168 lines
6.0 KiB
C
168 lines
6.0 KiB
C
/*
|
|
* Copyright (c) 1985 Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef lint
|
|
/*static char sccsid[] = "from: @(#)exp.c 5.7 (Berkeley) 12/2/92";*/
|
|
static char rcsid[] = "$Id: exp__D.c,v 1.2 1993/08/14 19:31:25 mycroft Exp $";
|
|
#endif /* not lint */
|
|
|
|
/* EXP(X)
|
|
* RETURN THE EXPONENTIAL OF X
|
|
* DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
|
|
* CODED IN C BY K.C. NG, 1/19/85;
|
|
* REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
|
|
*
|
|
* Required system supported functions:
|
|
* scalb(x,n)
|
|
* copysign(x,y)
|
|
* finite(x)
|
|
*
|
|
* Method:
|
|
* 1. Argument Reduction: given the input x, find r and integer k such
|
|
* that
|
|
* x = k*ln2 + r, |r| <= 0.5*ln2 .
|
|
* r will be represented as r := z+c for better accuracy.
|
|
*
|
|
* 2. Compute exp(r) by
|
|
*
|
|
* exp(r) = 1 + r + r*R1/(2-R1),
|
|
* where
|
|
* R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
|
|
*
|
|
* 3. exp(x) = 2^k * exp(r) .
|
|
*
|
|
* Special cases:
|
|
* exp(INF) is INF, exp(NaN) is NaN;
|
|
* exp(-INF)= 0;
|
|
* for finite argument, only exp(0)=1 is exact.
|
|
*
|
|
* Accuracy:
|
|
* exp(x) returns the exponential of x nearly rounded. In a test run
|
|
* with 1,156,000 random arguments on a VAX, the maximum observed
|
|
* error was 0.869 ulps (units in the last place).
|
|
*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following constants.
|
|
* The decimal values may be used, provided that the compiler will convert
|
|
* from decimal to binary accurately enough to produce the hexadecimal values
|
|
* shown.
|
|
*/
|
|
|
|
#include "mathimpl.h"
|
|
|
|
vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
|
|
vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
|
|
vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010)
|
|
vc(lntiny,-9.5654310917272452386E1 ,4f01,c3bf,33af,d72e, 7,-.BF4F01D72E33AF)
|
|
vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1)
|
|
vc(p1, 1.6666666666666602251E-1 ,aaaa,3f2a,a9f1,aaaa, -2, .AAAAAAAAAAA9F1)
|
|
vc(p2, -2.7777777777015591216E-3 ,0b60,bc36,ec94,b5f5, -8,-.B60B60B5F5EC94)
|
|
vc(p3, 6.6137563214379341918E-5 ,b355,398a,f15f,792e, -13, .8AB355792EF15F)
|
|
vc(p4, -1.6533902205465250480E-6 ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84)
|
|
vc(p5, 4.1381367970572387085E-8 ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683)
|
|
|
|
#ifdef vccast
|
|
#define ln2hi vccast(ln2hi)
|
|
#define ln2lo vccast(ln2lo)
|
|
#define lnhuge vccast(lnhuge)
|
|
#define lntiny vccast(lntiny)
|
|
#define invln2 vccast(invln2)
|
|
#define p1 vccast(p1)
|
|
#define p2 vccast(p2)
|
|
#define p3 vccast(p3)
|
|
#define p4 vccast(p4)
|
|
#define p5 vccast(p5)
|
|
#endif
|
|
|
|
ic(p1, 1.6666666666666601904E-1, -3, 1.555555555553E)
|
|
ic(p2, -2.7777777777015593384E-3, -9, -1.6C16C16BEBD93)
|
|
ic(p3, 6.6137563214379343612E-5, -14, 1.1566AAF25DE2C)
|
|
ic(p4, -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1)
|
|
ic(p5, 4.1381367970572384604E-8, -25, 1.6376972BEA4D0)
|
|
ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
|
|
ic(ln2lo, 1.9082149292705877000E-10,-33, 1.A39EF35793C76)
|
|
ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2)
|
|
ic(lntiny,-7.5137154372698068983E2, 9, -1.77AF8EBEAE354)
|
|
ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE)
|
|
|
|
/* returns exp(r = x + c) for |c| < |x| with no overlap. */
|
|
|
|
double exp__D(x, c)
|
|
double x, c;
|
|
{
|
|
double z, hi, lo, t;
|
|
int k;
|
|
|
|
#if !defined(vax)&&!defined(tahoe)
|
|
if (x != x) return(x); /* x is NaN */
|
|
#endif /* !defined(vax)&&!defined(tahoe) */
|
|
|
|
if (x <= lnhuge) {
|
|
if (x >= lntiny) {
|
|
|
|
/* argument reduction : x --> x - k*ln2 */
|
|
z = invln2 * x;
|
|
k = z + copysign(.5, x);
|
|
|
|
/* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
|
|
hi = x - k * ln2hi; /* Exact. */
|
|
x = hi - (lo = k * ln2lo - c);
|
|
|
|
/* return 2^k*[1+x+x*c/(2+c)] */
|
|
z = x * x;
|
|
t = x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
|
|
t = (x * t) / (2. - t);
|
|
|
|
return scalb(1. + (hi - (lo - t)), k);
|
|
}
|
|
/* end of x > lntiny */
|
|
|
|
else
|
|
/* exp(-big#) underflows to zero */
|
|
if (finite(x))
|
|
return(scalb(1.0, -5000));
|
|
|
|
/* exp(-INF) is zero */
|
|
else
|
|
return(0.0);
|
|
}
|
|
/* end of x < lnhuge */
|
|
|
|
else
|
|
/* exp(INF) is INF, exp(+big#) overflows to INF */
|
|
if (finite(x))
|
|
return(scalb(1.0, 5000));
|
|
else
|
|
return(x);
|
|
}
|