NetBSD/sys/dev/ic/z8530tty.c
wrstuden b1bb9aa490 Oops. We do still need to set t_dev in the first open part of zsopen,
so we get ttyXX vs cuaXX right. Leave the initialization in attach.
1998-08-09 18:36:45 +00:00

1442 lines
33 KiB
C

/* $NetBSD: z8530tty.c,v 1.50 1998/08/09 18:36:45 wrstuden Exp $ */
/*-
* Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998
* Charles M. Hannum. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles M. Hannum.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1994 Gordon W. Ross
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)zs.c 8.1 (Berkeley) 7/19/93
*/
/*
* Zilog Z8530 Dual UART driver (tty interface)
*
* This is the "slave" driver that will be attached to
* the "zsc" driver for plain "tty" async. serial lines.
*
* Credits, history:
*
* The original version of this code was the sparc/dev/zs.c driver
* as distributed with the Berkeley 4.4 Lite release. Since then,
* Gordon Ross reorganized the code into the current parent/child
* driver scheme, separating the Sun keyboard and mouse support
* into independent child drivers.
*
* RTS/CTS flow-control support was a collaboration of:
* Gordon Ross <gwr@netbsd.org>,
* Bill Studenmund <wrstuden@loki.stanford.edu>
* Ian Dall <Ian.Dall@dsto.defence.gov.au>
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/tty.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <dev/ic/z8530reg.h>
#include <machine/z8530var.h>
#include "locators.h"
/*
* How many input characters we can buffer.
* The port-specific var.h may override this.
* Note: must be a power of two!
*/
#ifndef ZSTTY_RING_SIZE
#define ZSTTY_RING_SIZE 2048
#endif
/*
* Make this an option variable one can patch.
* But be warned: this must be a power of 2!
*/
u_int zstty_rbuf_size = ZSTTY_RING_SIZE;
/* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4;
u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4;
struct zstty_softc {
struct device zst_dev; /* required first: base device */
struct tty *zst_tty;
struct zs_chanstate *zst_cs;
u_int zst_overflows,
zst_floods,
zst_errors;
int zst_hwflags, /* see z8530var.h */
zst_swflags; /* TIOCFLAG_SOFTCAR, ... <ttycom.h> */
u_int zst_r_hiwat,
zst_r_lowat;
u_char *volatile zst_rbget,
*volatile zst_rbput;
volatile u_int zst_rbavail;
u_char *zst_rbuf,
*zst_ebuf;
/*
* The transmit byte count and address are used for pseudo-DMA
* output in the hardware interrupt code. PDMA can be suspended
* to get pending changes done; heldtbc is used for this. It can
* also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
*/
u_char *zst_tba; /* transmit buffer address */
u_int zst_tbc, /* transmit byte count */
zst_heldtbc; /* held tbc while xmission stopped */
/* Flags to communicate with zstty_softint() */
volatile u_char zst_rx_flags, /* receiver blocked */
#define RX_TTY_BLOCKED 0x01
#define RX_TTY_OVERFLOWED 0x02
#define RX_IBUF_BLOCKED 0x04
#define RX_IBUF_OVERFLOWED 0x08
#define RX_ANY_BLOCK 0x0f
zst_tx_busy, /* working on an output chunk */
zst_tx_done, /* done with one output chunk */
zst_tx_stopped, /* H/W level stop (lost CTS) */
zst_st_check, /* got a status interrupt */
zst_rx_ready;
};
/* Macros to clear/set/test flags. */
#define SET(t, f) (t) |= (f)
#define CLR(t, f) (t) &= ~(f)
#define ISSET(t, f) ((t) & (f))
/* Definition of the driver for autoconfig. */
#ifdef __BROKEN_INDIRECT_CONFIG
static int zstty_match(struct device *, void *, void *);
#else
static int zstty_match(struct device *, struct cfdata *, void *);
#endif
static void zstty_attach(struct device *, struct device *, void *);
struct cfattach zstty_ca = {
sizeof(struct zstty_softc), zstty_match, zstty_attach
};
extern struct cfdriver zstty_cd;
struct zsops zsops_tty;
/* Routines called from other code. */
cdev_decl(zs); /* open, close, read, write, ioctl, stop, ... */
static void zs_shutdown __P((struct zstty_softc *));
static void zsstart __P((struct tty *));
static int zsparam __P((struct tty *, struct termios *));
static void zs_modem __P((struct zstty_softc *zst, int onoff));
static int zshwiflow __P((struct tty *, int));
static void zs_hwiflow __P((struct zstty_softc *));
#define ZSUNIT(x) (minor(x) & 0x7ffff)
#define ZSDIALOUT(x) (minor(x) & 0x80000)
/*
* zstty_match: how is this zs channel configured?
*/
#ifdef __BROKEN_INDIRECT_CONFIG
int
zstty_match(parent, vcf, aux)
struct device *parent;
void *vcf, *aux;
{
struct cfdata *cf = vcf;
struct zsc_attach_args *args = aux;
/* Exact match is better than wildcard. */
if (cf->cf_loc[ZSCCF_CHANNEL] == args->channel)
return 2;
/* This driver accepts wildcard. */
if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT)
return 1;
return 0;
}
#else /* __BROKEN_INDIRECT_CONFIG */
int
zstty_match(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct zsc_attach_args *args = aux;
/* Exact match is better than wildcard. */
if (cf->cf_loc[ZSCCF_CHANNEL] == args->channel)
return 2;
/* This driver accepts wildcard. */
if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT)
return 1;
return 0;
}
#endif /* __BROKEN_INDIRECT_CONFIG */
void
zstty_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct zsc_softc *zsc = (void *) parent;
struct zstty_softc *zst = (void *) self;
struct cfdata *cf = self->dv_cfdata;
struct zsc_attach_args *args = aux;
struct zs_chanstate *cs;
struct tty *tp;
int channel, s, tty_unit;
dev_t dev;
tty_unit = zst->zst_dev.dv_unit;
channel = args->channel;
cs = zsc->zsc_cs[channel];
cs->cs_private = zst;
cs->cs_ops = &zsops_tty;
zst->zst_cs = cs;
zst->zst_swflags = cf->cf_flags; /* softcar, etc. */
zst->zst_hwflags = args->hwflags;
dev = makedev(zs_major, tty_unit);
if (zst->zst_swflags)
printf(" flags 0x%x", zst->zst_swflags);
if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE))
printf(" (console)");
else {
#ifdef KGDB
/*
* Allow kgdb to "take over" this port. Returns true
* if this serial port is in-use by kgdb.
*/
if (zs_check_kgdb(cs, dev)) {
printf(" (kgdb)\n");
/*
* This is the kgdb port (exclusive use)
* so skip the normal attach code.
*/
return;
}
#endif
}
printf("\n");
tp = ttymalloc();
tp->t_dev = dev;
tp->t_oproc = zsstart;
tp->t_param = zsparam;
tp->t_hwiflow = zshwiflow;
tty_attach(tp);
zst->zst_tty = tp;
zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_WAITOK);
zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1);
/* Disable the high water mark. */
zst->zst_r_hiwat = 0;
zst->zst_r_lowat = 0;
zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
zst->zst_rbavail = zstty_rbuf_size;
/* XXX - Do we need an MD hook here? */
/*
* Hardware init
*/
if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
/* Call zsparam similar to open. */
struct termios t;
s = splzs();
/* Turn on interrupts. */
cs->cs_creg[1] = cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_SIE;
zs_write_reg(cs, 1, cs->cs_creg[1]);
/* Fetch the current modem control status, needed later. */
cs->cs_rr0 = zs_read_csr(cs);
splx(s);
/* Setup the "new" parameters in t. */
t.c_ispeed = 0;
t.c_ospeed = cs->cs_defspeed;
t.c_cflag = cs->cs_defcflag;
/* Make sure zsparam will see changes. */
tp->t_ospeed = 0;
(void) zsparam(tp, &t);
s = splzs();
/* Make sure DTR is on now. */
zs_modem(zst, 1);
splx(s);
} else {
/* Not the console; may need reset. */
int reset;
reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET;
s = splzs();
zs_write_reg(cs, 9, reset);
/* Will raise DTR in open. */
zs_modem(zst, 0);
splx(s);
}
}
/*
* Return pointer to our tty.
*/
struct tty *
zstty(dev)
dev_t dev;
{
struct zstty_softc *zst;
int unit = ZSUNIT(dev);
#ifdef DIAGNOSTIC
if (unit >= zstty_cd.cd_ndevs)
panic("zstty");
#endif
zst = zstty_cd.cd_devs[unit];
return (zst->zst_tty);
}
void
zs_shutdown(zst)
struct zstty_softc *zst;
{
struct zs_chanstate *cs = zst->zst_cs;
struct tty *tp = zst->zst_tty;
int s;
s = splzs();
/* If we were asserting flow control, then deassert it. */
SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
zs_hwiflow(zst);
/* Clear any break condition set with TIOCSBRK. */
zs_break(cs, 0);
/*
* Hang up if necessary. Wait a bit, so the other side has time to
* notice even if we immediately open the port again.
*/
if (ISSET(tp->t_cflag, HUPCL)) {
zs_modem(zst, 0);
(void) tsleep(cs, TTIPRI, ttclos, hz);
}
/* Turn off interrupts if not the console. */
if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE))
cs->cs_creg[1] = cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_SIE;
else
cs->cs_creg[1] = cs->cs_preg[1] = 0;
zs_write_reg(cs, 1, cs->cs_creg[1]);
splx(s);
}
/*
* Open a zs serial (tty) port.
*/
int
zsopen(dev, flags, mode, p)
dev_t dev;
int flags;
int mode;
struct proc *p;
{
int unit = ZSUNIT(dev);
struct zstty_softc *zst;
struct zs_chanstate *cs;
struct tty *tp;
int s, s2;
int error;
if (unit >= zstty_cd.cd_ndevs)
return (ENXIO);
zst = zstty_cd.cd_devs[unit];
if (zst == 0)
return (ENXIO);
tp = zst->zst_tty;
cs = zst->zst_cs;
/* If KGDB took the line, then tp==NULL */
if (tp == NULL)
return (EBUSY);
if (ISSET(tp->t_state, TS_ISOPEN) &&
ISSET(tp->t_state, TS_XCLUDE) &&
p->p_ucred->cr_uid != 0)
return (EBUSY);
s = spltty();
/*
* Do the following iff this is a first open.
*/
if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
struct termios t;
tp->t_dev = dev;
s2 = splzs();
/* Turn on interrupts. */
cs->cs_creg[1] = cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_SIE;
zs_write_reg(cs, 1, cs->cs_creg[1]);
/* Fetch the current modem control status, needed later. */
cs->cs_rr0 = zs_read_csr(cs);
splx(s2);
/*
* Initialize the termios status to the defaults. Add in the
* sticky bits from TIOCSFLAGS.
*/
t.c_ispeed = 0;
t.c_ospeed = cs->cs_defspeed;
t.c_cflag = cs->cs_defcflag;
if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL))
SET(t.c_cflag, CLOCAL);
if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS))
SET(t.c_cflag, CRTSCTS);
if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS))
SET(t.c_cflag, CDTRCTS);
if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF))
SET(t.c_cflag, MDMBUF);
/* Make sure zsparam will see changes. */
tp->t_ospeed = 0;
(void) zsparam(tp, &t);
/*
* Note: zsparam has done: cflag, ispeed, ospeed
* so we just need to do: iflag, oflag, lflag, cc
* For "raw" mode, just leave all zeros.
*/
if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) {
tp->t_iflag = TTYDEF_IFLAG;
tp->t_oflag = TTYDEF_OFLAG;
tp->t_lflag = TTYDEF_LFLAG;
} else {
tp->t_iflag = 0;
tp->t_oflag = 0;
tp->t_lflag = 0;
}
ttychars(tp);
ttsetwater(tp);
s2 = splzs();
/*
* Turn on DTR. We must always do this, even if carrier is not
* present, because otherwise we'd have to use TIOCSDTR
* immediately after setting CLOCAL, which applications do not
* expect. We always assert DTR while the device is open
* unless explicitly requested to deassert it.
*/
zs_modem(zst, 1);
/* Clear the input ring, and unblock. */
zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
zst->zst_rbavail = zstty_rbuf_size;
zs_iflush(cs);
CLR(zst->zst_rx_flags, RX_ANY_BLOCK);
zs_hwiflow(zst);
splx(s2);
}
splx(s);
error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK));
if (error)
goto bad;
error = (*linesw[tp->t_line].l_open)(dev, tp);
if (error)
goto bad;
return (0);
bad:
if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
/*
* We failed to open the device, and nobody else had it opened.
* Clean up the state as appropriate.
*/
zs_shutdown(zst);
}
return (error);
}
/*
* Close a zs serial port.
*/
int
zsclose(dev, flags, mode, p)
dev_t dev;
int flags;
int mode;
struct proc *p;
{
struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)];
struct tty *tp = zst->zst_tty;
/* XXX This is for cons.c. */
if (!ISSET(tp->t_state, TS_ISOPEN))
return 0;
(*linesw[tp->t_line].l_close)(tp, flags);
ttyclose(tp);
if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
/*
* Although we got a last close, the device may still be in
* use; e.g. if this was the dialout node, and there are still
* processes waiting for carrier on the non-dialout node.
*/
zs_shutdown(zst);
}
return (0);
}
/*
* Read/write zs serial port.
*/
int
zsread(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)];
struct tty *tp = zst->zst_tty;
return ((*linesw[tp->t_line].l_read)(tp, uio, flags));
}
int
zswrite(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)];
struct tty *tp = zst->zst_tty;
return ((*linesw[tp->t_line].l_write)(tp, uio, flags));
}
int
zsioctl(dev, cmd, data, flag, p)
dev_t dev;
u_long cmd;
caddr_t data;
int flag;
struct proc *p;
{
struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(dev)];
struct zs_chanstate *cs = zst->zst_cs;
struct tty *tp = zst->zst_tty;
int error;
int s;
error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
if (error >= 0)
return (error);
error = ttioctl(tp, cmd, data, flag, p);
if (error >= 0)
return (error);
#ifdef ZS_MD_IOCTL
error = ZS_MD_IOCTL;
if (error >= 0)
return (error);
#endif /* ZS_MD_IOCTL */
error = 0;
s = splzs();
switch (cmd) {
case TIOCSBRK:
zs_break(cs, 1);
break;
case TIOCCBRK:
zs_break(cs, 0);
break;
case TIOCGFLAGS:
*(int *)data = zst->zst_swflags;
break;
case TIOCSFLAGS:
error = suser(p->p_ucred, &p->p_acflag);
if (error)
break;
zst->zst_swflags = *(int *)data;
break;
case TIOCSDTR:
zs_modem(zst, 1);
break;
case TIOCCDTR:
zs_modem(zst, 0);
break;
case TIOCMSET:
case TIOCMBIS:
case TIOCMBIC:
case TIOCMGET:
default:
error = ENOTTY;
break;
}
splx(s);
return (error);
}
/*
* Start or restart transmission.
*/
static void
zsstart(tp)
struct tty *tp;
{
struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)];
struct zs_chanstate *cs = zst->zst_cs;
int s;
s = spltty();
if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
goto out;
if (zst->zst_tx_stopped)
goto out;
if (tp->t_outq.c_cc <= tp->t_lowat) {
if (ISSET(tp->t_state, TS_ASLEEP)) {
CLR(tp->t_state, TS_ASLEEP);
wakeup((caddr_t)&tp->t_outq);
}
selwakeup(&tp->t_wsel);
if (tp->t_outq.c_cc == 0)
goto out;
}
/* Grab the first contiguous region of buffer space. */
{
u_char *tba;
int tbc;
tba = tp->t_outq.c_cf;
tbc = ndqb(&tp->t_outq, 0);
(void) splzs();
zst->zst_tba = tba;
zst->zst_tbc = tbc;
}
SET(tp->t_state, TS_BUSY);
zst->zst_tx_busy = 1;
/* Enable transmit completion interrupts if necessary. */
if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
SET(cs->cs_preg[1], ZSWR1_TIE);
cs->cs_creg[1] = cs->cs_preg[1];
zs_write_reg(cs, 1, cs->cs_creg[1]);
}
/* Output the first character of the contiguous buffer. */
{
zs_write_data(cs, *zst->zst_tba);
zst->zst_tbc--;
zst->zst_tba++;
}
out:
splx(s);
return;
}
/*
* Stop output, e.g., for ^S or output flush.
*/
void
zsstop(tp, flag)
struct tty *tp;
int flag;
{
struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)];
int s;
s = splzs();
if (ISSET(tp->t_state, TS_BUSY)) {
/* Stop transmitting at the next chunk. */
zst->zst_tbc = 0;
zst->zst_heldtbc = 0;
if (!ISSET(tp->t_state, TS_TTSTOP))
SET(tp->t_state, TS_FLUSH);
}
splx(s);
}
/*
* Set ZS tty parameters from termios.
* XXX - Should just copy the whole termios after
* making sure all the changes could be done.
*/
static int
zsparam(tp, t)
struct tty *tp;
struct termios *t;
{
struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)];
struct zs_chanstate *cs = zst->zst_cs;
int ospeed, cflag;
u_char tmp3, tmp4, tmp5, tmp15;
int s, error;
ospeed = t->c_ospeed;
cflag = t->c_cflag;
/* Check requested parameters. */
if (ospeed < 0)
return (EINVAL);
if (t->c_ispeed && t->c_ispeed != ospeed)
return (EINVAL);
/*
* For the console, always force CLOCAL and !HUPCL, so that the port
* is always active.
*/
if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) ||
ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
SET(cflag, CLOCAL);
CLR(cflag, HUPCL);
}
/*
* Only whack the UART when params change.
* Some callers need to clear tp->t_ospeed
* to make sure initialization gets done.
*/
if (tp->t_ospeed == ospeed &&
tp->t_cflag == cflag)
return (0);
/*
* Call MD functions to deal with changed
* clock modes or H/W flow control modes.
* The BRG divisor is set now. (reg 12,13)
*/
error = zs_set_speed(cs, ospeed);
if (error)
return (error);
error = zs_set_modes(cs, cflag);
if (error)
return (error);
/*
* Block interrupts so that state will not
* be altered until we are done setting it up.
*
* Initial values in cs_preg are set before
* our attach routine is called. The master
* interrupt enable is handled by zsc.c
*
*/
s = splzs();
cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
tmp15 = cs->cs_preg[15];
#if 0
if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD))
SET(tmp15, ZSWR15_DCD_IE);
else
CLR(tmp15, ZSWR15_DCD_IE);
if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS))
SET(tmp15, ZSWR15_CTS_IE);
else
CLR(tmp15, ZSWR15_CTS_IE);
#else
SET(tmp15, ZSWR15_DCD_IE | ZSWR15_CTS_IE);
#endif
cs->cs_preg[15] = tmp15;
/* Recompute character size bits. */
tmp3 = cs->cs_preg[3];
tmp5 = cs->cs_preg[5];
CLR(tmp3, ZSWR3_RXSIZE);
CLR(tmp5, ZSWR5_TXSIZE);
switch (ISSET(cflag, CSIZE)) {
case CS5:
SET(tmp3, ZSWR3_RX_5);
SET(tmp5, ZSWR5_TX_5);
break;
case CS6:
SET(tmp3, ZSWR3_RX_6);
SET(tmp5, ZSWR5_TX_6);
break;
case CS7:
SET(tmp3, ZSWR3_RX_7);
SET(tmp5, ZSWR5_TX_7);
break;
case CS8:
SET(tmp3, ZSWR3_RX_8);
SET(tmp5, ZSWR5_TX_8);
break;
}
cs->cs_preg[3] = tmp3;
cs->cs_preg[5] = tmp5;
/*
* Recompute the stop bits and parity bits. Note that
* zs_set_speed() may have set clock selection bits etc.
* in wr4, so those must preserved.
*/
tmp4 = cs->cs_preg[4];
CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK);
if (ISSET(cflag, CSTOPB))
SET(tmp4, ZSWR4_TWOSB);
else
SET(tmp4, ZSWR4_ONESB);
if (!ISSET(cflag, PARODD))
SET(tmp4, ZSWR4_EVENP);
if (ISSET(cflag, PARENB))
SET(tmp4, ZSWR4_PARENB);
cs->cs_preg[4] = tmp4;
/* And copy to tty. */
tp->t_ispeed = 0;
tp->t_ospeed = ospeed;
tp->t_cflag = cflag;
/*
* If nothing is being transmitted, set up new current values,
* else mark them as pending.
*/
if (!cs->cs_heldchange) {
if (zst->zst_tx_busy) {
zst->zst_heldtbc = zst->zst_tbc;
zst->zst_tbc = 0;
cs->cs_heldchange = 1;
} else
zs_loadchannelregs(cs);
}
if (!ISSET(cflag, CHWFLOW)) {
/* Disable the high water mark. */
zst->zst_r_hiwat = 0;
zst->zst_r_lowat = 0;
if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
zst->zst_rx_ready = 1;
cs->cs_softreq = 1;
}
if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
zs_hwiflow(zst);
}
} else {
zst->zst_r_hiwat = zstty_rbuf_hiwat;
zst->zst_r_lowat = zstty_rbuf_lowat;
}
splx(s);
/*
* Update the tty layer's idea of the carrier bit, in case we changed
* CLOCAL or MDMBUF. We don't hang up here; we only do that by
* explicit request.
*/
(void) (*linesw[tp->t_line].l_modem)(tp, ISSET(cs->cs_rr0, ZSRR0_DCD));
if (!ISSET(cflag, CHWFLOW)) {
if (zst->zst_tx_stopped) {
zst->zst_tx_stopped = 0;
zsstart(tp);
}
}
return (0);
}
/*
* Raise or lower modem control (DTR/RTS) signals. If a character is
* in transmission, the change is deferred.
*/
static void
zs_modem(zst, onoff)
struct zstty_softc *zst;
int onoff;
{
struct zs_chanstate *cs = zst->zst_cs;
if (cs->cs_wr5_dtr == 0)
return;
if (onoff)
SET(cs->cs_preg[5], cs->cs_wr5_dtr);
else
CLR(cs->cs_preg[5], cs->cs_wr5_dtr);
if (!cs->cs_heldchange) {
if (zst->zst_tx_busy) {
zst->zst_heldtbc = zst->zst_tbc;
zst->zst_tbc = 0;
cs->cs_heldchange = 1;
} else
zs_loadchannelregs(cs);
}
}
/*
* Try to block or unblock input using hardware flow-control.
* This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
* if this function returns non-zero, the TS_TBLOCK flag will
* be set or cleared according to the "block" arg passed.
*/
int
zshwiflow(tp, block)
struct tty *tp;
int block;
{
struct zstty_softc *zst = zstty_cd.cd_devs[ZSUNIT(tp->t_dev)];
struct zs_chanstate *cs = zst->zst_cs;
int s;
if (cs->cs_wr5_rts == 0)
return (0);
s = splzs();
if (block) {
if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
SET(zst->zst_rx_flags, RX_TTY_BLOCKED);
zs_hwiflow(zst);
}
} else {
if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
zst->zst_rx_ready = 1;
cs->cs_softreq = 1;
}
if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
CLR(zst->zst_rx_flags, RX_TTY_BLOCKED);
zs_hwiflow(zst);
}
}
splx(s);
return (1);
}
/*
* Internal version of zshwiflow
* called at splzs
*/
static void
zs_hwiflow(zst)
struct zstty_softc *zst;
{
struct zs_chanstate *cs = zst->zst_cs;
if (cs->cs_wr5_rts == 0)
return;
if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) {
CLR(cs->cs_preg[5], cs->cs_wr5_rts);
CLR(cs->cs_creg[5], cs->cs_wr5_rts);
} else {
SET(cs->cs_preg[5], cs->cs_wr5_rts);
SET(cs->cs_creg[5], cs->cs_wr5_rts);
}
zs_write_reg(cs, 5, cs->cs_creg[5]);
}
/****************************************************************
* Interface to the lower layer (zscc)
****************************************************************/
static void zstty_rxint __P((struct zs_chanstate *));
static void zstty_txint __P((struct zs_chanstate *));
static void zstty_stint __P((struct zs_chanstate *));
#define integrate static inline
static void zstty_softint __P((struct zs_chanstate *));
integrate void zstty_rxsoft __P((struct zstty_softc *, struct tty *));
integrate void zstty_txsoft __P((struct zstty_softc *, struct tty *));
integrate void zstty_stsoft __P((struct zstty_softc *, struct tty *));
static void zstty_diag __P((void *));
/*
* receiver ready interrupt.
* called at splzs
*/
static void
zstty_rxint(cs)
struct zs_chanstate *cs;
{
struct zstty_softc *zst = cs->cs_private;
u_char *put, *end;
u_int cc;
u_char rr0, rr1, c;
end = zst->zst_ebuf;
put = zst->zst_rbput;
cc = zst->zst_rbavail;
while (cc > 0) {
/*
* First read the status, because reading the received char
* destroys the status of this char.
*/
rr1 = zs_read_reg(cs, 1);
c = zs_read_data(cs);
if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
/* Clear the receive error. */
zs_write_csr(cs, ZSWR0_RESET_ERRORS);
}
put[0] = c;
put[1] = rr1;
put += 2;
if (put >= end)
put = zst->zst_rbuf;
cc--;
rr0 = zs_read_csr(cs);
if (!ISSET(rr0, ZSRR0_RX_READY))
break;
}
/*
* Current string of incoming characters ended because
* no more data was available or we ran out of space.
* Schedule a receive event if any data was received.
* If we're out of space, turn off receive interrupts.
*/
zst->zst_rbput = put;
zst->zst_rbavail = cc;
if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
zst->zst_rx_ready = 1;
cs->cs_softreq = 1;
}
/*
* See if we are in danger of overflowing a buffer. If
* so, use hardware flow control to ease the pressure.
*/
if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) &&
cc < zst->zst_r_hiwat) {
SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
zs_hwiflow(zst);
}
/*
* If we're out of space, disable receive interrupts
* until the queue has drained a bit.
*/
if (!cc) {
SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
CLR(cs->cs_preg[1], ZSWR1_RIE);
cs->cs_creg[1] = cs->cs_preg[1];
zs_write_reg(cs, 1, cs->cs_creg[1]);
}
#if 0
printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
#endif
}
/*
* transmitter ready interrupt. (splzs)
*/
static void
zstty_txint(cs)
struct zs_chanstate *cs;
{
struct zstty_softc *zst = cs->cs_private;
/*
* If we've delayed a parameter change, do it now, and restart
* output.
*/
if (cs->cs_heldchange) {
zs_loadchannelregs(cs);
cs->cs_heldchange = 0;
zst->zst_tbc = zst->zst_heldtbc;
zst->zst_heldtbc = 0;
}
/* Output the next character in the buffer, if any. */
if (zst->zst_tbc > 0) {
zs_write_data(cs, *zst->zst_tba);
zst->zst_tbc--;
zst->zst_tba++;
} else {
/* Disable transmit completion interrupts if necessary. */
if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
CLR(cs->cs_preg[1], ZSWR1_TIE);
cs->cs_creg[1] = cs->cs_preg[1];
zs_write_reg(cs, 1, cs->cs_creg[1]);
}
if (zst->zst_tx_busy) {
zst->zst_tx_busy = 0;
zst->zst_tx_done = 1;
cs->cs_softreq = 1;
}
}
}
/*
* status change interrupt. (splzs)
*/
static void
zstty_stint(cs)
struct zs_chanstate *cs;
{
struct zstty_softc *zst = cs->cs_private;
u_char rr0, delta;
rr0 = zs_read_csr(cs);
zs_write_csr(cs, ZSWR0_RESET_STATUS);
/*
* Check here for console break, so that we can abort
* even when interrupts are locking up the machine.
*/
if (ISSET(rr0, ZSRR0_BREAK) &&
ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
zs_abort(cs);
return;
}
delta = rr0 ^ cs->cs_rr0;
cs->cs_rr0 = rr0;
if (ISSET(delta, cs->cs_rr0_mask)) {
SET(cs->cs_rr0_delta, delta);
/*
* Stop output immediately if we lose the output
* flow control signal or carrier detect.
*/
if (ISSET(~rr0, cs->cs_rr0_mask)) {
zst->zst_tbc = 0;
zst->zst_heldtbc = 0;
}
zst->zst_st_check = 1;
cs->cs_softreq = 1;
}
}
void
zstty_diag(arg)
void *arg;
{
struct zstty_softc *zst = arg;
int overflows, floods;
int s;
s = splzs();
overflows = zst->zst_overflows;
zst->zst_overflows = 0;
floods = zst->zst_floods;
zst->zst_floods = 0;
zst->zst_errors = 0;
splx(s);
log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
zst->zst_dev.dv_xname,
overflows, overflows == 1 ? "" : "s",
floods, floods == 1 ? "" : "s");
}
integrate void
zstty_rxsoft(zst, tp)
struct zstty_softc *zst;
struct tty *tp;
{
struct zs_chanstate *cs = zst->zst_cs;
int (*rint) __P((int c, struct tty *tp)) = linesw[tp->t_line].l_rint;
u_char *get, *end;
u_int cc, scc;
u_char rr1;
int code;
int s;
end = zst->zst_ebuf;
get = zst->zst_rbget;
scc = cc = zstty_rbuf_size - zst->zst_rbavail;
if (cc == zstty_rbuf_size) {
zst->zst_floods++;
if (zst->zst_errors++ == 0)
timeout(zstty_diag, zst, 60 * hz);
}
while (cc) {
code = get[0];
rr1 = get[1];
if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) {
if (ISSET(rr1, ZSRR1_DO)) {
zst->zst_overflows++;
if (zst->zst_errors++ == 0)
timeout(zstty_diag, zst, 60 * hz);
}
if (ISSET(rr1, ZSRR1_FE))
SET(code, TTY_FE);
if (ISSET(rr1, ZSRR1_PE))
SET(code, TTY_PE);
}
if ((*rint)(code, tp) == -1) {
/*
* The line discipline's buffer is out of space.
*/
if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
/*
* We're either not using flow control, or the
* line discipline didn't tell us to block for
* some reason. Either way, we have no way to
* know when there's more space available, so
* just drop the rest of the data.
*/
get += cc << 1;
if (get >= end)
get -= zstty_rbuf_size << 1;
cc = 0;
} else {
/*
* Don't schedule any more receive processing
* until the line discipline tells us there's
* space available (through comhwiflow()).
* Leave the rest of the data in the input
* buffer.
*/
SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
}
break;
}
get += 2;
if (get >= end)
get = zst->zst_rbuf;
cc--;
}
if (cc != scc) {
zst->zst_rbget = get;
s = splzs();
cc = zst->zst_rbavail += scc - cc;
/* Buffers should be ok again, release possible block. */
if (cc >= zst->zst_r_lowat) {
if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) {
CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
SET(cs->cs_preg[1], ZSWR1_RIE);
cs->cs_creg[1] = cs->cs_preg[1];
zs_write_reg(cs, 1, cs->cs_creg[1]);
}
if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) {
CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED);
zs_hwiflow(zst);
}
}
splx(s);
}
#if 0
printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
#endif
}
integrate void
zstty_txsoft(zst, tp)
struct zstty_softc *zst;
struct tty *tp;
{
CLR(tp->t_state, TS_BUSY);
if (ISSET(tp->t_state, TS_FLUSH))
CLR(tp->t_state, TS_FLUSH);
else
ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf));
(*linesw[tp->t_line].l_start)(tp);
}
integrate void
zstty_stsoft(zst, tp)
struct zstty_softc *zst;
struct tty *tp;
{
struct zs_chanstate *cs = zst->zst_cs;
u_char rr0, delta;
int s;
s = splzs();
rr0 = cs->cs_rr0;
delta = cs->cs_rr0_delta;
cs->cs_rr0_delta = 0;
splx(s);
if (ISSET(delta, cs->cs_rr0_dcd)) {
/*
* Inform the tty layer that carrier detect changed.
*/
(void) (*linesw[tp->t_line].l_modem)(tp, ISSET(rr0, ZSRR0_DCD));
}
if (ISSET(delta, cs->cs_rr0_cts)) {
/* Block or unblock output according to flow control. */
if (ISSET(rr0, cs->cs_rr0_cts)) {
zst->zst_tx_stopped = 0;
(*linesw[tp->t_line].l_start)(tp);
} else {
zst->zst_tx_stopped = 1;
}
}
}
/*
* Software interrupt. Called at zssoft
*
* The main job to be done here is to empty the input ring
* by passing its contents up to the tty layer. The ring is
* always emptied during this operation, therefore the ring
* must not be larger than the space after "high water" in
* the tty layer, or the tty layer might drop our input.
*
* Note: an "input blockage" condition is assumed to exist if
* EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
*/
static void
zstty_softint(cs)
struct zs_chanstate *cs;
{
struct zstty_softc *zst = cs->cs_private;
struct tty *tp = zst->zst_tty;
int s;
s = spltty();
if (zst->zst_rx_ready) {
zst->zst_rx_ready = 0;
zstty_rxsoft(zst, tp);
}
if (zst->zst_st_check) {
zst->zst_st_check = 0;
zstty_stsoft(zst, tp);
}
if (zst->zst_tx_done) {
zst->zst_tx_done = 0;
zstty_txsoft(zst, tp);
}
splx(s);
}
struct zsops zsops_tty = {
zstty_rxint, /* receive char available */
zstty_stint, /* external/status */
zstty_txint, /* xmit buffer empty */
zstty_softint, /* process software interrupt */
};