1463 lines
34 KiB
C
1463 lines
34 KiB
C
/* $NetBSD: cryptosoft.c,v 1.52 2017/06/23 11:41:58 knakahara Exp $ */
|
|
/* $FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.2.2.1 2002/11/21 23:34:23 sam Exp $ */
|
|
/* $OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $ */
|
|
|
|
/*
|
|
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
|
|
*
|
|
* This code was written by Angelos D. Keromytis in Athens, Greece, in
|
|
* February 2000. Network Security Technologies Inc. (NSTI) kindly
|
|
* supported the development of this code.
|
|
*
|
|
* Copyright (c) 2000, 2001 Angelos D. Keromytis
|
|
*
|
|
* Permission to use, copy, and modify this software with or without fee
|
|
* is hereby granted, provided that this entire notice is included in
|
|
* all source code copies of any software which is or includes a copy or
|
|
* modification of this software.
|
|
*
|
|
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
|
|
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
|
|
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
|
|
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
|
|
* PURPOSE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: cryptosoft.c,v 1.52 2017/06/23 11:41:58 knakahara Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/cprng.h>
|
|
#include <sys/module.h>
|
|
#include <sys/device.h>
|
|
|
|
#ifdef _KERNEL_OPT
|
|
#include "opt_ocf.h"
|
|
#endif
|
|
|
|
#include <opencrypto/cryptodev.h>
|
|
#include <opencrypto/cryptosoft.h>
|
|
#include <opencrypto/xform.h>
|
|
|
|
#include <opencrypto/cryptosoft_xform.c>
|
|
|
|
#include "ioconf.h"
|
|
|
|
union authctx {
|
|
MD5_CTX md5ctx;
|
|
SHA1_CTX sha1ctx;
|
|
RMD160_CTX rmd160ctx;
|
|
SHA256_CTX sha256ctx;
|
|
SHA384_CTX sha384ctx;
|
|
SHA512_CTX sha512ctx;
|
|
aesxcbc_ctx aesxcbcctx;
|
|
AES_GMAC_CTX aesgmacctx;
|
|
};
|
|
|
|
struct swcr_data **swcr_sessions = NULL;
|
|
u_int32_t swcr_sesnum = 0;
|
|
int32_t swcr_id = -1;
|
|
|
|
#define COPYBACK(x, a, b, c, d) \
|
|
(x) == CRYPTO_BUF_MBUF ? m_copyback((struct mbuf *)a,b,c,d) \
|
|
: cuio_copyback((struct uio *)a,b,c,d)
|
|
#define COPYDATA(x, a, b, c, d) \
|
|
(x) == CRYPTO_BUF_MBUF ? m_copydata((struct mbuf *)a,b,c,d) \
|
|
: cuio_copydata((struct uio *)a,b,c,d)
|
|
|
|
static int swcr_encdec(struct cryptodesc *, const struct swcr_data *, void *, int);
|
|
static int swcr_compdec(struct cryptodesc *, const struct swcr_data *, void *, int, int *);
|
|
static int swcr_combined(struct cryptop *, int);
|
|
static int swcr_process(void *, struct cryptop *, int);
|
|
static int swcr_newsession(void *, u_int32_t *, struct cryptoini *);
|
|
static int swcr_freesession(void *, u_int64_t);
|
|
|
|
static int swcryptoattach_internal(void);
|
|
|
|
/*
|
|
* Apply a symmetric encryption/decryption algorithm.
|
|
*/
|
|
static int
|
|
swcr_encdec(struct cryptodesc *crd, const struct swcr_data *sw, void *bufv,
|
|
int outtype)
|
|
{
|
|
char *buf = bufv;
|
|
unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
|
|
unsigned char *ivp, piv[EALG_MAX_BLOCK_LEN];
|
|
const struct swcr_enc_xform *exf;
|
|
int i, k, j, blks, ivlen;
|
|
int count, ind;
|
|
|
|
exf = sw->sw_exf;
|
|
blks = exf->enc_xform->blocksize;
|
|
ivlen = exf->enc_xform->ivsize;
|
|
KASSERT(exf->reinit ? ivlen <= blks : ivlen == blks);
|
|
|
|
/* Check for non-padded data */
|
|
if (crd->crd_len % blks)
|
|
return EINVAL;
|
|
|
|
/* Initialize the IV */
|
|
if (crd->crd_flags & CRD_F_ENCRYPT) {
|
|
/* IV explicitly provided ? */
|
|
if (crd->crd_flags & CRD_F_IV_EXPLICIT) {
|
|
memcpy(iv, crd->crd_iv, ivlen);
|
|
if (exf->reinit)
|
|
exf->reinit(sw->sw_kschedule, iv, 0);
|
|
} else if (exf->reinit) {
|
|
exf->reinit(sw->sw_kschedule, 0, iv);
|
|
} else {
|
|
/* Get random IV */
|
|
for (i = 0;
|
|
i + sizeof (u_int32_t) <= EALG_MAX_BLOCK_LEN;
|
|
i += sizeof (u_int32_t)) {
|
|
u_int32_t temp = cprng_fast32();
|
|
|
|
memcpy(iv + i, &temp, sizeof(u_int32_t));
|
|
}
|
|
/*
|
|
* What if the block size is not a multiple
|
|
* of sizeof (u_int32_t), which is the size of
|
|
* what arc4random() returns ?
|
|
*/
|
|
if (EALG_MAX_BLOCK_LEN % sizeof (u_int32_t) != 0) {
|
|
u_int32_t temp = cprng_fast32();
|
|
|
|
bcopy (&temp, iv + i,
|
|
EALG_MAX_BLOCK_LEN - i);
|
|
}
|
|
}
|
|
|
|
/* Do we need to write the IV */
|
|
if (!(crd->crd_flags & CRD_F_IV_PRESENT)) {
|
|
COPYBACK(outtype, buf, crd->crd_inject, ivlen, iv);
|
|
}
|
|
|
|
} else { /* Decryption */
|
|
/* IV explicitly provided ? */
|
|
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
|
|
memcpy(iv, crd->crd_iv, ivlen);
|
|
else {
|
|
/* Get IV off buf */
|
|
COPYDATA(outtype, buf, crd->crd_inject, ivlen, iv);
|
|
}
|
|
if (exf->reinit)
|
|
exf->reinit(sw->sw_kschedule, iv, 0);
|
|
}
|
|
|
|
ivp = iv;
|
|
|
|
if (outtype == CRYPTO_BUF_CONTIG) {
|
|
if (exf->reinit) {
|
|
for (i = crd->crd_skip;
|
|
i < crd->crd_skip + crd->crd_len; i += blks) {
|
|
if (crd->crd_flags & CRD_F_ENCRYPT) {
|
|
exf->encrypt(sw->sw_kschedule, buf + i);
|
|
} else {
|
|
exf->decrypt(sw->sw_kschedule, buf + i);
|
|
}
|
|
}
|
|
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
|
|
for (i = crd->crd_skip;
|
|
i < crd->crd_skip + crd->crd_len; i += blks) {
|
|
/* XOR with the IV/previous block, as appropriate. */
|
|
if (i == crd->crd_skip)
|
|
for (k = 0; k < blks; k++)
|
|
buf[i + k] ^= ivp[k];
|
|
else
|
|
for (k = 0; k < blks; k++)
|
|
buf[i + k] ^= buf[i + k - blks];
|
|
exf->encrypt(sw->sw_kschedule, buf + i);
|
|
}
|
|
} else { /* Decrypt */
|
|
/*
|
|
* Start at the end, so we don't need to keep the encrypted
|
|
* block as the IV for the next block.
|
|
*/
|
|
for (i = crd->crd_skip + crd->crd_len - blks;
|
|
i >= crd->crd_skip; i -= blks) {
|
|
exf->decrypt(sw->sw_kschedule, buf + i);
|
|
|
|
/* XOR with the IV/previous block, as appropriate */
|
|
if (i == crd->crd_skip)
|
|
for (k = 0; k < blks; k++)
|
|
buf[i + k] ^= ivp[k];
|
|
else
|
|
for (k = 0; k < blks; k++)
|
|
buf[i + k] ^= buf[i + k - blks];
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
} else if (outtype == CRYPTO_BUF_MBUF) {
|
|
struct mbuf *m = (struct mbuf *) buf;
|
|
|
|
/* Find beginning of data */
|
|
m = m_getptr(m, crd->crd_skip, &k);
|
|
if (m == NULL)
|
|
return EINVAL;
|
|
|
|
i = crd->crd_len;
|
|
|
|
while (i > 0) {
|
|
/*
|
|
* If there's insufficient data at the end of
|
|
* an mbuf, we have to do some copying.
|
|
*/
|
|
if (m->m_len < k + blks && m->m_len != k) {
|
|
m_copydata(m, k, blks, blk);
|
|
|
|
/* Actual encryption/decryption */
|
|
if (exf->reinit) {
|
|
if (crd->crd_flags & CRD_F_ENCRYPT) {
|
|
exf->encrypt(sw->sw_kschedule,
|
|
blk);
|
|
} else {
|
|
exf->decrypt(sw->sw_kschedule,
|
|
blk);
|
|
}
|
|
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
|
|
/* XOR with previous block */
|
|
for (j = 0; j < blks; j++)
|
|
blk[j] ^= ivp[j];
|
|
|
|
exf->encrypt(sw->sw_kschedule, blk);
|
|
|
|
/*
|
|
* Keep encrypted block for XOR'ing
|
|
* with next block
|
|
*/
|
|
memcpy(iv, blk, blks);
|
|
ivp = iv;
|
|
} else { /* decrypt */
|
|
/*
|
|
* Keep encrypted block for XOR'ing
|
|
* with next block
|
|
*/
|
|
if (ivp == iv)
|
|
memcpy(piv, blk, blks);
|
|
else
|
|
memcpy(iv, blk, blks);
|
|
|
|
exf->decrypt(sw->sw_kschedule, blk);
|
|
|
|
/* XOR with previous block */
|
|
for (j = 0; j < blks; j++)
|
|
blk[j] ^= ivp[j];
|
|
|
|
if (ivp == iv)
|
|
memcpy(iv, piv, blks);
|
|
else
|
|
ivp = iv;
|
|
}
|
|
|
|
/* Copy back decrypted block */
|
|
m_copyback(m, k, blks, blk);
|
|
|
|
/* Advance pointer */
|
|
m = m_getptr(m, k + blks, &k);
|
|
if (m == NULL)
|
|
return EINVAL;
|
|
|
|
i -= blks;
|
|
|
|
/* Could be done... */
|
|
if (i == 0)
|
|
break;
|
|
}
|
|
|
|
/* Skip possibly empty mbufs */
|
|
if (k == m->m_len) {
|
|
for (m = m->m_next; m && m->m_len == 0;
|
|
m = m->m_next)
|
|
;
|
|
k = 0;
|
|
}
|
|
|
|
/* Sanity check */
|
|
if (m == NULL)
|
|
return EINVAL;
|
|
|
|
/*
|
|
* Warning: idat may point to garbage here, but
|
|
* we only use it in the while() loop, only if
|
|
* there are indeed enough data.
|
|
*/
|
|
idat = mtod(m, unsigned char *) + k;
|
|
|
|
while (m->m_len >= k + blks && i > 0) {
|
|
if (exf->reinit) {
|
|
if (crd->crd_flags & CRD_F_ENCRYPT) {
|
|
exf->encrypt(sw->sw_kschedule,
|
|
idat);
|
|
} else {
|
|
exf->decrypt(sw->sw_kschedule,
|
|
idat);
|
|
}
|
|
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
|
|
/* XOR with previous block/IV */
|
|
for (j = 0; j < blks; j++)
|
|
idat[j] ^= ivp[j];
|
|
|
|
exf->encrypt(sw->sw_kschedule, idat);
|
|
ivp = idat;
|
|
} else { /* decrypt */
|
|
/*
|
|
* Keep encrypted block to be used
|
|
* in next block's processing.
|
|
*/
|
|
if (ivp == iv)
|
|
memcpy(piv, idat, blks);
|
|
else
|
|
memcpy(iv, idat, blks);
|
|
|
|
exf->decrypt(sw->sw_kschedule, idat);
|
|
|
|
/* XOR with previous block/IV */
|
|
for (j = 0; j < blks; j++)
|
|
idat[j] ^= ivp[j];
|
|
|
|
if (ivp == iv)
|
|
memcpy(iv, piv, blks);
|
|
else
|
|
ivp = iv;
|
|
}
|
|
|
|
idat += blks;
|
|
k += blks;
|
|
i -= blks;
|
|
}
|
|
}
|
|
|
|
return 0; /* Done with mbuf encryption/decryption */
|
|
} else if (outtype == CRYPTO_BUF_IOV) {
|
|
struct uio *uio = (struct uio *) buf;
|
|
|
|
/* Find beginning of data */
|
|
count = crd->crd_skip;
|
|
ind = cuio_getptr(uio, count, &k);
|
|
if (ind == -1)
|
|
return EINVAL;
|
|
|
|
i = crd->crd_len;
|
|
|
|
while (i > 0) {
|
|
/*
|
|
* If there's insufficient data at the end,
|
|
* we have to do some copying.
|
|
*/
|
|
if (uio->uio_iov[ind].iov_len < k + blks &&
|
|
uio->uio_iov[ind].iov_len != k) {
|
|
cuio_copydata(uio, k, blks, blk);
|
|
|
|
/* Actual encryption/decryption */
|
|
if (exf->reinit) {
|
|
if (crd->crd_flags & CRD_F_ENCRYPT) {
|
|
exf->encrypt(sw->sw_kschedule,
|
|
blk);
|
|
} else {
|
|
exf->decrypt(sw->sw_kschedule,
|
|
blk);
|
|
}
|
|
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
|
|
/* XOR with previous block */
|
|
for (j = 0; j < blks; j++)
|
|
blk[j] ^= ivp[j];
|
|
|
|
exf->encrypt(sw->sw_kschedule, blk);
|
|
|
|
/*
|
|
* Keep encrypted block for XOR'ing
|
|
* with next block
|
|
*/
|
|
memcpy(iv, blk, blks);
|
|
ivp = iv;
|
|
} else { /* decrypt */
|
|
/*
|
|
* Keep encrypted block for XOR'ing
|
|
* with next block
|
|
*/
|
|
if (ivp == iv)
|
|
memcpy(piv, blk, blks);
|
|
else
|
|
memcpy(iv, blk, blks);
|
|
|
|
exf->decrypt(sw->sw_kschedule, blk);
|
|
|
|
/* XOR with previous block */
|
|
for (j = 0; j < blks; j++)
|
|
blk[j] ^= ivp[j];
|
|
|
|
if (ivp == iv)
|
|
memcpy(iv, piv, blks);
|
|
else
|
|
ivp = iv;
|
|
}
|
|
|
|
/* Copy back decrypted block */
|
|
cuio_copyback(uio, k, blks, blk);
|
|
|
|
count += blks;
|
|
|
|
/* Advance pointer */
|
|
ind = cuio_getptr(uio, count, &k);
|
|
if (ind == -1)
|
|
return (EINVAL);
|
|
|
|
i -= blks;
|
|
|
|
/* Could be done... */
|
|
if (i == 0)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Warning: idat may point to garbage here, but
|
|
* we only use it in the while() loop, only if
|
|
* there are indeed enough data.
|
|
*/
|
|
idat = ((char *)uio->uio_iov[ind].iov_base) + k;
|
|
|
|
while (uio->uio_iov[ind].iov_len >= k + blks &&
|
|
i > 0) {
|
|
if (exf->reinit) {
|
|
if (crd->crd_flags & CRD_F_ENCRYPT) {
|
|
exf->encrypt(sw->sw_kschedule,
|
|
idat);
|
|
} else {
|
|
exf->decrypt(sw->sw_kschedule,
|
|
idat);
|
|
}
|
|
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
|
|
/* XOR with previous block/IV */
|
|
for (j = 0; j < blks; j++)
|
|
idat[j] ^= ivp[j];
|
|
|
|
exf->encrypt(sw->sw_kschedule, idat);
|
|
ivp = idat;
|
|
} else { /* decrypt */
|
|
/*
|
|
* Keep encrypted block to be used
|
|
* in next block's processing.
|
|
*/
|
|
if (ivp == iv)
|
|
memcpy(piv, idat, blks);
|
|
else
|
|
memcpy(iv, idat, blks);
|
|
|
|
exf->decrypt(sw->sw_kschedule, idat);
|
|
|
|
/* XOR with previous block/IV */
|
|
for (j = 0; j < blks; j++)
|
|
idat[j] ^= ivp[j];
|
|
|
|
if (ivp == iv)
|
|
memcpy(iv, piv, blks);
|
|
else
|
|
ivp = iv;
|
|
}
|
|
|
|
idat += blks;
|
|
count += blks;
|
|
k += blks;
|
|
i -= blks;
|
|
}
|
|
}
|
|
return 0; /* Done with mbuf encryption/decryption */
|
|
}
|
|
|
|
/* Unreachable */
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Compute keyed-hash authenticator.
|
|
*/
|
|
int
|
|
swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
|
|
const struct swcr_data *sw, void *buf, int outtype)
|
|
{
|
|
unsigned char aalg[AALG_MAX_RESULT_LEN];
|
|
const struct swcr_auth_hash *axf;
|
|
union authctx ctx;
|
|
int err;
|
|
|
|
if (sw->sw_ictx == 0)
|
|
return EINVAL;
|
|
|
|
axf = sw->sw_axf;
|
|
|
|
memcpy(&ctx, sw->sw_ictx, axf->ctxsize);
|
|
|
|
switch (outtype) {
|
|
case CRYPTO_BUF_CONTIG:
|
|
axf->Update(&ctx, (char *)buf + crd->crd_skip, crd->crd_len);
|
|
break;
|
|
case CRYPTO_BUF_MBUF:
|
|
err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
|
|
(int (*)(void*, void *, unsigned int)) axf->Update,
|
|
(void *) &ctx);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
case CRYPTO_BUF_IOV:
|
|
err = cuio_apply((struct uio *) buf, crd->crd_skip,
|
|
crd->crd_len,
|
|
(int (*)(void *, void *, unsigned int)) axf->Update,
|
|
(void *) &ctx);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
|
|
switch (sw->sw_alg) {
|
|
case CRYPTO_MD5_HMAC:
|
|
case CRYPTO_MD5_HMAC_96:
|
|
case CRYPTO_SHA1_HMAC:
|
|
case CRYPTO_SHA1_HMAC_96:
|
|
case CRYPTO_SHA2_256_HMAC:
|
|
case CRYPTO_SHA2_384_HMAC:
|
|
case CRYPTO_SHA2_512_HMAC:
|
|
case CRYPTO_RIPEMD160_HMAC:
|
|
case CRYPTO_RIPEMD160_HMAC_96:
|
|
if (sw->sw_octx == NULL)
|
|
return EINVAL;
|
|
|
|
axf->Final(aalg, &ctx);
|
|
memcpy(&ctx, sw->sw_octx, axf->ctxsize);
|
|
axf->Update(&ctx, aalg, axf->auth_hash->hashsize);
|
|
axf->Final(aalg, &ctx);
|
|
break;
|
|
|
|
case CRYPTO_MD5_KPDK:
|
|
case CRYPTO_SHA1_KPDK:
|
|
if (sw->sw_octx == NULL)
|
|
return EINVAL;
|
|
|
|
axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
|
|
axf->Final(aalg, &ctx);
|
|
break;
|
|
|
|
case CRYPTO_NULL_HMAC:
|
|
case CRYPTO_MD5:
|
|
case CRYPTO_SHA1:
|
|
case CRYPTO_AES_XCBC_MAC_96:
|
|
axf->Final(aalg, &ctx);
|
|
break;
|
|
}
|
|
|
|
/* Inject the authentication data */
|
|
switch (outtype) {
|
|
case CRYPTO_BUF_CONTIG:
|
|
(void)memcpy((char *)buf + crd->crd_inject, aalg,
|
|
axf->auth_hash->authsize);
|
|
break;
|
|
case CRYPTO_BUF_MBUF:
|
|
m_copyback((struct mbuf *) buf, crd->crd_inject,
|
|
axf->auth_hash->authsize, aalg);
|
|
break;
|
|
case CRYPTO_BUF_IOV:
|
|
memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Apply a combined encryption-authentication transformation
|
|
*/
|
|
static int
|
|
swcr_combined(struct cryptop *crp, int outtype)
|
|
{
|
|
uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))];
|
|
u_char *blk = (u_char *)blkbuf;
|
|
u_char aalg[AALG_MAX_RESULT_LEN];
|
|
u_char iv[EALG_MAX_BLOCK_LEN];
|
|
union authctx ctx;
|
|
struct cryptodesc *crd, *crda = NULL, *crde = NULL;
|
|
struct swcr_data *sw, *swa, *swe = NULL;
|
|
const struct swcr_auth_hash *axf = NULL;
|
|
const struct swcr_enc_xform *exf = NULL;
|
|
void *buf = (void *)crp->crp_buf;
|
|
uint32_t *blkp;
|
|
int i, blksz = 0, ivlen = 0, len;
|
|
|
|
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
|
|
for (sw = swcr_sessions[crp->crp_sid & 0xffffffff];
|
|
sw && sw->sw_alg != crd->crd_alg;
|
|
sw = sw->sw_next)
|
|
;
|
|
if (sw == NULL)
|
|
return (EINVAL);
|
|
|
|
switch (sw->sw_alg) {
|
|
case CRYPTO_AES_GCM_16:
|
|
case CRYPTO_AES_GMAC:
|
|
swe = sw;
|
|
crde = crd;
|
|
exf = swe->sw_exf;
|
|
ivlen = exf->enc_xform->ivsize;
|
|
break;
|
|
case CRYPTO_AES_128_GMAC:
|
|
case CRYPTO_AES_192_GMAC:
|
|
case CRYPTO_AES_256_GMAC:
|
|
swa = sw;
|
|
crda = crd;
|
|
axf = swa->sw_axf;
|
|
if (swa->sw_ictx == 0)
|
|
return (EINVAL);
|
|
memcpy(&ctx, swa->sw_ictx, axf->ctxsize);
|
|
blksz = axf->auth_hash->blocksize;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
if (crde == NULL || crda == NULL)
|
|
return (EINVAL);
|
|
if (outtype == CRYPTO_BUF_CONTIG)
|
|
return (EINVAL);
|
|
|
|
/* Initialize the IV */
|
|
if (crde->crd_flags & CRD_F_ENCRYPT) {
|
|
/* IV explicitly provided ? */
|
|
if (crde->crd_flags & CRD_F_IV_EXPLICIT) {
|
|
memcpy(iv, crde->crd_iv, ivlen);
|
|
if (exf->reinit)
|
|
exf->reinit(swe->sw_kschedule, iv, 0);
|
|
} else if (exf->reinit)
|
|
exf->reinit(swe->sw_kschedule, 0, iv);
|
|
else
|
|
cprng_fast(iv, ivlen);
|
|
|
|
/* Do we need to write the IV */
|
|
if (!(crde->crd_flags & CRD_F_IV_PRESENT))
|
|
COPYBACK(outtype, buf, crde->crd_inject, ivlen, iv);
|
|
|
|
} else { /* Decryption */
|
|
/* IV explicitly provided ? */
|
|
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
|
|
memcpy(iv, crde->crd_iv, ivlen);
|
|
else {
|
|
/* Get IV off buf */
|
|
COPYDATA(outtype, buf, crde->crd_inject, ivlen, iv);
|
|
}
|
|
if (exf->reinit)
|
|
exf->reinit(swe->sw_kschedule, iv, 0);
|
|
}
|
|
|
|
/* Supply MAC with IV */
|
|
if (axf->Reinit)
|
|
axf->Reinit(&ctx, iv, ivlen);
|
|
|
|
/* Supply MAC with AAD */
|
|
for (i = 0; i < crda->crd_len; i += blksz) {
|
|
len = MIN(crda->crd_len - i, blksz);
|
|
COPYDATA(outtype, buf, crda->crd_skip + i, len, blk);
|
|
axf->Update(&ctx, blk, len);
|
|
}
|
|
|
|
/* Do encryption/decryption with MAC */
|
|
for (i = 0; i < crde->crd_len; i += blksz) {
|
|
len = MIN(crde->crd_len - i, blksz);
|
|
if (len < blksz)
|
|
memset(blk, 0, blksz);
|
|
COPYDATA(outtype, buf, crde->crd_skip + i, len, blk);
|
|
if (crde->crd_flags & CRD_F_ENCRYPT) {
|
|
exf->encrypt(swe->sw_kschedule, blk);
|
|
axf->Update(&ctx, blk, len);
|
|
} else {
|
|
axf->Update(&ctx, blk, len);
|
|
exf->decrypt(swe->sw_kschedule, blk);
|
|
}
|
|
COPYBACK(outtype, buf, crde->crd_skip + i, len, blk);
|
|
}
|
|
|
|
/* Do any required special finalization */
|
|
switch (crda->crd_alg) {
|
|
case CRYPTO_AES_128_GMAC:
|
|
case CRYPTO_AES_192_GMAC:
|
|
case CRYPTO_AES_256_GMAC:
|
|
/* length block */
|
|
memset(blk, 0, blksz);
|
|
blkp = (uint32_t *)blk + 1;
|
|
*blkp = htobe32(crda->crd_len * 8);
|
|
blkp = (uint32_t *)blk + 3;
|
|
*blkp = htobe32(crde->crd_len * 8);
|
|
axf->Update(&ctx, blk, blksz);
|
|
break;
|
|
}
|
|
|
|
/* Finalize MAC */
|
|
axf->Final(aalg, &ctx);
|
|
|
|
/* Inject the authentication data */
|
|
if (outtype == CRYPTO_BUF_MBUF)
|
|
COPYBACK(outtype, buf, crda->crd_inject, axf->auth_hash->authsize, aalg);
|
|
else
|
|
memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Apply a compression/decompression algorithm
|
|
*/
|
|
static int
|
|
swcr_compdec(struct cryptodesc *crd, const struct swcr_data *sw,
|
|
void *buf, int outtype, int *res_size)
|
|
{
|
|
u_int8_t *data, *out;
|
|
const struct swcr_comp_algo *cxf;
|
|
int adj;
|
|
u_int32_t result;
|
|
|
|
cxf = sw->sw_cxf;
|
|
|
|
/* We must handle the whole buffer of data in one time
|
|
* then if there is not all the data in the mbuf, we must
|
|
* copy in a buffer.
|
|
*/
|
|
|
|
data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
|
|
if (data == NULL)
|
|
return (EINVAL);
|
|
COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
|
|
|
|
if (crd->crd_flags & CRD_F_COMP)
|
|
result = cxf->compress(data, crd->crd_len, &out);
|
|
else
|
|
result = cxf->decompress(data, crd->crd_len, &out,
|
|
*res_size);
|
|
|
|
free(data, M_CRYPTO_DATA);
|
|
if (result == 0)
|
|
return EINVAL;
|
|
|
|
/* Copy back the (de)compressed data. m_copyback is
|
|
* extending the mbuf as necessary.
|
|
*/
|
|
*res_size = (int)result;
|
|
/* Check the compressed size when doing compression */
|
|
if (crd->crd_flags & CRD_F_COMP &&
|
|
sw->sw_alg == CRYPTO_DEFLATE_COMP_NOGROW &&
|
|
result >= crd->crd_len) {
|
|
/* Compression was useless, we lost time */
|
|
free(out, M_CRYPTO_DATA);
|
|
return 0;
|
|
}
|
|
|
|
COPYBACK(outtype, buf, crd->crd_skip, result, out);
|
|
if (result < crd->crd_len) {
|
|
adj = result - crd->crd_len;
|
|
if (outtype == CRYPTO_BUF_MBUF) {
|
|
m_adj((struct mbuf *)buf, adj);
|
|
}
|
|
/* Don't adjust the iov_len, it breaks the kmem_free */
|
|
}
|
|
free(out, M_CRYPTO_DATA);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Generate a new software session.
|
|
*/
|
|
static int
|
|
swcr_newsession(void *arg, u_int32_t *sid, struct cryptoini *cri)
|
|
{
|
|
struct swcr_data **swd;
|
|
const struct swcr_auth_hash *axf;
|
|
const struct swcr_enc_xform *txf;
|
|
const struct swcr_comp_algo *cxf;
|
|
u_int32_t i;
|
|
int k, error;
|
|
|
|
if (sid == NULL || cri == NULL)
|
|
return EINVAL;
|
|
|
|
if (swcr_sessions) {
|
|
for (i = 1; i < swcr_sesnum; i++)
|
|
if (swcr_sessions[i] == NULL)
|
|
break;
|
|
} else
|
|
i = 1; /* NB: to silence compiler warning */
|
|
|
|
if (swcr_sessions == NULL || i == swcr_sesnum) {
|
|
if (swcr_sessions == NULL) {
|
|
i = 1; /* We leave swcr_sessions[0] empty */
|
|
swcr_sesnum = CRYPTO_SW_SESSIONS;
|
|
} else
|
|
swcr_sesnum *= 2;
|
|
|
|
swd = malloc(swcr_sesnum * sizeof(struct swcr_data *),
|
|
M_CRYPTO_DATA, M_NOWAIT);
|
|
if (swd == NULL) {
|
|
/* Reset session number */
|
|
if (swcr_sesnum == CRYPTO_SW_SESSIONS)
|
|
swcr_sesnum = 0;
|
|
else
|
|
swcr_sesnum /= 2;
|
|
return ENOBUFS;
|
|
}
|
|
|
|
memset(swd, 0, swcr_sesnum * sizeof(struct swcr_data *));
|
|
|
|
/* Copy existing sessions */
|
|
if (swcr_sessions) {
|
|
memcpy(swd, swcr_sessions,
|
|
(swcr_sesnum / 2) * sizeof(struct swcr_data *));
|
|
free(swcr_sessions, M_CRYPTO_DATA);
|
|
}
|
|
|
|
swcr_sessions = swd;
|
|
}
|
|
|
|
swd = &swcr_sessions[i];
|
|
*sid = i;
|
|
|
|
while (cri) {
|
|
*swd = malloc(sizeof **swd, M_CRYPTO_DATA, M_NOWAIT);
|
|
if (*swd == NULL) {
|
|
swcr_freesession(NULL, i);
|
|
return ENOBUFS;
|
|
}
|
|
memset(*swd, 0, sizeof(struct swcr_data));
|
|
|
|
switch (cri->cri_alg) {
|
|
case CRYPTO_DES_CBC:
|
|
txf = &swcr_enc_xform_des;
|
|
goto enccommon;
|
|
case CRYPTO_3DES_CBC:
|
|
txf = &swcr_enc_xform_3des;
|
|
goto enccommon;
|
|
case CRYPTO_BLF_CBC:
|
|
txf = &swcr_enc_xform_blf;
|
|
goto enccommon;
|
|
case CRYPTO_CAST_CBC:
|
|
txf = &swcr_enc_xform_cast5;
|
|
goto enccommon;
|
|
case CRYPTO_SKIPJACK_CBC:
|
|
txf = &swcr_enc_xform_skipjack;
|
|
goto enccommon;
|
|
case CRYPTO_RIJNDAEL128_CBC:
|
|
txf = &swcr_enc_xform_rijndael128;
|
|
goto enccommon;
|
|
case CRYPTO_CAMELLIA_CBC:
|
|
txf = &swcr_enc_xform_camellia;
|
|
goto enccommon;
|
|
case CRYPTO_AES_CTR:
|
|
txf = &swcr_enc_xform_aes_ctr;
|
|
goto enccommon;
|
|
case CRYPTO_AES_GCM_16:
|
|
txf = &swcr_enc_xform_aes_gcm;
|
|
goto enccommon;
|
|
case CRYPTO_AES_GMAC:
|
|
txf = &swcr_enc_xform_aes_gmac;
|
|
goto enccommon;
|
|
case CRYPTO_NULL_CBC:
|
|
txf = &swcr_enc_xform_null;
|
|
goto enccommon;
|
|
enccommon:
|
|
error = txf->setkey(&((*swd)->sw_kschedule),
|
|
cri->cri_key, cri->cri_klen / 8);
|
|
if (error) {
|
|
swcr_freesession(NULL, i);
|
|
return error;
|
|
}
|
|
(*swd)->sw_exf = txf;
|
|
break;
|
|
|
|
case CRYPTO_MD5_HMAC:
|
|
axf = &swcr_auth_hash_hmac_md5;
|
|
goto authcommon;
|
|
case CRYPTO_MD5_HMAC_96:
|
|
axf = &swcr_auth_hash_hmac_md5_96;
|
|
goto authcommon;
|
|
case CRYPTO_SHA1_HMAC:
|
|
axf = &swcr_auth_hash_hmac_sha1;
|
|
goto authcommon;
|
|
case CRYPTO_SHA1_HMAC_96:
|
|
axf = &swcr_auth_hash_hmac_sha1_96;
|
|
goto authcommon;
|
|
case CRYPTO_SHA2_256_HMAC:
|
|
axf = &swcr_auth_hash_hmac_sha2_256;
|
|
goto authcommon;
|
|
case CRYPTO_SHA2_384_HMAC:
|
|
axf = &swcr_auth_hash_hmac_sha2_384;
|
|
goto authcommon;
|
|
case CRYPTO_SHA2_512_HMAC:
|
|
axf = &swcr_auth_hash_hmac_sha2_512;
|
|
goto authcommon;
|
|
case CRYPTO_NULL_HMAC:
|
|
axf = &swcr_auth_hash_null;
|
|
goto authcommon;
|
|
case CRYPTO_RIPEMD160_HMAC:
|
|
axf = &swcr_auth_hash_hmac_ripemd_160;
|
|
goto authcommon;
|
|
case CRYPTO_RIPEMD160_HMAC_96:
|
|
axf = &swcr_auth_hash_hmac_ripemd_160_96;
|
|
goto authcommon; /* leave this for safety */
|
|
authcommon:
|
|
(*swd)->sw_ictx = malloc(axf->ctxsize,
|
|
M_CRYPTO_DATA, M_NOWAIT);
|
|
if ((*swd)->sw_ictx == NULL) {
|
|
swcr_freesession(NULL, i);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
(*swd)->sw_octx = malloc(axf->ctxsize,
|
|
M_CRYPTO_DATA, M_NOWAIT);
|
|
if ((*swd)->sw_octx == NULL) {
|
|
swcr_freesession(NULL, i);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
for (k = 0; k < cri->cri_klen / 8; k++)
|
|
cri->cri_key[k] ^= HMAC_IPAD_VAL;
|
|
|
|
axf->Init((*swd)->sw_ictx);
|
|
axf->Update((*swd)->sw_ictx, cri->cri_key,
|
|
cri->cri_klen / 8);
|
|
axf->Update((*swd)->sw_ictx, hmac_ipad_buffer,
|
|
axf->auth_hash->blocksize - (cri->cri_klen / 8));
|
|
|
|
for (k = 0; k < cri->cri_klen / 8; k++)
|
|
cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
|
|
|
|
axf->Init((*swd)->sw_octx);
|
|
axf->Update((*swd)->sw_octx, cri->cri_key,
|
|
cri->cri_klen / 8);
|
|
axf->Update((*swd)->sw_octx, hmac_opad_buffer,
|
|
axf->auth_hash->blocksize - (cri->cri_klen / 8));
|
|
|
|
for (k = 0; k < cri->cri_klen / 8; k++)
|
|
cri->cri_key[k] ^= HMAC_OPAD_VAL;
|
|
(*swd)->sw_axf = axf;
|
|
break;
|
|
|
|
case CRYPTO_MD5_KPDK:
|
|
axf = &swcr_auth_hash_key_md5;
|
|
goto auth2common;
|
|
|
|
case CRYPTO_SHA1_KPDK: {
|
|
unsigned char digest[SHA1_DIGEST_LENGTH];
|
|
CTASSERT(SHA1_DIGEST_LENGTH >= MD5_DIGEST_LENGTH);
|
|
axf = &swcr_auth_hash_key_sha1;
|
|
auth2common:
|
|
(*swd)->sw_ictx = malloc(axf->ctxsize,
|
|
M_CRYPTO_DATA, M_NOWAIT);
|
|
if ((*swd)->sw_ictx == NULL) {
|
|
swcr_freesession(NULL, i);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/* Store the key so we can "append" it to the payload */
|
|
(*swd)->sw_octx = malloc(cri->cri_klen / 8, M_CRYPTO_DATA,
|
|
M_NOWAIT);
|
|
if ((*swd)->sw_octx == NULL) {
|
|
swcr_freesession(NULL, i);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
(*swd)->sw_klen = cri->cri_klen / 8;
|
|
memcpy((*swd)->sw_octx, cri->cri_key, cri->cri_klen / 8);
|
|
axf->Init((*swd)->sw_ictx);
|
|
axf->Update((*swd)->sw_ictx, cri->cri_key,
|
|
cri->cri_klen / 8);
|
|
axf->Final(digest, (*swd)->sw_ictx);
|
|
(*swd)->sw_axf = axf;
|
|
break;
|
|
}
|
|
|
|
case CRYPTO_MD5:
|
|
axf = &swcr_auth_hash_md5;
|
|
goto auth3common;
|
|
|
|
case CRYPTO_SHA1:
|
|
axf = &swcr_auth_hash_sha1;
|
|
auth3common:
|
|
(*swd)->sw_ictx = malloc(axf->ctxsize,
|
|
M_CRYPTO_DATA, M_NOWAIT);
|
|
if ((*swd)->sw_ictx == NULL) {
|
|
swcr_freesession(NULL, i);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
axf->Init((*swd)->sw_ictx);
|
|
(*swd)->sw_axf = axf;
|
|
break;
|
|
|
|
case CRYPTO_AES_XCBC_MAC_96:
|
|
axf = &swcr_auth_hash_aes_xcbc_mac;
|
|
goto auth4common;
|
|
case CRYPTO_AES_128_GMAC:
|
|
axf = &swcr_auth_hash_gmac_aes_128;
|
|
goto auth4common;
|
|
case CRYPTO_AES_192_GMAC:
|
|
axf = &swcr_auth_hash_gmac_aes_192;
|
|
goto auth4common;
|
|
case CRYPTO_AES_256_GMAC:
|
|
axf = &swcr_auth_hash_gmac_aes_256;
|
|
auth4common:
|
|
(*swd)->sw_ictx = malloc(axf->ctxsize,
|
|
M_CRYPTO_DATA, M_NOWAIT);
|
|
if ((*swd)->sw_ictx == NULL) {
|
|
swcr_freesession(NULL, i);
|
|
return ENOBUFS;
|
|
}
|
|
axf->Init((*swd)->sw_ictx);
|
|
axf->Setkey((*swd)->sw_ictx,
|
|
cri->cri_key, cri->cri_klen / 8);
|
|
(*swd)->sw_axf = axf;
|
|
break;
|
|
|
|
case CRYPTO_DEFLATE_COMP:
|
|
cxf = &swcr_comp_algo_deflate;
|
|
(*swd)->sw_cxf = cxf;
|
|
break;
|
|
|
|
case CRYPTO_DEFLATE_COMP_NOGROW:
|
|
cxf = &swcr_comp_algo_deflate_nogrow;
|
|
(*swd)->sw_cxf = cxf;
|
|
break;
|
|
|
|
case CRYPTO_GZIP_COMP:
|
|
cxf = &swcr_comp_algo_gzip;
|
|
(*swd)->sw_cxf = cxf;
|
|
break;
|
|
default:
|
|
swcr_freesession(NULL, i);
|
|
return EINVAL;
|
|
}
|
|
|
|
(*swd)->sw_alg = cri->cri_alg;
|
|
cri = cri->cri_next;
|
|
swd = &((*swd)->sw_next);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free a session.
|
|
*/
|
|
static int
|
|
swcr_freesession(void *arg, u_int64_t tid)
|
|
{
|
|
struct swcr_data *swd;
|
|
const struct swcr_enc_xform *txf;
|
|
const struct swcr_auth_hash *axf;
|
|
u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
|
|
|
|
if (sid > swcr_sesnum || swcr_sessions == NULL ||
|
|
swcr_sessions[sid] == NULL)
|
|
return EINVAL;
|
|
|
|
/* Silently accept and return */
|
|
if (sid == 0)
|
|
return 0;
|
|
|
|
while ((swd = swcr_sessions[sid]) != NULL) {
|
|
swcr_sessions[sid] = swd->sw_next;
|
|
|
|
switch (swd->sw_alg) {
|
|
case CRYPTO_DES_CBC:
|
|
case CRYPTO_3DES_CBC:
|
|
case CRYPTO_BLF_CBC:
|
|
case CRYPTO_CAST_CBC:
|
|
case CRYPTO_SKIPJACK_CBC:
|
|
case CRYPTO_RIJNDAEL128_CBC:
|
|
case CRYPTO_CAMELLIA_CBC:
|
|
case CRYPTO_AES_CTR:
|
|
case CRYPTO_AES_GCM_16:
|
|
case CRYPTO_AES_GMAC:
|
|
case CRYPTO_NULL_CBC:
|
|
txf = swd->sw_exf;
|
|
|
|
if (swd->sw_kschedule)
|
|
txf->zerokey(&(swd->sw_kschedule));
|
|
break;
|
|
|
|
case CRYPTO_MD5_HMAC:
|
|
case CRYPTO_MD5_HMAC_96:
|
|
case CRYPTO_SHA1_HMAC:
|
|
case CRYPTO_SHA1_HMAC_96:
|
|
case CRYPTO_SHA2_256_HMAC:
|
|
case CRYPTO_SHA2_384_HMAC:
|
|
case CRYPTO_SHA2_512_HMAC:
|
|
case CRYPTO_RIPEMD160_HMAC:
|
|
case CRYPTO_RIPEMD160_HMAC_96:
|
|
case CRYPTO_NULL_HMAC:
|
|
axf = swd->sw_axf;
|
|
|
|
if (swd->sw_ictx) {
|
|
explicit_memset(swd->sw_ictx, 0, axf->ctxsize);
|
|
free(swd->sw_ictx, M_CRYPTO_DATA);
|
|
}
|
|
if (swd->sw_octx) {
|
|
explicit_memset(swd->sw_octx, 0, axf->ctxsize);
|
|
free(swd->sw_octx, M_CRYPTO_DATA);
|
|
}
|
|
break;
|
|
|
|
case CRYPTO_MD5_KPDK:
|
|
case CRYPTO_SHA1_KPDK:
|
|
axf = swd->sw_axf;
|
|
|
|
if (swd->sw_ictx) {
|
|
explicit_memset(swd->sw_ictx, 0, axf->ctxsize);
|
|
free(swd->sw_ictx, M_CRYPTO_DATA);
|
|
}
|
|
if (swd->sw_octx) {
|
|
explicit_memset(swd->sw_octx, 0, swd->sw_klen);
|
|
free(swd->sw_octx, M_CRYPTO_DATA);
|
|
}
|
|
break;
|
|
|
|
case CRYPTO_MD5:
|
|
case CRYPTO_SHA1:
|
|
case CRYPTO_AES_XCBC_MAC_96:
|
|
case CRYPTO_AES_128_GMAC:
|
|
case CRYPTO_AES_192_GMAC:
|
|
case CRYPTO_AES_256_GMAC:
|
|
axf = swd->sw_axf;
|
|
|
|
if (swd->sw_ictx) {
|
|
explicit_memset(swd->sw_ictx, 0, axf->ctxsize);
|
|
free(swd->sw_ictx, M_CRYPTO_DATA);
|
|
}
|
|
break;
|
|
|
|
case CRYPTO_DEFLATE_COMP:
|
|
case CRYPTO_DEFLATE_COMP_NOGROW:
|
|
case CRYPTO_GZIP_COMP:
|
|
break;
|
|
}
|
|
|
|
free(swd, M_CRYPTO_DATA);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Process a software request.
|
|
*/
|
|
static int
|
|
swcr_process(void *arg, struct cryptop *crp, int hint)
|
|
{
|
|
struct cryptodesc *crd;
|
|
struct swcr_data *sw;
|
|
u_int32_t lid;
|
|
int type;
|
|
|
|
/* Sanity check */
|
|
if (crp == NULL)
|
|
return EINVAL;
|
|
|
|
if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
|
|
crp->crp_etype = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
lid = crp->crp_sid & 0xffffffff;
|
|
if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) {
|
|
crp->crp_etype = ENOENT;
|
|
goto done;
|
|
}
|
|
|
|
if (crp->crp_flags & CRYPTO_F_IMBUF) {
|
|
type = CRYPTO_BUF_MBUF;
|
|
} else if (crp->crp_flags & CRYPTO_F_IOV) {
|
|
type = CRYPTO_BUF_IOV;
|
|
} else {
|
|
type = CRYPTO_BUF_CONTIG;
|
|
}
|
|
|
|
/* Go through crypto descriptors, processing as we go */
|
|
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
|
|
/*
|
|
* Find the crypto context.
|
|
*
|
|
* XXX Note that the logic here prevents us from having
|
|
* XXX the same algorithm multiple times in a session
|
|
* XXX (or rather, we can but it won't give us the right
|
|
* XXX results). To do that, we'd need some way of differentiating
|
|
* XXX between the various instances of an algorithm (so we can
|
|
* XXX locate the correct crypto context).
|
|
*/
|
|
for (sw = swcr_sessions[lid];
|
|
sw && sw->sw_alg != crd->crd_alg;
|
|
sw = sw->sw_next)
|
|
;
|
|
|
|
/* No such context ? */
|
|
if (sw == NULL) {
|
|
crp->crp_etype = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
switch (sw->sw_alg) {
|
|
case CRYPTO_DES_CBC:
|
|
case CRYPTO_3DES_CBC:
|
|
case CRYPTO_BLF_CBC:
|
|
case CRYPTO_CAST_CBC:
|
|
case CRYPTO_SKIPJACK_CBC:
|
|
case CRYPTO_RIJNDAEL128_CBC:
|
|
case CRYPTO_CAMELLIA_CBC:
|
|
case CRYPTO_AES_CTR:
|
|
if ((crp->crp_etype = swcr_encdec(crd, sw,
|
|
crp->crp_buf, type)) != 0)
|
|
goto done;
|
|
break;
|
|
case CRYPTO_NULL_CBC:
|
|
crp->crp_etype = 0;
|
|
break;
|
|
case CRYPTO_MD5_HMAC:
|
|
case CRYPTO_MD5_HMAC_96:
|
|
case CRYPTO_SHA1_HMAC:
|
|
case CRYPTO_SHA1_HMAC_96:
|
|
case CRYPTO_SHA2_256_HMAC:
|
|
case CRYPTO_SHA2_384_HMAC:
|
|
case CRYPTO_SHA2_512_HMAC:
|
|
case CRYPTO_RIPEMD160_HMAC:
|
|
case CRYPTO_RIPEMD160_HMAC_96:
|
|
case CRYPTO_NULL_HMAC:
|
|
case CRYPTO_MD5_KPDK:
|
|
case CRYPTO_SHA1_KPDK:
|
|
case CRYPTO_MD5:
|
|
case CRYPTO_SHA1:
|
|
case CRYPTO_AES_XCBC_MAC_96:
|
|
if ((crp->crp_etype = swcr_authcompute(crp, crd, sw,
|
|
crp->crp_buf, type)) != 0)
|
|
goto done;
|
|
break;
|
|
|
|
case CRYPTO_AES_GCM_16:
|
|
case CRYPTO_AES_GMAC:
|
|
case CRYPTO_AES_128_GMAC:
|
|
case CRYPTO_AES_192_GMAC:
|
|
case CRYPTO_AES_256_GMAC:
|
|
crp->crp_etype = swcr_combined(crp, type);
|
|
goto done;
|
|
|
|
case CRYPTO_DEFLATE_COMP:
|
|
case CRYPTO_DEFLATE_COMP_NOGROW:
|
|
case CRYPTO_GZIP_COMP:
|
|
DPRINTF("compdec for %d\n", sw->sw_alg);
|
|
if ((crp->crp_etype = swcr_compdec(crd, sw,
|
|
crp->crp_buf, type, &crp->crp_olen)) != 0)
|
|
goto done;
|
|
break;
|
|
|
|
default:
|
|
/* Unknown/unsupported algorithm */
|
|
crp->crp_etype = EINVAL;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
done:
|
|
DPRINTF("request %p done\n", crp);
|
|
crypto_done(crp);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
swcr_init(void)
|
|
{
|
|
swcr_id = crypto_get_driverid(CRYPTOCAP_F_SOFTWARE);
|
|
if (swcr_id < 0) {
|
|
/* This should never happen */
|
|
panic("Software crypto device cannot initialize!");
|
|
}
|
|
|
|
crypto_register(swcr_id, CRYPTO_DES_CBC,
|
|
0, 0, swcr_newsession, swcr_freesession, swcr_process, NULL);
|
|
#define REGISTER(alg) \
|
|
crypto_register(swcr_id, alg, 0, 0, NULL, NULL, NULL, NULL)
|
|
|
|
REGISTER(CRYPTO_3DES_CBC);
|
|
REGISTER(CRYPTO_BLF_CBC);
|
|
REGISTER(CRYPTO_CAST_CBC);
|
|
REGISTER(CRYPTO_SKIPJACK_CBC);
|
|
REGISTER(CRYPTO_CAMELLIA_CBC);
|
|
REGISTER(CRYPTO_AES_CTR);
|
|
REGISTER(CRYPTO_AES_GCM_16);
|
|
REGISTER(CRYPTO_AES_GMAC);
|
|
REGISTER(CRYPTO_NULL_CBC);
|
|
REGISTER(CRYPTO_MD5_HMAC);
|
|
REGISTER(CRYPTO_MD5_HMAC_96);
|
|
REGISTER(CRYPTO_SHA1_HMAC);
|
|
REGISTER(CRYPTO_SHA1_HMAC_96);
|
|
REGISTER(CRYPTO_SHA2_256_HMAC);
|
|
REGISTER(CRYPTO_SHA2_384_HMAC);
|
|
REGISTER(CRYPTO_SHA2_512_HMAC);
|
|
REGISTER(CRYPTO_RIPEMD160_HMAC);
|
|
REGISTER(CRYPTO_RIPEMD160_HMAC_96);
|
|
REGISTER(CRYPTO_NULL_HMAC);
|
|
REGISTER(CRYPTO_MD5_KPDK);
|
|
REGISTER(CRYPTO_SHA1_KPDK);
|
|
REGISTER(CRYPTO_MD5);
|
|
REGISTER(CRYPTO_SHA1);
|
|
REGISTER(CRYPTO_AES_XCBC_MAC_96);
|
|
REGISTER(CRYPTO_AES_128_GMAC);
|
|
REGISTER(CRYPTO_AES_192_GMAC);
|
|
REGISTER(CRYPTO_AES_256_GMAC);
|
|
REGISTER(CRYPTO_RIJNDAEL128_CBC);
|
|
REGISTER(CRYPTO_DEFLATE_COMP);
|
|
REGISTER(CRYPTO_DEFLATE_COMP_NOGROW);
|
|
REGISTER(CRYPTO_GZIP_COMP);
|
|
#undef REGISTER
|
|
}
|
|
|
|
|
|
/*
|
|
* Pseudo-device init routine for software crypto.
|
|
*/
|
|
|
|
void
|
|
swcryptoattach(int num)
|
|
{
|
|
/*
|
|
* swcrypto_attach() must be called after attached cpus, because
|
|
* it calls softint_establish() through below call path.
|
|
* swcr_init() => crypto_get_driverid() => crypto_init()
|
|
* => crypto_init0()
|
|
* If softint_establish() is called before attached cpus that ncpu == 0,
|
|
* the softint handler is established to CPU#0 only.
|
|
*
|
|
* So, swcrypto_attach() must be called from not module_init_class()
|
|
* but config_finalize() when it is built as builtin module.
|
|
*/
|
|
swcryptoattach_internal();
|
|
}
|
|
|
|
void swcrypto_attach(device_t, device_t, void *);
|
|
|
|
void
|
|
swcrypto_attach(device_t parent, device_t self, void *opaque)
|
|
{
|
|
|
|
swcr_init();
|
|
|
|
if (!pmf_device_register(self, NULL, NULL))
|
|
aprint_error_dev(self, "couldn't establish power handler\n");
|
|
}
|
|
|
|
int swcrypto_detach(device_t, int);
|
|
|
|
int
|
|
swcrypto_detach(device_t self, int flag)
|
|
{
|
|
pmf_device_deregister(self);
|
|
if (swcr_id >= 0)
|
|
crypto_unregister_all(swcr_id);
|
|
return 0;
|
|
}
|
|
|
|
int swcrypto_match(device_t, cfdata_t, void *);
|
|
|
|
int
|
|
swcrypto_match(device_t parent, cfdata_t data, void *opaque)
|
|
{
|
|
|
|
return 1;
|
|
}
|
|
|
|
MODULE(MODULE_CLASS_DRIVER, swcrypto,
|
|
"opencrypto,zlib,blowfish,des,cast128,camellia,skipjack");
|
|
|
|
CFDRIVER_DECL(swcrypto, DV_DULL, NULL);
|
|
|
|
CFATTACH_DECL2_NEW(swcrypto, 0, swcrypto_match, swcrypto_attach,
|
|
swcrypto_detach, NULL, NULL, NULL);
|
|
|
|
static int swcryptoloc[] = { -1, -1 };
|
|
|
|
static struct cfdata swcrypto_cfdata[] = {
|
|
{
|
|
.cf_name = "swcrypto",
|
|
.cf_atname = "swcrypto",
|
|
.cf_unit = 0,
|
|
.cf_fstate = 0,
|
|
.cf_loc = swcryptoloc,
|
|
.cf_flags = 0,
|
|
.cf_pspec = NULL,
|
|
},
|
|
{ NULL, NULL, 0, 0, NULL, 0, NULL }
|
|
};
|
|
|
|
/*
|
|
* Internal attach routine.
|
|
* Don't call before attached cpus.
|
|
*/
|
|
static int
|
|
swcryptoattach_internal(void)
|
|
{
|
|
int error;
|
|
|
|
error = config_cfdriver_attach(&swcrypto_cd);
|
|
if (error) {
|
|
return error;
|
|
}
|
|
|
|
error = config_cfattach_attach(swcrypto_cd.cd_name, &swcrypto_ca);
|
|
if (error) {
|
|
config_cfdriver_detach(&swcrypto_cd);
|
|
aprint_error("%s: unable to register cfattach\n",
|
|
swcrypto_cd.cd_name);
|
|
|
|
return error;
|
|
}
|
|
|
|
error = config_cfdata_attach(swcrypto_cfdata, 1);
|
|
if (error) {
|
|
config_cfattach_detach(swcrypto_cd.cd_name,
|
|
&swcrypto_ca);
|
|
config_cfdriver_detach(&swcrypto_cd);
|
|
aprint_error("%s: unable to register cfdata\n",
|
|
swcrypto_cd.cd_name);
|
|
|
|
return error;
|
|
}
|
|
|
|
(void)config_attach_pseudo(swcrypto_cfdata);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
swcrypto_modcmd(modcmd_t cmd, void *arg)
|
|
{
|
|
int error = 0;
|
|
|
|
switch (cmd) {
|
|
case MODULE_CMD_INIT:
|
|
#ifdef _MODULE
|
|
error = swcryptoattach_internal();
|
|
#endif
|
|
return error;
|
|
case MODULE_CMD_FINI:
|
|
error = config_cfdata_detach(swcrypto_cfdata);
|
|
if (error) {
|
|
return error;
|
|
}
|
|
|
|
config_cfattach_detach(swcrypto_cd.cd_name, &swcrypto_ca);
|
|
config_cfdriver_detach(&swcrypto_cd);
|
|
|
|
return 0;
|
|
default:
|
|
return ENOTTY;
|
|
}
|
|
}
|