NetBSD/sys/netinet/rfc6056.c
tls 3afd44cf08 First step of random number subsystem rework described in
<20111022023242.BA26F14A158@mail.netbsd.org>.  This change includes
the following:

	An initial cleanup and minor reorganization of the entropy pool
	code in sys/dev/rnd.c and sys/dev/rndpool.c.  Several bugs are
	fixed.  Some effort is made to accumulate entropy more quickly at
	boot time.

	A generic interface, "rndsink", is added, for stream generators to
	request that they be re-keyed with good quality entropy from the pool
	as soon as it is available.

	The arc4random()/arc4randbytes() implementation in libkern is
	adjusted to use the rndsink interface for rekeying, which helps
	address the problem of low-quality keys at boot time.

	An implementation of the FIPS 140-2 statistical tests for random
	number generator quality is provided (libkern/rngtest.c).  This
	is based on Greg Rose's implementation from Qualcomm.

	A new random stream generator, nist_ctr_drbg, is provided.  It is
	based on an implementation of the NIST SP800-90 CTR_DRBG by
	Henric Jungheim.  This generator users AES in a modified counter
	mode to generate a backtracking-resistant random stream.

	An abstraction layer, "cprng", is provided for in-kernel consumers
	of randomness.  The arc4random/arc4randbytes API is deprecated for
	in-kernel use.  It is replaced by "cprng_strong".  The current
	cprng_fast implementation wraps the existing arc4random
	implementation.  The current cprng_strong implementation wraps the
	new CTR_DRBG implementation.  Both interfaces are rekeyed from
	the entropy pool automatically at intervals justifiable from best
	current cryptographic practice.

	In some quick tests, cprng_fast() is about the same speed as
	the old arc4randbytes(), and cprng_strong() is about 20% faster
	than rnd_extract_data().  Performance is expected to improve.

	The AES code in src/crypto/rijndael is no longer an optional
	kernel component, as it is required by cprng_strong, which is
	not an optional kernel component.

	The entropy pool output is subjected to the rngtest tests at
	startup time; if it fails, the system will reboot.  There is
	approximately a 3/10000 chance of a false positive from these
	tests.  Entropy pool _input_ from hardware random numbers is
	subjected to the rngtest tests at attach time, as well as the
	FIPS continuous-output test, to detect bad or stuck hardware
	RNGs; if any are detected, they are detached, but the system
	continues to run.

	A problem with rndctl(8) is fixed -- datastructures with
	pointers in arrays are no longer passed to userspace (this
	was not a security problem, but rather a major issue for
	compat32).  A new kernel will require a new rndctl.

	The sysctl kern.arandom() and kern.urandom() nodes are hooked
	up to the new generators, but the /dev/*random pseudodevices
	are not, yet.

	Manual pages for the new kernel interfaces are forthcoming.
2011-11-19 22:51:18 +00:00

955 lines
22 KiB
C

/* $NetBSD: rfc6056.c,v 1.4 2011/11/19 22:51:25 tls Exp $ */
/*
* Copyright 2011 Vlad Balan
*
* Written by Vlad Balan for the NetBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rfc6056.c,v 1.4 2011/11/19 22:51:25 tls Exp $");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/kauth.h>
#include <sys/uidinfo.h>
#include <sys/domain.h>
#include <sys/md5.h>
#include <sys/cprng.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/in6_pcb.h>
#endif
#include <netinet/tcp_vtw.h>
#include "rfc6056.h"
#define NPROTO 2
#define RFC6056_TCP 0
#define RFC6056_UDP 1
#define NAF 2
#define RFC6056_IPV4 0
#define RFC6056_IPV6 1
#define NRANGES 2
#define RFC6056_LOWPORT 0
#define RFC6056_HIGHPORT 1
#if RFC6056_DEBUG
static bool rfc6056_debug = true;
#define DPRINTF if (rfc6056_debug) printf
#else
#define DPRINTF while (/*CONSTCOND*/0) printf
#endif
#ifdef INET
static int inet4_rfc6056algo = RFC6056_ALGO_BSD;
#endif
#ifdef INET6
static int inet6_rfc6056algo = RFC6056_ALGO_BSD;
#endif
typedef struct {
const char *name;
int (*func)(int, uint16_t *, struct inpcb_hdr *, kauth_cred_t);
} rfc6056_algorithm_t;
static int algo_bsd(int, uint16_t *, struct inpcb_hdr *, kauth_cred_t);
static int algo_random_start(int, uint16_t *, struct inpcb_hdr *, kauth_cred_t);
static int algo_random_pick(int, uint16_t *, struct inpcb_hdr *, kauth_cred_t);
static int algo_hash(int, uint16_t *, struct inpcb_hdr *, kauth_cred_t);
static int algo_doublehash(int, uint16_t *, struct inpcb_hdr *, kauth_cred_t);
static int algo_randinc(int, uint16_t *, struct inpcb_hdr *, kauth_cred_t);
static const rfc6056_algorithm_t algos[] = {
{
.name = "bsd",
.func = algo_bsd
},
{
.name = "random_start",
.func = algo_random_start
},
{
.name = "random_pick",
.func = algo_random_pick
},
{
.name = "hash",
.func = algo_hash
},
{
.name = "doublehash",
.func = algo_doublehash
},
{
.name = "randinc",
.func = algo_randinc
}
};
#define NALGOS __arraycount(algos)
static uint16_t rfc6056_next_ephemeral[NPROTO][NAF][NRANGES][NALGOS];
/*
* Access the pcb and copy the values of the last port and the ends of
* the port range.
*/
static int
pcb_getports(struct inpcb_hdr *inp_hdr, uint16_t *lastport,
uint16_t *mymin, uint16_t *mymax, uint16_t **pnext_ephemeral, int algo)
{
struct socket *so;
int rfc6056_proto;
int rfc6056_af;
int rfc6056_range;
so = inp_hdr->inph_socket;
switch (so->so_type) {
case SOCK_DGRAM: /* UDP or DCCP */
rfc6056_proto = RFC6056_UDP;
break;
case SOCK_STREAM: /* TCP or SCTP */
rfc6056_proto = RFC6056_TCP;
break;
default:
return EPFNOSUPPORT;
}
switch (inp_hdr->inph_af) {
#ifdef INET
case AF_INET: {
struct inpcb *inp = (struct inpcb *)(void *)inp_hdr;
struct inpcbtable *table = inp->inp_table;
rfc6056_af = RFC6056_IPV4;
if (inp->inp_flags & INP_LOWPORT) {
*mymin = lowportmin;
*mymax = lowportmax;
*lastport = table->inpt_lastlow;
rfc6056_range = RFC6056_LOWPORT;
} else {
*mymin = anonportmin;
*mymax = anonportmax;
*lastport = table->inpt_lastport;
rfc6056_range = RFC6056_HIGHPORT;
}
break;
}
#endif
#ifdef INET6
case AF_INET6: {
struct in6pcb *in6p = (struct in6pcb *)(void *)inp_hdr;
struct inpcbtable *table = in6p->in6p_table;
rfc6056_af = RFC6056_IPV6;
if (in6p->in6p_flags & IN6P_LOWPORT) {
*mymin = ip6_lowportmin;
*mymax = ip6_lowportmax;
*lastport = table->inpt_lastlow;
rfc6056_range = RFC6056_LOWPORT;
} else {
*mymin = ip6_anonportmin;
*mymax = ip6_anonportmax;
*lastport = table->inpt_lastport;
rfc6056_range = RFC6056_HIGHPORT;
}
break;
}
#endif
default:
return EAFNOSUPPORT;
}
if (*mymin > *mymax) { /* sanity check */
u_int16_t swp;
swp = *mymin;
*mymin = *mymax;
*mymax = swp;
}
DPRINTF("%s mymin:%d mymax:%d lastport:%d\n", __func__,
*mymin, *mymax, *lastport);
*pnext_ephemeral = &rfc6056_next_ephemeral[rfc6056_proto]
[rfc6056_af][rfc6056_range][algo];
DPRINTF("%s rfc6056_proto:%d rfc6056_af:%d rfc6056_range:%d\n",
__func__, rfc6056_proto, rfc6056_af, rfc6056_range);
return 0;
}
/*
* Check whether the port picked by the port randomizer is available
* and whether KAUTH approves of our choice. This part of the code
* shamelessly copied from in_pcb.c.
*/
static bool
check_suitable_port(uint16_t port, struct inpcb_hdr *inp_hdr,
kauth_cred_t cred)
{
struct inpcbtable *table;
#ifdef INET
vestigial_inpcb_t vestigial;
#endif
int error;
#ifdef INET6
struct socket *so;
int wild = 0;
#endif
DPRINTF("%s called for argument %d\n", __func__, port);
switch (inp_hdr->inph_af) {
#ifdef INET
case AF_INET: { /* IPv4 */
struct inpcb *inp = (struct inpcb *)(void *)inp_hdr;
struct inpcb *pcb;
struct sockaddr_in sin;
enum kauth_network_req req;
if (inp->inp_flags & INP_LOWPORT) {
#ifndef IPNOPRIVPORTS
req = KAUTH_REQ_NETWORK_BIND_PRIVPORT;
#else
req = KAUTH_REQ_NETWORK_BIND_PORT;
#endif
} else
req = KAUTH_REQ_NETWORK_BIND_PORT;
table = inp->inp_table;
sin.sin_addr = inp->inp_laddr;
pcb = in_pcblookup_port(table, sin.sin_addr, htons(port), 1,
&vestigial);
DPRINTF("%s in_pcblookup_port returned %p and "
"vestigial.valid %d\n",
__func__, pcb, vestigial.valid);
if ((!pcb) && (!vestigial.valid)) {
sin.sin_port = port;
error = kauth_authorize_network(cred,
KAUTH_NETWORK_BIND,
req, inp->inp_socket, &sin, NULL);
DPRINTF("%s kauth_authorize_network returned %d\n",
__func__, error);
if (error == 0) {
DPRINTF("%s port approved\n", __func__);
return true; /* KAUTH agrees */
}
}
break;
}
#endif
#ifdef INET6
case AF_INET6: { /* IPv6 */
struct in6pcb *in6p = (struct in6pcb *)(void *)inp_hdr;
table = in6p->in6p_table;
struct sockaddr_in6 sin6;
enum kauth_network_req req;
void *t;
if (in6p->in6p_flags & IN6P_LOWPORT) {
#ifndef IPNOPRIVPORTS
req = KAUTH_REQ_NETWORK_BIND_PRIVPORT;
#else
req = KAUTH_REQ_NETWORK_BIND_PORT;
#endif
} else {
req = KAUTH_REQ_NETWORK_BIND_PORT;
}
sin6.sin6_addr = in6p->in6p_laddr;
so = in6p->in6p_socket;
/* XXX: this is redundant when called from in6_pcbbind */
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0 &&
((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0 ||
(so->so_options & SO_ACCEPTCONN) == 0))
wild = 1;
#ifdef INET
if (IN6_IS_ADDR_V4MAPPED(&sin6.sin6_addr)) {
t = in_pcblookup_port(table,
*(struct in_addr *)&sin6.sin6_addr.s6_addr32[3],
htons(port), wild, &vestigial);
if (!t && vestigial.valid) {
DPRINTF("%s in_pcblookup_port returned "
"a result\n", __func__);
return false;
}
} else
#endif
{
t = in6_pcblookup_port(table, &sin6.sin6_addr,
htons(port), wild, &vestigial);
if (!t && vestigial.valid) {
DPRINTF("%s in6_pcblookup_port returned "
"a result\n", __func__);
return false;
}
}
if (t == 0) {
/* We have a free port. Check with the secmodel. */
sin6.sin6_port = port;
error = kauth_authorize_network(cred,
KAUTH_NETWORK_BIND, req, so, &sin6, NULL);
if (error) {
/* Secmodel says no. Keep looking. */
DPRINTF("%s secmodel says no\n", __func__);
return false;
}
DPRINTF("%s port approved\n", __func__);
return true;
}
break;
}
#endif
default:
DPRINTF("%s unknown address family\n", __func__);
return false;
}
return false;
}
/* This is the default BSD algorithm, as described in RFC 6056 */
static int
algo_bsd(int algo, uint16_t *port, struct inpcb_hdr *inp_hdr,
kauth_cred_t cred)
{
uint16_t count, num_ephemeral;
uint16_t mymin, mymax, lastport;
uint16_t *next_ephemeral;
int error;
DPRINTF("%s called\n", __func__);
error = pcb_getports(inp_hdr, &lastport, &mymin, &mymax,
&next_ephemeral, algo);
if (error)
return error;
/* Ephemeral port selection function */
num_ephemeral = mymax - mymin + 1;
if (*next_ephemeral == 0)
*next_ephemeral = mymax;
count = num_ephemeral;
do {
uint16_t myport = *next_ephemeral;
if (*next_ephemeral <= mymin)
*next_ephemeral = mymax;
else
(*next_ephemeral)--;
if (check_suitable_port(myport, inp_hdr, cred)) {
*port = myport;
DPRINTF("%s returning port %d\n", __func__, *port);
return 0;
}
count--;
} while (count > 0);
DPRINTF("%s returning EINVAL\n", __func__);
return EINVAL;
}
/*
* The straightforward algorithm that calls random() in order to
* compute the increment to the next port number.
*/
static int
algo_random_start(int algo, uint16_t *port, struct inpcb_hdr *inp_hdr,
kauth_cred_t cred)
{
uint16_t count, num_ephemeral;
uint16_t mymin, mymax, lastport;
uint16_t *next_ephemeral;
int error;
DPRINTF("%s called\n", __func__);
error = pcb_getports(inp_hdr, &lastport, &mymin, &mymax,
&next_ephemeral, algo);
if (error)
return error;
num_ephemeral = mymax - mymin + 1;
DPRINTF("num_ephemeral: %u\n", num_ephemeral);
*next_ephemeral = mymin + (cprng_fast32() % num_ephemeral);
DPRINTF("next_ephemeral initially: %u\n", *next_ephemeral);
count = num_ephemeral;
do {
if (check_suitable_port(*next_ephemeral, inp_hdr, cred)) {
*port = *next_ephemeral;
DPRINTF("%s returning port %d\n", __func__, *port);
return 0;
}
if (*next_ephemeral == mymax) {
*next_ephemeral = mymin;
} else
(*next_ephemeral)++;
count--;
DPRINTF("next_ephemeral: %u count: %u\n", *next_ephemeral,
count);
} while (count > 0);
DPRINTF("%s returning EINVAL\n", __func__);
return EINVAL;
}
/*
* Since there is no state kept on the ports tried, we might actually
* give up before exhausting the free ports.
*/
static int
algo_random_pick(int algo, uint16_t *port, struct inpcb_hdr *inp_hdr,
kauth_cred_t cred)
{
uint16_t count, num_ephemeral;
uint16_t mymin, mymax, lastport;
uint16_t *next_ephemeral;
int error;
DPRINTF("%s called\n", __func__);
error = pcb_getports(inp_hdr, &lastport, &mymin, &mymax,
&next_ephemeral, algo);
if (error)
return error;
num_ephemeral = mymax - mymin + 1;
DPRINTF("num_ephemeral: %u\n", num_ephemeral);
*next_ephemeral = mymin + (cprng_fast32() % num_ephemeral);
DPRINTF("next_ephemeral initially: %u\n", *next_ephemeral);
count = num_ephemeral;
do {
if (check_suitable_port(*next_ephemeral, inp_hdr, cred)) {
*port = *next_ephemeral;
DPRINTF("%s returning port %d\n", __func__, *port);
return 0;
}
*next_ephemeral = mymin +
(cprng_fast32() % num_ephemeral);
count--;
DPRINTF("next_ephemeral: %u count: %u\n",
*next_ephemeral, count);
} while (count > 0);
DPRINTF("%s returning EINVAL\n", __func__);
return EINVAL;
}
/* This is the implementation from FreeBSD, with tweaks */
static uint16_t
Fhash(const struct inpcb_hdr *inp_hdr)
{
MD5_CTX f_ctx;
uint32_t Ff[4];
uint32_t secret_f[4];
uint32_t offset;
uint16_t soffset[2];
cprng_fast(secret_f, sizeof(secret_f));
MD5Init(&f_ctx);
switch (inp_hdr->inph_af) {
#ifdef INET
case AF_INET: {
const struct inpcb *inp =
(const struct inpcb *)(const void *)inp_hdr;
MD5Update(&f_ctx, (const u_char *)&inp->inp_laddr,
sizeof(inp->inp_laddr));
MD5Update(&f_ctx, (const u_char *)&inp->inp_faddr,
sizeof(inp->inp_faddr));
MD5Update(&f_ctx, (const u_char *)&inp->inp_fport,
sizeof(inp->inp_fport));
break;
}
#endif
#ifdef INET6
case AF_INET6: {
const struct in6pcb *in6p =
(const struct in6pcb *)(const void *)inp_hdr;
MD5Update(&f_ctx, (const u_char *)&in6p->in6p_laddr,
sizeof(in6p->in6p_laddr));
MD5Update(&f_ctx, (const u_char *)&in6p->in6p_faddr,
sizeof(in6p->in6p_faddr));
MD5Update(&f_ctx, (const u_char *)&in6p->in6p_fport,
sizeof(in6p->in6p_fport));
break;
}
#endif
default:
break;
}
MD5Update(&f_ctx, (const u_char *)secret_f, sizeof(secret_f));
MD5Final((u_char *)&Ff, &f_ctx);
offset = (Ff[0] ^ Ff[1]) ^ (Ff[2] ^ Ff[3]);
memcpy(&soffset, &offset, sizeof(soffset));
return soffset[0] ^ soffset[1];
}
/*
* Checks whether the tuple is complete. If not, marks the pcb for
* late binding.
*/
static bool
iscompletetuple(struct inpcb_hdr *inp_hdr)
{
#ifdef INET6
struct in6pcb *in6p;
#endif
switch (inp_hdr->inph_af) {
#ifdef INET
case AF_INET: {
struct inpcb *inp = (struct inpcb *)(void *)inp_hdr;
if (inp->inp_fport == 0 || in_nullhost(inp->inp_faddr)) {
DPRINTF("%s fport or faddr missing, delaying port "
"to connect/send\n", __func__);
inp->inp_bindportonsend = true;
return false;
} else {
inp->inp_bindportonsend = false;
}
break;
}
#endif
#ifdef INET6
case AF_INET6: {
in6p = (struct in6pcb *)(void *)inp_hdr;
if (in6p->in6p_fport == 0 || memcmp(&in6p->in6p_faddr,
&in6addr_any, sizeof(in6p->in6p_faddr)) == 0) {
DPRINTF("%s fport or faddr missing, delaying port "
"to connect/send\n", __func__);
in6p->in6p_bindportonsend = true;
return false;
} else {
in6p->in6p_bindportonsend = false;
}
break;
}
#endif
default:
DPRINTF("%s incorrect address family\n", __func__);
return false;
}
return true;
}
static int
algo_hash(int algo, uint16_t *port, struct inpcb_hdr *inp_hdr,
kauth_cred_t cred)
{
uint16_t count, num_ephemeral;
uint16_t mymin, mymax, lastport;
uint16_t *next_ephemeral;
uint16_t offset, myport;
int error;
DPRINTF("%s called\n", __func__);
error = pcb_getports(inp_hdr, &lastport, &mymin, &mymax,
&next_ephemeral, algo);
if (error)
return error;
if (!iscompletetuple(inp_hdr)) {
*port = 0;
return 0;
}
/* Ephemeral port selection function */
num_ephemeral = mymax - mymin + 1;
DPRINTF("num_ephemeral: %d\n", num_ephemeral);
offset = Fhash(inp_hdr);
count = num_ephemeral;
do {
myport = mymin + (*next_ephemeral + offset)
% num_ephemeral;
(*next_ephemeral)++;
if (check_suitable_port(myport, inp_hdr, cred)) {
*port = myport;
DPRINTF("%s returning port %d\n", __func__, *port);
return 0;
}
count--;
} while (count > 0);
DPRINTF("%s returning EINVAL\n", __func__);
return EINVAL;
}
static int
algo_doublehash(int algo, uint16_t *port, struct inpcb_hdr *inp_hdr,
kauth_cred_t cred)
{
uint16_t count, num_ephemeral;
uint16_t mymin, mymax, lastport;
uint16_t *next_ephemeral;
uint16_t offset, idx, myport;
static uint16_t dhtable[8];
int error;
DPRINTF("%s called\n", __func__);
error = pcb_getports(inp_hdr, &lastport, &mymin, &mymax,
&next_ephemeral, algo);
if (error)
return error;
if (!iscompletetuple(inp_hdr)) {
*port = 0;
return 0;
}
/* first time initialization */
if (dhtable[0] == 0)
for (size_t i = 0; i < __arraycount(dhtable); i++)
dhtable[i] = random() & 0xffff;
/* Ephemeral port selection function */
num_ephemeral = mymax - mymin + 1;
offset = Fhash(inp_hdr);
idx = Fhash(inp_hdr); /* G */
count = num_ephemeral;
do {
myport = mymin + (offset + dhtable[idx])
% num_ephemeral;
dhtable[idx]++;
if (check_suitable_port(myport, inp_hdr, cred)) {
*port = myport;
DPRINTF("%s returning port %d\n", __func__, *port);
return 0;
}
count--;
} while (count > 0);
DPRINTF("%s returning EINVAL\n", __func__);
return EINVAL;
}
static int
algo_randinc(int algo, uint16_t *port, struct inpcb_hdr *inp_hdr,
kauth_cred_t cred)
{
static const uint16_t N = 500; /* Determines the trade-off */
uint16_t count, num_ephemeral;
uint16_t mymin, mymax, lastport;
uint16_t *next_ephemeral;
uint16_t myport;
int error;
DPRINTF("%s called\n", __func__);
error = pcb_getports(inp_hdr, &lastport, &mymin, &mymax,
&next_ephemeral, algo);
if (error)
return error;
if (*next_ephemeral == 0)
*next_ephemeral = cprng_fast32() & 0xffff;
/* Ephemeral port selection function */
num_ephemeral = mymax - mymin + 1;
count = num_ephemeral;
do {
*next_ephemeral = *next_ephemeral +
(cprng_fast32() % N) + 1;
myport = mymin +
(*next_ephemeral % num_ephemeral);
if (check_suitable_port(myport, inp_hdr, cred)) {
*port = myport;
DPRINTF("%s returning port %d\n", __func__, *port);
return 0;
}
count--;
} while (count > 0);
return EINVAL;
}
/* The generic function called in order to pick a port. */
int
rfc6056_randport(uint16_t *port, struct inpcb_hdr *inp_hdr, kauth_cred_t cred)
{
int algo, error;
uint16_t lport;
int default_algo;
DPRINTF("%s called\n", __func__);
if (inp_hdr->inph_rfc6056algo == RFC6056_ALGO_DEFAULT) {
switch (inp_hdr->inph_af) {
#ifdef INET
case AF_INET:
default_algo = inet4_rfc6056algo;
break;
#endif
#ifdef INET6
case AF_INET6:
default_algo = inet6_rfc6056algo;
break;
#endif
default:
return EINVAL;
}
if (default_algo == RFC6056_ALGO_DEFAULT)
algo = RFC6056_ALGO_BSD;
else
algo = default_algo;
}
else /* socket specifies the algorithm */
algo = inp_hdr->inph_rfc6056algo;
KASSERT(algo >= 0);
KASSERT(algo < NALGOS);
switch (inp_hdr->inph_af) {
#ifdef INET
case AF_INET: {
struct inpcb *inp = (struct inpcb *)(void *)inp_hdr;
DPRINTF("local addr: %s\n", inet_ntoa(inp->inp_laddr));
DPRINTF("local port: %d\n", inp->inp_lport);
DPRINTF("foreign addr: %s\n", inet_ntoa(inp->inp_faddr));
DPRINTF("foreign port: %d\n", inp->inp_fport);
break;
}
#endif
#ifdef INET6
case AF_INET6: {
struct in6pcb *in6p = (struct in6pcb *)(void *)inp_hdr;
DPRINTF("local addr: %s\n", ip6_sprintf(&in6p->in6p_laddr));
DPRINTF("local port: %d\n", in6p->in6p_lport);
DPRINTF("foreign addr: %s\n", ip6_sprintf(&in6p->in6p_faddr));
DPRINTF("foreign port: %d\n", in6p->in6p_fport);
break;
}
#endif
default:
break;
}
DPRINTF("%s rfc6056algo = %d\n", __func__, algo);
error = (*algos[algo].func)(algo, &lport, inp_hdr, cred);
if (error == 0)
*port = lport;
else {
uint16_t lastport, mymin, mymax, *pnext_ephemeral;
error = pcb_getports(inp_hdr, &lastport, &mymin,
&mymax, &pnext_ephemeral, algo);
if (error)
return error;
*port = lastport - 1;
}
return error;
}
/* Sets the algorithm to be used globally */
static int
rfc6056_algo_name_select(const char *name, int *algo)
{
size_t ai;
DPRINTF("%s called\n", __func__);
for (ai = 0; ai < NALGOS; ai++)
if (strcmp(algos[ai].name, name) == 0) {
DPRINTF("%s: found idx %zu\n", __func__, ai);
*algo = ai;
return 0;
}
return EINVAL;
}
/* Sets the algorithm to be used by the pcb inp. */
int
rfc6056_algo_index_select(struct inpcb_hdr *inp, int algo)
{
DPRINTF("%s called with algo %d for pcb %p\n", __func__, algo, inp );
if ((algo < 0 || algo >= NALGOS) &&
(algo != RFC6056_ALGO_DEFAULT))
return EINVAL;
inp->inph_rfc6056algo = algo;
return 0;
}
/*
* The sysctl hook that is supposed to check that we are picking one
* of the valid algorithms. IPv4.
*/
static int
sysctl_rfc6056_helper(SYSCTLFN_ARGS, int *algo)
{
struct sysctlnode node;
int error;
char newalgo[RFC6056_MAXLEN];
DPRINTF("%s called\n", __func__);
strlcpy(newalgo, algos[*algo].name, sizeof(newalgo));
node = *rnode;
node.sysctl_data = newalgo;
node.sysctl_size = sizeof(newalgo);
error = sysctl_lookup(SYSCTLFN_CALL(&node));
DPRINTF("newalgo: %s\n", newalgo);
if (error || newp == NULL ||
strncmp(newalgo, algos[*algo].name, sizeof(newalgo)) == 0)
return error;
#ifdef KAUTH_NETWORK_SOCKET_PORT_RANDOMIZE
if (l != NULL && (error = kauth_authorize_system(l->l_cred,
KAUTH_NETWORK_SOCKET, KAUTH_NETWORK_SOCKET_PORT_RANDOMIZE, newname,
NULL, NULL)) != 0)
return error;
#endif
mutex_enter(softnet_lock);
error = rfc6056_algo_name_select(newalgo, algo);
mutex_exit(softnet_lock);
return error;
}
/*
* The sysctl hook that is supposed to check that we are picking one
* of the valid algorithms.
*/
int
sysctl_rfc6056_selected(SYSCTLFN_ARGS)
{
return sysctl_rfc6056_helper(SYSCTLFN_CALL(rnode), &inet4_rfc6056algo);
}
#ifdef INET6
int
sysctl_rfc6056_selected6(SYSCTLFN_ARGS)
{
return sysctl_rfc6056_helper(SYSCTLFN_CALL(rnode), &inet6_rfc6056algo);
}
#endif
/*
* The sysctl hook that returns the available
* algorithms.
*/
int
sysctl_rfc6056_available(SYSCTLFN_ARGS)
{
size_t ai, len = 0;
struct sysctlnode node;
char availalgo[NALGOS * RFC6056_MAXLEN];
DPRINTF("%s called\n", __func__);
availalgo[0] = '\0';
for (ai = 0; ai < NALGOS; ai++) {
len = strlcat(availalgo, algos[ai].name, sizeof(availalgo));
if (ai < NALGOS - 1)
strlcat(availalgo, " ", sizeof(availalgo));
}
DPRINTF("available algos: %s\n", availalgo);
node = *rnode;
node.sysctl_data = availalgo;
node.sysctl_size = len;
return sysctl_lookup(SYSCTLFN_CALL(&node));
}