NetBSD/lib/libnpf/npf.c
rmind 3d9a792dd8 Major NPF improvements:
- Convert NPF connection table to thmap.  State lookup is now lock-free.
- Improve connection state G/C: it is now incremental and tunable.
- Add support for dynamic NAT address.  Translation addresses can now be
  selected from a pool of addresses.  There are two selection algorithms,
  "ip-hash" and "round-robin" (see the man page).
- Translation address can be specified as e.g. ifaddrs(wm0) in npf.conf
  to dynamically choose an IP from the interface address(es).
- Add support for the NETMAP algorithm with static NAT for net-to-net
  translation (it is equivalent to iptables NETMAP logic).
- Convert 'ipset' tables to use thmap; the table lookup is now lock-free.
- Misc improvements, bug fixes and more unit tests.
- Bump NPF_VERSION (will also bump libnpf).
2019-01-19 21:19:31 +00:00

1270 lines
26 KiB
C

/*-
* Copyright (c) 2010-2018 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This material is based upon work partially supported by The
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: npf.c,v 1.45 2019/01/19 21:19:31 rmind Exp $");
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <net/if.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <unistd.h>
#include <errno.h>
#include <err.h>
#include <nv.h>
#include <dnv.h>
#include <cdbw.h>
#define _NPF_PRIVATE
#include "npf.h"
struct nl_rule {
nvlist_t * rule_dict;
};
struct nl_rproc {
nvlist_t * rproc_dict;
};
struct nl_table {
nvlist_t * table_dict;
};
struct nl_alg {
nvlist_t * alg_dict;
};
struct nl_ext {
nvlist_t * ext_dict;
};
struct nl_config {
nvlist_t * ncf_dict;
/* Temporary rule list. */
nvlist_t ** ncf_rule_list;
unsigned ncf_rule_count;
/* Iterators. */
unsigned ncf_rule_iter;
unsigned ncf_reduce[16];
unsigned ncf_nlevel;
unsigned ncf_counter;
nl_rule_t ncf_cur_rule;
unsigned ncf_table_iter;
nl_table_t ncf_cur_table;
unsigned ncf_rproc_iter;
nl_rproc_t ncf_cur_rproc;
};
/*
* Various helper routines.
*/
static bool
_npf_add_addr(nvlist_t *nvl, const char *name, int af, const npf_addr_t *addr)
{
size_t sz;
if (af == AF_INET) {
sz = sizeof(struct in_addr);
} else if (af == AF_INET6) {
sz = sizeof(struct in6_addr);
} else {
return false;
}
nvlist_add_binary(nvl, name, addr, sz);
return nvlist_error(nvl) == 0;
}
static unsigned
_npf_get_addr(const nvlist_t *nvl, const char *name, npf_addr_t *addr)
{
const void *d;
size_t sz = 0;
d = nvlist_get_binary(nvl, name, &sz);
switch (sz) {
case sizeof(struct in_addr):
case sizeof(struct in6_addr):
memcpy(addr, d, sz);
return (unsigned)sz;
}
return 0;
}
static bool
_npf_dataset_lookup(const nvlist_t *dict, const char *dataset,
const char *key, const char *name)
{
const nvlist_t * const *items;
size_t nitems;
if (!nvlist_exists_nvlist_array(dict, dataset)) {
return false;
}
items = nvlist_get_nvlist_array(dict, dataset, &nitems);
for (unsigned i = 0; i < nitems; i++) {
const char *item_name;
item_name = dnvlist_get_string(items[i], key, NULL);
if (item_name && strcmp(item_name, name) == 0) {
return true;
}
}
return false;
}
static const nvlist_t *
_npf_dataset_getelement(nvlist_t *dict, const char *dataset, unsigned i)
{
const nvlist_t * const *items;
size_t nitems;
if (!nvlist_exists_nvlist_array(dict, dataset)) {
return NULL;
}
items = nvlist_get_nvlist_array(dict, dataset, &nitems);
if (i < nitems) {
return items[i];
}
return NULL;
}
/*
* _npf_rules_process: transform the ruleset representing nested rules
* with sublists into a single array with skip-to marks.
*/
static void
_npf_rules_process(nl_config_t *ncf, nvlist_t *dict, const char *key)
{
nvlist_t **items;
size_t nitems;
if (!nvlist_exists_nvlist_array(dict, key)) {
return;
}
items = nvlist_take_nvlist_array(dict, key, &nitems);
for (unsigned i = 0; i < nitems; i++) {
nvlist_t *rule_dict = items[i];
size_t len = (ncf->ncf_rule_count + 1) * sizeof(nvlist_t *);
void *p = realloc(ncf->ncf_rule_list, len);
/*
* - Add rule to the transformed array.
* - Process subrules recursively.
* - Add the skip-to position.
*/
ncf->ncf_rule_list = p;
ncf->ncf_rule_list[ncf->ncf_rule_count] = rule_dict;
ncf->ncf_rule_count++;
if (nvlist_exists_nvlist_array(rule_dict, "subrules")) {
unsigned idx;
_npf_rules_process(ncf, rule_dict, "subrules");
idx = ncf->ncf_rule_count; // post-recursion index
nvlist_add_number(rule_dict, "skip-to", idx);
}
assert(nvlist_error(rule_dict) == 0);
}
free(items);
}
/*
* CONFIGURATION INTERFACE.
*/
nl_config_t *
npf_config_create(void)
{
nl_config_t *ncf;
ncf = calloc(1, sizeof(nl_config_t));
if (!ncf) {
return NULL;
}
ncf->ncf_dict = nvlist_create(0);
nvlist_add_number(ncf->ncf_dict, "version", NPF_VERSION);
return ncf;
}
int
npf_config_submit(nl_config_t *ncf, int fd, npf_error_t *errinfo)
{
nvlist_t *errnv = NULL;
int error;
/* Ensure the config is built. */
(void)npf_config_build(ncf);
if (nvlist_xfer_ioctl(fd, IOC_NPF_LOAD, ncf->ncf_dict, &errnv) == -1) {
assert(errnv == NULL);
return errno;
}
error = dnvlist_get_number(errnv, "errno", 0);
if (error && errinfo) {
memset(errinfo, 0, sizeof(npf_error_t));
errinfo->id = dnvlist_get_number(errnv, "id", 0);
errinfo->source_file =
dnvlist_take_string(errnv, "source-file", NULL);
errinfo->source_line =
dnvlist_take_number(errnv, "source-line", 0);
}
nvlist_destroy(errnv);
return error;
}
nl_config_t *
npf_config_retrieve(int fd)
{
nl_config_t *ncf;
ncf = calloc(1, sizeof(nl_config_t));
if (!ncf) {
return NULL;
}
if (nvlist_recv_ioctl(fd, IOC_NPF_SAVE, &ncf->ncf_dict) == -1) {
free(ncf);
return NULL;
}
return ncf;
}
void *
npf_config_export(nl_config_t *ncf, size_t *length)
{
/* Ensure the config is built. */
(void)npf_config_build(ncf);
return nvlist_pack(ncf->ncf_dict, length);
}
nl_config_t *
npf_config_import(const void *blob, size_t len)
{
nl_config_t *ncf;
ncf = calloc(1, sizeof(nl_config_t));
if (!ncf) {
return NULL;
}
ncf->ncf_dict = nvlist_unpack(blob, len, 0);
if (!ncf->ncf_dict) {
free(ncf);
return NULL;
}
return ncf;
}
int
npf_config_flush(int fd)
{
nl_config_t *ncf;
npf_error_t errinfo;
int error;
ncf = npf_config_create();
if (!ncf) {
return ENOMEM;
}
nvlist_add_bool(ncf->ncf_dict, "flush", true);
error = npf_config_submit(ncf, fd, &errinfo);
npf_config_destroy(ncf);
return error;
}
bool
npf_config_active_p(nl_config_t *ncf)
{
return dnvlist_get_bool(ncf->ncf_dict, "active", false);
}
bool
npf_config_loaded_p(nl_config_t *ncf)
{
return nvlist_exists_nvlist_array(ncf->ncf_dict, "rules");
}
void *
npf_config_build(nl_config_t *ncf)
{
_npf_rules_process(ncf, ncf->ncf_dict, "__rules");
if (ncf->ncf_rule_list) {
/* Set the transformed ruleset. */
nvlist_move_nvlist_array(ncf->ncf_dict, "rules",
ncf->ncf_rule_list, ncf->ncf_rule_count);
/* Clear the temporary list. */
ncf->ncf_rule_list = NULL;
ncf->ncf_rule_count = 0;
}
assert(nvlist_error(ncf->ncf_dict) == 0);
return (void *)ncf->ncf_dict;
}
void
npf_config_destroy(nl_config_t *ncf)
{
nvlist_destroy(ncf->ncf_dict);
free(ncf);
}
/*
* DYNAMIC RULESET INTERFACE.
*/
int
npf_ruleset_add(int fd, const char *rname, nl_rule_t *rl, uint64_t *id)
{
nvlist_t *rule_dict = rl->rule_dict;
nvlist_t *ret_dict;
nvlist_add_string(rule_dict, "ruleset-name", rname);
nvlist_add_number(rule_dict, "command", NPF_CMD_RULE_ADD);
if (nvlist_xfer_ioctl(fd, IOC_NPF_RULE, rule_dict, &ret_dict) == -1) {
return errno;
}
*id = nvlist_get_number(ret_dict, "id");
return 0;
}
int
npf_ruleset_remove(int fd, const char *rname, uint64_t id)
{
nvlist_t *rule_dict = nvlist_create(0);
nvlist_add_string(rule_dict, "ruleset-name", rname);
nvlist_add_number(rule_dict, "command", NPF_CMD_RULE_REMOVE);
nvlist_add_number(rule_dict, "id", id);
if (nvlist_send_ioctl(fd, IOC_NPF_RULE, rule_dict) == -1) {
return errno;
}
return 0;
}
int
npf_ruleset_remkey(int fd, const char *rname, const void *key, size_t len)
{
nvlist_t *rule_dict = nvlist_create(0);
nvlist_add_string(rule_dict, "ruleset-name", rname);
nvlist_add_number(rule_dict, "command", NPF_CMD_RULE_REMKEY);
nvlist_add_binary(rule_dict, "key", key, len);
if (nvlist_send_ioctl(fd, IOC_NPF_RULE, rule_dict) == -1) {
return errno;
}
return 0;
}
int
npf_ruleset_flush(int fd, const char *rname)
{
nvlist_t *rule_dict = nvlist_create(0);
nvlist_add_string(rule_dict, "ruleset-name", rname);
nvlist_add_number(rule_dict, "command", NPF_CMD_RULE_FLUSH);
if (nvlist_send_ioctl(fd, IOC_NPF_RULE, rule_dict) == -1) {
return errno;
}
return 0;
}
/*
* NPF EXTENSION INTERFACE.
*/
nl_ext_t *
npf_ext_construct(const char *name)
{
nl_ext_t *ext;
ext = malloc(sizeof(*ext));
if (!ext) {
return NULL;
}
ext->ext_dict = nvlist_create(0);
nvlist_add_string(ext->ext_dict, "name", name);
return ext;
}
void
npf_ext_param_u32(nl_ext_t *ext, const char *key, uint32_t val)
{
nvlist_add_number(ext->ext_dict, key, val);
}
void
npf_ext_param_bool(nl_ext_t *ext, const char *key, bool val)
{
nvlist_add_bool(ext->ext_dict, key, val);
}
void
npf_ext_param_string(nl_ext_t *ext, const char *key, const char *val)
{
nvlist_add_string(ext->ext_dict, key, val);
}
/*
* RULE INTERFACE.
*/
nl_rule_t *
npf_rule_create(const char *name, uint32_t attr, const char *ifname)
{
nl_rule_t *rl;
rl = malloc(sizeof(nl_rule_t));
if (!rl) {
return NULL;
}
rl->rule_dict = nvlist_create(0);
nvlist_add_number(rl->rule_dict, "attr", attr);
if (name) {
nvlist_add_string(rl->rule_dict, "name", name);
}
if (ifname) {
nvlist_add_string(rl->rule_dict, "ifname", ifname);
}
return rl;
}
int
npf_rule_setcode(nl_rule_t *rl, int type, const void *code, size_t len)
{
if (type != NPF_CODE_BPF) {
return ENOTSUP;
}
nvlist_add_number(rl->rule_dict, "code-type", (unsigned)type);
nvlist_add_binary(rl->rule_dict, "code", code, len);
return nvlist_error(rl->rule_dict);
}
int
npf_rule_setkey(nl_rule_t *rl, const void *key, size_t len)
{
nvlist_add_binary(rl->rule_dict, "key", key, len);
return nvlist_error(rl->rule_dict);
}
int
npf_rule_setinfo(nl_rule_t *rl, const void *info, size_t len)
{
nvlist_add_binary(rl->rule_dict, "info", info, len);
return nvlist_error(rl->rule_dict);
}
int
npf_rule_setprio(nl_rule_t *rl, int pri)
{
nvlist_add_number(rl->rule_dict, "prio", (uint64_t)pri);
return nvlist_error(rl->rule_dict);
}
int
npf_rule_setproc(nl_rule_t *rl, const char *name)
{
nvlist_add_string(rl->rule_dict, "rproc", name);
return nvlist_error(rl->rule_dict);
}
void *
npf_rule_export(nl_rule_t *rl, size_t *length)
{
return nvlist_pack(rl->rule_dict, length);
}
bool
npf_rule_exists_p(nl_config_t *ncf, const char *name)
{
return _npf_dataset_lookup(ncf->ncf_dict, "rules", "name", name);
}
int
npf_rule_insert(nl_config_t *ncf, nl_rule_t *parent, nl_rule_t *rl)
{
nvlist_t *rule_dict = rl->rule_dict;
nvlist_t *target;
const char *key;
if (parent) {
/* Subrule of the parent. */
target = parent->rule_dict;
key = "subrules";
} else {
/* Global ruleset. */
target = ncf->ncf_dict;
key = "__rules";
}
nvlist_append_nvlist_array(target, key, rule_dict);
nvlist_destroy(rule_dict);
free(rl);
return 0;
}
static nl_rule_t *
_npf_rule_iterate1(nl_config_t *ncf, const char *key, unsigned *level)
{
unsigned i = ncf->ncf_rule_iter++;
const nvlist_t *rule_dict;
uint32_t skipto;
if (i == 0) {
/* Initialise the iterator. */
ncf->ncf_nlevel = 0;
ncf->ncf_reduce[0] = 0;
ncf->ncf_counter = 0;
}
rule_dict = _npf_dataset_getelement(ncf->ncf_dict, key, i);
if (!rule_dict) {
/* Reset the iterator. */
ncf->ncf_rule_iter = 0;
return NULL;
}
ncf->ncf_cur_rule.rule_dict = __UNCONST(rule_dict); // XXX
*level = ncf->ncf_nlevel;
skipto = dnvlist_get_number(rule_dict, "skip-to", 0);
if (skipto) {
ncf->ncf_nlevel++;
ncf->ncf_reduce[ncf->ncf_nlevel] = skipto;
}
if (ncf->ncf_reduce[ncf->ncf_nlevel] == ++ncf->ncf_counter) {
assert(ncf->ncf_nlevel > 0);
ncf->ncf_nlevel--;
}
return &ncf->ncf_cur_rule;
}
nl_rule_t *
npf_rule_iterate(nl_config_t *ncf, unsigned *level)
{
return _npf_rule_iterate1(ncf, "rules", level);
}
const char *
npf_rule_getname(nl_rule_t *rl)
{
return dnvlist_get_string(rl->rule_dict, "name", NULL);
}
uint32_t
npf_rule_getattr(nl_rule_t *rl)
{
return dnvlist_get_number(rl->rule_dict, "attr", 0);
}
const char *
npf_rule_getinterface(nl_rule_t *rl)
{
return dnvlist_get_string(rl->rule_dict, "ifname", NULL);
}
const void *
npf_rule_getinfo(nl_rule_t *rl, size_t *len)
{
return dnvlist_get_binary(rl->rule_dict, "info", len, NULL, 0);
}
const char *
npf_rule_getproc(nl_rule_t *rl)
{
return dnvlist_get_string(rl->rule_dict, "rproc", NULL);
}
uint64_t
npf_rule_getid(nl_rule_t *rl)
{
return dnvlist_get_number(rl->rule_dict, "id", 0);
}
const void *
npf_rule_getcode(nl_rule_t *rl, int *type, size_t *len)
{
*type = (int)dnvlist_get_number(rl->rule_dict, "code-type", 0);
return dnvlist_get_binary(rl->rule_dict, "code", len, NULL, 0);
}
int
_npf_ruleset_list(int fd, const char *rname, nl_config_t *ncf)
{
nvlist_t *req, *ret;
req = nvlist_create(0);
nvlist_add_string(req, "ruleset-name", rname);
nvlist_add_number(req, "command", NPF_CMD_RULE_LIST);
if (nvlist_xfer_ioctl(fd, IOC_NPF_RULE, req, &ret) == -1) {
return errno;
}
if (nvlist_exists_nvlist_array(ret, "rules")) {
nvlist_t **rules;
size_t n;
rules = nvlist_take_nvlist_array(ret, "rules", &n);
nvlist_move_nvlist_array(ncf->ncf_dict, "rules", rules, n);
}
nvlist_destroy(ret);
return 0;
}
void
npf_rule_destroy(nl_rule_t *rl)
{
nvlist_destroy(rl->rule_dict);
free(rl);
}
/*
* RULE PROCEDURE INTERFACE.
*/
nl_rproc_t *
npf_rproc_create(const char *name)
{
nl_rproc_t *rp;
rp = malloc(sizeof(nl_rproc_t));
if (!rp) {
return NULL;
}
rp->rproc_dict = nvlist_create(0);
nvlist_add_string(rp->rproc_dict, "name", name);
return rp;
}
int
npf_rproc_extcall(nl_rproc_t *rp, nl_ext_t *ext)
{
nvlist_t *rproc_dict = rp->rproc_dict;
const char *name = dnvlist_get_string(ext->ext_dict, "name", NULL);
if (_npf_dataset_lookup(rproc_dict, "extcalls", "name", name)) {
return EEXIST;
}
nvlist_append_nvlist_array(rproc_dict, "extcalls", ext->ext_dict);
nvlist_destroy(ext->ext_dict);
free(ext);
return 0;
}
bool
npf_rproc_exists_p(nl_config_t *ncf, const char *name)
{
return _npf_dataset_lookup(ncf->ncf_dict, "rprocs", "name", name);
}
int
npf_rproc_insert(nl_config_t *ncf, nl_rproc_t *rp)
{
const char *name;
name = dnvlist_get_string(rp->rproc_dict, "name", NULL);
if (!name) {
return EINVAL;
}
if (npf_rproc_exists_p(ncf, name)) {
return EEXIST;
}
nvlist_append_nvlist_array(ncf->ncf_dict, "rprocs", rp->rproc_dict);
nvlist_destroy(rp->rproc_dict);
free(rp);
return 0;
}
nl_rproc_t *
npf_rproc_iterate(nl_config_t *ncf)
{
const nvlist_t *rproc_dict;
unsigned i = ncf->ncf_rproc_iter++;
rproc_dict = _npf_dataset_getelement(ncf->ncf_dict, "rprocs", i);
if (!rproc_dict) {
/* Reset the iterator. */
ncf->ncf_rproc_iter = 0;
return NULL;
}
ncf->ncf_cur_rproc.rproc_dict = __UNCONST(rproc_dict); // XXX
return &ncf->ncf_cur_rproc;
}
const char *
npf_rproc_getname(nl_rproc_t *rp)
{
return dnvlist_get_string(rp->rproc_dict, "name", NULL);
}
/*
* NAT INTERFACE.
*/
nl_nat_t *
npf_nat_create(int type, unsigned flags, const char *ifname)
{
nl_rule_t *rl;
nvlist_t *rule_dict;
uint32_t attr;
attr = NPF_RULE_PASS | NPF_RULE_FINAL |
(type == NPF_NATOUT ? NPF_RULE_OUT : NPF_RULE_IN);
/* Create a rule for NAT policy. Next, will add NAT data. */
rl = npf_rule_create(NULL, attr, ifname);
if (!rl) {
return NULL;
}
rule_dict = rl->rule_dict;
/* Translation type and flags. */
nvlist_add_number(rule_dict, "type", type);
nvlist_add_number(rule_dict, "flags", flags);
return (nl_nat_t *)rl;
}
int
npf_nat_insert(nl_config_t *ncf, nl_nat_t *nt, int pri __unused)
{
nvlist_add_number(nt->rule_dict, "prio", (uint64_t)NPF_PRI_LAST);
nvlist_append_nvlist_array(ncf->ncf_dict, "nat", nt->rule_dict);
nvlist_destroy(nt->rule_dict);
free(nt);
return 0;
}
nl_nat_t *
npf_nat_iterate(nl_config_t *ncf)
{
unsigned level;
return _npf_rule_iterate1(ncf, "nat", &level);
}
int
npf_nat_setaddr(nl_nat_t *nt, int af, npf_addr_t *addr, npf_netmask_t mask)
{
/* Translation IP and mask. */
if (!_npf_add_addr(nt->rule_dict, "nat-ip", af, addr)) {
return nvlist_error(nt->rule_dict);
}
nvlist_add_number(nt->rule_dict, "nat-mask", (uint32_t)mask);
return nvlist_error(nt->rule_dict);
}
int
npf_nat_setport(nl_nat_t *nt, in_port_t port)
{
/* Translation port (for redirect case). */
nvlist_add_number(nt->rule_dict, "nat-port", port);
return nvlist_error(nt->rule_dict);
}
int
npf_nat_settable(nl_nat_t *nt, unsigned tid)
{
nvlist_add_number(nt->rule_dict, "nat-table-id", tid);
return nvlist_error(nt->rule_dict);
}
int
npf_nat_setalgo(nl_nat_t *nt, unsigned algo)
{
nvlist_add_number(nt->rule_dict, "nat-algo", algo);
return nvlist_error(nt->rule_dict);
}
int
npf_nat_setnpt66(nl_nat_t *nt, uint16_t adj)
{
int error;
if ((error = npf_nat_setalgo(nt, NPF_ALGO_NPT66)) != 0) {
return error;
}
nvlist_add_number(nt->rule_dict, "npt66-adj", adj);
return nvlist_error(nt->rule_dict);
}
int
npf_nat_gettype(nl_nat_t *nt)
{
return dnvlist_get_number(nt->rule_dict, "type", 0);
}
unsigned
npf_nat_getflags(nl_nat_t *nt)
{
return dnvlist_get_number(nt->rule_dict, "flags", 0);
}
unsigned
npf_nat_getalgo(nl_nat_t *nt)
{
return dnvlist_get_number(nt->rule_dict, "nat-algo", 0);
}
const npf_addr_t *
npf_nat_getaddr(nl_nat_t *nt, size_t *alen, npf_netmask_t *mask)
{
const void *data;
if (nvlist_exists(nt->rule_dict, "nat-ip")) {
data = nvlist_get_binary(nt->rule_dict, "nat-ip", alen);
*mask = nvlist_get_number(nt->rule_dict, "nat-mask");
} else {
data = NULL;
*alen = 0;
*mask = NPF_NO_NETMASK;
}
return data;
}
in_port_t
npf_nat_getport(nl_nat_t *nt)
{
return (uint16_t)dnvlist_get_number(nt->rule_dict, "nat-port", 0);
}
unsigned
npf_nat_gettable(nl_nat_t *nt)
{
return dnvlist_get_number(nt->rule_dict, "nat-table-id", 0);
}
/*
* TABLE INTERFACE.
*/
nl_table_t *
npf_table_create(const char *name, unsigned id, int type)
{
nl_table_t *tl;
tl = malloc(sizeof(*tl));
if (!tl) {
return NULL;
}
tl->table_dict = nvlist_create(0);
nvlist_add_string(tl->table_dict, "name", name);
nvlist_add_number(tl->table_dict, "id", id);
nvlist_add_number(tl->table_dict, "type", type);
return tl;
}
int
npf_table_add_entry(nl_table_t *tl, int af, const npf_addr_t *addr,
const npf_netmask_t mask)
{
nvlist_t *entry;
/* Create the table entry. */
entry = nvlist_create(0);
if (!entry) {
return ENOMEM;
}
if (!_npf_add_addr(entry, "addr", af, addr)) {
nvlist_destroy(entry);
return EINVAL;
}
nvlist_add_number(entry, "mask", mask);
nvlist_append_nvlist_array(tl->table_dict, "entries", entry);
nvlist_destroy(entry);
return 0;
}
static inline int
_npf_table_build(nl_table_t *tl)
{
struct cdbw *cdbw;
const nvlist_t * const *entries;
int error = 0, fd = -1;
size_t nitems, len;
void *cdb, *buf;
struct stat sb;
char sfn[32];
if (!nvlist_exists_nvlist_array(tl->table_dict, "entries")) {
return 0;
}
/*
* Create a constant database and put all the entries.
*/
if ((cdbw = cdbw_open()) == NULL) {
return errno;
}
entries = nvlist_get_nvlist_array(tl->table_dict, "entries", &nitems);
for (unsigned i = 0; i < nitems; i++) {
const nvlist_t *entry = entries[i];
const npf_addr_t *addr;
size_t alen;
addr = dnvlist_get_binary(entry, "addr", &alen, NULL, 0);
if (addr == NULL || alen == 0 || alen > sizeof(npf_addr_t)) {
error = EINVAL;
goto out;
}
if (cdbw_put(cdbw, addr, alen, addr, alen) == -1) {
error = errno;
goto out;
}
}
/*
* Produce the constant database into a temporary file.
*/
strncpy(sfn, "/tmp/npfcdb.XXXXXX", sizeof(sfn));
sfn[sizeof(sfn) - 1] = '\0';
if ((fd = mkstemp(sfn)) == -1) {
error = errno;
goto out;
}
unlink(sfn);
if (cdbw_output(cdbw, fd, "npf-table-cdb", NULL) == -1) {
error = errno;
goto out;
}
if (fstat(fd, &sb) == -1) {
error = errno;
goto out;
}
len = sb.st_size;
/*
* Memory-map the database and copy it into a buffer.
*/
buf = malloc(len);
if (!buf) {
error = ENOMEM;
goto out;
}
cdb = mmap(NULL, len, PROT_READ, MAP_FILE | MAP_PRIVATE, fd, 0);
if (cdb == MAP_FAILED) {
error = errno;
free(buf);
goto out;
}
munmap(cdb, len);
/*
* Move the data buffer to the nvlist.
*/
nvlist_move_binary(tl->table_dict, "data", buf, len);
error = nvlist_error(tl->table_dict);
out:
if (fd != -1) {
close(fd);
}
cdbw_close(cdbw);
return error;
}
int
npf_table_insert(nl_config_t *ncf, nl_table_t *tl)
{
const char *name;
int error;
name = dnvlist_get_string(tl->table_dict, "name", NULL);
if (!name) {
return EINVAL;
}
if (_npf_dataset_lookup(ncf->ncf_dict, "tables", "name", name)) {
return EEXIST;
}
if (dnvlist_get_number(tl->table_dict, "type", 0) == NPF_TABLE_CONST) {
if ((error = _npf_table_build(tl)) != 0) {
return error;
}
}
nvlist_append_nvlist_array(ncf->ncf_dict, "tables", tl->table_dict);
nvlist_destroy(tl->table_dict);
free(tl);
return 0;
}
nl_table_t *
npf_table_iterate(nl_config_t *ncf)
{
const nvlist_t *table_dict;
unsigned i = ncf->ncf_table_iter++;
table_dict = _npf_dataset_getelement(ncf->ncf_dict, "tables", i);
if (!table_dict) {
/* Reset the iterator. */
ncf->ncf_table_iter = 0;
return NULL;
}
ncf->ncf_cur_table.table_dict = __UNCONST(table_dict); // XXX
return &ncf->ncf_cur_table;
}
unsigned
npf_table_getid(nl_table_t *tl)
{
return dnvlist_get_number(tl->table_dict, "id", (unsigned)-1);
}
const char *
npf_table_getname(nl_table_t *tl)
{
return dnvlist_get_string(tl->table_dict, "name", NULL);
}
int
npf_table_gettype(nl_table_t *tl)
{
return dnvlist_get_number(tl->table_dict, "type", 0);
}
void
npf_table_destroy(nl_table_t *tl)
{
nvlist_destroy(tl->table_dict);
free(tl);
}
/*
* ALG INTERFACE.
*/
int
_npf_alg_load(nl_config_t *ncf, const char *name)
{
nvlist_t *alg_dict;
if (_npf_dataset_lookup(ncf->ncf_dict, "algs", "name", name)) {
return EEXIST;
}
alg_dict = nvlist_create(0);
nvlist_add_string(alg_dict, "name", name);
nvlist_append_nvlist_array(ncf->ncf_dict, "algs", alg_dict);
nvlist_destroy(alg_dict);
return 0;
}
int
_npf_alg_unload(nl_config_t *ncf, const char *name)
{
if (!_npf_dataset_lookup(ncf->ncf_dict, "algs", "name", name)) {
return ENOENT;
}
return ENOTSUP;
}
/*
* CONNECTION / NAT ENTRY INTERFACE.
*/
int
npf_nat_lookup(int fd, int af, npf_addr_t *addr[2], in_port_t port[2],
int proto, int dir)
{
nvlist_t *req = NULL, *conn_res;
const nvlist_t *nat;
int error = EINVAL;
/*
* Setup the connection lookup key.
*/
conn_res = nvlist_create(0);
if (!conn_res) {
return ENOMEM;
}
if (!_npf_add_addr(conn_res, "saddr", af, addr[0]))
goto out;
if (!_npf_add_addr(conn_res, "daddr", af, addr[1]))
goto out;
nvlist_add_number(conn_res, "sport", port[0]);
nvlist_add_number(conn_res, "dport", port[1]);
nvlist_add_number(conn_res, "proto", proto);
/*
* Setup the request.
*/
req = nvlist_create(0);
if (!req) {
error = ENOMEM;
goto out;
}
nvlist_add_number(req, "direction", dir);
nvlist_move_nvlist(req, "key", conn_res);
conn_res = NULL;
/* Lookup: retrieve the connection entry. */
if (nvlist_xfer_ioctl(fd, IOC_NPF_CONN_LOOKUP, req, &conn_res) == -1) {
error = errno;
goto out;
}
/*
* Get the NAT entry and extract the translated pair.
*/
nat = dnvlist_get_nvlist(conn_res, "nat", NULL);
if (!nat) {
errno = ENOENT;
goto out;
}
if (!_npf_get_addr(nat, "oaddr", addr[0])) {
error = EINVAL;
goto out;
}
port[0] = nvlist_get_number(nat, "oport");
port[1] = nvlist_get_number(nat, "tport");
out:
if (conn_res) {
nvlist_destroy(conn_res);
}
if (req) {
nvlist_destroy(req);
}
return error;
}
typedef struct {
npf_addr_t addr[2];
in_port_t port[2];
uint16_t alen;
uint16_t proto;
} npf_endpoint_t;
static bool
npf_endpoint_load(const nvlist_t *conn, const char *name, npf_endpoint_t *ep)
{
const nvlist_t *ed = dnvlist_get_nvlist(conn, name, NULL);
if (!ed)
return false;
if (!(ep->alen = _npf_get_addr(ed, "saddr", &ep->addr[0])))
return false;
if (ep->alen != _npf_get_addr(ed, "daddr", &ep->addr[1]))
return false;
ep->port[0] = nvlist_get_number(ed, "sport");
ep->port[1] = nvlist_get_number(ed, "dport");
ep->proto = nvlist_get_number(ed, "proto");
return true;
}
static void
npf_conn_handle(const nvlist_t *conn, npf_conn_func_t func, void *arg)
{
const nvlist_t *nat;
npf_endpoint_t ep;
uint16_t tport;
const char *ifname;
ifname = dnvlist_get_string(conn, "ifname", NULL);
if (!ifname)
goto err;
if ((nat = dnvlist_get_nvlist(conn, "nat", NULL)) != NULL) {
tport = nvlist_get_number(nat, "tport");
} else {
tport = 0;
}
if (!npf_endpoint_load(conn, "forw-key", &ep)) {
goto err;
}
in_port_t p[] = {
ntohs(ep.port[0]),
ntohs(ep.port[1]),
ntohs(tport)
};
(*func)((unsigned)ep.alen, ep.addr, p, ifname, arg);
err:
return;
}
int
npf_conn_list(int fd, npf_conn_func_t func, void *arg)
{
nl_config_t *ncf;
const nvlist_t * const *conns;
size_t nitems;
ncf = npf_config_retrieve(fd);
if (!ncf) {
return errno;
}
if (!nvlist_exists_nvlist_array(ncf->ncf_dict, "conn-list")) {
return 0;
}
conns = nvlist_get_nvlist_array(ncf->ncf_dict, "conn-list", &nitems);
for (unsigned i = 0; i < nitems; i++) {
const nvlist_t *conn = conns[i];
npf_conn_handle(conn, func, arg);
}
return 0;
}
/*
* MISC.
*/
void
_npf_debug_addif(nl_config_t *ncf, const char *ifname)
{
nvlist_t *debug;
/*
* Initialise the debug dictionary on the first call.
*/
debug = dnvlist_take_nvlist(ncf->ncf_dict, "debug", NULL);
if (debug == NULL) {
debug = nvlist_create(0);
}
if (!_npf_dataset_lookup(debug, "interfaces", "name", ifname)) {
nvlist_t *ifdict = nvlist_create(0);
nvlist_add_string(ifdict, "name", ifname);
nvlist_add_number(ifdict, "index", if_nametoindex(ifname));
nvlist_append_nvlist_array(debug, "interfaces", ifdict);
nvlist_destroy(ifdict);
}
nvlist_move_nvlist(ncf->ncf_dict, "debug", debug);
}
void
_npf_config_dump(nl_config_t *ncf, int fd)
{
(void)npf_config_build(ncf);
nvlist_dump(ncf->ncf_dict, fd);
}