NetBSD/sys/arch/arc/jazz/fd.c
yamt aec75b1cc6 - change the way to specify a bufq strategy. (by string rather than by number)
- rather than embedding bufq_state in driver softc,
  have a pointer to the former.
- move bufq related functions from kern/subr_disk.c to kern/subr_bufq.c.
- rename method to strategy for consistency.
- move some definitions which don't need to be exposed to the rest of kernel
  from sys/bufq.h to sys/bufq_impl.h.
  (is it better to move it to kern/ or somewhere?)
- fix some obvious breakage in dev/qbus/ts.c.  (not tested)
2005-10-15 17:29:10 +00:00

1134 lines
29 KiB
C

/* $NetBSD: fd.c,v 1.22 2005/10/15 17:29:10 yamt Exp $ */
/* $OpenBSD: fd.c,v 1.6 1998/10/03 21:18:57 millert Exp $ */
/* NetBSD: fd.c,v 1.78 1995/07/04 07:23:09 mycroft Exp */
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Don Ahn.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)fd.c 7.4 (Berkeley) 5/25/91
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: fd.c,v 1.22 2005/10/15 17:29:10 yamt Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/disklabel.h>
#include <sys/disk.h>
#include <sys/buf.h>
#include <sys/bufq.h>
#include <sys/uio.h>
#include <sys/syslog.h>
#include <sys/queue.h>
#include <uvm/uvm_extern.h>
#include <dev/cons.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <arc/jazz/fdreg.h>
#include <arc/jazz/fdcvar.h>
#include "locators.h"
#define FDUNIT(dev) DISKUNIT(dev)
#define FDTYPE(dev) DISKPART(dev)
/* controller driver configuration */
int fdprint(void *, const char *);
/*
* Floppies come in various flavors, e.g., 1.2MB vs 1.44MB; here is how
* we tell them apart.
*/
struct fd_type {
int sectrac; /* sectors per track */
int heads; /* number of heads */
int seccyl; /* sectors per cylinder */
int secsize; /* size code for sectors */
int datalen; /* data len when secsize = 0 */
int steprate; /* step rate and head unload time */
int gap1; /* gap len between sectors */
int gap2; /* formatting gap */
int cyls; /* total num of cylinders */
int size; /* size of disk in sectors */
int step; /* steps per cylinder */
int rate; /* transfer speed code */
const char *name;
};
/* The order of entries in the following table is important -- BEWARE! */
struct fd_type fd_types[] = {
/* 1.44MB diskette */
{ 18,2,36,2,0xff,0xcf,0x1b,0x6c,80,2880,1,FDC_500KBPS,"1.44MB" },
/* 1.2 MB AT-diskettes */
{ 15,2,30,2,0xff,0xdf,0x1b,0x54,80,2400,1,FDC_500KBPS, "1.2MB" },
/* 360kB in 1.2MB drive */
{ 9,2,18,2,0xff,0xdf,0x23,0x50,40, 720,2,FDC_300KBPS, "360KB/AT" },
/* 360kB PC diskettes */
{ 9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,1,FDC_250KBPS, "360KB/PC" },
/* 3.5" 720kB diskette */
{ 9,2,18,2,0xff,0xdf,0x2a,0x50,80,1440,1,FDC_250KBPS, "720KB" },
/* 720kB in 1.2MB drive */
{ 9,2,18,2,0xff,0xdf,0x23,0x50,80,1440,1,FDC_300KBPS, "720KB/x" },
/* 360kB in 720kB drive */
{ 9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,2,FDC_250KBPS, "360KB/x" },
};
/* software state, per disk (with up to 4 disks per ctlr) */
struct fd_softc {
struct device sc_dev;
struct disk sc_dk;
const struct fd_type *sc_deftype; /* default type descriptor */
struct fd_type *sc_type; /* current type descriptor */
struct fd_type sc_type_copy; /* copy for fiddling when formatting */
struct callout sc_motoron_ch;
struct callout sc_motoroff_ch;
daddr_t sc_blkno; /* starting block number */
int sc_bcount; /* byte count left */
int sc_opts; /* user-set options */
int sc_skip; /* bytes already transferred */
int sc_nblks; /* number of blocks currently transferring */
int sc_nbytes; /* number of bytes currently transferring */
int sc_drive; /* physical unit number */
int sc_flags;
#define FD_OPEN 0x01 /* it's open */
#define FD_MOTOR 0x02 /* motor should be on */
#define FD_MOTOR_WAIT 0x04 /* motor coming up */
int sc_cylin; /* where we think the head is */
void *sc_sdhook; /* saved shutdown hook for drive. */
TAILQ_ENTRY(fd_softc) sc_drivechain;
int sc_ops; /* I/O ops since last switch */
struct bufq_state *sc_q;/* pending I/O requests */
int sc_active; /* number of active I/O operations */
};
/* floppy driver configuration */
int fdprobe(struct device *, struct cfdata *, void *);
void fdattach(struct device *, struct device *, void *);
extern struct cfdriver fd_cd;
CFATTACH_DECL(fd, sizeof(struct fd_softc), fdprobe, fdattach, NULL, NULL);
dev_type_open(fdopen);
dev_type_close(fdclose);
dev_type_read(fdread);
dev_type_write(fdwrite);
dev_type_ioctl(fdioctl);
dev_type_strategy(fdstrategy);
const struct bdevsw fd_bdevsw = {
fdopen, fdclose, fdstrategy, fdioctl, nodump, nosize, D_DISK
};
const struct cdevsw fd_cdevsw = {
fdopen, fdclose, fdread, fdwrite, fdioctl,
nostop, notty, nopoll, nommap, nokqfilter, D_DISK
};
void fdgetdisklabel(struct fd_softc *);
int fd_get_parms(struct fd_softc *);
void fdstrategy(struct buf *);
void fdstart(struct fd_softc *);
struct dkdriver fddkdriver = { fdstrategy };
#if 0
const struct fd_type *fd_nvtotype(char *, int, int);
#endif
void fd_set_motor(struct fdc_softc *, int);
void fd_motor_off(void *);
void fd_motor_on(void *);
int fdcresult(struct fdc_softc *);
void fdcstart(struct fdc_softc *);
void fdcstatus(struct device *, int, const char *);
void fdctimeout(void *);
void fdcpseudointr(void *);
void fdcretry(struct fdc_softc *);
void fdfinish(struct fd_softc *, struct buf *);
__inline const struct fd_type *fd_dev_to_type(struct fd_softc *, dev_t);
void fd_mountroot_hook(struct device *);
/*
* Arguments passed between fdcattach and fdprobe.
*/
struct fdc_attach_args {
int fa_drive;
const struct fd_type *fa_deftype;
};
/*
* Print the location of a disk drive (called just before attaching the
* the drive). If `fdc' is not NULL, the drive was found but was not
* in the system config file; print the drive name as well.
* Return QUIET (config_find ignores this if the device was configured) to
* avoid printing `fdN not configured' messages.
*/
int
fdprint(void *aux, const char *fdc)
{
struct fdc_attach_args *fa = aux;
if (!fdc)
aprint_normal(" drive %d", fa->fa_drive);
return QUIET;
}
void
fdcattach(struct fdc_softc *fdc)
{
struct fdc_attach_args fa;
bus_space_tag_t iot;
bus_space_handle_t ioh;
int type;
iot = fdc->sc_iot;
ioh = fdc->sc_ioh;
callout_init(&fdc->sc_timo_ch);
callout_init(&fdc->sc_intr_ch);
fdc->sc_state = DEVIDLE;
TAILQ_INIT(&fdc->sc_drives);
/*
* No way yet to determine default disk types.
* we assume 1.44 3.5" type for the moment.
*/
type = 0;
/* physical limit: two drives per controller. */
for (fa.fa_drive = 0; fa.fa_drive < 2; fa.fa_drive++) {
fa.fa_deftype = &fd_types[type];
(void)config_found(&fdc->sc_dev, (void *)&fa, fdprint);
}
}
int
fdprobe(struct device *parent, struct cfdata *match, void *aux)
{
struct fdc_softc *fdc = (void *)parent;
struct cfdata *cf = match;
struct fdc_attach_args *fa = aux;
int drive = fa->fa_drive;
bus_space_tag_t iot = fdc->sc_iot;
bus_space_handle_t ioh = fdc->sc_ioh;
int n;
if (cf->cf_loc[FDCCF_DRIVE] != FDCCF_DRIVE_DEFAULT &&
cf->cf_loc[FDCCF_DRIVE] != drive)
return 0;
/* select drive and turn on motor */
bus_space_write_1(iot, ioh, FDOUT, drive | FDO_FRST | FDO_MOEN(drive));
/* wait for motor to spin up */
delay(250000);
out_fdc(iot, ioh, NE7CMD_RECAL);
out_fdc(iot, ioh, drive);
/* wait for recalibrate */
delay(2000000);
out_fdc(iot, ioh, NE7CMD_SENSEI);
n = fdcresult(fdc);
#ifdef FD_DEBUG
{
int i;
printf("fdprobe: status");
for (i = 0; i < n; i++)
printf(" %x", fdc->sc_status[i]);
printf("\n");
}
#endif
if (n != 2 || (fdc->sc_status[0] & 0xf8) != 0x20)
return 0;
/* turn off motor */
bus_space_write_1(iot, ioh, FDOUT, FDO_FRST);
return 1;
}
/*
* Controller is working, and drive responded. Attach it.
*/
void
fdattach(struct device *parent, struct device *self, void *aux)
{
struct fdc_softc *fdc = (void *)parent;
struct fd_softc *fd = (void *)self;
struct fdc_attach_args *fa = aux;
const struct fd_type *type = fa->fa_deftype;
int drive = fa->fa_drive;
callout_init(&fd->sc_motoron_ch);
callout_init(&fd->sc_motoroff_ch);
/* XXX Allow `flags' to override device type? */
if (type)
printf(": %s, %d cyl, %d head, %d sec\n", type->name,
type->cyls, type->heads, type->sectrac);
else
printf(": density unknown\n");
bufq_alloc(&fd->sc_q, "disksort", BUFQ_SORT_CYLINDER);
fd->sc_cylin = -1;
fd->sc_drive = drive;
fd->sc_deftype = type;
fdc->sc_fd[drive] = fd;
/*
* Initialize and attach the disk structure.
*/
fd->sc_dk.dk_name = fd->sc_dev.dv_xname;
fd->sc_dk.dk_driver = &fddkdriver;
disk_attach(&fd->sc_dk);
/* Establish a mountroot hook. */
mountroothook_establish(fd_mountroot_hook, &fd->sc_dev);
/* Needed to power off if the motor is on when we halt. */
fd->sc_sdhook = shutdownhook_establish(fd_motor_off, fd);
}
#if 0
/*
* Translate nvram type into internal data structure. Return NULL for
* none/unknown/unusable.
*/
const struct fd_type *
fd_nvtotype(char *fdc, int nvraminfo, int drive)
{
int type;
type = (drive == 0 ? nvraminfo : nvraminfo << 4) & 0xf0;
#if 0
switch (type) {
case NVRAM_DISKETTE_NONE:
return NULL;
case NVRAM_DISKETTE_12M:
return &fd_types[1];
case NVRAM_DISKETTE_TYPE5:
case NVRAM_DISKETTE_TYPE6:
/* XXX We really ought to handle 2.88MB format. */
case NVRAM_DISKETTE_144M:
return &fd_types[0];
case NVRAM_DISKETTE_360K:
return &fd_types[3];
case NVRAM_DISKETTE_720K:
return &fd_types[4];
default:
printf("%s: drive %d: unknown device type 0x%x\n",
fdc, drive, type);
return NULL;
}
#else
return &fd_types[0]; /* Use only 1.44 for now */
#endif
}
#endif
__inline const struct fd_type *
fd_dev_to_type(struct fd_softc *fd, dev_t dev)
{
int type = FDTYPE(dev);
if (type > (sizeof(fd_types) / sizeof(fd_types[0])))
return NULL;
return type ? &fd_types[type - 1] : fd->sc_deftype;
}
void
fdstrategy(struct buf *bp)
{
struct fd_softc *fd = device_lookup(&fd_cd, FDUNIT(bp->b_dev));
int sz;
int s;
/* Valid unit, controller, and request? */
if (bp->b_blkno < 0 ||
(bp->b_bcount % FDC_BSIZE) != 0) {
bp->b_error = EINVAL;
goto bad;
}
/* If it's a null transfer, return immediately. */
if (bp->b_bcount == 0)
goto done;
sz = howmany(bp->b_bcount, FDC_BSIZE);
if (bp->b_blkno + sz > fd->sc_type->size) {
sz = fd->sc_type->size - bp->b_blkno;
if (sz == 0) {
/* If exactly at end of disk, return EOF. */
goto done;
}
if (sz < 0) {
/* If past end of disk, return EINVAL. */
bp->b_error = EINVAL;
goto bad;
}
/* Otherwise, truncate request. */
bp->b_bcount = sz << DEV_BSHIFT;
}
bp->b_rawblkno = bp->b_blkno;
bp->b_cylinder =
bp->b_blkno / (FDC_BSIZE / DEV_BSIZE) / fd->sc_type->seccyl;
#ifdef FD_DEBUG
printf("fdstrategy: b_blkno %" PRId64 " b_bcount %ld blkno %" PRId64
" cylin %ld sz %d\n",
bp->b_blkno, bp->b_bcount, fd->sc_blkno, bp->b_cylinder, sz);
#endif
/* Queue transfer on drive, activate drive and controller if idle. */
s = splbio();
BUFQ_PUT(fd->sc_q, bp);
callout_stop(&fd->sc_motoroff_ch); /* a good idea */
if (fd->sc_active == 0)
fdstart(fd);
#ifdef DIAGNOSTIC
else {
struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent;
if (fdc->sc_state == DEVIDLE) {
printf("fdstrategy: controller inactive\n");
fdcstart(fdc);
}
}
#endif
splx(s);
return;
bad:
bp->b_flags |= B_ERROR;
done:
/* Toss transfer; we're done early. */
bp->b_resid = bp->b_bcount;
biodone(bp);
}
void
fdstart(struct fd_softc *fd)
{
struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent;
int active = TAILQ_FIRST(&fdc->sc_drives) != 0;
/* Link into controller queue. */
fd->sc_active = 1;
TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain);
/* If controller not already active, start it. */
if (!active)
fdcstart(fdc);
}
void
fdfinish(struct fd_softc *fd, struct buf *bp)
{
struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent;
/*
* Move this drive to the end of the queue to give others a `fair'
* chance. We only force a switch if N operations are completed while
* another drive is waiting to be serviced, since there is a long motor
* startup delay whenever we switch.
*/
(void)BUFQ_GET(fd->sc_q);
if (fd->sc_drivechain.tqe_next && ++fd->sc_ops >= 8) {
fd->sc_ops = 0;
TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain);
if (BUFQ_PEEK(fd->sc_q) != NULL)
TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain);
else
fd->sc_active = 0;
}
bp->b_resid = fd->sc_bcount;
fd->sc_skip = 0;
biodone(bp);
/* turn off motor 5s from now */
callout_reset(&fd->sc_motoroff_ch, 5 * hz, fd_motor_off, fd);
fdc->sc_state = DEVIDLE;
}
int
fdread(dev_t dev, struct uio *uio, int flags)
{
return physio(fdstrategy, NULL, dev, B_READ, minphys, uio);
}
int
fdwrite(dev_t dev, struct uio *uio, int flags)
{
return physio(fdstrategy, NULL, dev, B_WRITE, minphys, uio);
}
void
fd_set_motor(struct fdc_softc *fdc, int reset)
{
struct fd_softc *fd;
u_char status;
int n;
if ((fd = TAILQ_FIRST(&fdc->sc_drives)) != NULL)
status = fd->sc_drive;
else
status = 0;
if (!reset)
status |= FDO_FRST | FDO_FDMAEN;
for (n = 0; n < 4; n++)
if ((fd = fdc->sc_fd[n]) && (fd->sc_flags & FD_MOTOR))
status |= FDO_MOEN(n);
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, FDOUT, status);
}
void
fd_motor_off(void *arg)
{
struct fd_softc *fd = arg;
int s;
s = splbio();
fd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT);
fd_set_motor((struct fdc_softc *)fd->sc_dev.dv_parent, 0);
splx(s);
}
void
fd_motor_on(void *arg)
{
struct fd_softc *fd = arg;
struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent;
int s;
s = splbio();
fd->sc_flags &= ~FD_MOTOR_WAIT;
if ((TAILQ_FIRST(&fdc->sc_drives) == fd) &&
(fdc->sc_state == MOTORWAIT))
(void) fdcintr(fdc);
splx(s);
}
int
fdcresult(struct fdc_softc *fdc)
{
bus_space_tag_t iot = fdc->sc_iot;
bus_space_handle_t ioh = fdc->sc_ioh;
u_char i;
int j = 100000,
n = 0;
for (; j; j--) {
i = bus_space_read_1(iot, ioh, FDSTS) &
(NE7_DIO | NE7_RQM | NE7_CB);
if (i == NE7_RQM)
return n;
if (i == (NE7_DIO | NE7_RQM | NE7_CB)) {
if (n >= sizeof(fdc->sc_status)) {
log(LOG_ERR, "fdcresult: overrun\n");
return -1;
}
fdc->sc_status[n++] =
bus_space_read_1(iot, ioh, FDDATA);
}
delay(10);
}
log(LOG_ERR, "fdcresult: timeout\n");
return -1;
}
int
out_fdc(bus_space_tag_t iot, bus_space_handle_t ioh, u_char x)
{
int i = 100000;
while ((bus_space_read_1(iot, ioh, FDSTS) & NE7_DIO) && i-- > 0);
if (i <= 0)
return -1;
while ((bus_space_read_1(iot, ioh, FDSTS) & NE7_RQM) == 0 && i-- > 0);
if (i <= 0)
return -1;
bus_space_write_1(iot, ioh, FDDATA, x);
return 0;
}
int
fdopen(dev_t dev, int flags, int mode, struct proc *p)
{
struct fd_softc *fd;
const struct fd_type *type;
fd = device_lookup(&fd_cd, FDUNIT(dev));
if (fd == NULL)
return ENXIO;
type = fd_dev_to_type(fd, dev);
if (type == NULL)
return ENXIO;
if ((fd->sc_flags & FD_OPEN) != 0 &&
memcmp(fd->sc_type, type, sizeof(*type)))
return EBUSY;
fd->sc_type_copy = *type;
fd->sc_type = &fd->sc_type_copy;
fd->sc_cylin = -1;
fd->sc_flags |= FD_OPEN;
return 0;
}
int
fdclose(dev_t dev, int flags, int mode, struct proc *p)
{
struct fd_softc *fd = device_lookup(&fd_cd, FDUNIT(dev));
fd->sc_flags &= ~FD_OPEN;
return 0;
}
void
fdcstart(struct fdc_softc *fdc)
{
#ifdef DIAGNOSTIC
/* only got here if controller's drive queue was inactive; should
be in idle state */
if (fdc->sc_state != DEVIDLE) {
printf("fdcstart: not idle\n");
return;
}
#endif
(void) fdcintr(fdc);
}
void
fdcstatus(struct device *dv, int n, const char *s)
{
struct fdc_softc *fdc = (void *)dv->dv_parent;
char bits[64];
if (n == 0) {
out_fdc(fdc->sc_iot, fdc->sc_ioh, NE7CMD_SENSEI);
(void) fdcresult(fdc);
n = 2;
}
printf("%s: %s", dv->dv_xname, s);
switch (n) {
case 0:
printf("\n");
break;
case 2:
printf(" (st0 %s cyl %d)\n",
bitmask_snprintf(fdc->sc_status[0], NE7_ST0BITS,
bits, sizeof(bits)), fdc->sc_status[1]);
break;
case 7:
printf(" (st0 %s", bitmask_snprintf(fdc->sc_status[0],
NE7_ST0BITS, bits, sizeof(bits)));
printf(" st1 %s", bitmask_snprintf(fdc->sc_status[1],
NE7_ST1BITS, bits, sizeof(bits)));
printf(" st2 %s", bitmask_snprintf(fdc->sc_status[2],
NE7_ST2BITS, bits, sizeof(bits)));
printf(" cyl %d head %d sec %d)\n",
fdc->sc_status[3], fdc->sc_status[4], fdc->sc_status[5]);
break;
#ifdef DIAGNOSTIC
default:
printf("\nfdcstatus: weird size");
break;
#endif
}
}
void
fdctimeout(void *arg)
{
struct fdc_softc *fdc = arg;
struct fd_softc *fd = TAILQ_FIRST(&fdc->sc_drives);
int s;
s = splbio();
#ifdef DEBUG
log(LOG_ERR, "fdctimeout: state %d\n", fdc->sc_state);
#endif
fdcstatus(&fd->sc_dev, 0, "timeout");
if (BUFQ_PEEK(fd->sc_q) != NULL)
fdc->sc_state++;
else
fdc->sc_state = DEVIDLE;
(void) fdcintr(fdc);
splx(s);
}
void
fdcpseudointr(void *arg)
{
int s;
/* Just ensure it has the right spl. */
s = splbio();
(void) fdcintr(arg);
splx(s);
}
int
fdcintr(void *arg)
{
struct fdc_softc *fdc = arg;
#define st0 fdc->sc_status[0]
#define cyl fdc->sc_status[1]
struct fd_softc *fd;
struct buf *bp;
bus_space_tag_t iot = fdc->sc_iot;
bus_space_handle_t ioh = fdc->sc_ioh;
int read, head, sec, i, nblks;
struct fd_type *type;
loop:
/* Is there a drive for the controller to do a transfer with? */
fd = TAILQ_FIRST(&fdc->sc_drives);
if (fd == NULL) {
fdc->sc_state = DEVIDLE;
return 1;
}
/* Is there a transfer to this drive? If not, deactivate drive. */
bp = BUFQ_PEEK(fd->sc_q);
if (bp == NULL) {
fd->sc_ops = 0;
TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain);
fd->sc_active = 0;
goto loop;
}
switch (fdc->sc_state) {
case DEVIDLE:
fdc->sc_errors = 0;
fd->sc_skip = 0;
fd->sc_bcount = bp->b_bcount;
fd->sc_blkno = bp->b_blkno / (FDC_BSIZE / DEV_BSIZE);
callout_stop(&fd->sc_motoroff_ch);
if ((fd->sc_flags & FD_MOTOR_WAIT) != 0) {
fdc->sc_state = MOTORWAIT;
return 1;
}
if ((fd->sc_flags & FD_MOTOR) == 0) {
/* Turn on the motor, being careful about pairing. */
struct fd_softc *ofd = fdc->sc_fd[fd->sc_drive ^ 1];
if (ofd && ofd->sc_flags & FD_MOTOR) {
callout_stop(&ofd->sc_motoroff_ch);
ofd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT);
}
fd->sc_flags |= FD_MOTOR | FD_MOTOR_WAIT;
fd_set_motor(fdc, 0);
fdc->sc_state = MOTORWAIT;
/* Allow .25s for motor to stabilize. */
callout_reset(&fd->sc_motoron_ch, hz / 4,
fd_motor_on, fd);
return 1;
}
/* Make sure the right drive is selected. */
fd_set_motor(fdc, 0);
/* fall through */
case DOSEEK:
doseek:
if (fd->sc_cylin == bp->b_cylinder)
goto doio;
out_fdc(iot, ioh, NE7CMD_SPECIFY);/* specify command */
out_fdc(iot, ioh, fd->sc_type->steprate);
out_fdc(iot, ioh, 6); /* XXX head load time == 6ms */
out_fdc(iot, ioh, NE7CMD_SEEK); /* seek function */
out_fdc(iot, ioh, fd->sc_drive); /* drive number */
out_fdc(iot, ioh, bp->b_cylinder * fd->sc_type->step);
fd->sc_cylin = -1;
fdc->sc_state = SEEKWAIT;
fd->sc_dk.dk_seek++;
disk_busy(&fd->sc_dk);
callout_reset(&fdc->sc_timo_ch, 4 * hz, fdctimeout, fdc);
return 1;
case DOIO:
doio:
type = fd->sc_type;
sec = fd->sc_blkno % type->seccyl;
nblks = type->seccyl - sec;
nblks = min(nblks, fd->sc_bcount / FDC_BSIZE);
nblks = min(nblks, fdc->sc_maxiosize / FDC_BSIZE);
fd->sc_nblks = nblks;
fd->sc_nbytes = nblks * FDC_BSIZE;
head = sec / type->sectrac;
sec -= head * type->sectrac;
#ifdef DIAGNOSTIC
{
int block;
block = (fd->sc_cylin * type->heads + head) *
type->sectrac + sec;
if (block != fd->sc_blkno) {
printf("fdcintr: block %d != blkno %" PRId64
"\n", block, fd->sc_blkno);
#ifdef DDB
Debugger();
#endif
}
}
#endif
read = (bp->b_flags & B_READ) != 0;
FDCDMA_START(fdc, bp->b_data + fd->sc_skip,
fd->sc_nbytes, read);
bus_space_write_1(iot, ioh, FDCTL, type->rate);
#ifdef FD_DEBUG
printf("fdcintr: %s drive %d track %d head %d sec %d nblks %d\n",
read ? "read" : "write", fd->sc_drive, fd->sc_cylin, head,
sec, nblks);
#endif
if (read)
out_fdc(iot, ioh, NE7CMD_READ); /* READ */
else
out_fdc(iot, ioh, NE7CMD_WRITE);/* WRITE */
out_fdc(iot, ioh, (head << 2) | fd->sc_drive);
out_fdc(iot, ioh, fd->sc_cylin); /* track */
out_fdc(iot, ioh, head);
out_fdc(iot, ioh, sec + 1); /* sector + 1 */
out_fdc(iot, ioh, type->secsize); /* sector size */
out_fdc(iot, ioh, type->sectrac); /* sectors/track */
out_fdc(iot, ioh, type->gap1); /* gap1 size */
out_fdc(iot, ioh, type->datalen); /* data length */
fdc->sc_state = IOCOMPLETE;
disk_busy(&fd->sc_dk);
/* allow 2 seconds for operation */
callout_reset(&fdc->sc_timo_ch, 2 * hz, fdctimeout, fdc);
return 1; /* will return later */
case SEEKWAIT:
callout_stop(&fdc->sc_timo_ch);
fdc->sc_state = SEEKCOMPLETE;
/* allow 1/50 second for heads to settle */
callout_reset(&fdc->sc_intr_ch, hz / 50, fdcpseudointr, fdc);
return 1;
case SEEKCOMPLETE:
disk_unbusy(&fd->sc_dk, 0, 0);
/* Make sure seek really happened. */
out_fdc(iot, ioh, NE7CMD_SENSEI);
if (fdcresult(fdc) != 2 || (st0 & 0xf8) != 0x20 ||
cyl != bp->b_cylinder * fd->sc_type->step) {
#ifdef FD_DEBUG
fdcstatus(&fd->sc_dev, 2, "seek failed");
#endif
fdcretry(fdc);
goto loop;
}
fd->sc_cylin = bp->b_cylinder;
goto doio;
case IOTIMEDOUT:
FDCDMA_ABORT(fdc);
case SEEKTIMEDOUT:
case RECALTIMEDOUT:
case RESETTIMEDOUT:
fdcretry(fdc);
goto loop;
case IOCOMPLETE: /* IO DONE, post-analyze */
callout_stop(&fdc->sc_timo_ch);
disk_unbusy(&fd->sc_dk, (bp->b_bcount - bp->b_resid),
(bp->b_flags & B_READ));
i = fdcresult(fdc);
if (i != 7 || (st0 & 0xf8) != 0) {
FDCDMA_ABORT(fdc);
#ifdef FD_DEBUG
fdcstatus(&fd->sc_dev, 7, bp->b_flags & B_READ ?
"read failed" : "write failed");
printf("blkno %" PRId64 " nblks %d\n",
fd->sc_blkno, fd->sc_nblks);
#endif
fdcretry(fdc);
goto loop;
}
FDCDMA_DONE(fdc);
if (fdc->sc_errors) {
diskerr(bp, "fd", "soft error (corrected)", LOG_PRINTF,
fd->sc_skip / FDC_BSIZE, (struct disklabel *)NULL);
printf("\n");
fdc->sc_errors = 0;
}
fd->sc_blkno += fd->sc_nblks;
fd->sc_skip += fd->sc_nbytes;
fd->sc_bcount -= fd->sc_nbytes;
if (fd->sc_bcount > 0) {
bp->b_cylinder = fd->sc_blkno / fd->sc_type->seccyl;
goto doseek;
}
fdfinish(fd, bp);
goto loop;
case DORESET:
/* try a reset, keep motor on */
fd_set_motor(fdc, 1);
delay(100);
fd_set_motor(fdc, 0);
fdc->sc_state = RESETCOMPLETE;
callout_reset(&fdc->sc_timo_ch, hz / 2, fdctimeout, fdc);
return 1; /* will return later */
case RESETCOMPLETE:
callout_stop(&fdc->sc_timo_ch);
/* clear the controller output buffer */
for (i = 0; i < 4; i++) {
out_fdc(iot, ioh, NE7CMD_SENSEI);
(void) fdcresult(fdc);
}
/* fall through */
case DORECAL:
out_fdc(iot, ioh, NE7CMD_RECAL); /* recalibrate function */
out_fdc(iot, ioh, fd->sc_drive);
fdc->sc_state = RECALWAIT;
callout_reset(&fdc->sc_timo_ch, 5 * hz, fdctimeout, fdc);
return 1; /* will return later */
case RECALWAIT:
callout_stop(&fdc->sc_timo_ch);
fdc->sc_state = RECALCOMPLETE;
/* allow 1/30 second for heads to settle */
callout_reset(&fdc->sc_intr_ch, hz / 30, fdcpseudointr, fdc);
return 1; /* will return later */
case RECALCOMPLETE:
out_fdc(iot, ioh, NE7CMD_SENSEI);
if (fdcresult(fdc) != 2 || (st0 & 0xf8) != 0x20 || cyl != 0) {
#ifdef FD_DEBUG
fdcstatus(&fd->sc_dev, 2, "recalibrate failed");
#endif
fdcretry(fdc);
goto loop;
}
fd->sc_cylin = 0;
goto doseek;
case MOTORWAIT:
if (fd->sc_flags & FD_MOTOR_WAIT)
return 1; /* time's not up yet */
goto doseek;
default:
fdcstatus(&fd->sc_dev, 0, "stray interrupt");
return 1;
}
#ifdef DIAGNOSTIC
panic("fdcintr: impossible");
#endif
#undef st0
#undef cyl
}
void
fdcretry(struct fdc_softc *fdc)
{
struct fd_softc *fd;
struct buf *bp;
char bits[64];
fd = TAILQ_FIRST(&fdc->sc_drives);
bp = BUFQ_PEEK(fd->sc_q);
switch (fdc->sc_errors) {
case 0:
/* try again */
fdc->sc_state = DOSEEK;
break;
case 1: case 2: case 3:
/* didn't work; try recalibrating */
fdc->sc_state = DORECAL;
break;
case 4:
/* still no go; reset the bastard */
fdc->sc_state = DORESET;
break;
default:
diskerr(bp, "fd", "hard error", LOG_PRINTF,
fd->sc_skip / FDC_BSIZE, (struct disklabel *)NULL);
printf(" (st0 %s", bitmask_snprintf(fdc->sc_status[0],
NE7_ST0BITS, bits, sizeof(bits)));
printf(" st1 %s", bitmask_snprintf(fdc->sc_status[1],
NE7_ST1BITS, bits, sizeof(bits)));
printf(" st2 %s", bitmask_snprintf(fdc->sc_status[2],
NE7_ST2BITS, bits, sizeof(bits)));
printf(" cyl %d head %d sec %d)\n",
fdc->sc_status[3], fdc->sc_status[4], fdc->sc_status[5]);
bp->b_flags |= B_ERROR;
bp->b_error = EIO;
fdfinish(fd, bp);
}
fdc->sc_errors++;
}
int
fdioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p)
{
struct fd_softc *fd = device_lookup(&fd_cd, FDUNIT(dev));
struct disklabel buffer;
int error;
switch (cmd) {
case DIOCGDINFO:
memset(&buffer, 0, sizeof(buffer));
buffer.d_secpercyl = fd->sc_type->seccyl;
buffer.d_type = DTYPE_FLOPPY;
buffer.d_secsize = FDC_BSIZE;
if (readdisklabel(dev, fdstrategy, &buffer, NULL) != NULL)
return EINVAL;
*(struct disklabel *)addr = buffer;
return 0;
case DIOCWLABEL:
if ((flag & FWRITE) == 0)
return EBADF;
/* XXX do something */
return 0;
case DIOCWDINFO:
if ((flag & FWRITE) == 0)
return EBADF;
error = setdisklabel(&buffer, (struct disklabel *)addr,
0, NULL);
if (error)
return error;
error = writedisklabel(dev, fdstrategy, &buffer, NULL);
return error;
default:
return ENOTTY;
}
#ifdef DIAGNOSTIC
panic("fdioctl: impossible");
#endif
}
/*
* Mountroot hook: prompt the user to enter the root file system floppy.
*/
void
fd_mountroot_hook(struct device *dev)
{
int c;
printf("Insert filesystem floppy and press return.");
cnpollc(1);
for (;;) {
c = cngetc();
if ((c == '\r') || (c == '\n')) {
printf("\n");
break;
}
}
cnpollc(0);
}