NetBSD/sys/arch/amiga/dev/sci.c

1207 lines
29 KiB
C

/*
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Van Jacobson of Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)sci.c 7.5 (Berkeley) 5/4/91
* $Id: sci.c,v 1.2 1994/03/08 10:30:16 chopps Exp $
*
*/
/*
* AMIGA NCR 5380 scsi adaptor driver
*/
#include "mlhscsi.h"
#include "csa12gscsi.h"
#include "suprascsi.h"
#include "ivsscsi.h"
#if (NMLHSCSI + NCSA12GSCSI + NSUPRASCSI + NIVSSCSI) > 0
#define NSCI NMLHSCSI
#if NSCI < NCSA12GSCSI
#undef NSCI
#define NSCI NCSA12GSCSI
#endif
#if NSCI < NSUPRASCSI
#undef NSCI
#define NSCI NSUPRASCSI
#endif
#if NSCI < NIVSSCSI
#undef NSCI
#define NSCI NIVSSCI
#endif
#ifndef lint
static char rcsid[] = "$Header: /cvsroot/src/sys/arch/amiga/dev/sci.c,v 1.2 1994/03/08 10:30:16 chopps Exp $";
#endif
/* need to know if any tapes have been configured */
#include "st.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_statistics.h>
#include <machine/pmap.h>
#include <amiga/dev/device.h>
#include <amiga/dev/scsidefs.h>
#include <amiga/dev/scivar.h>
#include <amiga/dev/scireg.h>
#include <amiga/amiga/custom.h>
#include <machine/cpu.h>
extern u_int kvtop();
static int sci_wait __P((char until, int timeo, int line));
static void scsiabort __P((register struct sci_softc *dev, char *where));
static void scsierror __P((register struct sci_softc *dev, u_char csr));
static int issue_select __P((register struct sci_softc *dev, u_char target,
u_char our_addr));
static int ixfer_out __P((register struct sci_softc *dev, int len,
register u_char *buf, int phase));
static void ixfer_in __P((register struct sci_softc *dev, int len,
register u_char *buf, int phase));
static int scsiicmd __P((struct sci_softc *dev, int target, u_char *cbuf,
int clen, u_char *buf, int len, u_char xferphase));
/*
* SCSI delays
* In u-seconds, primarily for state changes on the SPC.
*/
#define SCSI_CMD_WAIT 50000 /* wait per step of 'immediate' cmds */
#define SCSI_DATA_WAIT 50000 /* wait per data in/out step */
#define SCSI_INIT_WAIT 50000 /* wait per step (both) during init */
extern void _insque();
extern void _remque();
void scistart __P((int unit));
int scigo __P((int ctlr, int slave, int unit, struct buf *bp,
struct scsi_fmt_cdb *cdb, int pad));
int sciintr __P((void));
void scidone __P((int unit));
int sciustart __P((int unit));
int scireq __P((register struct devqueue *dq));
void scifree __P((register struct devqueue *dq));
void scireset __P((int unit));
void sci_delay __P((int delay));
int sci_test_unit_rdy __P((int ctlr, int slave, int unit));
int sci_start_stop_unit __P((int ctlr, int slave, int unit, int start));
int sci_request_sense __P((int ctlr, int slave, int unit, u_char *buf,
unsigned int len));
int sci_immed_command __P((int ctlr, int slave, int unit,
struct scsi_fmt_cdb *cdb, u_char *buf, unsigned int len, int rd));
int sci_immed_command_nd __P((int ctlr, int slave, int unit,
struct scsi_fmt_cdb *cdb));
int sci_tt_read __P((int ctlr, int slave, int unit, u_char *buf,
u_int len, daddr_t blk, int bshift));
int sci_tt_write __P((int ctlr, int slave, int unit, u_char *buf,
u_int len, daddr_t blk, int bshift));
#if NST > 0
int sci_tt_oddio __P((int ctlr, int slave, int unit, u_char *buf, u_int len, int b_flags, int freedma));
#endif
#if NMLHSCSI > 0
int mlhscsiinit ();
struct driver mlhscsidriver = {
(int (*)(void *)) mlhscsiinit, "Mlhscsi", (int (*)(int)) scistart,
(int (*)(int,...)) scigo, (int (*)(int,int)) sciintr,
(int (*)())scidone, sciustart, scireq, scifree, scireset,
sci_delay, sci_test_unit_rdy, sci_start_stop_unit,
sci_request_sense, sci_immed_command, sci_immed_command_nd,
sci_tt_read, sci_tt_write,
#if NST > 0
sci_tt_oddio
#else
NULL
#endif
};
#endif
#if NCSA12GSCSI > 0
int csa12gscsiinit ();
struct driver csa12gscsidriver = {
(int (*)(void *)) csa12gscsiinit, "Csa12gscsi", (int (*)(int)) scistart,
(int (*)(int,...)) scigo, (int (*)(int,int)) sciintr,
(int (*)())scidone, sciustart, scireq, scifree, scireset,
sci_delay, sci_test_unit_rdy, sci_start_stop_unit,
sci_request_sense, sci_immed_command, sci_immed_command_nd,
sci_tt_read, sci_tt_write,
#if NST > 0
sci_tt_oddio
#else
NULL
#endif
};
#endif
#if NSUPRASCSI > 0
int suprascsiinit ();
struct driver suprascsidriver = {
(int (*)(void *)) suprascsiinit, "Suprascsi", (int (*)(int)) scistart,
(int (*)(int,...)) scigo, (int (*)(int,int)) sciintr,
(int (*)())scidone, sciustart, scireq, scifree, scireset,
sci_delay, sci_test_unit_rdy, sci_start_stop_unit,
sci_request_sense, sci_immed_command, sci_immed_command_nd,
sci_tt_read, sci_tt_write,
#if NST > 0
sci_tt_oddio
#else
NULL
#endif
};
#endif
#if NIVSSCSI > 0
int ivsscsiinit ();
struct driver ivsscsidriver = {
(int (*)(void *)) ivsscsiinit, "IVSscsi", (int (*)(int)) scistart,
(int (*)(int,...)) scigo, (int (*)(int,int)) sciintr,
(int (*)())scidone, sciustart, scireq, scifree, scireset,
sci_delay, sci_test_unit_rdy, sci_start_stop_unit,
sci_request_sense, sci_immed_command, sci_immed_command_nd,
sci_tt_read, sci_tt_write,
#if NST > 0
sci_tt_oddio
#else
NULL
#endif
};
#endif
struct sci_softc sci_softc[NSCI];
int sci_cmd_wait = SCSI_CMD_WAIT;
int sci_data_wait = SCSI_DATA_WAIT;
int sci_init_wait = SCSI_INIT_WAIT;
int sci_no_dma = 0;
#ifdef DEBUG
int sci_debug = 0;
#define WAITHIST
#define QUASEL
static long dmahits[NSCI];
static long dmamisses[NSCI];
#endif
#ifdef QUASEL
#define QPRINTF(a) if (sci_debug > 1) printf a
#else
#define QPRINTF
#endif
#ifdef WAITHIST
#define MAXWAIT 1022
u_int ixstart_wait[MAXWAIT+2];
u_int ixin_wait[MAXWAIT+2];
u_int ixout_wait[MAXWAIT+2];
u_int mxin_wait[MAXWAIT+2];
u_int mxin2_wait[MAXWAIT+2];
u_int cxin_wait[MAXWAIT+2];
u_int fxfr_wait[MAXWAIT+2];
u_int sgo_wait[MAXWAIT+2];
#define HIST(h,w) (++h[((w)>MAXWAIT? MAXWAIT : ((w) < 0 ? -1 : (w))) + 1]);
#else
#define HIST(h,w)
#endif
#define b_cylin b_resid
static sci_wait (until, timeo, line)
char until;
int timeo;
int line;
{
register unsigned char val;
if (! timeo)
timeo = 1000000; /* some large value.. */
return val;
}
static void
scsiabort(dev, where)
register struct sci_softc *dev;
char *where;
{
printf ("sci%d: abort %s: csr = 0x%02x, bus = 0x%02x\n",
dev->sc_ac->amiga_unit,
where, *dev->sci_csr, *dev->sci_bus_csr);
if (dev->sc_flags & SCI_SELECTED) {
/* XXX */
scireset (dev->sc_ac->amiga_unit);
/* lets just hope it worked.. */
dev->sc_flags &= ~SCI_SELECTED;
}
}
/*
* XXX Set/reset long delays.
*
* if delay == 0, reset default delays
* if delay < 0, set both delays to default long initialization values
* if delay > 0, set both delays to this value
*
* Used when a devices is expected to respond slowly (e.g. during
* initialization).
*/
void
sci_delay(delay)
int delay;
{
static int saved_cmd_wait, saved_data_wait;
if (delay) {
saved_cmd_wait = sci_cmd_wait;
saved_data_wait = sci_data_wait;
if (delay > 0)
sci_cmd_wait = sci_data_wait = delay;
else
sci_cmd_wait = sci_data_wait = sci_init_wait;
} else {
sci_cmd_wait = saved_cmd_wait;
sci_data_wait = saved_data_wait;
}
}
static int initialized[NSCI];
#if NMLHSCSI > 0
int
mlhscsiinit(ac)
register struct amiga_ctlr *ac;
{
register struct sci_softc *dev = &sci_softc[ac->amiga_unit];
if (! ac->amiga_addr)
return 0;
if (initialized[ac->amiga_unit])
return 0;
if (ac->amiga_unit > NSCI)
return 0;
initialized[ac->amiga_unit] = 1;
/* advance ac->amiga_addr to point to the real sci-registers */
ac->amiga_addr = (caddr_t) ((int)ac->amiga_addr);
dev->sci_data = (caddr_t) ac->amiga_addr + 1;
dev->sci_odata = (caddr_t) ac->amiga_addr + 1;
dev->sci_icmd = (caddr_t) ac->amiga_addr + 3;
dev->sci_mode = (caddr_t) ac->amiga_addr + 5;
dev->sci_tcmd = (caddr_t) ac->amiga_addr + 7;
dev->sci_bus_csr = (caddr_t) ac->amiga_addr + 9;
dev->sci_sel_enb = (caddr_t) ac->amiga_addr + 9;
dev->sci_csr = (caddr_t) ac->amiga_addr + 11;
dev->sci_dma_send = (caddr_t) ac->amiga_addr + 11;
dev->sci_idata = (caddr_t) ac->amiga_addr + 13;
dev->sci_trecv = (caddr_t) ac->amiga_addr + 13;
dev->sci_iack = (caddr_t) ac->amiga_addr + 15;
dev->sci_irecv = (caddr_t) ac->amiga_addr + 15;
mlhdmainit (dev);
/* hardwired IPL */
ac->amiga_ipl = 0; /* doesn't use interrupts */
dev->sc_ac = ac;
dev->sc_sq.dq_forw = dev->sc_sq.dq_back = &dev->sc_sq;
scireset (ac->amiga_unit);
return(1);
}
#endif
#if NCSA12GSCSI > 0
int
csa12gscsiinit(ac)
register struct amiga_ctlr *ac;
{
register struct sci_softc *dev = &sci_softc[ac->amiga_unit];
if (! ac->amiga_addr)
return 0;
if (initialized[ac->amiga_unit])
return 0;
if (ac->amiga_unit > NSCI)
return 0;
initialized[ac->amiga_unit] = 1;
/* advance ac->amiga_addr to point to the real sci-registers */
ac->amiga_addr = (caddr_t) ((int)ac->amiga_addr + 0x2000);
dev->sci_data = (caddr_t) ac->amiga_addr;
dev->sci_odata = (caddr_t) ac->amiga_addr;
dev->sci_icmd = (caddr_t) ac->amiga_addr + 0x10;
dev->sci_mode = (caddr_t) ac->amiga_addr + 0x20;
dev->sci_tcmd = (caddr_t) ac->amiga_addr + 0x30;
dev->sci_bus_csr = (caddr_t) ac->amiga_addr + 0x40;
dev->sci_sel_enb = (caddr_t) ac->amiga_addr + 0x40;
dev->sci_csr = (caddr_t) ac->amiga_addr + 0x50;
dev->sci_dma_send = (caddr_t) ac->amiga_addr + 0x50;
dev->sci_idata = (caddr_t) ac->amiga_addr + 0x60;
dev->sci_trecv = (caddr_t) ac->amiga_addr + 0x60;
dev->sci_iack = (caddr_t) ac->amiga_addr + 0x70;
dev->sci_irecv = (caddr_t) ac->amiga_addr + 0x70;
csa12gdmainit (dev);
/* hardwired IPL */
ac->amiga_ipl = 2;
dev->sc_ac = ac;
dev->sc_sq.dq_forw = dev->sc_sq.dq_back = &dev->sc_sq;
scireset (ac->amiga_unit);
/* make sure IPL2 interrupts are delivered to the cpu when the sci
generates some. Note that this does not yet enable sci-interrupts,
this is handled in dma.c, which selectively enables interrupts only
while DMA requests are pending.
Note that enabling PORTS interrupts also enables keyboard interrupts
as soon as the corresponding int-enable bit in CIA-A is set. */
custom.intreq = INTF_PORTS;
custom.intena = INTF_SETCLR | INTF_PORTS;
return(1);
}
#endif
#if NSUPRASCSI > 0
int
suprascsiinit(ac)
register struct amiga_ctlr *ac;
{
register struct sci_softc *dev = &sci_softc[ac->amiga_unit];
if (! ac->amiga_addr)
return 0;
if (initialized[ac->amiga_unit])
return 0;
if (ac->amiga_unit > NSCI)
return 0;
initialized[ac->amiga_unit] = 1;
/* advance ac->amiga_addr to point to the real sci-registers */
/* XXX Supra Word Sync version 2 only for now !!! */
dev->sci_data = (caddr_t) ac->amiga_addr;
dev->sci_odata = (caddr_t) ac->amiga_addr;
dev->sci_icmd = (caddr_t) ac->amiga_addr + 2;
dev->sci_mode = (caddr_t) ac->amiga_addr + 4;
dev->sci_tcmd = (caddr_t) ac->amiga_addr + 6;
dev->sci_bus_csr = (caddr_t) ac->amiga_addr + 8;
dev->sci_sel_enb = (caddr_t) ac->amiga_addr + 8;
dev->sci_csr = (caddr_t) ac->amiga_addr + 10;
dev->sci_dma_send = (caddr_t) ac->amiga_addr + 10;
dev->sci_idata = (caddr_t) ac->amiga_addr + 12;
dev->sci_trecv = (caddr_t) ac->amiga_addr + 12;
dev->sci_iack = (caddr_t) ac->amiga_addr + 14;
dev->sci_irecv = (caddr_t) ac->amiga_addr + 14;
supradmainit (dev);
/* hardwired IPL */
ac->amiga_ipl = 2;
dev->sc_ac = ac;
dev->sc_sq.dq_forw = dev->sc_sq.dq_back = &dev->sc_sq;
scireset (ac->amiga_unit);
/* make sure IPL2 interrupts are delivered to the cpu when the sci
generates some. Note that this does not yet enable sci-interrupts,
this is handled in dma.c, which selectively enables interrupts only
while DMA requests are pending.
Note that enabling PORTS interrupts also enables keyboard interrupts
as soon as the corresponding int-enable bit in CIA-A is set. */
custom.intreq = INTF_PORTS;
custom.intena = INTF_SETCLR | INTF_PORTS;
return(1);
}
#endif
#if NIVSSCSI > 0
int
ivsscsiinit(ac)
register struct amiga_ctlr *ac;
{
register struct sci_softc *dev = &sci_softc[ac->amiga_unit];
if (! ac->amiga_addr)
return 0;
if (initialized[ac->amiga_unit])
return 0;
if (ac->amiga_unit > NSCI)
return 0;
initialized[ac->amiga_unit] = 1;
/* advance ac->amiga_addr to point to the real sci-registers */
ac->amiga_addr = (caddr_t) ((int)ac->amiga_addr + 0x40);
dev->sci_data = (caddr_t) ac->amiga_addr;
dev->sci_odata = (caddr_t) ac->amiga_addr;
dev->sci_icmd = (caddr_t) ac->amiga_addr + 2;
dev->sci_mode = (caddr_t) ac->amiga_addr + 4;
dev->sci_tcmd = (caddr_t) ac->amiga_addr + 6;
dev->sci_bus_csr = (caddr_t) ac->amiga_addr + 8;
dev->sci_sel_enb = (caddr_t) ac->amiga_addr + 8;
dev->sci_csr = (caddr_t) ac->amiga_addr + 10;
dev->sci_dma_send = (caddr_t) ac->amiga_addr + 10;
dev->sci_idata = (caddr_t) ac->amiga_addr + 12;
dev->sci_trecv = (caddr_t) ac->amiga_addr + 12;
dev->sci_iack = (caddr_t) ac->amiga_addr + 14;
dev->sci_irecv = (caddr_t) ac->amiga_addr + 14;
ivsdmainit (dev);
/* hardwired IPL */
ac->amiga_ipl = 2;
dev->sc_ac = ac;
dev->sc_sq.dq_forw = dev->sc_sq.dq_back = &dev->sc_sq;
scireset (ac->amiga_unit);
/* make sure IPL2 interrupts are delivered to the cpu when the sci
generates some. Note that this does not yet enable sci-interrupts,
this is handled in dma.c, which selectively enables interrupts only
while DMA requests are pending.
Note that enabling PORTS interrupts also enables keyboard interrupts
as soon as the corresponding int-enable bit in CIA-A is set. */
custom.intreq = INTF_PORTS;
custom.intena = INTF_SETCLR | INTF_PORTS;
return(1);
}
#endif
void
scireset(unit)
register int unit;
{
register struct sci_softc *dev = &sci_softc[unit];
u_int i, s;
u_char my_id, csr;
if (dev->sc_flags & SCI_ALIVE)
scsiabort(dev, "reset");
printf("sci%d: ", unit);
s = splbio();
/* preserve our ID for now */
my_id = 7;
/*
* Disable interrupts (in dmainit) then reset the chip
*/
*dev->sci_icmd = SCI_ICMD_TEST;
*dev->sci_icmd = SCI_ICMD_TEST | SCI_ICMD_RST;
DELAY (25);
*dev->sci_icmd = 0;
/*
* Set up various chip parameters
*/
*dev->sci_icmd = 0;
*dev->sci_tcmd = 0;
*dev->sci_sel_enb = 0;
/* anything else was zeroed by reset */
splx (s);
printf("sci id %d\n", my_id);
dev->sc_flags |= SCI_ALIVE;
dev->sc_flags &= ~SCI_SELECTED;
}
static void
scsierror(dev, csr)
register struct sci_softc *dev;
u_char csr;
{
int unit = dev->sc_ac->amiga_unit;
char *sep = "";
printf("sci%d: ", unit);
printf("\n");
}
static int
issue_select(dev, target, our_addr)
register struct sci_softc *dev;
u_char target, our_addr;
{
register int timeo = 2500;
QPRINTF (("issue_select %d\n", target));
/* if we're already selected, return */
if (dev->sc_flags & SCI_SELECTED) /* XXXX */
return 1;
if ((*dev->sci_bus_csr & (SCI_BUS_BSY|SCI_BUS_SEL)) &&
(*dev->sci_bus_csr & (SCI_BUS_BSY|SCI_BUS_SEL)) &&
(*dev->sci_bus_csr & (SCI_BUS_BSY|SCI_BUS_SEL)))
return 1;
*dev->sci_tcmd = 0;
*dev->sci_odata = 0x80 + (1 << target);
*dev->sci_icmd = SCI_ICMD_DATA|SCI_ICMD_SEL;
while ((*dev->sci_bus_csr & SCI_BUS_BSY) == 0) {
if (--timeo > 0) {
DELAY(100);
} else {
break;
}
}
if (timeo) {
*dev->sci_icmd = 0;
dev->sc_flags |= SCI_SELECTED;
return (0);
}
*dev->sci_icmd = 0;
return (1);
}
static int
ixfer_out(dev, len, buf, phase)
register struct sci_softc *dev;
int len;
register u_char *buf;
int phase;
{
register int wait = sci_data_wait;
u_char csr;
QPRINTF(("ixfer_out {%d} %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
len, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
buf[6], buf[7], buf[8], buf[9]));
*dev->sci_tcmd = phase;
*dev->sci_icmd = SCI_ICMD_DATA;
for (;len > 0; len--) {
csr = *dev->sci_bus_csr;
while (!(csr & SCI_BUS_REQ)) {
if ((csr & SCI_BUS_BSY) == 0 || --wait < 0) {
#ifdef DEBUG
if (sci_debug)
printf("ixfer_out fail: l%d i%x w%d\n",
len, csr, wait);
#endif
HIST(ixout_wait, wait)
return (len);
}
DELAY(1);
csr = *dev->sci_bus_csr;
}
if (!(*dev->sci_csr & SCI_CSR_PHASE_MATCH))
break;
*dev->sci_odata = *buf;
*dev->sci_icmd = SCI_ICMD_DATA|SCI_ICMD_ACK;
buf++;
while (*dev->sci_bus_csr & SCI_BUS_REQ);
*dev->sci_icmd = SCI_ICMD_DATA;
}
QPRINTF(("ixfer_out done\n"));
/* this leaves with one csr to be read */
HIST(ixout_wait, wait)
return (0);
}
static void
ixfer_in(dev, len, buf, phase)
struct sci_softc *dev;
int len;
register u_char *buf;
int phase;
{
int wait = sci_data_wait;
u_char *obp = buf;
u_char csr;
volatile register u_char *sci_bus_csr = dev->sci_bus_csr;
volatile register u_char *sci_data = dev->sci_data;
volatile register u_char *sci_icmd = dev->sci_icmd;
csr = *sci_bus_csr;
QPRINTF(("ixfer_in %d, csr=%02x\n", len, csr));
*dev->sci_tcmd = phase;
*sci_icmd = 0;
for (;len > 0; len--) {
csr = *sci_bus_csr;
while (!(csr & SCI_BUS_REQ)) {
if (!(csr & SCI_BUS_BSY) || --wait < 0) {
#ifdef DEBUG
if (sci_debug)
printf("ixfer_in fail: l%d i%x w%d\n",
len, csr, wait);
#endif
HIST(ixin_wait, wait)
return;
}
DELAY(1);
csr = *sci_bus_csr;
}
if (!(*dev->sci_csr & SCI_CSR_PHASE_MATCH))
break;
*buf = *sci_data;
*sci_icmd = SCI_ICMD_ACK;
buf++;
while (*sci_bus_csr & SCI_BUS_REQ);
*sci_icmd = 0;
}
QPRINTF(("ixfer_in {%d} %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
len, obp[0], obp[1], obp[2], obp[3], obp[4], obp[5],
obp[6], obp[7], obp[8], obp[9]));
/* this leaves with one csr to be read */
HIST(ixin_wait, wait)
}
/*
* SCSI 'immediate' command: issue a command to some SCSI device
* and get back an 'immediate' response (i.e., do programmed xfer
* to get the response data). 'cbuf' is a buffer containing a scsi
* command of length clen bytes. 'buf' is a buffer of length 'len'
* bytes for data. The transfer direction is determined by the device
* (i.e., by the scsi bus data xfer phase). If 'len' is zero, the
* command must supply no data. 'xferphase' is the bus phase the
* caller expects to happen after the command is issued. It should
* be one of DATA_IN_PHASE, DATA_OUT_PHASE or STATUS_PHASE.
*/
static int
scsiicmd(dev, target, cbuf, clen, buf, len, xferphase)
struct sci_softc *dev;
int target;
u_char *cbuf;
int clen;
u_char *buf;
int len;
u_char xferphase;
{
u_char phase, csr, asr;
register int wait;
/* select the SCSI bus (it's an error if bus isn't free) */
if (issue_select (dev, target, dev->sc_scsi_addr))
return -1;
/*
* Wait for a phase change (or error) then let the device
* sequence us through the various SCSI phases.
*/
dev->sc_stat[0] = 0xff;
dev->sc_msg[0] = 0xff;
phase = CMD_PHASE;
while (1) {
wait = sci_cmd_wait;
while ((*dev->sci_bus_csr & (SCI_BUS_REQ|SCI_BUS_BSY)) == SCI_BUS_BSY);
QPRINTF((">CSR:%02x<", *dev->sci_bus_csr));
if ((*dev->sci_bus_csr & SCI_BUS_REQ) == 0) {
return -1;
}
phase = SCI_PHASE(*dev->sci_bus_csr);
switch (phase) {
case CMD_PHASE:
if (ixfer_out (dev, clen, cbuf, phase))
goto abort;
phase = xferphase;
break;
case DATA_IN_PHASE:
if (len <= 0)
goto abort;
wait = sci_data_wait;
ixfer_in (dev, len, buf, phase);
phase = STATUS_PHASE;
break;
case DATA_OUT_PHASE:
if (len <= 0)
goto abort;
wait = sci_data_wait;
if (ixfer_out (dev, len, buf, phase))
goto abort;
phase = STATUS_PHASE;
break;
case MESG_IN_PHASE:
dev->sc_msg[0] = 0xff;
ixfer_in (dev, 1, dev->sc_msg,phase);
dev->sc_flags &= ~SCI_SELECTED;
while (*dev->sci_bus_csr & SCI_BUS_BSY);
goto out;
break;
case MESG_OUT_PHASE:
phase = STATUS_PHASE;
break;
case STATUS_PHASE:
ixfer_in (dev, 1, dev->sc_stat, phase);
phase = MESG_IN_PHASE;
break;
case BUS_FREE_PHASE:
goto out;
default:
printf("sci: unexpected phase %d in icmd from %d\n",
phase, target);
goto abort;
}
#if 0
if (wait <= 0)
goto abort;
#endif
}
abort:
scsiabort(dev, "icmd");
out:
QPRINTF(("=STS:%02x=", dev->sc_stat[0]));
return (dev->sc_stat[0]);
}
int
sci_test_unit_rdy(ctlr, slave, unit)
int ctlr, slave, unit;
{
register struct sci_softc *dev = &sci_softc[ctlr];
static struct scsi_cdb6 cdb = { CMD_TEST_UNIT_READY };
cdb.lun = unit;
return (scsiicmd(dev, slave, (u_char *)&cdb, sizeof(cdb), (u_char *)0, 0,
STATUS_PHASE));
}
int
sci_start_stop_unit (ctlr, slave, unit, start)
int ctlr, slave, unit;
{
register struct sci_softc *dev = &sci_softc[ctlr];
static struct scsi_cdb6 cdb = { CMD_LOADUNLOAD };
cdb.lun = unit;
/* we don't set the immediate bit, so we wait for the
command to succeed.
We also don't touch the LoEj bit, which is primarily meant
for floppies. */
cdb.len = start & 0x01;
return (scsiicmd(dev, slave, (u_char *)&cdb, sizeof(cdb), (u_char *)0, 0,
STATUS_PHASE));
}
int
sci_request_sense(ctlr, slave, unit, buf, len)
int ctlr, slave, unit;
u_char *buf;
unsigned len;
{
register struct sci_softc *dev = &sci_softc[ctlr];
static struct scsi_cdb6 cdb = { CMD_REQUEST_SENSE };
cdb.lun = unit;
cdb.len = len;
return (scsiicmd(dev, slave, (u_char *)&cdb, sizeof(cdb), buf, len, DATA_IN_PHASE));
}
int
sci_immed_command_nd(ctlr, slave, unit, cdb)
int ctlr, slave, unit;
struct scsi_fmt_cdb *cdb;
{
register struct sci_softc *dev = &sci_softc[ctlr];
cdb->cdb[1] |= (unit << 5);
return(scsiicmd(dev, slave, (u_char *) cdb->cdb, cdb->len,
0, 0, STATUS_PHASE));
}
int
sci_immed_command(ctlr, slave, unit, cdb, buf, len, rd)
int ctlr, slave, unit;
struct scsi_fmt_cdb *cdb;
u_char *buf;
unsigned len;
{
register struct sci_softc *dev = &sci_softc[ctlr];
cdb->cdb[1] |= (unit << 5);
return (scsiicmd(dev, slave, (u_char *) cdb->cdb, cdb->len, buf, len,
rd != 0? DATA_IN_PHASE : DATA_OUT_PHASE));
}
/*
* The following routines are test-and-transfer i/o versions of read/write
* for things like reading disk labels and writing core dumps. The
* routine scigo should be used for normal data transfers, NOT these
* routines.
*/
int
sci_tt_read(ctlr, slave, unit, buf, len, blk, bshift)
int ctlr, slave, unit;
u_char *buf;
u_int len;
daddr_t blk;
int bshift;
{
register struct sci_softc *dev = &sci_softc[ctlr];
struct scsi_cdb10 cdb;
int stat;
int old_wait = sci_data_wait;
sci_data_wait = 300000;
bzero(&cdb, sizeof(cdb));
cdb.cmd = CMD_READ_EXT;
cdb.lun = unit;
blk >>= bshift;
cdb.lbah = blk >> 24;
cdb.lbahm = blk >> 16;
cdb.lbalm = blk >> 8;
cdb.lbal = blk;
cdb.lenh = len >> (8 + DEV_BSHIFT + bshift);
cdb.lenl = len >> (DEV_BSHIFT + bshift);
stat = scsiicmd(dev, slave, (u_char *) &cdb, sizeof(cdb), buf, len, DATA_IN_PHASE);
sci_data_wait = old_wait;
return (stat);
}
int
sci_tt_write(ctlr, slave, unit, buf, len, blk, bshift)
int ctlr, slave, unit;
u_char *buf;
u_int len;
daddr_t blk;
int bshift;
{
register struct sci_softc *dev = &sci_softc[ctlr];
struct scsi_cdb10 cdb;
int stat;
int old_wait = sci_data_wait;
sci_data_wait = 300000;
bzero(&cdb, sizeof(cdb));
cdb.cmd = CMD_WRITE_EXT;
cdb.lun = unit;
blk >>= bshift;
cdb.lbah = blk >> 24;
cdb.lbahm = blk >> 16;
cdb.lbalm = blk >> 8;
cdb.lbal = blk;
cdb.lenh = len >> (8 + DEV_BSHIFT + bshift);
cdb.lenl = len >> (DEV_BSHIFT + bshift);
stat = scsiicmd(dev, slave, (u_char *) &cdb, sizeof(cdb), buf, len, DATA_OUT_PHASE);
sci_data_wait = old_wait;
return (stat);
}
int
scireq(dq)
register struct devqueue *dq;
{
register struct devqueue *hq;
hq = &sci_softc[dq->dq_ctlr].sc_sq;
insque(dq, hq->dq_back);
if (dq->dq_back == hq)
return(1);
return(0);
}
int
sciustart (int unit)
{
register struct sci_softc *dev = &sci_softc[unit];
/* If we got here, this controller is not busy
so we are ready to accept a command
*/
return(1);
}
void
scistart (int unit)
{
register struct devqueue *dq;
dq = sci_softc[unit].sc_sq.dq_forw;
(dq->dq_driver->d_go)(dq->dq_unit);
}
int
scigo(ctlr, slave, unit, bp, cdb, pad)
int ctlr, slave, unit;
struct buf *bp;
struct scsi_fmt_cdb *cdb;
int pad;
{
register struct sci_softc *dev = &sci_softc[ctlr];
u_char phase, csr, asr, cmd;
char *addr;
int count;
register struct devqueue *dq;
cdb->cdb[1] |= unit << 5;
addr = bp->b_un.b_addr;
count = bp->b_bcount;
if (sci_no_dma) {
scsiicmd (dev, slave, (u_char *) cdb->cdb, cdb->len,
addr, count,
bp->b_flags & B_READ ? DATA_IN_PHASE : DATA_OUT_PHASE);
dq = dev->sc_sq.dq_forw;
dev->sc_flags &=~ (SCI_IO);
(dq->dq_driver->d_intr)(dq->dq_unit, dev->sc_stat[0]);
return dev->sc_stat[0];
}
/* select the SCSI bus (it's an error if bus isn't free) */
if (issue_select (dev, slave, dev->sc_scsi_addr))
return -1;
/*
* Wait for a phase change (or error) then let the device
* sequence us through the various SCSI phases.
*/
dev->sc_stat[0] = 0xff;
dev->sc_msg[0] = 0xff;
phase = CMD_PHASE;
while (1) {
while ((*dev->sci_bus_csr & (SCI_BUS_REQ|SCI_BUS_BSY)) ==
SCI_BUS_BSY);
QPRINTF((">CSR:%02x<", *dev->sci_bus_csr));
if ((*dev->sci_bus_csr & SCI_BUS_REQ) == 0) {
goto abort;
}
phase = SCI_PHASE(*dev->sci_bus_csr);
switch (phase) {
case CMD_PHASE:
if (ixfer_out (dev, cdb->len, cdb->cdb, phase))
goto abort;
phase = bp->b_flags & B_READ ? DATA_IN_PHASE : DATA_OUT_PHASE;
break;
case DATA_IN_PHASE:
if (count <= 0)
goto abort;
/* XXX use psuedo DMA if available */
if (count >= 128 && dev->dma_xfer_in)
(*dev->dma_xfer_in)(dev, count, addr, phase);
else
ixfer_in (dev, count, addr, phase);
phase = STATUS_PHASE;
break;
case DATA_OUT_PHASE:
if (count <= 0)
goto abort;
/* XXX use psuedo DMA if available */
if (count >= 128 && dev->dma_xfer_out)
(*dev->dma_xfer_out)(dev, count, addr, phase);
else
if (ixfer_out (dev, count, addr, phase))
goto abort;
phase = STATUS_PHASE;
break;
case MESG_IN_PHASE:
dev->sc_msg[0] = 0xff;
ixfer_in (dev, 1, dev->sc_msg,phase);
dev->sc_flags &= ~SCI_SELECTED;
while (*dev->sci_bus_csr & SCI_BUS_BSY);
goto out;
break;
case MESG_OUT_PHASE:
phase = STATUS_PHASE;
break;
case STATUS_PHASE:
ixfer_in (dev, 1, dev->sc_stat, phase);
phase = MESG_IN_PHASE;
break;
case BUS_FREE_PHASE:
goto out;
default:
printf("sci: unexpected phase %d in icmd from %d\n",
phase, slave);
goto abort;
}
}
abort:
scsiabort(dev, "go");
out:
QPRINTF(("=STS:%02x=", dev->sc_stat[0]));
dq = dev->sc_sq.dq_forw;
dev->sc_flags &=~ (SCI_IO);
(dq->dq_driver->d_intr)(dq->dq_unit, dev->sc_stat[0]);
return dev->sc_stat[0];
}
void
scidone (int unit)
{
#ifdef DEBUG
if (sci_debug)
printf("sci%d: done called!\n", unit);
#endif
}
int
sciintr ()
{
register struct sci_softc *dev = sci_softc;
int unit;
int dummy;
int found = 0;
for (unit = 0; unit < NSCI; ++unit, ++dev) {
if (dev->sc_ac->amiga_ipl == 0)
continue;
/* XXX check if expecting interrupt? */
if (dev->dma_intr)
found += (*dev->dma_intr)(dev);
else if ((*dev->sci_csr & SCI_CSR_INT)) {
*dev->sci_mode = 0;
dummy = *dev->sci_iack;
++found;
}
}
return found;
}
void
scifree(dq)
register struct devqueue *dq;
{
register struct devqueue *hq;
hq = &sci_softc[dq->dq_ctlr].sc_sq;
remque(dq);
if ((dq = hq->dq_forw) != hq)
(dq->dq_driver->d_start)(dq->dq_unit);
}
/*
* (XXX) The following routine is needed for the SCSI tape driver
* to read odd-size records.
*/
#if NST > 0
int
sci_tt_oddio(ctlr, slave, unit, buf, len, b_flags, freedma)
int ctlr, slave, unit, b_flags;
u_char *buf;
u_int len;
{
register struct sci_softc *dev = &sci_softc[ctlr];
struct scsi_cdb6 cdb;
u_char iphase;
int stat;
/*
* First free any DMA channel that was allocated.
* We can't use DMA to do this transfer.
*/
/*
* Initialize command block
*/
bzero(&cdb, sizeof(cdb));
cdb.lun = unit;
cdb.lbam = (len >> 16) & 0xff;
cdb.lbal = (len >> 8) & 0xff;
cdb.len = len & 0xff;
if (buf == 0) {
cdb.cmd = CMD_SPACE;
cdb.lun |= 0x00;
len = 0;
iphase = MESG_IN_PHASE;
} else if (b_flags & B_READ) {
cdb.cmd = CMD_READ;
iphase = DATA_IN_PHASE;
} else {
cdb.cmd = CMD_WRITE;
iphase = DATA_OUT_PHASE;
}
/*
* Perform command (with very long delays)
*/
sci_delay(30000000);
stat = scsiicmd(dev, slave, (u_char *) &cdb, sizeof(cdb), buf, len, iphase);
sci_delay(0);
return (stat);
}
#endif
#endif