NetBSD/sys/arch/macppc/dev/cuda.c
chs 2f02870f3b zero the i2c_attach_args structure before filling it in.
fixes occasional crashes in iic_attach().
2016-02-14 19:54:19 +00:00

1021 lines
23 KiB
C

/* $NetBSD: cuda.c,v 1.21 2016/02/14 19:54:20 chs Exp $ */
/*-
* Copyright (c) 2006 Michael Lorenz
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cuda.c,v 1.21 2016/02/14 19:54:20 chs Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/mutex.h>
#include <sys/bus.h>
#include <machine/autoconf.h>
#include <machine/pio.h>
#include <dev/clock_subr.h>
#include <dev/i2c/i2cvar.h>
#include <macppc/dev/viareg.h>
#include <macppc/dev/cudavar.h>
#include <dev/ofw/openfirm.h>
#include <dev/adb/adbvar.h>
#include "opt_cuda.h"
#ifdef CUDA_DEBUG
#define DPRINTF printf
#else
#define DPRINTF while (0) printf
#endif
#define CUDA_NOTREADY 0x1 /* has not been initialized yet */
#define CUDA_IDLE 0x2 /* the bus is currently idle */
#define CUDA_OUT 0x3 /* sending out a command */
#define CUDA_IN 0x4 /* receiving data */
#define CUDA_POLLING 0x5 /* polling - II only */
static void cuda_attach(device_t, device_t, void *);
static int cuda_match(device_t, struct cfdata *, void *);
static void cuda_autopoll(void *, int);
static int cuda_intr(void *);
typedef struct _cuda_handler {
int (*handler)(void *, int, uint8_t *);
void *cookie;
} CudaHandler;
struct cuda_softc {
device_t sc_dev;
void *sc_ih;
CudaHandler sc_handlers[16];
struct todr_chip_handle sc_todr;
struct adb_bus_accessops sc_adbops;
struct i2c_controller sc_i2c;
kmutex_t sc_buslock;
bus_space_tag_t sc_memt;
bus_space_handle_t sc_memh;
int sc_node;
int sc_state;
int sc_waiting;
int sc_polling;
int sc_sent;
int sc_out_length;
int sc_received;
int sc_iic_done;
int sc_error;
/* time */
uint32_t sc_tod;
uint32_t sc_autopoll;
uint32_t sc_todev;
/* ADB */
void (*sc_adb_handler)(void *, int, uint8_t *);
void *sc_adb_cookie;
uint32_t sc_i2c_read_len;
/* internal buffers */
uint8_t sc_in[256];
uint8_t sc_out[256];
};
CFATTACH_DECL_NEW(cuda, sizeof(struct cuda_softc),
cuda_match, cuda_attach, NULL, NULL);
static inline void cuda_write_reg(struct cuda_softc *, int, uint8_t);
static inline uint8_t cuda_read_reg(struct cuda_softc *, int);
static void cuda_idle(struct cuda_softc *);
static void cuda_tip(struct cuda_softc *);
static void cuda_clear_tip(struct cuda_softc *);
static void cuda_in(struct cuda_softc *);
static void cuda_out(struct cuda_softc *);
static void cuda_toggle_ack(struct cuda_softc *);
static void cuda_ack_off(struct cuda_softc *);
static int cuda_intr_state(struct cuda_softc *);
static void cuda_init(struct cuda_softc *);
/*
* send a message to Cuda.
*/
/* cookie, flags, length, data */
static int cuda_send(void *, int, int, uint8_t *);
static void cuda_poll(void *);
static void cuda_adb_poll(void *);
static int cuda_set_handler(void *, int, int (*)(void *, int, uint8_t *), void *);
static int cuda_error_handler(void *, int, uint8_t *);
static int cuda_todr_handler(void *, int, uint8_t *);
static int cuda_todr_set(todr_chip_handle_t, struct timeval *);
static int cuda_todr_get(todr_chip_handle_t, struct timeval *);
static int cuda_adb_handler(void *, int, uint8_t *);
static void cuda_final(device_t);
static struct cuda_attach_args *cuda0 = NULL;
/* ADB bus attachment stuff */
static int cuda_adb_send(void *, int, int, int, uint8_t *);
static int cuda_adb_set_handler(void *, void (*)(void *, int, uint8_t *), void *);
/* i2c stuff */
static int cuda_i2c_acquire_bus(void *, int);
static void cuda_i2c_release_bus(void *, int);
static int cuda_i2c_exec(void *, i2c_op_t, i2c_addr_t, const void *, size_t,
void *, size_t, int);
static int
cuda_match(device_t parent, struct cfdata *cf, void *aux)
{
struct confargs *ca = aux;
if (ca->ca_nreg < 8)
return 0;
if (ca->ca_nintr < 4)
return 0;
if (strcmp(ca->ca_name, "via-cuda") == 0) {
return 10; /* beat adb* at obio? */
}
return 0;
}
static void
cuda_attach(device_t parent, device_t self, void *aux)
{
struct confargs *ca = aux;
struct cuda_softc *sc = device_private(self);
struct i2cbus_attach_args iba;
static struct cuda_attach_args caa;
int irq = ca->ca_intr[0];
int node, i, child;
char name[32];
sc->sc_dev = self;
node = of_getnode_byname(OF_parent(ca->ca_node), "extint-gpio1");
if (node)
OF_getprop(node, "interrupts", &irq, 4);
aprint_normal(" irq %d", irq);
sc->sc_node = ca->ca_node;
sc->sc_memt = ca->ca_tag;
sc->sc_sent = 0;
sc->sc_received = 0;
sc->sc_waiting = 0;
sc->sc_polling = 0;
sc->sc_state = CUDA_NOTREADY;
sc->sc_error = 0;
sc->sc_i2c_read_len = 0;
if (bus_space_map(sc->sc_memt, ca->ca_reg[0] + ca->ca_baseaddr,
ca->ca_reg[1], 0, &sc->sc_memh) != 0) {
aprint_normal(": unable to map registers\n");
return;
}
sc->sc_ih = intr_establish(irq, IST_EDGE, IPL_TTY, cuda_intr, sc);
printf("\n");
for (i = 0; i < 16; i++) {
sc->sc_handlers[i].handler = NULL;
sc->sc_handlers[i].cookie = NULL;
}
cuda_init(sc);
/* now attach children */
config_interrupts(self, cuda_final);
cuda_set_handler(sc, CUDA_ERROR, cuda_error_handler, sc);
cuda_set_handler(sc, CUDA_PSEUDO, cuda_todr_handler, sc);
child = OF_child(ca->ca_node);
while (child != 0) {
if (OF_getprop(child, "name", name, 32) == 0)
continue;
if (strncmp(name, "adb", 4) == 0) {
cuda_set_handler(sc, CUDA_ADB, cuda_adb_handler, sc);
sc->sc_adbops.cookie = sc;
sc->sc_adbops.send = cuda_adb_send;
sc->sc_adbops.poll = cuda_adb_poll;
sc->sc_adbops.autopoll = cuda_autopoll;
sc->sc_adbops.set_handler = cuda_adb_set_handler;
config_found_ia(self, "adb_bus", &sc->sc_adbops,
nadb_print);
} else if (strncmp(name, "rtc", 4) == 0) {
sc->sc_todr.todr_gettime = cuda_todr_get;
sc->sc_todr.todr_settime = cuda_todr_set;
sc->sc_todr.cookie = sc;
todr_attach(&sc->sc_todr);
}
child = OF_peer(child);
}
caa.cookie = sc;
caa.set_handler = cuda_set_handler;
caa.send = cuda_send;
caa.poll = cuda_poll;
#if notyet
config_found(self, &caa, cuda_print);
#endif
mutex_init(&sc->sc_buslock, MUTEX_DEFAULT, IPL_NONE);
memset(&iba, 0, sizeof(iba));
iba.iba_tag = &sc->sc_i2c;
sc->sc_i2c.ic_cookie = sc;
sc->sc_i2c.ic_acquire_bus = cuda_i2c_acquire_bus;
sc->sc_i2c.ic_release_bus = cuda_i2c_release_bus;
sc->sc_i2c.ic_send_start = NULL;
sc->sc_i2c.ic_send_stop = NULL;
sc->sc_i2c.ic_initiate_xfer = NULL;
sc->sc_i2c.ic_read_byte = NULL;
sc->sc_i2c.ic_write_byte = NULL;
sc->sc_i2c.ic_exec = cuda_i2c_exec;
config_found_ia(self, "i2cbus", &iba, iicbus_print);
if (cuda0 == NULL)
cuda0 = &caa;
}
static void
cuda_init(struct cuda_softc *sc)
{
uint8_t reg;
reg = cuda_read_reg(sc, vDirB);
reg |= 0x30; /* register B bits 4 and 5: outputs */
cuda_write_reg(sc, vDirB, reg);
reg = cuda_read_reg(sc, vDirB);
reg &= 0xf7; /* register B bit 3: input */
cuda_write_reg(sc, vDirB, reg);
reg = cuda_read_reg(sc, vACR);
reg &= ~vSR_OUT; /* make sure SR is set to IN */
cuda_write_reg(sc, vACR, reg);
cuda_write_reg(sc, vACR, (cuda_read_reg(sc, vACR) | 0x0c) & ~0x10);
sc->sc_state = CUDA_IDLE; /* used by all types of hardware */
cuda_write_reg(sc, vIER, 0x84); /* make sure VIA interrupts are on */
cuda_idle(sc); /* set ADB bus state to idle */
/* sort of a device reset */
(void)cuda_read_reg(sc, vSR); /* clear interrupt */
cuda_write_reg(sc, vIER, 0x04); /* no interrupts while clearing */
cuda_idle(sc); /* reset state to idle */
delay(150);
cuda_tip(sc); /* signal start of frame */
delay(150);
cuda_toggle_ack(sc);
delay(150);
cuda_clear_tip(sc);
delay(150);
cuda_idle(sc); /* back to idle state */
(void)cuda_read_reg(sc, vSR); /* clear interrupt */
cuda_write_reg(sc, vIER, 0x84); /* ints ok now */
}
static void
cuda_final(device_t dev)
{
struct cuda_softc *sc = device_private(dev);
sc->sc_polling = 0;
}
static inline void
cuda_write_reg(struct cuda_softc *sc, int offset, uint8_t value)
{
bus_space_write_1(sc->sc_memt, sc->sc_memh, offset, value);
}
static inline uint8_t
cuda_read_reg(struct cuda_softc *sc, int offset)
{
return bus_space_read_1(sc->sc_memt, sc->sc_memh, offset);
}
static int
cuda_set_handler(void *cookie, int type,
int (*handler)(void *, int, uint8_t *), void *hcookie)
{
struct cuda_softc *sc = cookie;
CudaHandler *me;
if ((type >= 0) && (type < 16)) {
me = &sc->sc_handlers[type];
me->handler = handler;
me->cookie = hcookie;
return 0;
}
return -1;
}
static int
cuda_send(void *cookie, int poll, int length, uint8_t *msg)
{
struct cuda_softc *sc = cookie;
int s;
DPRINTF("cuda_send %08x\n", (uint32_t)cookie);
if (sc->sc_state == CUDA_NOTREADY)
return -1;
s = splhigh();
if (sc->sc_state == CUDA_IDLE /*&&
(cuda_read_reg(sc, vBufB) & vPB3) == vPB3*/) {
/* fine */
DPRINTF("chip is idle\n");
} else {
DPRINTF("cuda state is %d\n", sc->sc_state);
if (sc->sc_waiting == 0) {
sc->sc_waiting = 1;
} else {
splx(s);
return -1;
}
}
sc->sc_error = 0;
memcpy(sc->sc_out, msg, length);
sc->sc_out_length = length;
sc->sc_sent = 0;
if (sc->sc_waiting != 1) {
delay(150);
sc->sc_state = CUDA_OUT;
cuda_out(sc);
cuda_write_reg(sc, vSR, sc->sc_out[0]);
cuda_ack_off(sc);
cuda_tip(sc);
}
sc->sc_waiting = 1;
if (sc->sc_polling || poll || cold) {
cuda_poll(sc);
}
splx(s);
return 0;
}
static void
cuda_poll(void *cookie)
{
struct cuda_softc *sc = cookie;
int s;
DPRINTF("polling\n");
while ((sc->sc_state != CUDA_IDLE) ||
(cuda_intr_state(sc)) ||
(sc->sc_waiting == 1)) {
if ((cuda_read_reg(sc, vIFR) & vSR_INT) == vSR_INT) {
s = splhigh();
cuda_intr(sc);
splx(s);
}
}
}
static void
cuda_adb_poll(void *cookie)
{
struct cuda_softc *sc = cookie;
int s;
s = splhigh();
cuda_intr(sc);
splx(s);
}
static void
cuda_idle(struct cuda_softc *sc)
{
uint8_t reg;
reg = cuda_read_reg(sc, vBufB);
reg |= (vPB4 | vPB5);
cuda_write_reg(sc, vBufB, reg);
}
static void
cuda_tip(struct cuda_softc *sc)
{
uint8_t reg;
reg = cuda_read_reg(sc, vBufB);
reg &= ~vPB5;
cuda_write_reg(sc, vBufB, reg);
}
static void
cuda_clear_tip(struct cuda_softc *sc)
{
uint8_t reg;
reg = cuda_read_reg(sc, vBufB);
reg |= vPB5;
cuda_write_reg(sc, vBufB, reg);
}
static void
cuda_in(struct cuda_softc *sc)
{
uint8_t reg;
reg = cuda_read_reg(sc, vACR);
reg &= ~vSR_OUT;
cuda_write_reg(sc, vACR, reg);
}
static void
cuda_out(struct cuda_softc *sc)
{
uint8_t reg;
reg = cuda_read_reg(sc, vACR);
reg |= vSR_OUT;
cuda_write_reg(sc, vACR, reg);
}
static void
cuda_toggle_ack(struct cuda_softc *sc)
{
uint8_t reg;
reg = cuda_read_reg(sc, vBufB);
reg ^= vPB4;
cuda_write_reg(sc, vBufB, reg);
}
static void
cuda_ack_off(struct cuda_softc *sc)
{
uint8_t reg;
reg = cuda_read_reg(sc, vBufB);
reg |= vPB4;
cuda_write_reg(sc, vBufB, reg);
}
static int
cuda_intr_state(struct cuda_softc *sc)
{
return ((cuda_read_reg(sc, vBufB) & vPB3) == 0);
}
static int
cuda_intr(void *arg)
{
struct cuda_softc *sc = arg;
int ending, type;
uint8_t reg;
reg = cuda_read_reg(sc, vIFR); /* Read the interrupts */
DPRINTF("[");
if ((reg & 0x80) == 0) {
DPRINTF("irq %02x]", reg);
return 0; /* No interrupts to process */
}
DPRINTF(":");
cuda_write_reg(sc, vIFR, 0x7f); /* Clear 'em */
switch_start:
switch (sc->sc_state) {
case CUDA_IDLE:
/*
* This is an unexpected packet, so grab the first (dummy)
* byte, set up the proper vars, and tell the chip we are
* starting to receive the packet by setting the TIP bit.
*/
sc->sc_in[1] = cuda_read_reg(sc, vSR);
DPRINTF("start: %02x", sc->sc_in[1]);
if (cuda_intr_state(sc) == 0) {
/* must have been a fake start */
DPRINTF(" ... fake start\n");
if (sc->sc_waiting) {
/* start over */
delay(150);
sc->sc_state = CUDA_OUT;
sc->sc_sent = 0;
cuda_out(sc);
cuda_write_reg(sc, vSR, sc->sc_out[1]);
cuda_ack_off(sc);
cuda_tip(sc);
}
break;
}
cuda_in(sc);
cuda_tip(sc);
sc->sc_received = 1;
sc->sc_state = CUDA_IN;
DPRINTF(" CUDA_IN");
break;
case CUDA_IN:
sc->sc_in[sc->sc_received] = cuda_read_reg(sc, vSR);
DPRINTF(" %02x", sc->sc_in[sc->sc_received]);
ending = 0;
if (sc->sc_received > 255) {
/* bitch only once */
if (sc->sc_received == 256) {
aprint_error_dev(sc->sc_dev,
"input overflow\n");
ending = 1;
}
} else
sc->sc_received++;
if (sc->sc_received > 3) {
if ((sc->sc_in[3] == CMD_IIC) &&
(sc->sc_received > (sc->sc_i2c_read_len + 4))) {
ending = 1;
}
}
/* intr off means this is the last byte (end of frame) */
if (cuda_intr_state(sc) == 0) {
ending = 1;
DPRINTF(".\n");
} else {
cuda_toggle_ack(sc);
}
if (ending == 1) { /* end of message? */
sc->sc_in[0] = sc->sc_received - 1;
/* reset vars and signal the end of this frame */
cuda_idle(sc);
/* check if we have a handler for this message */
type = sc->sc_in[1];
if ((type >= 0) && (type < 16)) {
CudaHandler *me = &sc->sc_handlers[type];
if (me->handler != NULL) {
me->handler(me->cookie,
sc->sc_received - 1, &sc->sc_in[1]);
} else {
aprint_error_dev(sc->sc_dev,
"no handler for type %02x\n", type);
panic("barf");
}
}
DPRINTF("CUDA_IDLE");
sc->sc_state = CUDA_IDLE;
sc->sc_received = 0;
/*
* If there is something waiting to be sent out,
* set everything up and send the first byte.
*/
if (sc->sc_waiting == 1) {
DPRINTF("pending write\n");
delay(1500); /* required */
sc->sc_sent = 0;
sc->sc_state = CUDA_OUT;
/*
* If the interrupt is on, we were too slow
* and the chip has already started to send
* something to us, so back out of the write
* and start a read cycle.
*/
if (cuda_intr_state(sc)) {
cuda_in(sc);
cuda_idle(sc);
sc->sc_sent = 0;
sc->sc_state = CUDA_IDLE;
sc->sc_received = 0;
delay(150);
DPRINTF("too slow - incoming message\n");
goto switch_start;
}
/*
* If we got here, it's ok to start sending
* so load the first byte and tell the chip
* we want to send.
*/
DPRINTF("sending ");
cuda_out(sc);
cuda_write_reg(sc, vSR,
sc->sc_out[sc->sc_sent]);
cuda_ack_off(sc);
cuda_tip(sc);
}
}
break;
case CUDA_OUT:
(void)cuda_read_reg(sc, vSR); /* reset SR-intr in IFR */
sc->sc_sent++;
if (cuda_intr_state(sc)) { /* ADB intr low during write */
DPRINTF("incoming msg during send\n");
cuda_in(sc); /* make sure SR is set to IN */
cuda_idle(sc);
sc->sc_sent = 0; /* must start all over */
sc->sc_state = CUDA_IDLE; /* new state */
sc->sc_received = 0;
sc->sc_waiting = 1; /* must retry when done with
* read */
delay(150);
goto switch_start; /* process next state right
* now */
break;
}
if (sc->sc_out_length == sc->sc_sent) { /* check for done */
sc->sc_waiting = 0; /* done writing */
sc->sc_state = CUDA_IDLE; /* signal bus is idle */
cuda_in(sc);
cuda_idle(sc);
DPRINTF("done sending\n");
} else {
/* send next byte */
cuda_write_reg(sc, vSR, sc->sc_out[sc->sc_sent]);
DPRINTF("%02x", sc->sc_out[sc->sc_sent]);
cuda_toggle_ack(sc); /* signal byte ready to
* shift */
}
break;
case CUDA_NOTREADY:
DPRINTF("adb: not yet initialized\n");
break;
default:
DPRINTF("intr: unknown ADB state\n");
break;
}
DPRINTF("]");
return 1;
}
static int
cuda_error_handler(void *cookie, int len, uint8_t *data)
{
struct cuda_softc *sc = cookie;
/*
* something went wrong
* byte 3 seems to be the failed command
*/
sc->sc_error = 1;
wakeup(&sc->sc_todev);
return 0;
}
/* real time clock */
static int
cuda_todr_handler(void *cookie, int len, uint8_t *data)
{
struct cuda_softc *sc = cookie;
#ifdef CUDA_DEBUG
int i;
printf("msg: %02x", data[0]);
for (i = 1; i < len; i++) {
printf(" %02x", data[i]);
}
printf("\n");
#endif
switch(data[2]) {
case CMD_READ_RTC:
memcpy(&sc->sc_tod, &data[3], 4);
break;
case CMD_WRITE_RTC:
sc->sc_tod = 0xffffffff;
break;
case CMD_AUTOPOLL:
sc->sc_autopoll = 1;
break;
case CMD_IIC:
sc->sc_iic_done = len;
break;
}
wakeup(&sc->sc_todev);
return 0;
}
#define DIFF19041970 2082844800
static int
cuda_todr_get(todr_chip_handle_t tch, struct timeval *tvp)
{
struct cuda_softc *sc = tch->cookie;
int cnt = 0;
uint8_t cmd[] = { CUDA_PSEUDO, CMD_READ_RTC};
sc->sc_tod = 0;
while (sc->sc_tod == 0) {
cuda_send(sc, 0, 2, cmd);
while ((sc->sc_tod == 0) && (cnt < 10)) {
tsleep(&sc->sc_todev, 0, "todr", 10);
cnt++;
}
if (sc->sc_tod == 0) {
aprint_error_dev(sc->sc_dev,
"unable to read a sane RTC value\n");
return EIO;
}
if ((sc->sc_tod > 0xf0000000UL) ||
(sc->sc_tod < DIFF19041970)) {
/* huh? try again */
sc->sc_tod = 0;
aprint_verbose_dev(sc->sc_dev,
"got garbage reading RTC, trying again\n");
}
}
tvp->tv_sec = sc->sc_tod - DIFF19041970;
DPRINTF("tod: %" PRIo64 "\n", tvp->tv_sec);
tvp->tv_usec = 0;
return 0;
}
static int
cuda_todr_set(todr_chip_handle_t tch, struct timeval *tvp)
{
struct cuda_softc *sc = tch->cookie;
uint32_t sec;
uint8_t cmd[] = {CUDA_PSEUDO, CMD_WRITE_RTC, 0, 0, 0, 0};
sec = tvp->tv_sec + DIFF19041970;
memcpy(&cmd[2], &sec, 4);
sc->sc_tod = 0;
if (cuda_send(sc, 0, 6, cmd) == 0) {
while (sc->sc_tod == 0) {
tsleep(&sc->sc_todev, 0, "todr", 10);
}
return 0;
}
aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
return -1;
}
/* poweroff and reboot */
void
cuda_poweroff(void)
{
struct cuda_softc *sc;
uint8_t cmd[] = {CUDA_PSEUDO, CMD_POWEROFF};
if (cuda0 == NULL)
return;
sc = cuda0->cookie;
sc->sc_polling = 1;
cuda0->poll(sc);
if (cuda0->send(sc, 1, 2, cmd) == 0)
while (1);
}
void
cuda_restart(void)
{
struct cuda_softc *sc;
uint8_t cmd[] = {CUDA_PSEUDO, CMD_RESET};
if (cuda0 == NULL)
return;
sc = cuda0->cookie;
sc->sc_polling = 1;
cuda0->poll(sc);
if (cuda0->send(sc, 1, 2, cmd) == 0)
while (1);
}
/* ADB message handling */
static void
cuda_autopoll(void *cookie, int flag)
{
struct cuda_softc *sc = cookie;
uint8_t cmd[] = {CUDA_PSEUDO, CMD_AUTOPOLL, (flag != 0)};
if (cmd[2] == sc->sc_autopoll)
return;
sc->sc_autopoll = -1;
cuda_send(sc, 0, 3, cmd);
while(sc->sc_autopoll == -1) {
if (sc->sc_polling || cold) {
cuda_poll(sc);
} else
tsleep(&sc->sc_todev, 0, "autopoll", 100);
}
}
static int
cuda_adb_handler(void *cookie, int len, uint8_t *data)
{
struct cuda_softc *sc = cookie;
if (sc->sc_adb_handler != NULL) {
sc->sc_adb_handler(sc->sc_adb_cookie, len - 1,
&data[1]);
return 0;
}
return -1;
}
static int
cuda_adb_send(void *cookie, int poll, int command, int len, uint8_t *data)
{
struct cuda_softc *sc = cookie;
int i, s = 0;
uint8_t packet[16];
/* construct an ADB command packet and send it */
packet[0] = CUDA_ADB;
packet[1] = command;
for (i = 0; i < len; i++)
packet[i + 2] = data[i];
if (poll || cold) {
s = splhigh();
cuda_poll(sc);
}
cuda_send(sc, poll, len + 2, packet);
if (poll || cold) {
cuda_poll(sc);
splx(s);
}
return 0;
}
static int
cuda_adb_set_handler(void *cookie, void (*handler)(void *, int, uint8_t *),
void *hcookie)
{
struct cuda_softc *sc = cookie;
/* register a callback for incoming ADB messages */
sc->sc_adb_handler = handler;
sc->sc_adb_cookie = hcookie;
return 0;
}
/* i2c message handling */
static int
cuda_i2c_acquire_bus(void *cookie, int flags)
{
struct cuda_softc *sc = cookie;
mutex_enter(&sc->sc_buslock);
return 0;
}
static void
cuda_i2c_release_bus(void *cookie, int flags)
{
struct cuda_softc *sc = cookie;
mutex_exit(&sc->sc_buslock);
}
static int
cuda_i2c_exec(void *cookie, i2c_op_t op, i2c_addr_t addr, const void *_send,
size_t send_len, void *_recv, size_t recv_len, int flags)
{
struct cuda_softc *sc = cookie;
const uint8_t *send = _send;
uint8_t *recv = _recv;
uint8_t command[16] = {CUDA_PSEUDO, CMD_IIC};
DPRINTF("cuda_i2c_exec(%02x)\n", addr);
command[2] = addr;
/* Copy command and output data bytes, if any, to buffer */
if (send_len > 0)
memcpy(&command[3], send, min((int)send_len, 12));
else if (I2C_OP_READ_P(op) && (recv_len == 0)) {
/*
* If no data bytes in either direction, it's a "quick"
* i2c operation. We don't know how to do a quick_read
* since that requires us to set the low bit of the
* address byte after it has been left-shifted.
*/
sc->sc_error = 0;
return -1;
}
sc->sc_iic_done = 0;
cuda_send(sc, sc->sc_polling, send_len + 3, command);
while ((sc->sc_iic_done == 0) && (sc->sc_error == 0)) {
if (sc->sc_polling || cold) {
cuda_poll(sc);
} else
tsleep(&sc->sc_todev, 0, "i2c", 1000);
}
if (sc->sc_error) {
sc->sc_error = 0;
aprint_error_dev(sc->sc_dev, "error doing I2C\n");
return -1;
}
/* see if we're supposed to do a read */
if (recv_len > 0) {
sc->sc_iic_done = 0;
command[2] |= 1;
command[3] = 0;
/*
* XXX we need to do something to limit the size of the answer
* - apparently the chip keeps sending until we tell it to stop
*/
sc->sc_i2c_read_len = recv_len;
DPRINTF("rcv_len: %d\n", recv_len);
cuda_send(sc, sc->sc_polling, 3, command);
while ((sc->sc_iic_done == 0) && (sc->sc_error == 0)) {
if (sc->sc_polling || cold) {
cuda_poll(sc);
} else
tsleep(&sc->sc_todev, 0, "i2c", 1000);
}
if (sc->sc_error) {
aprint_error_dev(sc->sc_dev,
"error trying to read from I2C\n");
sc->sc_error = 0;
return -1;
}
}
DPRINTF("received: %d\n", sc->sc_iic_done);
if ((sc->sc_iic_done > 3) && (recv_len > 0)) {
int rlen;
/* we got an answer */
rlen = min(sc->sc_iic_done - 3, recv_len);
memcpy(recv, &sc->sc_in[4], rlen);
#ifdef CUDA_DEBUG
{
int i;
printf("ret:");
for (i = 0; i < rlen; i++)
printf(" %02x", recv[i]);
printf("\n");
}
#endif
return rlen;
}
return 0;
}