bc8ead0c0a
Introduce a #define to toggle them on/off. Disable calls to rf_PrintDAGList(). Saves ~6K on GENERIC+DEBUG kernel on i386.
449 lines
15 KiB
C
449 lines
15 KiB
C
/* $NetBSD: rf_parityscan.c,v 1.13 2002/07/13 20:14:34 oster Exp $ */
|
|
/*
|
|
* Copyright (c) 1995 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Author: Mark Holland
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* rf_parityscan.c -- misc utilities related to parity verification
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.13 2002/07/13 20:14:34 oster Exp $");
|
|
|
|
#include <dev/raidframe/raidframevar.h>
|
|
|
|
#include "rf_raid.h"
|
|
#include "rf_dag.h"
|
|
#include "rf_dagfuncs.h"
|
|
#include "rf_dagutils.h"
|
|
#include "rf_mcpair.h"
|
|
#include "rf_general.h"
|
|
#include "rf_engine.h"
|
|
#include "rf_parityscan.h"
|
|
#include "rf_map.h"
|
|
|
|
/*****************************************************************************************
|
|
*
|
|
* walk through the entire arry and write new parity.
|
|
* This works by creating two DAGs, one to read a stripe of data and one to
|
|
* write new parity. The first is executed, the data is xored together, and
|
|
* then the second is executed. To avoid constantly building and tearing down
|
|
* the DAGs, we create them a priori and fill them in with the mapping
|
|
* information as we go along.
|
|
*
|
|
* there should never be more than one thread running this.
|
|
*
|
|
****************************************************************************************/
|
|
|
|
int
|
|
rf_RewriteParity(raidPtr)
|
|
RF_Raid_t *raidPtr;
|
|
{
|
|
RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
|
|
RF_AccessStripeMapHeader_t *asm_h;
|
|
int ret_val;
|
|
int rc;
|
|
RF_PhysDiskAddr_t pda;
|
|
RF_SectorNum_t i;
|
|
|
|
if (raidPtr->Layout.map->faultsTolerated == 0) {
|
|
/* There isn't any parity. Call it "okay." */
|
|
return (RF_PARITY_OKAY);
|
|
}
|
|
if (raidPtr->status[0] != rf_rs_optimal) {
|
|
/*
|
|
* We're in degraded mode. Don't try to verify parity now!
|
|
* XXX: this should be a "we don't want to", not a
|
|
* "we can't" error.
|
|
*/
|
|
return (RF_PARITY_COULD_NOT_VERIFY);
|
|
}
|
|
|
|
ret_val = 0;
|
|
|
|
pda.startSector = 0;
|
|
pda.numSector = raidPtr->Layout.sectorsPerStripeUnit;
|
|
rc = RF_PARITY_OKAY;
|
|
|
|
for (i = 0; i < raidPtr->totalSectors &&
|
|
rc <= RF_PARITY_CORRECTED;
|
|
i += layoutPtr->dataSectorsPerStripe) {
|
|
if (raidPtr->waitShutdown) {
|
|
/* Someone is pulling the plug on this set...
|
|
abort the re-write */
|
|
return (1);
|
|
}
|
|
asm_h = rf_MapAccess(raidPtr, i,
|
|
layoutPtr->dataSectorsPerStripe,
|
|
NULL, RF_DONT_REMAP);
|
|
raidPtr->parity_rewrite_stripes_done =
|
|
i / layoutPtr->dataSectorsPerStripe ;
|
|
rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
|
|
|
|
switch (rc) {
|
|
case RF_PARITY_OKAY:
|
|
case RF_PARITY_CORRECTED:
|
|
break;
|
|
case RF_PARITY_BAD:
|
|
printf("Parity bad during correction\n");
|
|
ret_val = 1;
|
|
break;
|
|
case RF_PARITY_COULD_NOT_CORRECT:
|
|
printf("Could not correct bad parity\n");
|
|
ret_val = 1;
|
|
break;
|
|
case RF_PARITY_COULD_NOT_VERIFY:
|
|
printf("Could not verify parity\n");
|
|
ret_val = 1;
|
|
break;
|
|
default:
|
|
printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
|
|
ret_val = 1;
|
|
}
|
|
rf_FreeAccessStripeMap(asm_h);
|
|
}
|
|
return (ret_val);
|
|
}
|
|
/*****************************************************************************************
|
|
*
|
|
* verify that the parity in a particular stripe is correct.
|
|
* we validate only the range of parity defined by parityPDA, since
|
|
* this is all we have locked. The way we do this is to create an asm
|
|
* that maps the whole stripe and then range-restrict it to the parity
|
|
* region defined by the parityPDA.
|
|
*
|
|
****************************************************************************************/
|
|
int
|
|
rf_VerifyParity(raidPtr, aasm, correct_it, flags)
|
|
RF_Raid_t *raidPtr;
|
|
RF_AccessStripeMap_t *aasm;
|
|
int correct_it;
|
|
RF_RaidAccessFlags_t flags;
|
|
{
|
|
RF_PhysDiskAddr_t *parityPDA;
|
|
RF_AccessStripeMap_t *doasm;
|
|
RF_LayoutSW_t *lp;
|
|
int lrc, rc;
|
|
|
|
lp = raidPtr->Layout.map;
|
|
if (lp->faultsTolerated == 0) {
|
|
/*
|
|
* There isn't any parity. Call it "okay."
|
|
*/
|
|
return (RF_PARITY_OKAY);
|
|
}
|
|
rc = RF_PARITY_OKAY;
|
|
if (lp->VerifyParity) {
|
|
for (doasm = aasm; doasm; doasm = doasm->next) {
|
|
for (parityPDA = doasm->parityInfo; parityPDA;
|
|
parityPDA = parityPDA->next) {
|
|
lrc = lp->VerifyParity(raidPtr,
|
|
doasm->raidAddress,
|
|
parityPDA,
|
|
correct_it, flags);
|
|
if (lrc > rc) {
|
|
/* see rf_parityscan.h for why this
|
|
* works */
|
|
rc = lrc;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
rc = RF_PARITY_COULD_NOT_VERIFY;
|
|
}
|
|
return (rc);
|
|
}
|
|
|
|
int
|
|
rf_VerifyParityBasic(raidPtr, raidAddr, parityPDA, correct_it, flags)
|
|
RF_Raid_t *raidPtr;
|
|
RF_RaidAddr_t raidAddr;
|
|
RF_PhysDiskAddr_t *parityPDA;
|
|
int correct_it;
|
|
RF_RaidAccessFlags_t flags;
|
|
{
|
|
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
|
|
RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
|
|
raidAddr);
|
|
RF_SectorCount_t numsector = parityPDA->numSector;
|
|
int numbytes = rf_RaidAddressToByte(raidPtr, numsector);
|
|
int bytesPerStripe = numbytes * layoutPtr->numDataCol;
|
|
RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */
|
|
RF_DagNode_t *blockNode, *unblockNode, *wrBlock, *wrUnblock;
|
|
RF_AccessStripeMapHeader_t *asm_h;
|
|
RF_AccessStripeMap_t *asmap;
|
|
RF_AllocListElem_t *alloclist;
|
|
RF_PhysDiskAddr_t *pda;
|
|
char *pbuf, *buf, *end_p, *p;
|
|
int i, retcode;
|
|
RF_ReconUnitNum_t which_ru;
|
|
RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
|
|
raidAddr,
|
|
&which_ru);
|
|
int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
|
|
RF_AccTraceEntry_t tracerec;
|
|
RF_MCPair_t *mcpair;
|
|
|
|
retcode = RF_PARITY_OKAY;
|
|
|
|
mcpair = rf_AllocMCPair();
|
|
rf_MakeAllocList(alloclist);
|
|
RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);
|
|
RF_CallocAndAdd(pbuf, 1, numbytes, (char *), alloclist); /* use calloc to make
|
|
* sure buffer is zeroed */
|
|
end_p = buf + bytesPerStripe;
|
|
|
|
rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
|
|
"Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
|
|
blockNode = rd_dag_h->succedents[0];
|
|
unblockNode = blockNode->succedents[0]->succedents[0];
|
|
|
|
/* map the stripe and fill in the PDAs in the dag */
|
|
asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP);
|
|
asmap = asm_h->stripeMap;
|
|
|
|
for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
|
|
RF_ASSERT(pda);
|
|
rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
|
|
RF_ASSERT(pda->numSector != 0);
|
|
if (rf_TryToRedirectPDA(raidPtr, pda, 0))
|
|
goto out; /* no way to verify parity if disk is
|
|
* dead. return w/ good status */
|
|
blockNode->succedents[i]->params[0].p = pda;
|
|
blockNode->succedents[i]->params[2].v = psID;
|
|
blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
|
|
}
|
|
|
|
RF_ASSERT(!asmap->parityInfo->next);
|
|
rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
|
|
RF_ASSERT(asmap->parityInfo->numSector != 0);
|
|
if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
|
|
goto out;
|
|
blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
|
|
|
|
/* fire off the DAG */
|
|
memset((char *) &tracerec, 0, sizeof(tracerec));
|
|
rd_dag_h->tracerec = &tracerec;
|
|
#if 0
|
|
if (rf_verifyParityDebug) {
|
|
printf("Parity verify read dag:\n");
|
|
rf_PrintDAGList(rd_dag_h);
|
|
}
|
|
#endif
|
|
RF_LOCK_MUTEX(mcpair->mutex);
|
|
mcpair->flag = 0;
|
|
rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
|
|
(void *) mcpair);
|
|
while (!mcpair->flag)
|
|
RF_WAIT_COND(mcpair->cond, mcpair->mutex);
|
|
RF_UNLOCK_MUTEX(mcpair->mutex);
|
|
if (rd_dag_h->status != rf_enable) {
|
|
RF_ERRORMSG("Unable to verify parity: can't read the stripe\n");
|
|
retcode = RF_PARITY_COULD_NOT_VERIFY;
|
|
goto out;
|
|
}
|
|
for (p = buf; p < end_p; p += numbytes) {
|
|
rf_bxor(p, pbuf, numbytes, NULL);
|
|
}
|
|
for (i = 0; i < numbytes; i++) {
|
|
#if 0
|
|
if (pbuf[i] != 0 || buf[bytesPerStripe + i] != 0) {
|
|
printf("Bytes: %d %d %d\n", i, pbuf[i], buf[bytesPerStripe + i]);
|
|
}
|
|
#endif
|
|
if (pbuf[i] != buf[bytesPerStripe + i]) {
|
|
if (!correct_it)
|
|
RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
|
|
i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]);
|
|
retcode = RF_PARITY_BAD;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (retcode && correct_it) {
|
|
wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
|
|
"Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
|
|
wrBlock = wr_dag_h->succedents[0];
|
|
wrUnblock = wrBlock->succedents[0]->succedents[0];
|
|
wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
|
|
wrBlock->succedents[0]->params[2].v = psID;
|
|
wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
|
|
memset((char *) &tracerec, 0, sizeof(tracerec));
|
|
wr_dag_h->tracerec = &tracerec;
|
|
#if 0
|
|
if (rf_verifyParityDebug) {
|
|
printf("Parity verify write dag:\n");
|
|
rf_PrintDAGList(wr_dag_h);
|
|
}
|
|
#endif
|
|
RF_LOCK_MUTEX(mcpair->mutex);
|
|
mcpair->flag = 0;
|
|
rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
|
|
(void *) mcpair);
|
|
while (!mcpair->flag)
|
|
RF_WAIT_COND(mcpair->cond, mcpair->mutex);
|
|
RF_UNLOCK_MUTEX(mcpair->mutex);
|
|
if (wr_dag_h->status != rf_enable) {
|
|
RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n");
|
|
retcode = RF_PARITY_COULD_NOT_CORRECT;
|
|
}
|
|
rf_FreeDAG(wr_dag_h);
|
|
if (retcode == RF_PARITY_BAD)
|
|
retcode = RF_PARITY_CORRECTED;
|
|
}
|
|
out:
|
|
rf_FreeAccessStripeMap(asm_h);
|
|
rf_FreeAllocList(alloclist);
|
|
rf_FreeDAG(rd_dag_h);
|
|
rf_FreeMCPair(mcpair);
|
|
return (retcode);
|
|
}
|
|
|
|
int
|
|
rf_TryToRedirectPDA(raidPtr, pda, parity)
|
|
RF_Raid_t *raidPtr;
|
|
RF_PhysDiskAddr_t *pda;
|
|
int parity;
|
|
{
|
|
if (raidPtr->Disks[pda->row][pda->col].status == rf_ds_reconstructing) {
|
|
if (rf_CheckRUReconstructed(raidPtr->reconControl[pda->row]->reconMap, pda->startSector)) {
|
|
if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
|
|
RF_RowCol_t or = pda->row, oc = pda->col;
|
|
RF_SectorNum_t os = pda->startSector;
|
|
if (parity) {
|
|
(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
|
|
if (rf_verifyParityDebug)
|
|
printf("VerifyParity: Redir P r %d c %d sect %ld -> r %d c %d sect %ld\n",
|
|
or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
|
|
} else {
|
|
(raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->row, &pda->col, &pda->startSector, RF_REMAP);
|
|
if (rf_verifyParityDebug)
|
|
printf("VerifyParity: Redir D r %d c %d sect %ld -> r %d c %d sect %ld\n",
|
|
or, oc, (long) os, pda->row, pda->col, (long) pda->startSector);
|
|
}
|
|
} else {
|
|
RF_RowCol_t spRow = raidPtr->Disks[pda->row][pda->col].spareRow;
|
|
RF_RowCol_t spCol = raidPtr->Disks[pda->row][pda->col].spareCol;
|
|
pda->row = spRow;
|
|
pda->col = spCol;
|
|
}
|
|
}
|
|
}
|
|
if (RF_DEAD_DISK(raidPtr->Disks[pda->row][pda->col].status))
|
|
return (1);
|
|
return (0);
|
|
}
|
|
/*****************************************************************************************
|
|
*
|
|
* currently a stub.
|
|
*
|
|
* takes as input an ASM describing a write operation and containing one failure, and
|
|
* verifies that the parity was correctly updated to reflect the write.
|
|
*
|
|
* if it's a data unit that's failed, we read the other data units in the stripe and
|
|
* the parity unit, XOR them together, and verify that we get the data intended for
|
|
* the failed disk. Since it's easy, we also validate that the right data got written
|
|
* to the surviving data disks.
|
|
*
|
|
* If it's the parity that failed, there's really no validation we can do except the
|
|
* above verification that the right data got written to all disks. This is because
|
|
* the new data intended for the failed disk is supplied in the ASM, but this is of
|
|
* course not the case for the new parity.
|
|
*
|
|
****************************************************************************************/
|
|
int
|
|
rf_VerifyDegrModeWrite(raidPtr, asmh)
|
|
RF_Raid_t *raidPtr;
|
|
RF_AccessStripeMapHeader_t *asmh;
|
|
{
|
|
return (0);
|
|
}
|
|
/* creates a simple DAG with a header, a block-recon node at level 1,
|
|
* nNodes nodes at level 2, an unblock-recon node at level 3, and
|
|
* a terminator node at level 4. The stripe address field in
|
|
* the block and unblock nodes are not touched, nor are the pda
|
|
* fields in the second-level nodes, so they must be filled in later.
|
|
*
|
|
* commit point is established at unblock node - this means that any
|
|
* failure during dag execution causes the dag to fail
|
|
*/
|
|
RF_DagHeader_t *
|
|
rf_MakeSimpleDAG(raidPtr, nNodes, bytesPerSU, databuf, doFunc, undoFunc, name, alloclist, flags, priority)
|
|
RF_Raid_t *raidPtr;
|
|
int nNodes;
|
|
int bytesPerSU;
|
|
char *databuf;
|
|
int (*doFunc) (RF_DagNode_t * node);
|
|
int (*undoFunc) (RF_DagNode_t * node);
|
|
char *name; /* node names at the second level */
|
|
RF_AllocListElem_t *alloclist;
|
|
RF_RaidAccessFlags_t flags;
|
|
int priority;
|
|
{
|
|
RF_DagHeader_t *dag_h;
|
|
RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode;
|
|
int i;
|
|
|
|
/* create the nodes, the block & unblock nodes, and the terminator
|
|
* node */
|
|
RF_CallocAndAdd(nodes, nNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), alloclist);
|
|
blockNode = &nodes[nNodes];
|
|
unblockNode = blockNode + 1;
|
|
termNode = unblockNode + 1;
|
|
|
|
dag_h = rf_AllocDAGHeader();
|
|
dag_h->raidPtr = (void *) raidPtr;
|
|
dag_h->allocList = NULL;/* we won't use this alloc list */
|
|
dag_h->status = rf_enable;
|
|
dag_h->numSuccedents = 1;
|
|
dag_h->creator = "SimpleDAG";
|
|
|
|
/* this dag can not commit until the unblock node is reached errors
|
|
* prior to the commit point imply the dag has failed */
|
|
dag_h->numCommitNodes = 1;
|
|
dag_h->numCommits = 0;
|
|
|
|
dag_h->succedents[0] = blockNode;
|
|
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
|
|
rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
|
|
unblockNode->succedents[0] = termNode;
|
|
for (i = 0; i < nNodes; i++) {
|
|
blockNode->succedents[i] = unblockNode->antecedents[i] = &nodes[i];
|
|
unblockNode->antType[i] = rf_control;
|
|
rf_InitNode(&nodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
|
|
nodes[i].succedents[0] = unblockNode;
|
|
nodes[i].antecedents[0] = blockNode;
|
|
nodes[i].antType[0] = rf_control;
|
|
nodes[i].params[1].p = (databuf + (i * bytesPerSU));
|
|
}
|
|
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
|
|
termNode->antecedents[0] = unblockNode;
|
|
termNode->antType[0] = rf_control;
|
|
return (dag_h);
|
|
}
|