINTF(("ath_start: out of xmit buffers\n"));
sc->sc_stats.ast_tx_qstop++;
ifp->if_flags |= IFF_OACTIVE;
break;
}
/*
* Poll the management queue for frames; they
* have priority over normal data frames.
*/
IF_DEQUEUE(&ic->ic_mgtq, m);
if (m == NULL) {
/*
* No data frames go out unless we're associated.
*/
if (ic->ic_state != IEEE80211_S_RUN) {
DPRINTF(("ath_start: ignore data packet, "
"state %u\n", ic->ic_state));
sc->sc_stats.ast_tx_discard++;
ath_txbuf_critsect_begin(sc, s);
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
ath_txbuf_critsect_end(sc, s);
break;
}
IF_DEQUEUE(&ifp->if_snd, m);
if (m == NULL) {
ath_txbuf_critsect_begin(sc, s);
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
ath_txbuf_critsect_end(sc, s);
break;
}
ifp->if_opackets++;
#ifdef __NetBSD__
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
#endif
#ifdef __FreeBSD__
BPF_MTAP(ifp, m);
#endif
/*
* Encapsulate the packet in prep for transmission.
*/
m = ieee80211_encap(ifp, m, &ni);
if (m == NULL) {
DPRINTF(("ath_start: encapsulation failure\n"));
sc->sc_stats.ast_tx_encap++;
goto bad;
}
wh = mtod(m, struct ieee80211_frame *);
if (ic->ic_flags & IEEE80211_F_WEPON)
wh->i_fc[1] |= IEEE80211_FC1_WEP;
} else {
/*
* Hack! The referenced node pointer is in the
* rcvif field of the packet header. This is
* placed there by ieee80211_mgmt_output because
* we need to hold the reference with the frame
* and there's no other way (other than packet
* tags which we consider too expensive to use)
* to pass it along.
*/
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
m->m_pkthdr.rcvif = NULL;
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
/* fill time stamp */
u_int64_t tsf;
u_int32_t *tstamp;
tsf = ath_hal_gettsf64(ah);
/* XXX: adjust 100us delay to xmit */
tsf += 100;
tstamp = (u_int32_t *)&wh[1];
tstamp[0] = htole32(tsf & 0xffffffff);
tstamp[1] = htole32(tsf >> 32);
}
sc->sc_stats.ast_tx_mgmt++;
}
#if NBPFILTER > 0
if (ic->ic_rawbpf)
bpf_mtap(ic->ic_rawbpf, m);
#endif
#if NBPFILTER > 0
if (sc->sc_drvbpf) {
#ifdef __FreeBSD__
struct mbuf *mb;
MGETHDR(mb, M_DONTWAIT, m->m_type);
if (mb != NULL) {
sc->sc_tx_th.wt_rate =
ni->ni_rates.rs_rates[ni->ni_txrate];
mb->m_next = m;
mb->m_data = (caddr_t)&sc->sc_tx_th;
mb->m_len = sizeof(sc->sc_tx_th);
mb->m_pkthdr.len += mb->m_len;
bpf_mtap(sc->sc_drvbpf, mb);
m_free(mb);
}
#else
struct mbuf mb;
M_COPY_PKTHDR(&mb, m);
sc->sc_tx_th.wt_rate =
ni->ni_rates.rs_rates[ni->ni_txrate];
mb.m_next = m;
mb.m_data = (caddr_t)&sc->sc_tx_th;
mb.m_len = sizeof(sc->sc_tx_th);
mb.m_pkthdr.len += mb.m_len;
bpf_mtap(sc->sc_drvbpf, &mb);
#endif
}
#endif
if (ath_tx_start(sc, ni, bf, m)) {
bad:
ath_txbuf_critsect_begin(sc, s);
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
ath_txbuf_critsect_end(sc, s);
ifp->if_oerrors++;
if (ni && ni != ic->ic_bss)
ieee80211_free_node(ic, ni);
continue;
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
static int
ath_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
(IFF_RUNNING|IFF_UP))
ath_init(ifp); /* XXX lose error */
error = 0;
}
return error;
}
static void
ath_watchdog(struct ifnet *ifp)
{
struct ath_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
ifp->if_timer = 0;
if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
return;
if (sc->sc_tx_timer) {
if (--sc->sc_tx_timer == 0) {
if_printf(ifp, "device timeout\n");
#ifdef AR_DEBUG
if (ath_debug)
ath_hal_dumpstate(sc->sc_ah);
#endif /* AR_DEBUG */
ath_init(ifp); /* XXX ath_reset??? */
ifp->if_oerrors++;
sc->sc_stats.ast_watchdog++;
return;
}
ifp->if_timer = 1;
}
if (ic->ic_fixed_rate == -1) {
/*
* Run the rate control algorithm if we're not
* locked at a fixed rate.
*/
if (ic->ic_opmode == IEEE80211_M_STA)
ath_rate_ctl(sc, ic->ic_bss);
else
ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
}
ieee80211_watchdog(ifp);
}
static int
ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ath_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int error = 0;
ath_softc_critsect_decl(s);
ath_softc_critsect_begin(sc, s);
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING) {
/*
* To avoid rescanning another access point,
* do not call ath_init() here. Instead,
* only reflect promisc mode settings.
*/
ath_mode_init(sc);
} else {
/*
* Beware of being called during detach to
* reset promiscuous mode. In that case we
* will still be marked UP but not RUNNING.
* However trying to re-init the interface
* is the wrong thing to do as we've already
* torn down much of our state. There's
* probably a better way to deal with this.
*/
if (!sc->sc_invalid)
ath_init(ifp); /* XXX lose error */
}
} else
ath_stop(ifp);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
#ifdef __FreeBSD__
/*
* The upper layer has already installed/removed
* the multicast address(es), just recalculate the
* multicast filter for the card.
*/
if (ifp->if_flags & IFF_RUNNING)
ath_mode_init(sc);
#endif
#ifdef __NetBSD__
error = (cmd == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
ether_delmulti(ifr, &sc->sc_ic.ic_ec);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
ath_mode_init(sc);
error = 0;
}
#endif
break;
case SIOCGATHSTATS:
error = copyout(&sc->sc_stats,
ifr->ifr_data, sizeof (sc->sc_stats));
break;
case SIOCGATHDIAG: {
struct ath_diag *ad = (struct ath_diag *)data;
struct ath_hal *ah = sc->sc_ah;
void *data;
u_int size;
if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
if (size < ad->ad_size)
ad->ad_size = size;
if (data)
error = copyout(data, ad->ad_data, ad->ad_size);
} else
error = EINVAL;
break;
}
default:
error = ieee80211_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
(IFF_RUNNING|IFF_UP))
ath_init(ifp); /* XXX lose error */
error = 0;
}
break;
}
ath_softc_critsect_end(sc, s);
return error;
}
/*
* Fill the hardware key cache with key entries.
*/
static void
ath_initkeytable(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
int i;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
if (k->wk_len == 0)
ath_hal_keyreset(ah, i);
else
/* XXX return value */
/* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
}
}
static void
ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
{
u_int32_t val;
u_int8_t pos;
val = LE_READ_4(dl + 0);
pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
val = LE_READ_4(dl + 3);
pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
pos &= 0x3f;
(*mfilt)[pos / 32] |= (1 << (pos % 32));
}
#ifdef __FreeBSD__
static void
ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct ifmultiaddr *ifma;
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
caddr_t dl;
/* calculate XOR of eight 6bit values */
dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
ath_mcastfilter_accum(dl, &mfilt);
}
}
#else
static void
ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
struct ether_multi *enm;
struct ether_multistep estep;
ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
while (enm != NULL) {
/* XXX Punt on ranges. */
if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
(*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
ifp->if_flags |= IFF_ALLMULTI;
return;
}
ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
ETHER_NEXT_MULTI(estep, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
}
#endif
/*
* Calculate the receive filter according to the
* operating mode and state:
*
* o always accept unicast, broadcast, and multicast traffic
* o maintain current state of phy error reception
* o probe request frames are accepted only when operating in
* hostap, adhoc, or monitor modes
* o enable promiscuous mode according to the interface state
* o accept beacons:
* - when operating in adhoc mode so the 802.11 layer creates
* node table entries for peers,
* - when operating in station mode for collecting rssi data when
* the station is otherwise quiet, or
* - when scanning
*/
static u_int32_t
ath_calcrxfilter(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
struct ifnet *ifp = &ic->ic_if;
u_int32_t rfilt;
rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
| HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
if (ic->ic_opmode != IEEE80211_M_STA)
rfilt |= HAL_RX_FILTER_PROBEREQ;
if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
(ifp->if_flags & IFF_PROMISC))
rfilt |= HAL_RX_FILTER_PROM;
if (ic->ic_opmode == IEEE80211_M_STA ||
ic->ic_opmode == IEEE80211_M_IBSS ||
ic->ic_state == IEEE80211_S_SCAN)
rfilt |= HAL_RX_FILTER_BEACON;
return rfilt;
}
static void
ath_mode_init(struct ath_softc *sc)
{
#ifdef __FreeBSD__
struct ieee80211com *ic = &sc->sc_ic;
#endif
struct ath_hal *ah = sc->sc_ah;
u_int32_t rfilt, mfilt[2];
/* configure rx filter */
rfilt = ath_calcrxfilter(sc);
ath_hal_setrxfilter(ah, rfilt);
/* configure operational mode */
ath_hal_setopmode(ah);
/* calculate and install multicast filter */
#ifdef __FreeBSD__
if ((ic->ic_if.if_flags & IFF_ALLMULTI) == 0) {
mfilt[0] = mfilt[1] = 0;
ath_mcastfilter_compute(sc, &mfilt);
} else {
mfilt[0] = mfilt[1] = ~0;
}
#endif
#ifdef __NetBSD__
mfilt[0] = mfilt[1] = 0;
ath_mcastfilter_compute(sc, &mfilt);
#endif
ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
DPRINTF(("ath_mode_init: RX filter 0x%x, MC filter %08x:%08x\n",
rfilt, mfilt[0], mfilt[1]));
}
#ifdef __FreeBSD__
static void
ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
{
struct ath_buf *bf = arg;
KASSERT(nseg <= ATH_MAX_SCATTER,
("ath_mbuf_load_cb: too many DMA segments %u", nseg));
bf->bf_mapsize = mapsize;
bf->bf_nseg = nseg;
bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
}
#endif /* __FreeBSD__ */
static struct mbuf *
ath_getmbuf(int flags, int type, u_int pktlen)
{
struct mbuf *m;
KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
#ifdef __FreeBSD__
if (pktlen <= MHLEN)
MGETHDR(m, flags, type);
else
m = m_getcl(flags, type, M_PKTHDR);
#else
MGETHDR(m, flags, type);
if (m != NULL && pktlen > MHLEN)
MCLGET(m, flags);
#endif
return m;
}
static int
ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct ath_hal *ah = sc->sc_ah;
struct ieee80211_frame *wh;
struct ath_buf *bf;
struct ath_desc *ds;
struct mbuf *m;
int error, pktlen;
u_int8_t *frm, rate;
u_int16_t capinfo;
struct ieee80211_rateset *rs;
const HAL_RATE_TABLE *rt;
bf = sc->sc_bcbuf;
if (bf->bf_m != NULL) {
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
m_freem(bf->bf_m);
bf->bf_m = NULL;
bf->bf_node = NULL;
}
/*
* NB: the beacon data buffer must be 32-bit aligned;
* we assume the mbuf routines will return us something
* with this alignment (perhaps should assert).
*/
rs = &ni->ni_rates;
pktlen = sizeof (struct ieee80211_frame)
+ 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
if (rs->rs_nrates > IEEE80211_RATE_SIZE)
pktlen += 2;
m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
if (m == NULL) {
DPRINTF(("ath_beacon_alloc: cannot get mbuf/cluster; size %u\n",
pktlen));
sc->sc_stats.ast_be_nombuf++;
return ENOMEM;
}
wh = mtod(m, struct ieee80211_frame *);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_BEACON;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
*(u_int16_t *)wh->i_dur = 0;
memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
*(u_int16_t *)wh->i_seq = 0;
/*
* beacon frame format
* [8] time stamp
* [2] beacon interval
* [2] cabability information
* [tlv] ssid
* [tlv] supported rates
* [tlv] parameter set (IBSS)
* [tlv] extended supported rates
*/
frm = (u_int8_t *)&wh[1];
memset(frm, 0, 8); /* timestamp is set by hardware */
frm += 8;
*(u_int16_t *)frm = htole16(ni->ni_intval);
frm += 2;
if (ic->ic_opmode == IEEE80211_M_IBSS)
capinfo = IEEE80211_CAPINFO_IBSS;
else
capinfo = IEEE80211_CAPINFO_ESS;
if (ic->ic_flags & IEEE80211_F_WEPON)
capinfo |= IEEE80211_CAPINFO_PRIVACY;
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
if (ic->ic_flags & IEEE80211_F_SHSLOT)
capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
*(u_int16_t *)frm = htole16(capinfo);
frm += 2;
*frm++ = IEEE80211_ELEMID_SSID;
*frm++ = ni->ni_esslen;
memcpy(frm, ni->ni_essid, ni->ni_esslen);
frm += ni->ni_esslen;
frm = ieee80211_add_rates(frm, rs);
*frm++ = IEEE80211_ELEMID_DSPARMS;
*frm++ = 1;
*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
if (ic->ic_opmode == IEEE80211_M_IBSS) {
*frm++ = IEEE80211_ELEMID_IBSSPARMS;
*frm++ = 2;
*frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
} else {
/* TODO: TIM */
*frm++ = IEEE80211_ELEMID_TIM;
*frm++ = 4; /* length */
*frm++ = 0; /* DTIM count */
*frm++ = 1; /* DTIM period */
*frm++ = 0; /* bitmap control */
*frm++ = 0; /* Partial Virtual Bitmap (variable length) */
}
frm = ieee80211_add_xrates(frm, rs);
m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
KASSERT(m->m_pkthdr.len <= pktlen,
("beacon bigger than expected, len %u calculated %u",
m->m_pkthdr.len, pktlen));
DPRINTF2(("ath_beacon_alloc: m %p len %u\n", m, m->m_len));
error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(m);
return error;
}
KASSERT(bf->bf_nseg == 1,
("ath_beacon_alloc: multi-segment packet; nseg %u",
bf->bf_nseg));
bf->bf_m = m;
/* setup descriptors */
ds = bf->bf_desc;
ds->ds_link = 0;
ds->ds_data = bf->bf_segs[0].ds_addr;
DPRINTF2(("%s: segaddr %p seglen %u\n", __func__,
(caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
/*
* Calculate rate code.
* XXX everything at min xmit rate
*/
rt = sc->sc_currates;
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
else
rate = rt->info[0].rateCode;
if (!ath_hal_setuptxdesc(ah, ds
, m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */
, sizeof(struct ieee80211_frame) /* header length */
, HAL_PKT_TYPE_BEACON /* Atheros packet type */
, 0x20 /* txpower XXX */
, rate, 1 /* series 0 rate/tries */
, HAL_TXKEYIX_INVALID /* no encryption */
, 0 /* antenna mode */
, HAL_TXDESC_NOACK /* no ack for beacons */
, 0 /* rts/cts rate */
, 0 /* rts/cts duration */
)) {
printf("%s: ath_hal_setuptxdesc failed\n", __func__);
return -1;
}
/* NB: beacon's BufLen must be a multiple of 4 bytes */
/* XXX verify mbuf data area covers this roundup */
if (!ath_hal_filltxdesc(ah, ds
, roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */
, AH_TRUE /* first segment */
, AH_TRUE /* last segment */
)) {
printf("%s: ath_hal_filltxdesc failed\n", __func__);
return -1;
}
/* XXX it is not appropriate to bus_dmamap_sync? -dcy */
return 0;
}
static void
ath_beacon_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ath_buf *bf = sc->sc_bcbuf;
struct ath_hal *ah = sc->sc_ah;
DPRINTF2(("%s: pending %u\n", __func__, pending));
if (ic->ic_opmode == IEEE80211_M_STA ||
bf == NULL || bf->bf_m == NULL) {
DPRINTF(("%s: ic_flags=%x bf=%p bf_m=%p\n",
__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
return;
}
/* TODO: update beacon to reflect PS poll state */
if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
DPRINTF(("%s: beacon queue %u did not stop?",
__func__, sc->sc_bhalq));
return; /* busy, XXX is this right? */
}
ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
ath_hal_txstart(ah, sc->sc_bhalq);
DPRINTF2(("%s: BCDP%u = %p (%p)\n", __func__,
sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
}
static void
ath_beacon_free(struct ath_softc *sc)
{
struct ath_buf *bf = sc->sc_bcbuf;
if (bf->bf_m != NULL) {
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
m_freem(bf->bf_m);
bf->bf_m = NULL;
bf->bf_node = NULL;
}
}
/*
* Configure the beacon and sleep timers.
*
* When operating as an AP this resets the TSF and sets
* up the hardware to notify us when we need to issue beacons.
*
* When operating in station mode this sets up the beacon
* timers according to the timestamp of the last received
* beacon and the current TSF, configures PCF and DTIM
* handling, programs the sleep registers so the hardware
* will wakeup in time to receive beacons, and configures
* the beacon miss handling so we'll receive a BMISS
* interrupt when we stop seeing beacons from the AP
* we've associated with.
*/
static void
ath_beacon_config(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
u_int32_t nexttbtt;
nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
(LE_READ_4(ni->ni_tstamp) >> 10);
DPRINTF(("%s: nexttbtt=%u\n", __func__, nexttbtt));
nexttbtt += ni->ni_intval;
if (ic->ic_opmode == IEEE80211_M_STA) {
HAL_BEACON_STATE bs;
u_int32_t bmisstime;
/* NB: no PCF support right now */
memset(&bs, 0, sizeof(bs));
bs.bs_intval = ni->ni_intval;
bs.bs_nexttbtt = nexttbtt;
bs.bs_dtimperiod = bs.bs_intval;
bs.bs_nextdtim = nexttbtt;
/*
* Calculate the number of consecutive beacons to miss
* before taking a BMISS interrupt. The configuration
* is specified in ms, so we need to convert that to
* TU's and then calculate based on the beacon interval.
* Note that we clamp the result to at most 10 beacons.
*/
bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
if (bs.bs_bmissthreshold > 10)
bs.bs_bmissthreshold = 10;
else if (bs.bs_bmissthreshold <= 0)
bs.bs_bmissthreshold = 1;
/*
* Calculate sleep duration. The configuration is
* given in ms. We insure a multiple of the beacon
* period is used. Also, if the sleep duration is
* greater than the DTIM period then it makes senses
* to make it a multiple of that.
*
* XXX fixed at 100ms
*/
bs.bs_sleepduration =
roundup((100 * 1000) / 1024, bs.bs_intval);
if (bs.bs_sleepduration > bs.bs_dtimperiod)
bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
DPRINTF(("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
, __func__
, bs.bs_intval
, bs.bs_nexttbtt
, bs.bs_dtimperiod
, bs.bs_nextdtim
, bs.bs_bmissthreshold
, bs.bs_sleepduration
));
ath_hal_intrset(ah, 0);
/*
* Reset our tsf so the hardware will update the
* tsf register to reflect timestamps found in
* received beacons.
*/
ath_hal_resettsf(ah);
ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
sc->sc_imask |= HAL_INT_BMISS;
ath_hal_intrset(ah, sc->sc_imask);
} else {
DPRINTF(("%s: intval %u nexttbtt %u\n",
__func__, ni->ni_intval, nexttbtt));
ath_hal_intrset(ah, 0);
ath_hal_beaconinit(ah, nexttbtt, ni->ni_intval);
if (ic->ic_opmode != IEEE80211_M_MONITOR)
sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
ath_hal_intrset(ah, sc->sc_imask);
}
}
#ifdef __FreeBSD__
static void
ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
bus_addr_t *paddr = (bus_addr_t*) arg;
*paddr = segs->ds_addr;
}
#endif
#ifdef __FreeBSD__
static int
ath_desc_alloc(struct ath_softc *sc)
{
int i, bsize, error;
struct ath_desc *ds;
struct ath_buf *bf;
/* allocate descriptors */
sc->sc_desc_len = sizeof(struct ath_desc) *
(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
if (error != 0)
return error;
error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
BUS_DMA_NOWAIT, &sc->sc_ddmamap);
if (error != 0)
goto fail0;
error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
sc->sc_desc, sc->sc_desc_len,
ath_load_cb, &sc->sc_desc_paddr,
BUS_DMA_NOWAIT);
if (error != 0)
goto fail1;
ds = sc->sc_desc;
DPRINTF(("ath_desc_alloc: DMA map: %p (%d) -> %p (%lu)\n",
ds, sc->sc_desc_len,
(caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
/* allocate buffers */
bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
if (bf == NULL) {
printf("%s: unable to allocate Tx/Rx buffers\n",
sc->sc_dev.dv_xname);
error = -1;
goto fail2;
}
sc->sc_bufptr = bf;
TAILQ_INIT(&sc->sc_rxbuf);
for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
bf->bf_desc = ds;
bf->bf_daddr = sc->sc_desc_paddr +
((caddr_t)ds - (caddr_t)sc->sc_desc);
error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
&bf->bf_dmamap);
if (error != 0)
break;
TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
}
TAILQ_INIT(&sc->sc_txbuf);
for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
bf->bf_desc = ds;
bf->bf_daddr = sc->sc_desc_paddr +
((caddr_t)ds - (caddr_t)sc->sc_desc);
error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
&bf->bf_dmamap);
if (error != 0)
break;
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
}
TAILQ_INIT(&sc->sc_txq);
/* beacon buffer */
bf->bf_desc = ds;
bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
if (error != 0)
return error;
sc->sc_bcbuf = bf;
return 0;
fail2:
bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
fail1:
bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
fail0:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
sc->sc_ddmamap = NULL;
return error;
}
#else
static int
ath_desc_alloc(struct ath_softc *sc)
{
int i, bsize, error = -1;
struct ath_desc *ds;
struct ath_buf *bf;
/* allocate descriptors */
sc->sc_desc_len = sizeof(struct ath_desc) *
(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
printf("%s: unable to allocate control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
printf("%s: unable to map control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail1;
}
if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
printf("%s: unable to create control data DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
sc->sc_desc_len, NULL, 0)) != 0) {
printf("%s: unable to load control data DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail3;
}
ds = sc->sc_desc;
sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
DPRINTF(("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
ds, (u_long)sc->sc_desc_len,
(caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
/* allocate buffers */
bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
if (bf == NULL) {
printf("%s: unable to allocate Tx/Rx buffers\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail3;
}
sc->sc_bufptr = bf;
TAILQ_INIT(&sc->sc_rxbuf);
for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
bf->bf_desc = ds;
bf->bf_daddr = sc->sc_desc_paddr +
((caddr_t)ds - (caddr_t)sc->sc_desc);
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
printf("%s: unable to create Rx dmamap, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail4;
}
TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
}
TAILQ_INIT(&sc->sc_txbuf);
for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
bf->bf_desc = ds;
bf->bf_daddr = sc->sc_desc_paddr +
((caddr_t)ds - (caddr_t)sc->sc_desc);
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
printf("%s: unable to create Tx dmamap, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail5;
}
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
}
TAILQ_INIT(&sc->sc_txq);
/* beacon buffer */
bf->bf_desc = ds;
bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
&bf->bf_dmamap)) != 0) {
printf("%s: unable to create beacon dmamap, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail5;
}
sc->sc_bcbuf = bf;
return 0;
fail5:
for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
if (sc->sc_bufptr[i].bf_dmamap == NULL)
continue;
bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
}
fail4:
for (i = 0; i < ATH_RXBUF; i++) {
if (sc->sc_bufptr[i].bf_dmamap == NULL)
continue;
bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
}
fail3:
bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
fail2:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
sc->sc_ddmamap = NULL;
fail1:
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
fail0:
bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
return error;
}
#endif
static void
ath_desc_free(struct ath_softc *sc)
{
struct ath_buf *bf;
#ifdef __FreeBSD__
bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
#else
bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
#endif
TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
m_freem(bf->bf_m);
}
TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
if (bf->bf_m) {
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
m_freem(bf->bf_m);
bf->bf_m = NULL;
}
}
if (sc->sc_bcbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
sc->sc_bcbuf = NULL;
}
TAILQ_INIT(&sc->sc_rxbuf);
TAILQ_INIT(&sc->sc_txbuf);
TAILQ_INIT(&sc->sc_txq);
free(sc->sc_bufptr, M_DEVBUF);
sc->sc_bufptr = NULL;
}
static struct ieee80211_node *
ath_node_alloc(struct ieee80211com *ic)
{
struct ath_node *an =
malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT | M_ZERO);
if (an) {
int i;
for (i = 0; i < ATH_RHIST_SIZE; i++)
an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
an->an_rx_hist_next = ATH_RHIST_SIZE-1;
return &an->an_node;
} else
return NULL;
}
static void
ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
{
struct ath_softc *sc = ic->ic_if.if_softc;
struct ath_buf *bf;
TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
if (bf->bf_node == ni)
bf->bf_node = NULL;
}
free(ni, M_DEVBUF);
}
static void
ath_node_copy(struct ieee80211com *ic,
struct ieee80211_node *dst, const struct ieee80211_node *src)
{
*(struct ath_node *)dst = *(const struct ath_node *)src;
}
static u_int8_t
ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
{
struct ath_node *an = ATH_NODE(ni);
int i, now, nsamples, rssi;
/*
* Calculate the average over the last second of sampled data.
*/
now = ATH_TICKS();
nsamples = 0;
rssi = 0;
i = an->an_rx_hist_next;
do {
struct ath_recv_hist *rh = &an->an_rx_hist[i];
if (rh->arh_ticks == ATH_RHIST_NOTIME)
goto done;
if (now - rh->arh_ticks > hz)
goto done;
rssi += rh->arh_rssi;
nsamples++;
if (i == 0)
i = ATH_RHIST_SIZE-1;
else
i--;
} while (i != an->an_rx_hist_next);
done:
/*
* Return either the average or the last known
* value if there is no recent data.
*/
return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
}
static int
ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_hal *ah = sc->sc_ah;
int error;
struct mbuf *m;
struct ath_desc *ds;
m = bf->bf_m;
if (m == NULL) {
/*
* NB: by assigning a page to the rx dma buffer we
* implicitly satisfy the Atheros requirement that
* this buffer be cache-line-aligned and sized to be
* multiple of the cache line size. Not doing this
* causes weird stuff to happen (for the 5210 at least).
*/
m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
if (m == NULL) {
DPRINTF(("ath_rxbuf_init: no mbuf/cluster\n"));
sc->sc_stats.ast_rx_nombuf++;
return ENOMEM;
}
bf->bf_m = m;
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
BUS_DMA_NOWAIT);
if (error != 0) {
DPRINTF(("ath_rxbuf_init: ath_buf_dmamap_load_mbuf failed;"
" error %d\n", error));
sc->sc_stats.ast_rx_busdma++;
return error;
}
KASSERT(bf->bf_nseg == 1,
("ath_rxbuf_init: multi-segment packet; nseg %u",
bf->bf_nseg));
}
ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
/*
* Setup descriptors. For receive we always terminate
* the descriptor list with a self-linked entry so we'll
* not get overrun under high load (as can happen with a
* 5212 when ANI processing enables PHY errors).
*
* To insure the last descriptor is self-linked we create
* each descriptor as self-linked and add it to the end. As
* each additional descriptor is added the previous self-linked
* entry is ``fixed'' naturally. This should be safe even
* if DMA is happening. When processing RX interrupts we
* never remove/process the last, self-linked, entry on the
* descriptor list. This insures the hardware always has
* someplace to write a new frame.
*/
ds = bf->bf_desc;
ds->ds_link = bf->bf_daddr; /* link to self */
ds->ds_data = bf->bf_segs[0].ds_addr;
ath_hal_setuprxdesc(ah, ds
, m->m_len /* buffer size */
, 0
);
if (sc->sc_rxlink != NULL)
*sc->sc_rxlink = bf->bf_daddr;
sc->sc_rxlink = &ds->ds_link;
return 0;
}
static void
ath_rx_proc(void *arg, int npending)
{
#define PA2DESC(_sc, _pa) \
((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
((_pa) - (_sc)->sc_desc_paddr)))
struct ath_softc *sc = arg;
struct ath_buf *bf;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct ath_hal *ah = sc->sc_ah;
struct ath_desc *ds;
struct mbuf *m;
struct ieee80211_frame *wh, whbuf;
struct ieee80211_node *ni;
struct ath_node *an;
struct ath_recv_hist *rh;
int len;
u_int phyerr;
HAL_STATUS status;
DPRINTF2(("ath_rx_proc: pending %u\n", npending));
do {
bf = TAILQ_FIRST(&sc->sc_rxbuf);
if (bf == NULL) { /* NB: shouldn't happen */
if_printf(ifp, "ath_rx_proc: no buffer!\n");
break;
}
ds = bf->bf_desc;
if (ds->ds_link == bf->bf_daddr) {
/* NB: never process the self-linked entry at the end */
break;
}
m = bf->bf_m;
if (m == NULL) { /* NB: shouldn't happen */
if_printf(ifp, "ath_rx_proc: no mbuf!\n");
continue;
}
/* XXX sync descriptor memory */
/*
* Must provide the virtual address of the current
* descriptor, the physical address, and the virtual
* address of the next descriptor in the h/w chain.
* This allows the HAL to look ahead to see if the
* hardware is done with a descriptor by checking the
* done bit in the following descriptor and the address
* of the current descriptor the DMA engine is working
* on. All this is necessary because of our use of
* a self-linked list to avoid rx overruns.
*/
status = ath_hal_rxprocdesc(ah, ds,
bf->bf_daddr, PA2DESC(sc, ds->ds_link));
#ifdef AR_DEBUG
if (ath_debug > 1)
ath_printrxbuf(bf, status == HAL_OK);
#endif
if (status == HAL_EINPROGRESS)
break;
TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
if (ds->ds_rxstat.rs_status != 0) {
if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
sc->sc_stats.ast_rx_crcerr++;
if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
sc->sc_stats.ast_rx_fifoerr++;
if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
sc->sc_stats.ast_rx_badcrypt++;
if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
sc->sc_stats.ast_rx_phyerr++;
phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
sc->sc_stats.ast_rx_phy[phyerr]++;
} else {
/*
* NB: don't count PHY errors as input errors;
* we enable them on the 5212 to collect info
* about environmental noise and, in that
* setting, they don't really reflect tx/rx
* errors.
*/
ifp->if_ierrors++;
}
goto rx_next;
}
len = ds->ds_rxstat.rs_datalen;
if (len < IEEE80211_MIN_LEN) {
DPRINTF(("ath_rx_proc: short packet %d\n", len));
sc->sc_stats.ast_rx_tooshort++;
goto rx_next;
}
ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
bf->bf_m = NULL;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
#if NBPFILTER > 0
if (sc->sc_drvbpf) {
#ifdef __FreeBSD__
struct mbuf *mb;
/* XXX pre-allocate space when setting up recv's */
MGETHDR(mb, M_DONTWAIT, m->m_type);
if (mb != NULL) {
sc->sc_rx_th.wr_rate =
sc->sc_hwmap[ds->ds_rxstat.rs_rate];
sc->sc_rx_th.wr_antsignal =
ds->ds_rxstat.rs_rssi;
sc->sc_rx_th.wr_antenna =
ds->ds_rxstat.rs_antenna;
/* XXX TSF */
(void) m_dup_pkthdr(mb, m, M_DONTWAIT);
mb->m_next = m;
mb->m_data = (caddr_t)&sc->sc_rx_th;
mb->m_len = sizeof(sc->sc_rx_th);
mb->m_pkthdr.len += mb->m_len;
bpf_mtap(sc->sc_drvbpf, mb);
m_free(mb);
}
#else
/* XXX pre-allocate space when setting up recv's */
struct mbuf mb;
sc->sc_rx_th.wr_rate =
sc->sc_hwmap[ds->ds_rxstat.rs_rate];
sc->sc_rx_th.wr_antsignal =
ds->ds_rxstat.rs_rssi;
sc->sc_rx_th.wr_antenna =
ds->ds_rxstat.rs_antenna;
/* XXX TSF */
M_COPY_PKTHDR(&mb, m);
mb.m_next = m;
mb.m_data = (caddr_t)&sc->sc_rx_th;
mb.m_len = sizeof(sc->sc_rx_th);
mb.m_pkthdr.len += mb.m_len;
bpf_mtap(sc->sc_drvbpf, &mb);
#endif
}
#endif
m_adj(m, -IEEE80211_CRC_LEN);
wh = mtod(m, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
/*
* WEP is decrypted by hardware. Clear WEP bit
* and trim WEP header for ieee80211_input().
*/
wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
memcpy(&whbuf, wh, sizeof(whbuf));
m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
wh = mtod(m, struct ieee80211_frame *);
memcpy(wh, &whbuf, sizeof(whbuf));
/*
* Also trim WEP ICV from the tail.
*/
m_adj(m, -IEEE80211_WEP_CRCLEN);
/*
* The header has probably moved.
*/
wh = mtod(m, struct ieee80211_frame *);
}
/*
* Locate the node for sender, track state, and
* then pass this node (referenced) up to the 802.11
* layer for its use. We are required to pass
* something so we fall back to ic_bss when this frame
* is from an unknown sender.
*/
ni = ieee80211_find_rxnode(ic, wh);
/*
* Record driver-specific state.
*/
an = ATH_NODE(ni);
if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
an->an_rx_hist_next = 0;
rh = &an->an_rx_hist[an->an_rx_hist_next];
rh->arh_ticks = ATH_TICKS();
rh->arh_rssi = ds->ds_rxstat.rs_rssi;
rh->arh_antenna = ds->ds_rxstat.rs_antenna;
/*
* Send frame up for processing.
*/
ieee80211_input(ifp, m, ni,
ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
/*
* The frame may have caused the node to be marked for
* reclamation (e.g. in response to a DEAUTH message)
* so use free_node here instead of unref_node.
*/
if (ni == ic->ic_bss)
ieee80211_unref_node(&ni);
else
ieee80211_free_node(ic, ni);
rx_next:
TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
} while (ath_rxbuf_init(sc, bf) == 0);
ath_hal_rxmonitor(ah); /* rx signal state monitoring */
ath_hal_rxena(ah); /* in case of RXEOL */
#ifdef __NetBSD__
if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
ath_start(ifp);
#endif /* __NetBSD__ */
#undef PA2DESC
}
/*
* XXX Size of an ACK control frame in bytes.
*/
#define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4)
static int
ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
struct mbuf *m0)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int i, error, iswep, hdrlen, pktlen;
u_int8_t rix, cix, txrate, ctsrate;
struct ath_desc *ds;
struct mbuf *m;
struct ieee80211_frame *wh;
u_int32_t iv;
u_int8_t *ivp;
u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
u_int subtype, flags, ctsduration, antenna;
HAL_PKT_TYPE atype;
const HAL_RATE_TABLE *rt;
HAL_BOOL shortPreamble;
struct ath_node *an;
ath_txq_critsect_decl(s);
wh = mtod(m0, struct ieee80211_frame *);
iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
hdrlen = sizeof(struct ieee80211_frame);
pktlen = m0->m_pkthdr.len;
if (iswep) {
memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
m_adj(m0, hdrlen);
M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
if (m0 == NULL) {
sc->sc_stats.ast_tx_nombuf++;
return ENOMEM;
}
ivp = hdrbuf + hdrlen;
wh = mtod(m0, struct ieee80211_frame *);
/*
* XXX
* IV must not duplicate during the lifetime of the key.
* But no mechanism to renew keys is defined in IEEE 802.11
* WEP. And IV may be duplicated between other stations
* because of the session key itself is shared.
* So we use pseudo random IV for now, though it is not the
* right way.
*/
iv = ic->ic_iv;
/*
* Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
* (B, 255, N) with 3 <= B < 8
*/
if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
iv += 0x000100;
ic->ic_iv = iv + 1;
for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
ivp[i] = iv;
iv >>= 8;
}
ivp[i] = sc->sc_ic.ic_wep_txkey << 6; /* Key ID and pad */
memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
/*
* The ICV length must be included into hdrlen and pktlen.
*/
hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
}
pktlen += IEEE80211_CRC_LEN;
/*
* Load the DMA map so any coalescing is done. This
* also calculates the number of descriptors we need.
*/
error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
/*
* Discard null packets and check for packets that
* require too many TX descriptors. We try to convert
* the latter to a cluster.
*/
if (error == EFBIG) { /* too many desc's, linearize */
sc->sc_stats.ast_tx_linear++;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
sc->sc_stats.ast_tx_nombuf++;
m_freem(m0);
return ENOMEM;
}
#ifdef __FreeBSD__
M_MOVE_PKTHDR(m, m0);
#else
M_COPY_PKTHDR(m, m0);
#endif
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
sc->sc_stats.ast_tx_nomcl++;
m_freem(m0);
m_free(m);
return ENOMEM;
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
m_freem(m0);
m->m_len = m->m_pkthdr.len;
m0 = m;
error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
BUS_DMA_NOWAIT);
if (error != 0) {
sc->sc_stats.ast_tx_busdma++;
m_freem(m0);
return error;
}
KASSERT(bf->bf_nseg == 1,
("ath_tx_start: packet not one segment; nseg %u",
bf->bf_nseg));
} else if (error != 0) {
sc->sc_stats.ast_tx_busdma++;
m_freem(m0);
return error;
} else if (bf->bf_nseg == 0) { /* null packet, discard */
sc->sc_stats.ast_tx_nodata++;
m_freem(m0);
return EIO;
}
DPRINTF2(("ath_tx_start: m %p len %u\n", m0, pktlen));
ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
bf->bf_m = m0;
bf->bf_node = ni; /* NB: held reference */
/* setup descriptors */
ds = bf->bf_desc;
rt = sc->sc_currates;
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
/*
* Calculate Atheros packet type from IEEE80211 packet header
* and setup for rate calculations.
*/
atype = HAL_PKT_TYPE_NORMAL; /* default */
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
case IEEE80211_FC0_TYPE_MGT:
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
atype = HAL_PKT_TYPE_BEACON;
else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
atype = HAL_PKT_TYPE_PROBE_RESP;
else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
atype = HAL_PKT_TYPE_ATIM;
rix = 0; /* XXX lowest rate */
break;
case IEEE80211_FC0_TYPE_CTL:
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
atype = HAL_PKT_TYPE_PSPOLL;
rix = 0; /* XXX lowest rate */
break;
default:
rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
IEEE80211_RATE_VAL];
if (rix == 0xff) {
if_printf(ifp, "bogus xmit rate 0x%x\n",
ni->ni_rates.rs_rates[ni->ni_txrate]);
sc->sc_stats.ast_tx_badrate++;
m_freem(m0);
return EIO;
}
break;
}
/*
* NB: the 802.11 layer marks whether or not we should
* use short preamble based on the current mode and
* negotiated parameters.
*/
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
(ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
shortPreamble = AH_TRUE;
sc->sc_stats.ast_tx_shortpre++;
} else {
txrate = rt->info[rix].rateCode;
shortPreamble = AH_FALSE;
}
/*
* Calculate miscellaneous flags.
*/
flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
sc->sc_stats.ast_tx_noack++;
} else if (pktlen > ic->ic_rtsthreshold) {
flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
sc->sc_stats.ast_tx_rts++;
}
/*
* Calculate duration. This logically belongs in the 802.11
* layer but it lacks sufficient information to calculate it.
*/
if ((flags & HAL_TXDESC_NOACK) == 0 &&
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
u_int16_t dur;
/*
* XXX not right with fragmentation.
*/
dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
rix, shortPreamble);
*((u_int16_t*) wh->i_dur) = htole16(dur);
}
/*
* Calculate RTS/CTS rate and duration if needed.
*/
ctsduration = 0;
if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
/*
* CTS transmit rate is derived from the transmit rate
* by looking in the h/w rate table. We must also factor
* in whether or not a short preamble is to be used.
*/
cix = rt->info[rix].controlRate;
ctsrate = rt->info[cix].rateCode;
if (shortPreamble)
ctsrate |= rt->info[cix].shortPreamble;
/*
* Compute the transmit duration based on the size
* of an ACK frame. We call into the HAL to do the
* computation since it depends on the characteristics
* of the actual PHY being used.
*/
if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */
ctsduration += ath_hal_computetxtime(ah,
rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
}
/* SIFS + data */
ctsduration += ath_hal_computetxtime(ah,
rt, pktlen, rix, shortPreamble);
if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */
ctsduration += ath_hal_computetxtime(ah,
rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
}
} else
ctsrate = 0;
/*
* For now use the antenna on which the last good
* frame was received on. We assume this field is
* initialized to 0 which gives us ``auto'' or the
* ``default'' antenna.
*/
an = (struct ath_node *) ni;
if (an->an_tx_antenna)
antenna = an->an_tx_antenna;
else
antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
/*
* Formulate first tx descriptor with tx controls.
*/
/* XXX check return value? */
ath_hal_setuptxdesc(ah, ds
, pktlen /* packet length */
, hdrlen /* header length */
, atype /* Atheros packet type */
, 60 /* txpower XXX */
, txrate, 1+10 /* series 0 rate/tries */
, iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
, antenna /* antenna mode */
, flags /* flags */
, ctsrate /* rts/cts rate */
, ctsduration /* rts/cts duration */
);
#ifdef notyet
ath_hal_setupxtxdesc(ah, ds
, AH_FALSE /* short preamble */
, 0, 0 /* series 1 rate/tries */
, 0, 0 /* series 2 rate/tries */
, 0, 0 /* series 3 rate/tries */
);
#endif
/*
* Fillin the remainder of the descriptor info.
*/
for (i = 0; i < bf->bf_nseg; i++, ds++) {
ds->ds_data = bf->bf_segs[i].ds_addr;
if (i == bf->bf_nseg - 1)
ds->ds_link = 0;
else
ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
ath_hal_filltxdesc(ah, ds
, bf->bf_segs[i].ds_len /* segment length */
, i == 0 /* first segment */
, i == bf->bf_nseg - 1 /* last segment */
);
DPRINTF2(("ath_tx_start: %d: %08x %08x %08x %08x %08x %08x\n",
i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1,
ds->ds_hw[0], ds->ds_hw[1]));
}
/*
* Insert the frame on the outbound list and
* pass it on to the hardware.
*/
ath_txq_critsect_begin(sc, s);
TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
if (sc->sc_txlink == NULL) {
ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
DPRINTF2(("ath_tx_start: TXDP0 = %p (%p)\n",
(caddr_t)bf->bf_daddr, bf->bf_desc));
} else {
*sc->sc_txlink = bf->bf_daddr;
DPRINTF2(("ath_tx_start: link(%p)=%p (%p)\n",
sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
}
sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
ath_txq_critsect_end(sc, s);
ath_hal_txstart(ah, sc->sc_txhalq);
return 0;
}
static void
ath_tx_proc(void *arg, int npending)
{
struct ath_softc *sc = arg;
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct ath_desc *ds;
struct ieee80211_node *ni;
struct ath_node *an;
int sr, lr;
HAL_STATUS status;
ath_txq_critsect_decl(s);
ath_txbuf_critsect_decl(s2);
DPRINTF2(("ath_tx_proc: pending %u tx queue %p, link %p\n",
npending, (caddr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
sc->sc_txlink));
for (;;) {
ath_txq_critsect_begin(sc, s);
bf = TAILQ_FIRST(&sc->sc_txq);
if (bf == NULL) {
sc->sc_txlink = NULL;
ath_txq_critsect_end(sc, s);
break;
}
/* only the last descriptor is needed */
ds = &bf->bf_desc[bf->bf_nseg - 1];
status = ath_hal_txprocdesc(ah, ds);
#ifdef AR_DEBUG
if (ath_debug > 1)
ath_printtxbuf(bf, status == HAL_OK);
#endif
if (status == HAL_EINPROGRESS) {
ath_txq_critsect_end(sc, s);
break;
}
TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
ath_txq_critsect_end(sc, s);
ni = bf->bf_node;
if (ni != NULL) {
an = (struct ath_node *) ni;
if (ds->ds_txstat.ts_status == 0) {
an->an_tx_ok++;
an->an_tx_antenna = ds->ds_txstat.ts_antenna;
} else {
an->an_tx_err++;
ifp->if_oerrors++;
if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
sc->sc_stats.ast_tx_xretries++;
if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
sc->sc_stats.ast_tx_fifoerr++;
if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
sc->sc_stats.ast_tx_filtered++;
an->an_tx_antenna = 0; /* invalidate */
}
sr = ds->ds_txstat.ts_shortretry;
lr = ds->ds_txstat.ts_longretry;
sc->sc_stats.ast_tx_shortretry += sr;
sc->sc_stats.ast_tx_longretry += lr;
if (sr + lr)
an->an_tx_retr++;
/*
* Reclaim reference to node.
*
* NB: the node may be reclaimed here if, for example
* this is a DEAUTH message that was sent and the
* node was timed out due to inactivity.
*/
if (ni != ic->ic_bss)
ieee80211_free_node(ic, ni);
}
ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
m_freem(bf->bf_m);
bf->bf_m = NULL;
bf->bf_node = NULL;
ath_txbuf_critsect_begin(sc, s2);
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
ath_txbuf_critsect_end(sc, s2);
}
ifp->if_flags &= ~IFF_OACTIVE;
sc->sc_tx_timer = 0;
ath_start(ifp);
}
/*
* Drain the transmit queue and reclaim resources.
*/
static void
ath_draintxq(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
struct ifnet *ifp = &sc->sc_ic.ic_if;
struct ath_buf *bf;
ath_txq_critsect_decl(s);
ath_txbuf_critsect_decl(s2);
/* XXX return value */
if (!sc->sc_invalid) {
/* don't touch the hardware if marked invalid */
(void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
DPRINTF(("ath_draintxq: tx queue %p, link %p\n",
(caddr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
sc->sc_txlink));
(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
DPRINTF(("ath_draintxq: beacon queue %p\n",
(caddr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
}
for (;;) {
ath_txq_critsect_begin(sc, s);
bf = TAILQ_FIRST(&sc->sc_txq);
if (bf == NULL) {
sc->sc_txlink = NULL;
ath_txq_critsect_end(sc, s);
break;
}
TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
ath_txq_critsect_end(sc, s);
#ifdef AR_DEBUG
if (ath_debug)
ath_printtxbuf(bf,
ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
#endif /* AR_DEBUG */
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
m_freem(bf->bf_m);
bf->bf_m = NULL;
bf->bf_node = NULL;
ath_txbuf_critsect_begin(sc, s2);
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
ath_txbuf_critsect_end(sc, s2);
}
ifp->if_flags &= ~IFF_OACTIVE;
sc->sc_tx_timer = 0;
}
/*
* Disable the receive h/w in preparation for a reset.
*/
static void
ath_stoprecv(struct ath_softc *sc)
{
#define PA2DESC(_sc, _pa) \
((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
((_pa) - (_sc)->sc_desc_paddr)))
struct ath_hal *ah = sc->sc_ah;
ath_hal_stoppcurecv(ah); /* disable PCU */
ath_hal_setrxfilter(ah, 0); /* clear recv filter */
ath_hal_stopdmarecv(ah); /* disable DMA engine */
DELAY(3000); /* long enough for 1 frame */
#ifdef AR_DEBUG
if (ath_debug) {
struct ath_buf *bf;
DPRINTF(("ath_stoprecv: rx queue %p, link %p\n",
(caddr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink));
TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
struct ath_desc *ds = bf->bf_desc;
if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
PA2DESC(sc, ds->ds_link)) == HAL_OK)
ath_printrxbuf(bf, 1);
}
}
#endif
sc->sc_rxlink = NULL; /* just in case */
#undef PA2DESC
}
/*
* Enable the receive h/w following a reset.
*/
static int
ath_startrecv(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf;
sc->sc_rxlink = NULL;
TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
int error = ath_rxbuf_init(sc, bf);
if (error != 0) {
DPRINTF(("ath_startrecv: ath_rxbuf_init failed %d\n",
error));
return error;
}
}
bf = TAILQ_FIRST(&sc->sc_rxbuf);
ath_hal_putrxbuf(ah, bf->bf_daddr);
ath_hal_rxena(ah); /* enable recv descriptors */
ath_mode_init(sc); /* set filters, etc. */
ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
return 0;
}
/*
* Set/change channels. If the channel is really being changed,
* it's done by resetting the chip. To accomplish this we must
* first cleanup any pending DMA, then restart stuff after a la
* ath_init.
*/
static int
ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
{
struct ath_hal *ah = sc->sc_ah;
struct ieee80211com *ic = &sc->sc_ic;
DPRINTF(("ath_chan_set: %u (%u MHz) -> %u (%u MHz)\n",
ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
ic->ic_ibss_chan->ic_freq,
ieee80211_chan2ieee(ic, chan), chan->ic_freq));
if (chan != ic->ic_ibss_chan) {
HAL_STATUS status;
HAL_CHANNEL hchan;
enum ieee80211_phymode mode;
/*
* To switch channels clear any pending DMA operations;
* wait long enough for the RX fifo to drain, reset the
* hardware at the new frequency, and then re-enable
* the relevant bits of the h/w.
*/
ath_hal_intrset(ah, 0); /* disable interrupts */
ath_draintxq(sc); /* clear pending tx frames */
ath_stoprecv(sc); /* turn off frame recv */
/*
* Convert to a HAL channel description with
* the flags constrained to reflect the current
* operating mode.
*/
hchan.channel = chan->ic_freq;
hchan.channelFlags = ath_chan2flags(ic, chan);
if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
"channel %u (%u Mhz)\n",
ieee80211_chan2ieee(ic, chan), chan->ic_freq);
return EIO;
}
/*
* Re-enable rx framework.
*/
if (ath_startrecv(sc) != 0) {
if_printf(&ic->ic_if,
"ath_chan_set: unable to restart recv logic\n");
return EIO;
}
/*
* Update BPF state.
*/
sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
htole16(chan->ic_freq);
sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
htole16(chan->ic_flags);
/*
* Change channels and update the h/w rate map
* if we're switching; e.g. 11a to 11b/g.
*/
ic->ic_ibss_chan = chan;
mode = ieee80211_chan2mode(ic, chan);
if (mode != sc->sc_curmode)
ath_setcurmode(sc, mode);
/*
* Re-enable interrupts.
*/
ath_hal_intrset(ah, sc->sc_imask);
}
return 0;
}
static void
ath_next_scan(void *arg)
{
struct ath_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
int s;
/* don't call ath_start w/o network interrupts blocked */
s = splnet();
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ifp);
splx(s);
}
/*
* Periodically recalibrate the PHY to account
* for temperature/environment changes.
*/
static void
ath_calibrate(void *arg)
{
struct ath_softc *sc = arg;
struct ath_hal *ah = sc->sc_ah;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_channel *c;
HAL_CHANNEL hchan;
sc->sc_stats.ast_per_cal++;
/*
* Convert to a HAL channel description with the flags
* constrained to reflect the current operating mode.
*/
c = ic->ic_ibss_chan;
hchan.channel = c->ic_freq;
hchan.channelFlags = ath_chan2flags(ic, c);
DPRINTF(("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
/*
* Rfgain is out of bounds, reset the chip
* to load new gain values.
*/
sc->sc_stats.ast_per_rfgain++;
ath_reset(sc);
}
if (!ath_hal_calibrate(ah, &hchan)) {
DPRINTF(("%s: calibration of channel %u failed\n",
__func__, c->ic_freq));
sc->sc_stats.ast_per_calfail++;
}
callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
}
static HAL_LED_STATE
ath_state_to_led(enum ieee80211_state state)
{
switch (state) {
case IEEE80211_S_INIT:
return HAL_LED_INIT;
case IEEE80211_S_SCAN:
return HAL_LED_SCAN;
case IEEE80211_S_AUTH:
return HAL_LED_AUTH;
case IEEE80211_S_ASSOC:
return HAL_LED_ASSOC;
case IEEE80211_S_RUN:
return HAL_LED_RUN;
default:
panic("%s: unknown 802.11 state %d\n", __func__, state);
return HAL_LED_INIT;
}
}
static int
ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = &ic->ic_if;
struct ath_softc *sc = ifp->if_softc;
struct ath_hal *ah = sc->sc_ah;
struct ieee80211_node *ni;
int i, error;
const u_int8_t *bssid;
u_int32_t rfilt;
DPRINTF(("%s: %s -> %s\n", __func__,
ieee80211_state_name[ic->ic_state],
ieee80211_state_name[nstate]));
ath_hal_setledstate(ah, ath_state_to_led(nstate)); /* set LED */
if (nstate == IEEE80211_S_INIT) {
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
ath_hal_intrset(ah, sc->sc_imask);
callout_stop(&sc->sc_scan_ch);
callout_stop(&sc->sc_cal_ch);
return (*sc->sc_newstate)(ic, nstate, arg);
}
ni = ic->ic_bss;
error = ath_chan_set(sc, ni->ni_chan);
if (error != 0)
goto bad;
rfilt = ath_calcrxfilter(sc);
if (nstate == IEEE80211_S_SCAN) {
callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
ath_next_scan, sc);
bssid = ifp->if_broadcastaddr;
} else {
callout_stop(&sc->sc_scan_ch);
bssid = ni->ni_bssid;
}
ath_hal_setrxfilter(ah, rfilt);
DPRINTF(("%s: RX filter 0x%x bssid %s\n",
__func__, rfilt, ether_sprintf(bssid)));
if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
ath_hal_setassocid(ah, bssid, ni->ni_associd);
else
ath_hal_setassocid(ah, bssid, 0);
if (ic->ic_flags & IEEE80211_F_WEPON) {
for (i = 0; i < IEEE80211_WEP_NKID; i++)
if (ath_hal_keyisvalid(ah, i))
ath_hal_keysetmac(ah, i, bssid);
}
if (nstate == IEEE80211_S_RUN) {
DPRINTF(("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
"capinfo=0x%04x chan=%d\n"
, __func__
, ic->ic_flags
, ni->ni_intval
, ether_sprintf(ni->ni_bssid)
, ni->ni_capinfo
, ieee80211_chan2ieee(ic, ni->ni_chan)));
/*
* Allocate and setup the beacon frame for AP or adhoc mode.
*/
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_IBSS) {
error = ath_beacon_alloc(sc, ni);
if (error != 0)
goto bad;
}
/*
* Configure the beacon and sleep timers.
*/
ath_beacon_config(sc);
/* start periodic recalibration timer */
callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
ath_calibrate, sc);
} else {
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
ath_hal_intrset(ah, sc->sc_imask);
callout_stop(&sc->sc_cal_ch); /* no calibration */
}
/*
* Reset the rate control state.
*/
ath_rate_ctl_reset(sc, nstate);
/*
* Invoke the parent method to complete the work.
*/
return (*sc->sc_newstate)(ic, nstate, arg);
bad:
callout_stop(&sc->sc_scan_ch);
callout_stop(&sc->sc_cal_ch);
/* NB: do not invoke the parent */
return error;
}
/*
* Setup driver-specific state for a newly associated node.
* Note that we're called also on a re-associate, the isnew
* param tells us if this is the first time or not.
*/
static void
ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
{
if (isnew) {
struct ath_node *an = (struct ath_node *) ni;
an->an_tx_ok = an->an_tx_err =
an->an_tx_retr = an->an_tx_upper = 0;
/* start with highest negotiated rate */
/*
* XXX should do otherwise but only when
* the rate control algorithm is better.
*/
KASSERT(ni->ni_rates.rs_nrates > 0,
("new association w/ no rates!"));
ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
}
}
static int
ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct ath_hal *ah = sc->sc_ah;
HAL_CHANNEL *chans;
int i, ix, nchan;
chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
M_TEMP, M_NOWAIT);
if (chans == NULL) {
if_printf(ifp, "unable to allocate channel table\n");
return ENOMEM;
}
if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
cc, HAL_MODE_ALL, outdoor, 0 /* no extended channels */)) {
if_printf(ifp, "unable to collect channel list from hal\n");
free(chans, M_TEMP);
return EINVAL;
}
/*
* Convert HAL channels to ieee80211 ones and insert
* them in the table according to their channel number.
*/
for (i = 0; i < nchan; i++) {
HAL_CHANNEL *c = &chans[i];
ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
if (ix > IEEE80211_CHAN_MAX) {
if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
ix, c->channel, c->channelFlags);
continue;
}
/* NB: flags are known to be compatible */
if (ic->ic_channels[ix].ic_freq == 0) {
ic->ic_channels[ix].ic_freq = c->channel;
ic->ic_channels[ix].ic_flags = c->channelFlags;
} else {
/* channels overlap; e.g. 11g and 11b */
ic->ic_channels[ix].ic_flags |= c->channelFlags;
}
}
free(chans, M_TEMP);
return 0;
}
static int
ath_rate_setup(struct ath_softc *sc, u_int mode)
{
struct ath_hal *ah = sc->sc_ah;
struct ieee80211com *ic = &sc->sc_ic;
const HAL_RATE_TABLE *rt;
struct ieee80211_rateset *rs;
int i, maxrates;
switch (mode) {
case IEEE80211_MODE_11A:
sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
break;
case IEEE80211_MODE_11B:
sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
break;
case IEEE80211_MODE_11G:
sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
break;
case IEEE80211_MODE_TURBO:
sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
break;
default:
DPRINTF(("%s: invalid mode %u\n", __func__, mode));
return 0;
}
rt = sc->sc_rates[mode];
if (rt == NULL)
return 0;
if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
DPRINTF(("%s: rate table too small (%u > %u)\n",
__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
maxrates = IEEE80211_RATE_MAXSIZE;
} else
maxrates = rt->rateCount;
rs = &ic->ic_sup_rates[mode];
for (i = 0; i < maxrates; i++)
rs->rs_rates[i] = rt->info[i].dot11Rate;
rs->rs_nrates = maxrates;
return 1;
}
static void
ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
{
const HAL_RATE_TABLE *rt;
int i;
memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
rt = sc->sc_rates[mode];
KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
for (i = 0; i < rt->rateCount; i++)
sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
for (i = 0; i < 32; i++)
sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
sc->sc_currates = rt;
sc->sc_curmode = mode;
}
/*
* Reset the rate control state for each 802.11 state transition.
*/
static void
ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct ath_node *an;
if (ic->ic_opmode != IEEE80211_M_STA) {
/*
* When operating as a station the node table holds
* the AP's that were discovered during scanning.
* For any other operating mode we want to reset the
* tx rate state of each node.
*/
TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
ni->ni_txrate = 0; /* use lowest rate */
an = (struct ath_node *) ni;
an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
an->an_tx_upper = 0;
}
}
/*
* Reset local xmit state; this is really only meaningful
* when operating in station or adhoc mode.
*/
ni = ic->ic_bss;
an = (struct ath_node *) ni;
an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
if (state == IEEE80211_S_RUN) {
/* start with highest negotiated rate */
KASSERT(ni->ni_rates.rs_nrates > 0,
("transition to RUN state w/ no rates!"));
ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
} else {
/* use lowest rate */
ni->ni_txrate = 0;
}
}
/*
* Examine and potentially adjust the transmit rate.
*/
static void
ath_rate_ctl(void *arg, struct ieee80211_node *ni)
{
struct ath_softc *sc = arg;
struct ath_node *an = (struct ath_node *) ni;
struct ieee80211_rateset *rs = &ni->ni_rates;
int mod = 0, orate, enough;
/*
* Rate control
* XXX: very primitive version.
*/
sc->sc_stats.ast_rate_calls++;
enough = (an->an_tx_ok + an->an_tx_err >= 10);
/* no packet reached -> down */
if (an->an_tx_err > 0 && an->an_tx_ok == 0)
mod = -1;
/* all packets needs retry in average -> down */
if (enough && an->an_tx_ok < an->an_tx_retr)
mod = -1;
/* no error and less than 10% of packets needs retry -> up */
if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
mod = 1;
orate = ni->ni_txrate;
switch (mod) {
case 0:
if (enough && an->an_tx_upper > 0)
an->an_tx_upper--;
break;
case -1:
if (ni->ni_txrate > 0) {
ni->ni_txrate--;
sc->sc_stats.ast_rate_drop++;
}
an->an_tx_upper = 0;
break;
case 1:
if (++an->an_tx_upper < 2)
break;
an->an_tx_upper = 0;
if (ni->ni_txrate + 1 < rs->rs_nrates) {
ni->ni_txrate++;
sc->sc_stats.ast_rate_raise++;
}
break;
}
if (ni->ni_txrate != orate) {
DPRINTF(("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
__func__,
(rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
(rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
}
if (ni->ni_txrate != orate || enough)
an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
}
#ifdef AR_DEBUG
#ifdef __FreeBSD__
static int
sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
{
char dmode[64];
int error;
strncpy(dmode, "", sizeof(dmode) - 1);
dmode[sizeof(dmode) - 1] = '\0';
error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
if (error == 0 && req->newptr != NULL) {
struct ifnet *ifp;
struct ath_softc *sc;
ifp = ifunit("ath0"); /* XXX */
if (!ifp)
return EINVAL;
sc = ifp->if_softc;
if (strcmp(dmode, "hal") == 0)
ath_hal_dumpstate(sc->sc_ah);
else
return EINVAL;
}
return error;
}
SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
#endif /* __FreeBSD__ */
#if 0 /* #ifdef __NetBSD__ */
static int
sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
{
char dmode[64];
int error;
strncpy(dmode, "", sizeof(dmode) - 1);
dmode[sizeof(dmode) - 1] = '\0';
error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
if (error == 0 && req->newptr != NULL) {
struct ifnet *ifp;
struct ath_softc *sc;
ifp = ifunit("ath0"); /* XXX */
if (!ifp)
return EINVAL;
sc = ifp->if_softc;
if (strcmp(dmode, "hal") == 0)
ath_hal_dumpstate(sc->sc_ah);
else
return EINVAL;
}
return error;
}
SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
#endif /* __NetBSD__ */
static void
ath_printrxbuf(struct ath_buf *bf, int done)
{
struct ath_desc *ds;
int i;
for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
i, ds, (struct ath_desc *)bf->bf_daddr + i,
ds->ds_link, ds->ds_data,
ds->ds_ctl0, ds->ds_ctl1,
ds->ds_hw[0], ds->ds_hw[1],
!done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
}
}
static void
ath_printtxbuf(struct ath_buf *bf, int done)
{
struct ath_desc *ds;
int i;
for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
i, ds, (struct ath_desc *)bf->bf_daddr + i,
ds->ds_link, ds->ds_data,
ds->ds_ctl0, ds->ds_ctl1,
ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
!done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
}
}
#endif /* AR_DEBUG */