NetBSD/sys/dev/usb/if_smsc.c
2020-01-07 06:42:26 +00:00

1111 lines
29 KiB
C

/* $NetBSD: if_smsc.c,v 1.62 2020/01/07 06:42:26 maxv Exp $ */
/* $OpenBSD: if_smsc.c,v 1.4 2012/09/27 12:38:11 jsg Exp $ */
/* $FreeBSD: src/sys/dev/usb/net/if_smsc.c,v 1.1 2012/08/15 04:03:55 gonzo Exp $ */
/*-
* Copyright (c) 2012
* Ben Gray <bgray@freebsd.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* SMSC LAN9xxx devices (http://www.smsc.com/)
*
* The LAN9500 & LAN9500A devices are stand-alone USB to Ethernet chips that
* support USB 2.0 and 10/100 Mbps Ethernet.
*
* The LAN951x devices are an integrated USB hub and USB to Ethernet adapter.
* The driver only covers the Ethernet part, the standard USB hub driver
* supports the hub part.
*
* This driver is closely modelled on the Linux driver written and copyrighted
* by SMSC.
*
* H/W TCP & UDP Checksum Offloading
* ---------------------------------
* The chip supports both tx and rx offloading of UDP & TCP checksums, this
* feature can be dynamically enabled/disabled.
*
* RX checksuming is performed across bytes after the IPv4 header to the end of
* the Ethernet frame, this means if the frame is padded with non-zero values
* the H/W checksum will be incorrect, however the rx code compensates for this.
*
* TX checksuming is more complicated, the device requires a special header to
* be prefixed onto the start of the frame which indicates the start and end
* positions of the UDP or TCP frame. This requires the driver to manually
* go through the packet data and decode the headers prior to sending.
* On Linux they generally provide cues to the location of the csum and the
* area to calculate it over, on FreeBSD we seem to have to do it all ourselves,
* hence this is not as optimal and therefore h/w TX checksum is currently not
* implemented.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_smsc.c,v 1.62 2020/01/07 06:42:26 maxv Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <dev/usb/usbnet.h>
#include <dev/usb/usbhist.h>
#include <dev/usb/if_smscreg.h>
#include "ioconf.h"
struct smsc_softc {
struct usbnet smsc_un;
/*
* The following stores the settings in the mac control (MAC_CSR)
* register
*/
uint32_t sc_mac_csr;
uint32_t sc_rev_id;
uint32_t sc_coe_ctrl;
};
#define SMSC_MIN_BUFSZ 2048
#define SMSC_MAX_BUFSZ 18944
/*
* Various supported device vendors/products.
*/
static const struct usb_devno smsc_devs[] = {
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN89530 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9530 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9730 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_ALT },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_HAL },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_SAL10 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_ALT },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_SAL10 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_HAL },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_SAL10 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505_SAL10 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14 },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_ALT },
{ USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_SAL10 }
};
#ifdef USB_DEBUG
#ifndef USMSC_DEBUG
#define usmscdebug 0
#else
static int usmscdebug = 1;
SYSCTL_SETUP(sysctl_hw_smsc_setup, "sysctl hw.usmsc setup")
{
int err;
const struct sysctlnode *rnode;
const struct sysctlnode *cnode;
err = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "usmsc",
SYSCTL_DESCR("usmsc global controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
if (err)
goto fail;
/* control debugging printfs */
err = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
"debug", SYSCTL_DESCR("Enable debugging output"),
NULL, 0, &usmscdebug, sizeof(usmscdebug), CTL_CREATE, CTL_EOL);
if (err)
goto fail;
return;
fail:
aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
}
#endif /* SMSC_DEBUG */
#endif /* USB_DEBUG */
#define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(usmscdebug,FMT,A,B,C,D)
#define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(usmscdebug,N,FMT,A,B,C,D)
#define USMSCHIST_FUNC() USBHIST_FUNC()
#define USMSCHIST_CALLED() USBHIST_CALLED(usmscdebug)
#define smsc_warn_printf(un, fmt, args...) \
printf("%s: warning: " fmt, device_xname((un)->un_dev), ##args)
#define smsc_err_printf(un, fmt, args...) \
printf("%s: error: " fmt, device_xname((un)->un_dev), ##args)
/* Function declarations */
static int smsc_match(device_t, cfdata_t, void *);
static void smsc_attach(device_t, device_t, void *);
CFATTACH_DECL_NEW(usmsc, sizeof(struct smsc_softc),
smsc_match, smsc_attach, usbnet_detach, usbnet_activate);
static int smsc_chip_init(struct usbnet *);
static int smsc_setmacaddress(struct usbnet *, const uint8_t *);
static int smsc_init(struct ifnet *);
static int smsc_init_locked(struct ifnet *);
static void smsc_stop_cb(struct ifnet *, int);
static void smsc_reset(struct smsc_softc *);
static void smsc_miibus_statchg(struct ifnet *);
static int smsc_readreg(struct usbnet *, uint32_t, uint32_t *);
static int smsc_writereg(struct usbnet *, uint32_t, uint32_t);
static int smsc_wait_for_bits(struct usbnet *, uint32_t, uint32_t);
static int smsc_miibus_readreg(struct usbnet *, int, int, uint16_t *);
static int smsc_miibus_writereg(struct usbnet *, int, int, uint16_t);
static int smsc_ioctl_cb(struct ifnet *, u_long, void *);
static unsigned smsc_tx_prepare(struct usbnet *, struct mbuf *,
struct usbnet_chain *);
static void smsc_rx_loop(struct usbnet *, struct usbnet_chain *, uint32_t);
static const struct usbnet_ops smsc_ops = {
.uno_stop = smsc_stop_cb,
.uno_ioctl = smsc_ioctl_cb,
.uno_read_reg = smsc_miibus_readreg,
.uno_write_reg = smsc_miibus_writereg,
.uno_statchg = smsc_miibus_statchg,
.uno_tx_prepare = smsc_tx_prepare,
.uno_rx_loop = smsc_rx_loop,
.uno_init = smsc_init,
};
static int
smsc_readreg(struct usbnet *un, uint32_t off, uint32_t *data)
{
usb_device_request_t req;
uint32_t buf;
usbd_status err;
usbnet_isowned_mii(un);
if (usbnet_isdying(un))
return 0;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = SMSC_UR_READ_REG;
USETW(req.wValue, 0);
USETW(req.wIndex, off);
USETW(req.wLength, 4);
err = usbd_do_request(un->un_udev, &req, &buf);
if (err != 0)
smsc_warn_printf(un, "Failed to read register 0x%0x\n", off);
*data = le32toh(buf);
return err;
}
static int
smsc_writereg(struct usbnet *un, uint32_t off, uint32_t data)
{
usb_device_request_t req;
uint32_t buf;
usbd_status err;
usbnet_isowned_mii(un);
if (usbnet_isdying(un))
return 0;
buf = htole32(data);
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = SMSC_UR_WRITE_REG;
USETW(req.wValue, 0);
USETW(req.wIndex, off);
USETW(req.wLength, 4);
err = usbd_do_request(un->un_udev, &req, &buf);
if (err != 0)
smsc_warn_printf(un, "Failed to write register 0x%0x\n", off);
return err;
}
static int
smsc_wait_for_bits(struct usbnet *un, uint32_t reg, uint32_t bits)
{
uint32_t val;
int err, i;
for (i = 0; i < 100; i++) {
if ((err = smsc_readreg(un, reg, &val)) != 0)
return err;
if (!(val & bits))
return 0;
DELAY(5);
}
return 1;
}
static int
smsc_miibus_readreg(struct usbnet *un, int phy, int reg, uint16_t *val)
{
uint32_t addr;
uint32_t data = 0;
usbnet_isowned_mii(un);
if (un->un_phyno != phy)
return EINVAL;
if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
smsc_warn_printf(un, "MII is busy\n");
return ETIMEDOUT;
}
addr = (phy << 11) | (reg << 6) | SMSC_MII_READ;
smsc_writereg(un, SMSC_MII_ADDR, addr);
if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
smsc_warn_printf(un, "MII read timeout\n");
return ETIMEDOUT;
}
smsc_readreg(un, SMSC_MII_DATA, &data);
*val = data & 0xffff;
return 0;
}
static int
smsc_miibus_writereg(struct usbnet *un, int phy, int reg, uint16_t val)
{
uint32_t addr;
usbnet_isowned_mii(un);
if (un->un_phyno != phy)
return EINVAL;
if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
smsc_warn_printf(un, "MII is busy\n");
return ETIMEDOUT;
}
smsc_writereg(un, SMSC_MII_DATA, val);
addr = (phy << 11) | (reg << 6) | SMSC_MII_WRITE;
smsc_writereg(un, SMSC_MII_ADDR, addr);
if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) {
smsc_warn_printf(un, "MII write timeout\n");
return ETIMEDOUT;
}
return 0;
}
static void
smsc_miibus_statchg(struct ifnet *ifp)
{
USMSCHIST_FUNC(); USMSCHIST_CALLED();
struct usbnet * const un = ifp->if_softc;
if (usbnet_isdying(un))
return;
struct smsc_softc * const sc = usbnet_softc(un);
struct mii_data * const mii = usbnet_mii(un);
uint32_t flow;
uint32_t afc_cfg;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
usbnet_set_link(un, true);
break;
case IFM_1000_T:
/* Gigabit ethernet not supported by chipset */
break;
default:
break;
}
}
/* Lost link, do nothing. */
if (!usbnet_havelink(un))
return;
usbnet_lock_mii(un);
int err = smsc_readreg(un, SMSC_AFC_CFG, &afc_cfg);
usbnet_unlock_mii(un);
if (err) {
smsc_warn_printf(un, "failed to read initial AFC_CFG, "
"error %d\n", err);
return;
}
/* Enable/disable full duplex operation and TX/RX pause */
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
DPRINTF("full duplex operation", 0, 0, 0, 0);
sc->sc_mac_csr &= ~SMSC_MAC_CSR_RCVOWN;
sc->sc_mac_csr |= SMSC_MAC_CSR_FDPX;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
flow = 0xffff0002;
else
flow = 0;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
afc_cfg |= 0xf;
else
afc_cfg &= ~0xf;
} else {
DPRINTF("half duplex operation", 0, 0, 0, 0);
sc->sc_mac_csr &= ~SMSC_MAC_CSR_FDPX;
sc->sc_mac_csr |= SMSC_MAC_CSR_RCVOWN;
flow = 0;
afc_cfg |= 0xf;
}
usbnet_lock_mii(un);
err = smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
err += smsc_writereg(un, SMSC_FLOW, flow);
err += smsc_writereg(un, SMSC_AFC_CFG, afc_cfg);
usbnet_unlock_mii(un);
if (err)
smsc_warn_printf(un, "media change failed, error %d\n", err);
}
static inline uint32_t
smsc_hash(uint8_t addr[ETHER_ADDR_LEN])
{
return (ether_crc32_be(addr, ETHER_ADDR_LEN) >> 26) & 0x3f;
}
static void
smsc_setiff_locked(struct usbnet *un)
{
USMSCHIST_FUNC(); USMSCHIST_CALLED();
struct smsc_softc * const sc = usbnet_softc(un);
struct ifnet * const ifp = usbnet_ifp(un);
struct ethercom *ec = usbnet_ec(un);
struct ether_multi *enm;
struct ether_multistep step;
uint32_t hashtbl[2] = { 0, 0 };
uint32_t hash;
usbnet_isowned_mii(un);
if (usbnet_isdying(un))
return;
if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
allmulti:
DPRINTF("receive all multicast enabled", 0, 0, 0, 0);
sc->sc_mac_csr |= SMSC_MAC_CSR_MCPAS;
sc->sc_mac_csr &= ~SMSC_MAC_CSR_HPFILT;
smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
return;
} else {
sc->sc_mac_csr |= SMSC_MAC_CSR_HPFILT;
sc->sc_mac_csr &= ~(SMSC_MAC_CSR_PRMS | SMSC_MAC_CSR_MCPAS);
}
ETHER_LOCK(ec);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
ETHER_UNLOCK(ec);
goto allmulti;
}
hash = smsc_hash(enm->enm_addrlo);
hashtbl[hash >> 5] |= 1 << (hash & 0x1F);
ETHER_NEXT_MULTI(step, enm);
}
ETHER_UNLOCK(ec);
/* Debug */
if (sc->sc_mac_csr & SMSC_MAC_CSR_HPFILT) {
DPRINTF("receive select group of macs", 0, 0, 0, 0);
} else {
DPRINTF("receive own packets only", 0, 0, 0, 0);
}
/* Write the hash table and mac control registers */
//XXX should we be doing this?
ifp->if_flags &= ~IFF_ALLMULTI;
smsc_writereg(un, SMSC_HASHH, hashtbl[1]);
smsc_writereg(un, SMSC_HASHL, hashtbl[0]);
smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
}
static void
smsc_setiff(struct usbnet *un)
{
usbnet_lock_mii(un);
smsc_setiff_locked(un);
usbnet_unlock_mii(un);
}
static int
smsc_setoe_locked(struct usbnet *un)
{
struct smsc_softc * const sc = usbnet_softc(un);
struct ifnet * const ifp = usbnet_ifp(un);
uint32_t val;
int err;
usbnet_isowned_mii(un);
err = smsc_readreg(un, SMSC_COE_CTRL, &val);
if (err != 0) {
smsc_warn_printf(un, "failed to read SMSC_COE_CTRL (err=%d)\n",
err);
return err;
}
/* Enable/disable the Rx checksum */
if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
val |= (SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE);
else
val &= ~(SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE);
/* Enable/disable the Tx checksum (currently not supported) */
if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
val |= SMSC_COE_CTRL_TX_EN;
else
val &= ~SMSC_COE_CTRL_TX_EN;
sc->sc_coe_ctrl = val;
err = smsc_writereg(un, SMSC_COE_CTRL, val);
if (err != 0) {
smsc_warn_printf(un, "failed to write SMSC_COE_CTRL (err=%d)\n",
err);
return err;
}
return 0;
}
static void
smsc_setoe(struct usbnet *un)
{
usbnet_lock_mii(un);
smsc_setoe_locked(un);
usbnet_unlock_mii(un);
}
static int
smsc_setmacaddress(struct usbnet *un, const uint8_t *addr)
{
USMSCHIST_FUNC(); USMSCHIST_CALLED();
int err;
uint32_t val;
DPRINTF("setting mac address to %02jx:%02jx:%02jx:...", addr[0], addr[1],
addr[2], 0);
DPRINTF("... %02jx:%0j2x:%02jx", addr[3], addr[4], addr[5], 0);
val = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
if ((err = smsc_writereg(un, SMSC_MAC_ADDRL, val)) != 0)
goto done;
val = (addr[5] << 8) | addr[4];
err = smsc_writereg(un, SMSC_MAC_ADDRH, val);
done:
return err;
}
static void
smsc_reset(struct smsc_softc *sc)
{
struct usbnet * const un = &sc->smsc_un;
usbnet_isowned(un);
if (usbnet_isdying(un))
return;
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
/* Reinitialize controller to achieve full reset. */
smsc_chip_init(un);
}
static int
smsc_init(struct ifnet *ifp)
{
struct usbnet * const un = ifp->if_softc;
usbnet_lock(un);
int ret = smsc_init_locked(ifp);
usbnet_unlock(un);
return ret;
}
static int
smsc_init_locked(struct ifnet *ifp)
{
struct usbnet * const un = ifp->if_softc;
struct smsc_softc * const sc = usbnet_softc(un);
if (usbnet_isdying(un))
return EIO;
/* Cancel pending I/O */
usbnet_stop(un, ifp, 1);
/* Reset the ethernet interface. */
smsc_reset(sc);
usbnet_lock_mii_un_locked(un);
/* Load the multicast filter. */
smsc_setiff_locked(un);
/* TCP/UDP checksum offload engines. */
smsc_setoe_locked(un);
usbnet_unlock_mii_un_locked(un);
return usbnet_init_rx_tx(un);
}
static void
smsc_stop_cb(struct ifnet *ifp, int disable)
{
struct usbnet * const un = ifp->if_softc;
struct smsc_softc * const sc = usbnet_softc(un);
// XXXNH didn't do this before
smsc_reset(sc);
}
static int
smsc_chip_init(struct usbnet *un)
{
struct smsc_softc * const sc = usbnet_softc(un);
uint32_t reg_val;
int burst_cap;
int err;
usbnet_lock_mii_un_locked(un);
/* Enter H/W config mode */
smsc_writereg(un, SMSC_HW_CFG, SMSC_HW_CFG_LRST);
if ((err = smsc_wait_for_bits(un, SMSC_HW_CFG,
SMSC_HW_CFG_LRST)) != 0) {
smsc_warn_printf(un, "timed-out waiting for reset to "
"complete\n");
goto init_failed;
}
/* Reset the PHY */
smsc_writereg(un, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST);
if ((err = smsc_wait_for_bits(un, SMSC_PM_CTRL,
SMSC_PM_CTRL_PHY_RST)) != 0) {
smsc_warn_printf(un, "timed-out waiting for phy reset to "
"complete\n");
goto init_failed;
}
usbd_delay_ms(un->un_udev, 40);
/* Set the mac address */
struct ifnet * const ifp = usbnet_ifp(un);
const char *eaddr = CLLADDR(ifp->if_sadl);
if ((err = smsc_setmacaddress(un, eaddr)) != 0) {
smsc_warn_printf(un, "failed to set the MAC address\n");
goto init_failed;
}
/*
* Don't know what the HW_CFG_BIR bit is, but following the reset
* sequence as used in the Linux driver.
*/
if ((err = smsc_readreg(un, SMSC_HW_CFG, &reg_val)) != 0) {
smsc_warn_printf(un, "failed to read HW_CFG: %d\n", err);
goto init_failed;
}
reg_val |= SMSC_HW_CFG_BIR;
smsc_writereg(un, SMSC_HW_CFG, reg_val);
/*
* There is a so called 'turbo mode' that the linux driver supports, it
* seems to allow you to jam multiple frames per Rx transaction.
* By default this driver supports that and therefore allows multiple
* frames per USB transfer.
*
* The xfer buffer size needs to reflect this as well, therefore based
* on the calculations in the Linux driver the RX bufsize is set to
* 18944,
* bufsz = (16 * 1024 + 5 * 512)
*
* Burst capability is the number of URBs that can be in a burst of
* data/ethernet frames.
*/
if (un->un_udev->ud_speed == USB_SPEED_HIGH)
burst_cap = 37;
else
burst_cap = 128;
smsc_writereg(un, SMSC_BURST_CAP, burst_cap);
/* Set the default bulk in delay (magic value from Linux driver) */
smsc_writereg(un, SMSC_BULK_IN_DLY, 0x00002000);
/*
* Initialise the RX interface
*/
if ((err = smsc_readreg(un, SMSC_HW_CFG, &reg_val)) < 0) {
smsc_warn_printf(un, "failed to read HW_CFG: (err = %d)\n",
err);
goto init_failed;
}
/*
* The following settings are used for 'turbo mode', a.k.a multiple
* frames per Rx transaction (again info taken form Linux driver).
*/
reg_val |= (SMSC_HW_CFG_MEF | SMSC_HW_CFG_BCE);
/*
* set Rx data offset to ETHER_ALIGN which will make the IP header
* align on a word boundary.
*/
reg_val |= ETHER_ALIGN << SMSC_HW_CFG_RXDOFF_SHIFT;
smsc_writereg(un, SMSC_HW_CFG, reg_val);
/* Clear the status register ? */
smsc_writereg(un, SMSC_INTR_STATUS, 0xffffffff);
/* Read and display the revision register */
if ((err = smsc_readreg(un, SMSC_ID_REV, &sc->sc_rev_id)) < 0) {
smsc_warn_printf(un, "failed to read ID_REV (err = %d)\n", err);
goto init_failed;
}
/* GPIO/LED setup */
reg_val = SMSC_LED_GPIO_CFG_SPD_LED | SMSC_LED_GPIO_CFG_LNK_LED |
SMSC_LED_GPIO_CFG_FDX_LED;
smsc_writereg(un, SMSC_LED_GPIO_CFG, reg_val);
/*
* Initialise the TX interface
*/
smsc_writereg(un, SMSC_FLOW, 0);
smsc_writereg(un, SMSC_AFC_CFG, AFC_CFG_DEFAULT);
/* Read the current MAC configuration */
if ((err = smsc_readreg(un, SMSC_MAC_CSR, &sc->sc_mac_csr)) < 0) {
smsc_warn_printf(un, "failed to read MAC_CSR (err=%d)\n", err);
goto init_failed;
}
/* disable pad stripping, collides with checksum offload */
sc->sc_mac_csr &= ~SMSC_MAC_CSR_PADSTR;
/* Vlan */
smsc_writereg(un, SMSC_VLAN1, (uint32_t)ETHERTYPE_VLAN);
/*
* Start TX
*/
sc->sc_mac_csr |= SMSC_MAC_CSR_TXEN;
smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
smsc_writereg(un, SMSC_TX_CFG, SMSC_TX_CFG_ON);
/*
* Start RX
*/
sc->sc_mac_csr |= SMSC_MAC_CSR_RXEN;
smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr);
usbnet_unlock_mii_un_locked(un);
return 0;
init_failed:
usbnet_unlock_mii_un_locked(un);
smsc_err_printf(un, "smsc_chip_init failed (err=%d)\n", err);
return err;
}
static int
smsc_ioctl_cb(struct ifnet *ifp, u_long cmd, void *data)
{
struct usbnet * const un = ifp->if_softc;
switch (cmd) {
case SIOCSIFFLAGS:
case SIOCSETHERCAP:
case SIOCADDMULTI:
case SIOCDELMULTI:
smsc_setiff(un);
break;
case SIOCSIFCAP:
smsc_setoe(un);
break;
default:
break;
}
return 0;
}
static int
smsc_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
return (usb_lookup(smsc_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
static void
smsc_attach(device_t parent, device_t self, void *aux)
{
USBNET_MII_DECL_DEFAULT(unm);
struct smsc_softc * const sc = device_private(self);
struct usbnet * const un = &sc->smsc_un;
struct usb_attach_arg *uaa = aux;
struct usbd_device *dev = uaa->uaa_device;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
char *devinfop;
unsigned bufsz;
int err, i;
uint32_t mac_h, mac_l;
KASSERT((void *)sc == un);
aprint_naive("\n");
aprint_normal("\n");
un->un_dev = self;
un->un_udev = dev;
un->un_sc = sc;
un->un_ops = &smsc_ops;
un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
un->un_rx_list_cnt = SMSC_RX_LIST_CNT;
un->un_tx_list_cnt = SMSC_TX_LIST_CNT;
devinfop = usbd_devinfo_alloc(un->un_udev, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
err = usbd_set_config_no(dev, SMSC_CONFIG_INDEX, 1);
if (err) {
aprint_error_dev(self, "failed to set configuration"
", err=%s\n", usbd_errstr(err));
return;
}
/* Setup the endpoints for the SMSC LAN95xx device(s) */
err = usbd_device2interface_handle(dev, SMSC_IFACE_IDX, &un->un_iface);
if (err) {
aprint_error_dev(self, "getting interface handle failed\n");
return;
}
id = usbd_get_interface_descriptor(un->un_iface);
if (dev->ud_speed >= USB_SPEED_HIGH) {
bufsz = SMSC_MAX_BUFSZ;
} else {
bufsz = SMSC_MIN_BUFSZ;
}
un->un_rx_bufsz = bufsz;
un->un_tx_bufsz = bufsz;
/* Find endpoints. */
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
if (!ed) {
aprint_error_dev(self, "couldn't get ep %d\n", i);
return;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
#if 0 /* not used yet */
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
#endif
}
}
usbnet_attach(un, "smscdet");
#ifdef notyet
/*
* We can do TCPv4, and UDPv4 checksums in hardware.
*/
struct ifnet *ifp = usbnet_ifp(un);
ifp->if_capabilities |=
/*IFCAP_CSUM_TCPv4_Tx |*/ IFCAP_CSUM_TCPv4_Rx |
/*IFCAP_CSUM_UDPv4_Tx |*/ IFCAP_CSUM_UDPv4_Rx;
#endif
struct ethercom *ec = usbnet_ec(un);
ec->ec_capabilities = ETHERCAP_VLAN_MTU;
/* Setup some of the basics */
un->un_phyno = 1;
usbnet_lock_mii(un);
/*
* Attempt to get the mac address, if an EEPROM is not attached this
* will just return FF:FF:FF:FF:FF:FF, so in such cases we invent a MAC
* address based on urandom.
*/
memset(un->un_eaddr, 0xff, ETHER_ADDR_LEN);
prop_dictionary_t dict = device_properties(self);
prop_data_t eaprop = prop_dictionary_get(dict, "mac-address");
if (eaprop != NULL) {
KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
memcpy(un->un_eaddr, prop_data_data_nocopy(eaprop),
ETHER_ADDR_LEN);
} else {
/* Check if there is already a MAC address in the register */
if ((smsc_readreg(un, SMSC_MAC_ADDRL, &mac_l) == 0) &&
(smsc_readreg(un, SMSC_MAC_ADDRH, &mac_h) == 0)) {
un->un_eaddr[5] = (uint8_t)((mac_h >> 8) & 0xff);
un->un_eaddr[4] = (uint8_t)((mac_h) & 0xff);
un->un_eaddr[3] = (uint8_t)((mac_l >> 24) & 0xff);
un->un_eaddr[2] = (uint8_t)((mac_l >> 16) & 0xff);
un->un_eaddr[1] = (uint8_t)((mac_l >> 8) & 0xff);
un->un_eaddr[0] = (uint8_t)((mac_l) & 0xff);
}
}
usbnet_unlock_mii(un);
usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
0, &unm);
}
static void
smsc_rx_loop(struct usbnet * un, struct usbnet_chain *c, uint32_t total_len)
{
USMSCHIST_FUNC(); USMSCHIST_CALLED();
struct smsc_softc * const sc = usbnet_softc(un);
struct ifnet *ifp = usbnet_ifp(un);
uint8_t *buf = c->unc_buf;
usbnet_isowned_rx(un);
DPRINTF("total_len %jd/0x%jx", total_len, total_len, 0, 0);
while (total_len != 0) {
uint32_t rxhdr;
if (total_len < sizeof(rxhdr)) {
DPRINTF("total_len %jd < sizeof(rxhdr) %jd",
total_len, sizeof(rxhdr), 0, 0);
ifp->if_ierrors++;
return;
}
memcpy(&rxhdr, buf, sizeof(rxhdr));
rxhdr = le32toh(rxhdr);
buf += sizeof(rxhdr);
total_len -= sizeof(rxhdr);
if (rxhdr & SMSC_RX_STAT_COLLISION)
ifp->if_collisions++;
if (rxhdr & (SMSC_RX_STAT_ERROR
| SMSC_RX_STAT_LENGTH_ERROR
| SMSC_RX_STAT_MII_ERROR)) {
DPRINTF("rx error (hdr 0x%08jx)", rxhdr, 0, 0, 0);
ifp->if_ierrors++;
return;
}
uint16_t pktlen = (uint16_t)SMSC_RX_STAT_FRM_LENGTH(rxhdr);
DPRINTF("total_len %jd pktlen %jd rxhdr 0x%08jx", total_len,
pktlen, rxhdr, 0);
if (pktlen < ETHER_HDR_LEN) {
DPRINTF("pktlen %jd < ETHER_HDR_LEN %jd", pktlen,
ETHER_HDR_LEN, 0, 0);
ifp->if_ierrors++;
return;
}
pktlen += ETHER_ALIGN;
if (pktlen > MCLBYTES) {
DPRINTF("pktlen %jd > MCLBYTES %jd", pktlen, MCLBYTES, 0,
0);
ifp->if_ierrors++;
return;
}
if (pktlen > total_len) {
DPRINTF("pktlen %jd > total_len %jd", pktlen, total_len,
0, 0);
ifp->if_ierrors++;
return;
}
uint8_t *pktbuf = buf + ETHER_ALIGN;
size_t buflen = pktlen - ETHER_ALIGN;
int mbuf_flags = M_HASFCS;
int csum_flags = 0;
uint16_t csum_data = 0;
KASSERT(pktlen < MCLBYTES);
/* Check if RX TCP/UDP checksumming is being offloaded */
if (sc->sc_coe_ctrl & SMSC_COE_CTRL_RX_EN) {
DPRINTF("RX checksum offload checking", 0, 0, 0, 0);
struct ether_header *eh = (struct ether_header *)pktbuf;
const size_t cssz = sizeof(csum_data);
/* Remove the extra 2 bytes of the csum */
buflen -= cssz;
/*
* The checksum appears to be simplistically calculated
* over the udp/tcp header and data up to the end of the
* eth frame. Which means if the eth frame is padded
* the csum calculation is incorrectly performed over
* the padding bytes as well. Therefore to be safe we
* ignore the H/W csum on frames less than or equal to
* 64 bytes.
*
* Ignore H/W csum for non-IPv4 packets.
*/
DPRINTF("Ethertype %02jx pktlen %02jx",
be16toh(eh->ether_type), pktlen, 0, 0);
if (be16toh(eh->ether_type) == ETHERTYPE_IP &&
pktlen > ETHER_MIN_LEN) {
csum_flags |=
(M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
/*
* Copy the TCP/UDP checksum from the last 2
* bytes of the transfer and put in the
* csum_data field.
*/
memcpy(&csum_data, buf + pktlen - cssz, cssz);
/*
* The data is copied in network order, but the
* csum algorithm in the kernel expects it to be
* in host network order.
*/
csum_data = ntohs(csum_data);
DPRINTF("RX checksum offloaded (0x%04jx)",
csum_data, 0, 0, 0);
}
}
/* round up to next longword */
pktlen = (pktlen + 3) & ~0x3;
/* total_len does not include the padding */
if (pktlen > total_len)
pktlen = total_len;
buf += pktlen;
total_len -= pktlen;
/* push the packet up */
usbnet_enqueue(un, pktbuf, buflen, csum_flags, csum_data,
mbuf_flags);
}
}
static unsigned
smsc_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
{
uint32_t txhdr;
uint32_t frm_len = 0;
usbnet_isowned_tx(un);
const size_t hdrsz = sizeof(txhdr) * 2;
if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - hdrsz)
return 0;
/*
* Each frame is prefixed with two 32-bit values describing the
* length of the packet and buffer.
*/
txhdr = SMSC_TX_CTRL_0_BUF_SIZE(m->m_pkthdr.len) |
SMSC_TX_CTRL_0_FIRST_SEG | SMSC_TX_CTRL_0_LAST_SEG;
txhdr = htole32(txhdr);
memcpy(c->unc_buf, &txhdr, sizeof(txhdr));
txhdr = SMSC_TX_CTRL_1_PKT_LENGTH(m->m_pkthdr.len);
txhdr = htole32(txhdr);
memcpy(c->unc_buf + sizeof(txhdr), &txhdr, sizeof(txhdr));
frm_len += hdrsz;
/* Next copy in the actual packet */
m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + frm_len);
frm_len += m->m_pkthdr.len;
return frm_len;
}
#ifdef _MODULE
#include "ioconf.c"
#endif
USBNET_MODULE(smsc)