NetBSD/sys/netinet/ip_reass.c
2011-06-27 00:45:50 +00:00

702 lines
18 KiB
C

/* $NetBSD: ip_reass.c,v 1.8 2011/06/27 00:45:50 enami Exp $ */
/*
* Copyright (c) 1982, 1986, 1988, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ip_input.c 8.2 (Berkeley) 1/4/94
*/
/*
* IP reassembly.
*
* Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
* reassembly queue buffer managment.
*
* We keep a count of total IP fragments (NB: not fragmented packets),
* awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
* If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
* fragments in reassembly queues. This AIMD policy avoids repeatedly
* deleting single packets under heavy fragmentation load (e.g., from lossy
* NFS peers).
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.8 2011/06/27 00:45:50 enami Exp $");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/pool.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/ip_var.h>
#include <netinet/in_proto.h>
#include <netinet/ip_private.h>
#include <netinet/in_var.h>
/*
* IP reassembly queue structures. Each fragment being reassembled is
* attached to one of these structures. They are timed out after TTL
* drops to 0, and may also be reclaimed if memory becomes tight.
*/
typedef struct ipfr_qent {
TAILQ_ENTRY(ipfr_qent) ipqe_q;
struct ip * ipqe_ip;
struct mbuf * ipqe_m;
bool ipqe_mff;
} ipfr_qent_t;
TAILQ_HEAD(ipfr_qent_head, ipfr_qent);
typedef struct ipfr_queue {
LIST_ENTRY(ipfr_queue) ipq_q; /* to other reass headers */
struct ipfr_qent_head ipq_fragq; /* queue of fragment entries */
uint8_t ipq_ttl; /* time for reass q to live */
uint8_t ipq_p; /* protocol of this fragment */
uint16_t ipq_id; /* sequence id for reassembly */
struct in_addr ipq_src;
struct in_addr ipq_dst;
uint16_t ipq_nfrags; /* frags in this queue entry */
uint8_t ipq_tos; /* TOS of this fragment */
} ipfr_queue_t;
/*
* Hash table of IP reassembly queues.
*/
#define IPREASS_HASH_SHIFT 6
#define IPREASS_HASH_SIZE (1 << IPREASS_HASH_SHIFT)
#define IPREASS_HASH_MASK (IPREASS_HASH_SIZE - 1)
#define IPREASS_HASH(x, y) \
(((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
static LIST_HEAD(, ipfr_queue) ip_frags[IPREASS_HASH_SIZE];
static pool_cache_t ipfren_cache;
static kmutex_t ipfr_lock;
/* Number of packets in reassembly queue and total number of fragments. */
static int ip_nfragpackets;
static int ip_nfrags;
/* Limits on packet and fragments. */
static int ip_maxfragpackets;
static int ip_maxfrags;
/*
* Cached copy of nmbclusters. If nbclusters is different, recalculate
* IP parameters derived from nmbclusters.
*/
static int ip_nmbclusters;
/*
* IP reassembly TTL machinery for multiplicative drop.
*/
static u_int fragttl_histo[IPFRAGTTL + 1];
static struct sysctllog *ip_reass_sysctllog;
void sysctl_ip_reass_setup(void);
static void ip_nmbclusters_changed(void);
static struct mbuf * ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
static u_int ip_reass_ttl_decr(u_int ticks);
static void ip_reass_drophalf(void);
static void ip_freef(ipfr_queue_t *);
/*
* ip_reass_init:
*
* Initialization of IP reassembly mechanism.
*/
void
ip_reass_init(void)
{
int i;
ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit,
0, 0, "ipfrenpl", NULL, IPL_NET, NULL, NULL, NULL);
mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_VM);
for (i = 0; i < IPREASS_HASH_SIZE; i++) {
LIST_INIT(&ip_frags[i]);
}
ip_maxfragpackets = 200;
ip_maxfrags = 0;
ip_nmbclusters_changed();
sysctl_ip_reass_setup();
}
void
sysctl_ip_reass_setup(void)
{
sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "net", NULL,
NULL, 0, NULL, 0,
CTL_NET, CTL_EOL);
sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "inet",
SYSCTL_DESCR("PF_INET related settings"),
NULL, 0, NULL, 0,
CTL_NET, PF_INET, CTL_EOL);
sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "ip",
SYSCTL_DESCR("IPv4 related settings"),
NULL, 0, NULL, 0,
CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxfragpackets",
SYSCTL_DESCR("Maximum number of fragments to retain for "
"possible reassembly"),
NULL, 0, &ip_maxfragpackets, 0,
CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
}
#define CHECK_NMBCLUSTER_PARAMS() \
do { \
if (__predict_false(ip_nmbclusters != nmbclusters)) \
ip_nmbclusters_changed(); \
} while (/*CONSTCOND*/0)
/*
* Compute IP limits derived from the value of nmbclusters.
*/
static void
ip_nmbclusters_changed(void)
{
ip_maxfrags = nmbclusters / 4;
ip_nmbclusters = nmbclusters;
}
/*
* ip_reass:
*
* Take incoming datagram fragment and try to reassemble it into whole
* datagram. If a chain for reassembly of this datagram already exists,
* then it is given as 'fp'; otherwise have to make a chain.
*/
struct mbuf *
ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
{
struct ip *ip = ipqe->ipqe_ip, *qip;
const int hlen = ip->ip_hl << 2;
struct mbuf *m = ipqe->ipqe_m, *t;
ipfr_qent_t *nq, *p, *q;
int i, next;
KASSERT(mutex_owned(&ipfr_lock));
/*
* Presence of header sizes in mbufs would confuse code below.
*/
m->m_data += hlen;
m->m_len -= hlen;
#ifdef notyet
/* Make sure fragment limit is up-to-date. */
CHECK_NMBCLUSTER_PARAMS();
/* If we have too many fragments, drop the older half. */
if (ip_nfrags >= ip_maxfrags) {
ip_reass_drophalf(void);
}
#endif
/*
* We are about to add a fragment; increment frag count.
*/
ip_nfrags++;
/*
* If first fragment to arrive, create a reassembly queue.
*/
if (fp == NULL) {
/*
* Enforce upper bound on number of fragmented packets
* for which we attempt reassembly: a) if maxfrag is 0,
* never accept fragments b) if maxfrag is -1, accept
* all fragments without limitation.
*/
if (ip_maxfragpackets < 0)
;
else if (ip_nfragpackets >= ip_maxfragpackets) {
goto dropfrag;
}
fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
if (fp == NULL) {
goto dropfrag;
}
ip_nfragpackets++;
TAILQ_INIT(&fp->ipq_fragq);
fp->ipq_nfrags = 1;
fp->ipq_ttl = IPFRAGTTL;
fp->ipq_p = ip->ip_p;
fp->ipq_id = ip->ip_id;
fp->ipq_tos = ip->ip_tos;
fp->ipq_src = ip->ip_src;
fp->ipq_dst = ip->ip_dst;
LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
p = NULL;
goto insert;
} else {
fp->ipq_nfrags++;
}
/*
* Find a segment which begins after this one does.
*/
TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
if (ntohs(q->ipqe_ip->ip_off) > ntohs(ip->ip_off))
break;
}
if (q != NULL) {
p = TAILQ_PREV(q, ipfr_qent_head, ipqe_q);
} else {
p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
}
/*
* If there is a preceding segment, it may provide some of our
* data already. If so, drop the data from the incoming segment.
* If it provides all of our data, drop us.
*/
if (p != NULL) {
i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
ntohs(ip->ip_off);
if (i > 0) {
if (i >= ntohs(ip->ip_len)) {
goto dropfrag;
}
m_adj(ipqe->ipqe_m, i);
ip->ip_off = htons(ntohs(ip->ip_off) + i);
ip->ip_len = htons(ntohs(ip->ip_len) - i);
}
}
/*
* While we overlap succeeding segments trim them or, if they are
* completely covered, dequeue them.
*/
while (q != NULL) {
size_t end;
qip = q->ipqe_ip;
end = ntohs(ip->ip_off) + ntohs(ip->ip_len);
if (end <= ntohs(qip->ip_off)) {
break;
}
i = end - ntohs(qip->ip_off);
if (i < ntohs(qip->ip_len)) {
qip->ip_len = htons(ntohs(qip->ip_len) - i);
qip->ip_off = htons(ntohs(qip->ip_off) + i);
m_adj(q->ipqe_m, i);
break;
}
nq = TAILQ_NEXT(q, ipqe_q);
m_freem(q->ipqe_m);
TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
pool_cache_put(ipfren_cache, q);
fp->ipq_nfrags--;
ip_nfrags--;
q = nq;
}
insert:
/*
* Stick new segment in its place; check for complete reassembly.
*/
if (p == NULL) {
TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
} else {
TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
}
next = 0;
TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
qip = q->ipqe_ip;
if (ntohs(qip->ip_off) != next) {
mutex_exit(&ipfr_lock);
return NULL;
}
next += ntohs(qip->ip_len);
}
p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
if (p->ipqe_mff) {
mutex_exit(&ipfr_lock);
return NULL;
}
/*
* Reassembly is complete. Check for a bogus message size.
*/
q = TAILQ_FIRST(&fp->ipq_fragq);
ip = q->ipqe_ip;
if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
IP_STATINC(IP_STAT_TOOLONG);
ip_freef(fp);
mutex_exit(&ipfr_lock);
return NULL;
}
LIST_REMOVE(fp, ipq_q);
ip_nfrags -= fp->ipq_nfrags;
ip_nfragpackets--;
mutex_exit(&ipfr_lock);
/* Concatenate all fragments. */
m = q->ipqe_m;
t = m->m_next;
m->m_next = NULL;
m_cat(m, t);
nq = TAILQ_NEXT(q, ipqe_q);
pool_cache_put(ipfren_cache, q);
for (q = nq; q != NULL; q = nq) {
t = q->ipqe_m;
nq = TAILQ_NEXT(q, ipqe_q);
pool_cache_put(ipfren_cache, q);
m_cat(m, t);
}
/*
* Create header for new packet by modifying header of first
* packet. Dequeue and discard fragment reassembly header. Make
* header visible.
*/
ip->ip_len = htons((ip->ip_hl << 2) + next);
ip->ip_src = fp->ipq_src;
ip->ip_dst = fp->ipq_dst;
free(fp, M_FTABLE);
m->m_len += (ip->ip_hl << 2);
m->m_data -= (ip->ip_hl << 2);
/* Fix up mbuf. XXX This should be done elsewhere. */
if (m->m_flags & M_PKTHDR) {
int plen = 0;
for (t = m; t; t = t->m_next) {
plen += t->m_len;
}
m->m_pkthdr.len = plen;
m->m_pkthdr.csum_flags = 0;
}
return m;
dropfrag:
if (fp != NULL) {
fp->ipq_nfrags--;
}
ip_nfrags--;
IP_STATINC(IP_STAT_FRAGDROPPED);
mutex_exit(&ipfr_lock);
pool_cache_put(ipfren_cache, ipqe);
m_freem(m);
return NULL;
}
/*
* ip_freef:
*
* Free a fragment reassembly header and all associated datagrams.
*/
static void
ip_freef(ipfr_queue_t *fp)
{
ipfr_qent_t *q;
KASSERT(mutex_owned(&ipfr_lock));
LIST_REMOVE(fp, ipq_q);
ip_nfrags -= fp->ipq_nfrags;
ip_nfragpackets--;
while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) {
TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
m_freem(q->ipqe_m);
pool_cache_put(ipfren_cache, q);
}
free(fp, M_FTABLE);
}
/*
* ip_reass_ttl_decr:
*
* Decrement TTL of all reasembly queue entries by `ticks'. Count
* number of distinct fragments (as opposed to partial, fragmented
* datagrams) inthe reassembly queue. While we traverse the entire
* reassembly queue, compute and return the median TTL over all
* fragments.
*/
static u_int
ip_reass_ttl_decr(u_int ticks)
{
u_int nfrags, median, dropfraction, keepfraction;
ipfr_queue_t *fp, *nfp;
int i;
nfrags = 0;
memset(fragttl_histo, 0, sizeof(fragttl_histo));
for (i = 0; i < IPREASS_HASH_SIZE; i++) {
for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
0 : fp->ipq_ttl - ticks);
nfp = LIST_NEXT(fp, ipq_q);
if (fp->ipq_ttl == 0) {
IP_STATINC(IP_STAT_FRAGTIMEOUT);
ip_freef(fp);
} else {
nfrags += fp->ipq_nfrags;
fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
}
}
}
KASSERT(ip_nfrags == nfrags);
/* Find median (or other drop fraction) in histogram. */
dropfraction = (ip_nfrags / 2);
keepfraction = ip_nfrags - dropfraction;
for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
median += fragttl_histo[i];
if (median >= keepfraction)
break;
}
/* Return TTL of median (or other fraction). */
return (u_int)i;
}
static void
ip_reass_drophalf(void)
{
u_int median_ticks;
KASSERT(mutex_owned(&ipfr_lock));
/*
* Compute median TTL of all fragments, and count frags
* with that TTL or lower (roughly half of all fragments).
*/
median_ticks = ip_reass_ttl_decr(0);
/* Drop half. */
median_ticks = ip_reass_ttl_decr(median_ticks);
}
/*
* ip_reass_drain: drain off all datagram fragments. Do not acquire
* softnet_lock as can be called from hardware interrupt context.
*/
void
ip_reass_drain(void)
{
/*
* We may be called from a device's interrupt context. If
* the ipq is already busy, just bail out now.
*/
if (mutex_tryenter(&ipfr_lock)) {
/*
* Drop half the total fragments now. If more mbufs are
* needed, we will be called again soon.
*/
ip_reass_drophalf();
mutex_exit(&ipfr_lock);
}
}
/*
* ip_reass_slowtimo:
*
* If a timer expires on a reassembly queue, discard it.
*/
void
ip_reass_slowtimo(void)
{
static u_int dropscanidx = 0;
u_int i, median_ttl;
mutex_enter(&ipfr_lock);
/* Age TTL of all fragments by 1 tick .*/
median_ttl = ip_reass_ttl_decr(1);
/* Make sure fragment limit is up-to-date. */
CHECK_NMBCLUSTER_PARAMS();
/* If we have too many fragments, drop the older half. */
if (ip_nfrags > ip_maxfrags) {
ip_reass_ttl_decr(median_ttl);
}
/*
* If we are over the maximum number of fragmented packets (due to
* the limit being lowered), drain off enough to get down to the
* new limit. Start draining from the reassembly hashqueue most
* recently drained.
*/
if (ip_maxfragpackets < 0)
;
else {
int wrapped = 0;
i = dropscanidx;
while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
while (LIST_FIRST(&ip_frags[i]) != NULL) {
ip_freef(LIST_FIRST(&ip_frags[i]));
}
if (++i >= IPREASS_HASH_SIZE) {
i = 0;
}
/*
* Do not scan forever even if fragment counters are
* wrong: stop after scanning entire reassembly queue.
*/
if (i == dropscanidx) {
wrapped = 1;
}
}
dropscanidx = i;
}
mutex_exit(&ipfr_lock);
}
/*
* ip_reass_packet: generic routine to perform IP reassembly.
*
* => Passed fragment should have IP_MF flag and/or offset set.
* => Fragment should not have other than IP_MF flags set.
*
* => Returns 0 on success or error otherwise.
* => On complete, m0 represents a constructed final packet.
*/
int
ip_reass_packet(struct mbuf **m0, struct ip *ip)
{
const int hlen = ip->ip_hl << 2;
const int len = ntohs(ip->ip_len);
struct mbuf *m = *m0;
ipfr_queue_t *fp;
ipfr_qent_t *ipqe;
u_int hash, off, flen;
bool mff;
/*
* Prevent TCP blind data attacks by not allowing non-initial
* fragments to start at less than 68 bytes (minimal fragment
* size) and making sure the first fragment is at least 68
* bytes.
*/
off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
IP_STATINC(IP_STAT_BADFRAGS);
return EINVAL;
}
/*
* Fragment length and MF flag. Make sure that fragments have
* a data length which is non-zero and multiple of 8 bytes.
*/
flen = ntohs(ip->ip_len) - hlen;
mff = (ip->ip_off & htons(IP_MF)) != 0;
if (mff && (flen == 0 || (flen & 0x7) != 0)) {
IP_STATINC(IP_STAT_BADFRAGS);
return EINVAL;
}
/*
* Adjust total IP length to not reflect header and convert
* offset of this to bytes. XXX: clobbers struct ip.
*/
ip->ip_len = htons(flen);
ip->ip_off = htons(off);
/* Look for queue of fragments of this datagram. */
mutex_enter(&ipfr_lock);
hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
if (ip->ip_id != fp->ipq_id)
continue;
if (!in_hosteq(ip->ip_src, fp->ipq_src))
continue;
if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
continue;
if (ip->ip_p != fp->ipq_p)
continue;
break;
}
/* Make sure that TOS matches previous fragments. */
if (fp && fp->ipq_tos != ip->ip_tos) {
IP_STATINC(IP_STAT_BADFRAGS);
mutex_exit(&ipfr_lock);
return EINVAL;
}
/*
* Create new entry and attempt to reassembly.
*/
IP_STATINC(IP_STAT_FRAGMENTS);
ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT);
if (ipqe == NULL) {
IP_STATINC(IP_STAT_RCVMEMDROP);
mutex_exit(&ipfr_lock);
return ENOMEM;
}
ipqe->ipqe_mff = mff;
ipqe->ipqe_m = m;
ipqe->ipqe_ip = ip;
*m0 = ip_reass(ipqe, fp, hash);
if (*m0) {
/* Note that finally reassembled. */
IP_STATINC(IP_STAT_REASSEMBLED);
}
return 0;
}