NetBSD/sys/arch/atari/vme/if_le_vme.c

628 lines
17 KiB
C

/* $NetBSD: if_le_vme.c,v 1.13 2001/07/26 15:05:09 wiz Exp $ */
/*-
* Copyright (c) 1998 maximum entropy. All rights reserved.
* Copyright (c) 1997 Leo Weppelman. All rights reserved.
* Copyright (c) 1995 Charles M. Hannum. All rights reserved.
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Ralph Campbell and Rick Macklem.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)if_le.c 8.2 (Berkeley) 11/16/93
*/
#include "opt_inet.h"
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/syslog.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#include <machine/cpu.h>
#include <machine/bus.h>
#include <machine/iomap.h>
#include <machine/scu.h>
#include <atari/atari/device.h>
#include <atari/atari/intr.h>
#include <dev/ic/lancereg.h>
#include <dev/ic/lancevar.h>
#include <dev/ic/am7990reg.h>
#include <dev/ic/am7990var.h>
#include <atari/vme/vmevar.h>
#include <atari/vme/if_levar.h>
/*
* All cards except BVME410 have 64KB RAM. However.... On the Riebl cards the
* area between the offsets 0xee70-0xeec0 is used to store config data.
*/
struct le_addresses {
u_long reg_addr;
u_long mem_addr;
int irq;
int reg_size;
int mem_size;
int type_hint;
} lestd[] = {
{ 0xfe00fff0, 0xfe010000, IRQUNK, 16, 64*1024,
LE_OLD_RIEBL|LE_NEW_RIEBL }, /* Riebl */
{ 0xffcffff0, 0xffcf0000, 5, 16, 64*1024,
LE_PAM }, /* PAM */
{ 0xfecffff0, 0xfecf0000, 5, 16, 64*1024,
LE_ROTHRON }, /* Rhotron */
{ 0xfeff4100, 0xfe000000, 4, 8, VMECF_MEMSIZ_DEFAULT,
LE_BVME410 } /* BVME410 */
};
#define NLESTD (sizeof(lestd) / sizeof(lestd[0]))
/*
* Default mac for RIEBL cards without a (working) battery. The first 4 bytes
* are the manufacturer id.
*/
static u_char riebl_def_mac[] = {
0x00, 0x00, 0x36, 0x04, 0x00, 0x00
};
static int le_intr __P((struct le_softc *, int));
static void lepseudointr __P((struct le_softc *, void *));
static int le_vme_match __P((struct device *, struct cfdata *, void *));
static void le_vme_attach __P((struct device *, struct device *, void *));
static int probe_addresses __P((bus_space_tag_t *, bus_space_tag_t *,
bus_space_handle_t *, bus_space_handle_t *));
static void riebl_skip_reserved_area __P((struct lance_softc *));
static int nm93c06_read __P((bus_space_tag_t, bus_space_handle_t, int));
static int bvme410_probe __P((bus_space_tag_t, bus_space_handle_t));
static int bvme410_mem_size __P((bus_space_tag_t, u_long));
static void bvme410_copytobuf __P((struct lance_softc *, void *, int, int));
static void bvme410_zerobuf __P((struct lance_softc *, int, int));
struct cfattach le_vme_ca = {
sizeof(struct le_softc), le_vme_match, le_vme_attach
};
#if defined(_KERNEL_OPT)
#include "opt_ddb.h"
#endif
#ifdef DDB
#define integrate
#define hide
#else
#define integrate static __inline
#define hide static
#endif
hide void lewrcsr __P((struct lance_softc *, u_int16_t, u_int16_t));
hide u_int16_t lerdcsr __P((struct lance_softc *, u_int16_t));
hide void
lewrcsr(sc, port, val)
struct lance_softc *sc;
u_int16_t port, val;
{
struct le_softc *lesc = (struct le_softc *)sc;
int s;
s = splhigh();
bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP, val);
splx(s);
}
hide u_int16_t
lerdcsr(sc, port)
struct lance_softc *sc;
u_int16_t port;
{
struct le_softc *lesc = (struct le_softc *)sc;
u_int16_t val;
int s;
s = splhigh();
bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
val = bus_space_read_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP);
splx(s);
return (val);
}
static int
le_vme_match(parent, cfp, aux)
struct device *parent;
struct cfdata *cfp;
void *aux;
{
struct vme_attach_args *va = aux;
int i;
bus_space_tag_t iot;
bus_space_tag_t memt;
bus_space_handle_t ioh;
bus_space_handle_t memh;
iot = va->va_iot;
memt = va->va_memt;
for (i = 0; i < NLESTD; i++) {
struct le_addresses *le_ap = &lestd[i];
int found = 0;
if ((va->va_iobase != IOBASEUNK)
&& (va->va_iobase != le_ap->reg_addr))
continue;
if ((va->va_maddr != MADDRUNK)
&& (va->va_maddr != le_ap->mem_addr))
continue;
if ((le_ap->irq != IRQUNK) && (va->va_irq != le_ap->irq))
continue;
if (bus_space_map(iot, le_ap->reg_addr, le_ap->reg_size, 0, &ioh)) {
printf("leprobe: cannot map io-area\n");
return (0);
}
if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
if (bvme410_probe(iot, ioh)) {
bus_space_write_2(iot, ioh, BVME410_BAR, 0x1); /* XXX */
le_ap->mem_size = bvme410_mem_size(memt, le_ap->mem_addr);
}
}
if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
bus_space_unmap(iot, ioh, le_ap->reg_size);
continue;
}
if (bus_space_map(memt, le_ap->mem_addr, le_ap->mem_size, 0, &memh)) {
bus_space_unmap(iot, ioh, le_ap->reg_size);
printf("leprobe: cannot map memory-area\n");
return (0);
}
found = probe_addresses(&iot, &memt, &ioh, &memh);
bus_space_unmap(iot, ioh, le_ap->reg_size);
bus_space_unmap(memt, memh, le_ap->mem_size);
if (found) {
va->va_iobase = le_ap->reg_addr;
va->va_iosize = le_ap->reg_size;
va->va_maddr = le_ap->mem_addr;
va->va_msize = le_ap->mem_size;
va->va_aux = le_ap;
if (va->va_irq == IRQUNK)
va->va_irq = le_ap->irq;
return 1;
}
}
return (0);
}
static int
probe_addresses(iot, memt, ioh, memh)
bus_space_tag_t *iot;
bus_space_tag_t *memt;
bus_space_handle_t *ioh;
bus_space_handle_t *memh;
{
/*
* Test accesibility of register and memory area
*/
if(!bus_space_peek_2(*iot, *ioh, LER_RDP))
return 0;
if(!bus_space_peek_1(*memt, *memh, 0))
return 0;
/*
* Test for writable memory
*/
bus_space_write_2(*memt, *memh, 0, 0xa5a5);
if (bus_space_read_2(*memt, *memh, 0) != 0xa5a5)
return 0;
/*
* Test writability of selector port.
*/
bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR1);
if (bus_space_read_2(*iot, *ioh, LER_RAP) != LE_CSR1)
return 0;
/*
* Do a small register test
*/
bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR0);
bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_INIT | LE_C0_STOP);
if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
return 0;
bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_STOP);
if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
return 0;
return 1;
}
/*
* Interrupt mess. Because the card's interrupt is hardwired to either
* ipl5 or ipl3 (mostly on ipl5) and raising splnet to spl5() just won't do
* (it kills the serial at the least), we use a 2-level interrupt scheme. The
* card interrupt is routed to 'le_intr'. If the previous ipl was below
* splnet, just call the mi-function. If not, save the interrupt status,
* turn off card interrupts (the card is *very* persistent) and arrange
* for a softint 'callback' through 'lepseudointr'.
*/
static int
le_intr(lesc, sr)
struct le_softc *lesc;
int sr;
{
struct lance_softc *sc = &lesc->sc_am7990.lsc;
u_int16_t csr0;
if ((sr & PSL_IPL) < (IPL_NET & PSL_IPL))
am7990_intr(sc);
else {
sc->sc_saved_csr0 = csr0 = lerdcsr(sc, LE_CSR0);
lewrcsr(sc, LE_CSR0, csr0 & ~LE_C0_INEA);
add_sicallback((si_farg)lepseudointr, lesc, sc);
}
return 1;
}
static void
lepseudointr(lesc, sc)
struct le_softc *lesc;
void *sc;
{
int s;
s = splx(lesc->sc_splval);
am7990_intr(sc);
splx(s);
}
static void
le_vme_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct le_softc *lesc = (struct le_softc *)self;
struct lance_softc *sc = &lesc->sc_am7990.lsc;
struct vme_attach_args *va = aux;
bus_space_handle_t ioh;
bus_space_handle_t memh;
struct le_addresses *le_ap;
int i;
printf("\n%s: ", sc->sc_dev.dv_xname);
if (bus_space_map(va->va_iot, va->va_iobase, va->va_iosize, 0, &ioh))
panic("leattach: cannot map io-area\n");
if (bus_space_map(va->va_memt, va->va_maddr, va->va_msize, 0, &memh))
panic("leattach: cannot map mem-area\n");
lesc->sc_iot = va->va_iot;
lesc->sc_ioh = ioh;
lesc->sc_memt = va->va_memt;
lesc->sc_memh = memh;
lesc->sc_splval = (va->va_irq << 8) | PSL_S; /* XXX */
le_ap = (struct le_addresses *)va->va_aux;
/*
* Go on to find board type
*/
if ((le_ap->type_hint & LE_PAM)
&& bus_space_peek_1(va->va_iot, ioh, LER_EEPROM)) {
printf("PAM card");
lesc->sc_type = LE_PAM;
bus_space_read_1(va->va_iot, ioh, LER_MEME);
}
else if((le_ap->type_hint & LE_BVME410)
&& bvme410_probe(va->va_iot, ioh)) {
printf("BVME410");
lesc->sc_type = LE_BVME410;
}
else if (le_ap->type_hint & (LE_NEW_RIEBL|LE_OLD_RIEBL)) {
printf("Riebl card");
if(bus_space_read_4(va->va_memt, memh, RIEBL_MAGIC_ADDR)
== RIEBL_MAGIC)
lesc->sc_type = LE_NEW_RIEBL;
else {
printf("(without battery) ");
lesc->sc_type = LE_OLD_RIEBL;
}
}
else printf("le_vme_attach: Unsupported card!");
switch (lesc->sc_type) {
case LE_BVME410:
sc->sc_copytodesc = bvme410_copytobuf;
sc->sc_copyfromdesc = lance_copyfrombuf_contig;
sc->sc_copytobuf = bvme410_copytobuf;
sc->sc_copyfrombuf = lance_copyfrombuf_contig;
sc->sc_zerobuf = bvme410_zerobuf;
break;
default:
sc->sc_copytodesc = lance_copytobuf_contig;
sc->sc_copyfromdesc = lance_copyfrombuf_contig;
sc->sc_copytobuf = lance_copytobuf_contig;
sc->sc_copyfrombuf = lance_copyfrombuf_contig;
sc->sc_zerobuf = lance_zerobuf_contig;
break;
}
sc->sc_rdcsr = lerdcsr;
sc->sc_wrcsr = lewrcsr;
sc->sc_hwinit = NULL;
sc->sc_conf3 = LE_C3_BSWP;
sc->sc_addr = 0;
sc->sc_memsize = va->va_msize;
sc->sc_mem = (void *)memh; /* XXX */
/*
* Get MAC address
*/
switch (lesc->sc_type) {
case LE_OLD_RIEBL:
bcopy(riebl_def_mac, sc->sc_enaddr,
sizeof(sc->sc_enaddr));
break;
case LE_NEW_RIEBL:
for (i = 0; i < sizeof(sc->sc_enaddr); i++)
sc->sc_enaddr[i] =
bus_space_read_1(va->va_memt, memh, i + RIEBL_MAC_ADDR);
break;
case LE_PAM:
i = bus_space_read_1(va->va_iot, ioh, LER_EEPROM);
for (i = 0; i < sizeof(sc->sc_enaddr); i++) {
sc->sc_enaddr[i] =
(bus_space_read_2(va->va_memt, memh, 2 * i) << 4) |
(bus_space_read_2(va->va_memt, memh, 2 * i + 1) & 0xf);
}
i = bus_space_read_1(va->va_iot, ioh, LER_MEME);
break;
case LE_BVME410:
for (i = 0; i < (sizeof(sc->sc_enaddr) >> 1); i++) {
u_int16_t tmp;
tmp = nm93c06_read(va->va_iot, ioh, i);
sc->sc_enaddr[2 * i] = (tmp >> 8) & 0xff;
sc->sc_enaddr[2 * i + 1] = tmp & 0xff;
}
bus_space_write_2(va->va_iot, ioh, BVME410_BAR, 0x1); /* XXX */
}
am7990_config(&lesc->sc_am7990);
if ((lesc->sc_type == LE_OLD_RIEBL) || (lesc->sc_type == LE_NEW_RIEBL))
riebl_skip_reserved_area(sc);
/*
* XXX: We always use uservector 64....
*/
if ((lesc->sc_intr = intr_establish(64, USER_VEC, 0,
(hw_ifun_t)le_intr, lesc)) == NULL) {
printf("le_vme_attach: Can't establish interrupt\n");
return;
}
/*
* Notify the card of the vector
*/
switch (lesc->sc_type) {
case LE_OLD_RIEBL:
case LE_NEW_RIEBL:
bus_space_write_2(va->va_memt, memh, RIEBL_IVEC_ADDR,
64 + 64);
break;
case LE_PAM:
bus_space_write_1(va->va_iot, ioh, LER_IVEC, 64 + 64);
break;
case LE_BVME410:
bus_space_write_2(va->va_iot, ioh, BVME410_IVEC, 64 + 64);
break;
}
/*
* Unmask the VME-interrupt we're on
*/
if (machineid & ATARI_TT)
SCU->vme_mask |= 1 << va->va_irq;
}
/*
* True if 'addr' containe within [start,len]
*/
#define WITHIN(start, len, addr) \
((addr >= start) && ((addr) <= ((start) + (len))))
static void
riebl_skip_reserved_area(sc)
struct lance_softc *sc;
{
int offset = 0;
int i;
for(i = 0; i < sc->sc_nrbuf; i++) {
if (WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_START)
|| WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_END)) {
offset = RIEBL_RES_END - sc->sc_rbufaddr[i];
}
sc->sc_rbufaddr[i] += offset;
}
for(i = 0; i < sc->sc_ntbuf; i++) {
if (WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_START)
|| WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_END)) {
offset = RIEBL_RES_END - sc->sc_tbufaddr[i];
}
sc->sc_tbufaddr[i] += offset;
}
}
static int
nm93c06_read(iot, ioh, nm93c06reg)
bus_space_tag_t iot;
bus_space_handle_t ioh;
int nm93c06reg;
{
int bar;
int shift;
int bits = 0x180 | (nm93c06reg & 0xf);
int data = 0;
bar = 1<<BVME410_CS_SHIFT;
bus_space_write_2(iot, ioh, BVME410_BAR, bar);
delay(1); /* tCSS = 1 us */
for (shift = 9; shift >= 0; shift--) {
if (((bits >> shift) & 1) == 1)
bar |= 1<<BVME410_DIN_SHIFT;
else
bar &= ~(1<<BVME410_DIN_SHIFT);
bus_space_write_2(iot, ioh, BVME410_BAR, bar);
delay(1); /* tDIS = 0.4 us */
bar |= 1<<BVME410_CLK_SHIFT;
bus_space_write_2(iot, ioh, BVME410_BAR, bar);
delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
bar &= ~(1<<BVME410_CLK_SHIFT);
bus_space_write_2(iot, ioh, BVME410_BAR, bar);
delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
}
bar &= ~(1<<BVME410_DIN_SHIFT);
for (shift = 15; shift >= 0; shift--) {
delay(1); /* tDIS = 100 ns, BVM manual says 0.4 us */
bar |= 1<<BVME410_CLK_SHIFT;
bus_space_write_2(iot, ioh, BVME410_BAR, bar);
delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
data |= (bus_space_read_2(iot, ioh, BVME410_BAR) & 1) << shift;
bar &= ~(1<<BVME410_CLK_SHIFT);
bus_space_write_2(iot, ioh, BVME410_BAR, bar);
delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
}
bar &= ~(1<<BVME410_CS_SHIFT);
bus_space_write_2(iot, ioh, BVME410_BAR, bar);
delay(1); /* tCS = 1 us */
return data;
}
static int
bvme410_probe(iot, ioh)
bus_space_tag_t iot;
bus_space_handle_t ioh;
{
if (!bus_space_peek_2(iot, ioh, BVME410_IVEC))
return 0;
bus_space_write_2(iot, ioh, BVME410_IVEC, 0x0000);
if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xff00)
return 0;
bus_space_write_2(iot, ioh, BVME410_IVEC, 0xffff);
if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffff)
return 0;
bus_space_write_2(iot, ioh, BVME410_IVEC, 0xa5a5);
if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffa5)
return 0;
return 1;
}
static int
bvme410_mem_size(memt, mem_addr)
bus_space_tag_t memt;
u_long mem_addr;
{
bus_space_handle_t memh;
int r;
if (bus_space_map(memt, mem_addr, 256*1024, 0, &memh))
return VMECF_MEMSIZ_DEFAULT;
if (!bus_space_peek_1(memt, memh, 0)) {
bus_space_unmap(memt, memh, 256*1024);
return VMECF_MEMSIZ_DEFAULT;
}
bus_space_write_1(memt, memh, 0, 128);
bus_space_write_1(memt, memh, 64*1024, 32);
bus_space_write_1(memt, memh, 32*1024, 8);
r = (int)(bus_space_read_1(memt, memh, 0) * 2048);
bus_space_unmap(memt, memh, 256*1024);
return r;
}
/*
* Need to be careful when writing to the bvme410 dual port memory.
* Continue writing each byte until it reads back the same.
*/
static void
bvme410_copytobuf(sc, from, boff, len)
struct lance_softc *sc;
void *from;
int boff, len;
{
volatile char *buf = (volatile char *) sc->sc_mem;
char *f = (char *) from;
for (buf += boff; len; buf++,f++,len--)
do {
*buf = *f;
} while (*buf != *f);
}
static void
bvme410_zerobuf(sc, boff, len)
struct lance_softc *sc;
int boff, len;
{
volatile char *buf = (volatile char *)sc->sc_mem;
for (buf += boff; len; buf++,len--)
do {
*buf = '\0';
} while (*buf != '\0');
}