NetBSD/sys/dev/pci/if_ti.c
bouyer db6d5fc4a7 When setting/changing an address, no need to call ti_init() if the interface
is already up.
Especially this allow netatalk to start properly on a ti interface.
2001-06-27 16:47:33 +00:00

2797 lines
74 KiB
C

/* $NetBSD: if_ti.c,v 1.26 2001/06/27 16:47:33 bouyer Exp $ */
/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
*/
/*
* Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
* Manuals, sample driver and firmware source kits are available
* from http://www.alteon.com/support/openkits.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Alteon Networks Tigon chip contains an embedded R4000 CPU,
* gigabit MAC, dual DMA channels and a PCI interface unit. NICs
* using the Tigon may have anywhere from 512K to 2MB of SRAM. The
* Tigon supports hardware IP, TCP and UCP checksumming, multicast
* filtering and jumbo (9014 byte) frames. The hardware is largely
* controlled by firmware, which must be loaded into the NIC during
* initialization.
*
* The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
* revision, which supports new features such as extended commands,
* extended jumbo receive ring desciptors and a mini receive ring.
*
* Alteon Networks is to be commended for releasing such a vast amount
* of development material for the Tigon NIC without requiring an NDA
* (although they really should have done it a long time ago). With
* any luck, the other vendors will finally wise up and follow Alteon's
* stellar example.
*
* The firmware for the Tigon 1 and 2 NICs is compiled directly into
* this driver by #including it as a C header file. This bloats the
* driver somewhat, but it's the easiest method considering that the
* driver code and firmware code need to be kept in sync. The source
* for the firmware is not provided with the FreeBSD distribution since
* compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
*
* The following people deserve special thanks:
* - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
* for testing
* - Raymond Lee of Netgear, for providing a pair of Netgear
* GA620 Tigon 2 boards for testing
* - Ulf Zimmermann, for bringing the GA620 to my attention and
* convincing me to write this driver.
* - Andrew Gallatin for providing FreeBSD/Alpha support.
*/
#include "bpfilter.h"
#include "opt_inet.h"
#include "opt_ns.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <sys/device.h>
#include <sys/reboot.h>
#include <uvm/uvm_extern.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_ether.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#include <machine/bus.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_tireg.h>
#include <dev/pci/ti_fw.h>
#include <dev/pci/ti_fw2.h>
/*
* Various supported device vendors/types and their names.
*/
static const struct ti_type ti_devs[] = {
{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
"Alteon AceNIC 1000baseT Gigabit Ethernet" },
{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
"3Com 3c985-SX Gigabit Ethernet" },
{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
"Netgear GA620 1000baseSX Gigabit Ethernet" },
{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
"Netgear GA620 1000baseT Gigabit Ethernet" },
{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
"Silicon Graphics Gigabit Ethernet" },
{ 0, 0, NULL }
};
static const struct ti_type *ti_type_match __P((struct pci_attach_args *));
static int ti_probe __P((struct device *, struct cfdata *, void *));
static void ti_attach __P((struct device *, struct device *, void *));
static void ti_shutdown __P((void *));
static void ti_txeof __P((struct ti_softc *));
static void ti_rxeof __P((struct ti_softc *));
static void ti_stats_update __P((struct ti_softc *));
static int ti_encap __P((struct ti_softc *, struct mbuf *,
u_int32_t *));
static int ti_intr __P((void *));
static void ti_start __P((struct ifnet *));
static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
static void ti_init __P((void *));
static void ti_init2 __P((struct ti_softc *));
static void ti_stop __P((struct ti_softc *));
static void ti_watchdog __P((struct ifnet *));
static int ti_ifmedia_upd __P((struct ifnet *));
static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
int, u_int8_t *));
static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
static void ti_setmulti __P((struct ti_softc *));
static void ti_mem __P((struct ti_softc *, u_int32_t,
u_int32_t, caddr_t));
static void ti_loadfw __P((struct ti_softc *));
static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
caddr_t, int));
static void ti_handle_events __P((struct ti_softc *));
static int ti_alloc_jumbo_mem __P((struct ti_softc *));
static void *ti_jalloc __P((struct ti_softc *));
static void ti_jfree __P((caddr_t, u_int, void *));
static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *, bus_dmamap_t));
static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
static int ti_init_rx_ring_std __P((struct ti_softc *));
static void ti_free_rx_ring_std __P((struct ti_softc *));
static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
static int ti_init_rx_ring_mini __P((struct ti_softc *));
static void ti_free_rx_ring_mini __P((struct ti_softc *));
static void ti_free_tx_ring __P((struct ti_softc *));
static int ti_init_tx_ring __P((struct ti_softc *));
static int ti_64bitslot_war __P((struct ti_softc *));
static int ti_chipinit __P((struct ti_softc *));
static int ti_gibinit __P((struct ti_softc *));
static int ti_ether_ioctl __P((struct ifnet *, u_long, caddr_t));
struct cfattach ti_ca = {
sizeof(struct ti_softc), ti_probe, ti_attach
};
/*
* Send an instruction or address to the EEPROM, check for ACK.
*/
static u_int32_t ti_eeprom_putbyte(sc, byte)
struct ti_softc *sc;
int byte;
{
int i, ack = 0;
/*
* Make sure we're in TX mode.
*/
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x80; i; i >>= 1) {
if (byte & i) {
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
} else {
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
}
DELAY(1);
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
DELAY(1);
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
}
/*
* Turn off TX mode.
*/
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
/*
* Check for ack.
*/
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
return(ack);
}
/*
* Read a byte of data stored in the EEPROM at address 'addr.'
* We have to send two address bytes since the EEPROM can hold
* more than 256 bytes of data.
*/
static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
struct ti_softc *sc;
int addr;
u_int8_t *dest;
{
int i;
u_int8_t byte = 0;
EEPROM_START;
/*
* Send write control code to EEPROM.
*/
if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
printf("%s: failed to send write command, status: %x\n",
sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return(1);
}
/*
* Send first byte of address of byte we want to read.
*/
if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
printf("%s: failed to send address, status: %x\n",
sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return(1);
}
/*
* Send second byte address of byte we want to read.
*/
if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
printf("%s: failed to send address, status: %x\n",
sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return(1);
}
EEPROM_STOP;
EEPROM_START;
/*
* Send read control code to EEPROM.
*/
if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
printf("%s: failed to send read command, status: %x\n",
sc->sc_dev.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return(1);
}
/*
* Start reading bits from EEPROM.
*/
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
for (i = 0x80; i; i >>= 1) {
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
DELAY(1);
if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
byte |= i;
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
DELAY(1);
}
EEPROM_STOP;
/*
* No ACK generated for read, so just return byte.
*/
*dest = byte;
return(0);
}
/*
* Read a sequence of bytes from the EEPROM.
*/
static int ti_read_eeprom(sc, dest, off, cnt)
struct ti_softc *sc;
caddr_t dest;
int off;
int cnt;
{
int err = 0, i;
u_int8_t byte = 0;
for (i = 0; i < cnt; i++) {
err = ti_eeprom_getbyte(sc, off + i, &byte);
if (err)
break;
*(dest + i) = byte;
}
return(err ? 1 : 0);
}
/*
* NIC memory access function. Can be used to either clear a section
* of NIC local memory or (if buf is non-NULL) copy data into it.
*/
static void ti_mem(sc, addr, len, buf)
struct ti_softc *sc;
u_int32_t addr, len;
caddr_t buf;
{
int segptr, segsize, cnt;
caddr_t ptr;
segptr = addr;
cnt = len;
ptr = buf;
while(cnt) {
if (cnt < TI_WINLEN)
segsize = cnt;
else
segsize = TI_WINLEN - (segptr % TI_WINLEN);
CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
if (buf == NULL) {
bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
segsize / 4);
} else {
bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
TI_WINDOW + (segptr & (TI_WINLEN - 1)),
(u_int32_t *)ptr, segsize / 4);
ptr += segsize;
}
segptr += segsize;
cnt -= segsize;
}
return;
}
/*
* Load firmware image into the NIC. Check that the firmware revision
* is acceptable and see if we want the firmware for the Tigon 1 or
* Tigon 2.
*/
static void ti_loadfw(sc)
struct ti_softc *sc;
{
switch(sc->ti_hwrev) {
case TI_HWREV_TIGON:
if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
tigonFwReleaseFix != TI_FIRMWARE_FIX) {
printf("%s: firmware revision mismatch; want "
"%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
TI_FIRMWARE_FIX, tigonFwReleaseMajor,
tigonFwReleaseMinor, tigonFwReleaseFix);
return;
}
ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
(caddr_t)tigonFwText);
ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
(caddr_t)tigonFwData);
ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
(caddr_t)tigonFwRodata);
ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
break;
case TI_HWREV_TIGON_II:
if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
printf("%s: firmware revision mismatch; want "
"%d.%d.%d, got %d.%d.%d\n", sc->sc_dev.dv_xname,
TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
tigon2FwReleaseMinor, tigon2FwReleaseFix);
return;
}
ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
(caddr_t)tigon2FwText);
ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
(caddr_t)tigon2FwData);
ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
(caddr_t)tigon2FwRodata);
ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
break;
default:
printf("%s: can't load firmware: unknown hardware rev\n",
sc->sc_dev.dv_xname);
break;
}
return;
}
/*
* Send the NIC a command via the command ring.
*/
static void ti_cmd(sc, cmd)
struct ti_softc *sc;
struct ti_cmd_desc *cmd;
{
u_int32_t index;
index = sc->ti_cmd_saved_prodidx;
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
TI_INC(index, TI_CMD_RING_CNT);
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
sc->ti_cmd_saved_prodidx = index;
return;
}
/*
* Send the NIC an extended command. The 'len' parameter specifies the
* number of command slots to include after the initial command.
*/
static void ti_cmd_ext(sc, cmd, arg, len)
struct ti_softc *sc;
struct ti_cmd_desc *cmd;
caddr_t arg;
int len;
{
u_int32_t index;
int i;
index = sc->ti_cmd_saved_prodidx;
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
TI_INC(index, TI_CMD_RING_CNT);
for (i = 0; i < len; i++) {
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
*(u_int32_t *)(&arg[i * 4]));
TI_INC(index, TI_CMD_RING_CNT);
}
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
sc->ti_cmd_saved_prodidx = index;
return;
}
/*
* Handle events that have triggered interrupts.
*/
static void ti_handle_events(sc)
struct ti_softc *sc;
{
struct ti_event_desc *e;
if (sc->ti_rdata->ti_event_ring == NULL)
return;
while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
switch(e->ti_event) {
case TI_EV_LINKSTAT_CHANGED:
sc->ti_linkstat = e->ti_code;
if (e->ti_code == TI_EV_CODE_LINK_UP)
printf("%s: 10/100 link up\n",
sc->sc_dev.dv_xname);
else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
printf("%s: gigabit link up\n",
sc->sc_dev.dv_xname);
else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
printf("%s: link down\n",
sc->sc_dev.dv_xname);
break;
case TI_EV_ERROR:
if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
printf("%s: invalid command\n",
sc->sc_dev.dv_xname);
else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
printf("%s: unknown command\n",
sc->sc_dev.dv_xname);
else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
printf("%s: bad config data\n",
sc->sc_dev.dv_xname);
break;
case TI_EV_FIRMWARE_UP:
ti_init2(sc);
break;
case TI_EV_STATS_UPDATED:
ti_stats_update(sc);
break;
case TI_EV_RESET_JUMBO_RING:
case TI_EV_MCAST_UPDATED:
/* Who cares. */
break;
default:
printf("%s: unknown event: %d\n",
sc->sc_dev.dv_xname, e->ti_event);
break;
}
/* Advance the consumer index. */
TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
}
return;
}
/*
* Memory management for the jumbo receive ring is a pain in the
* butt. We need to allocate at least 9018 bytes of space per frame,
* _and_ it has to be contiguous (unless you use the extended
* jumbo descriptor format). Using malloc() all the time won't
* work: malloc() allocates memory in powers of two, which means we
* would end up wasting a considerable amount of space by allocating
* 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
* to do our own memory management.
*
* The driver needs to allocate a contiguous chunk of memory at boot
* time. We then chop this up ourselves into 9K pieces and use them
* as external mbuf storage.
*
* One issue here is how much memory to allocate. The jumbo ring has
* 256 slots in it, but at 9K per slot than can consume over 2MB of
* RAM. This is a bit much, especially considering we also need
* RAM for the standard ring and mini ring (on the Tigon 2). To
* save space, we only actually allocate enough memory for 64 slots
* by default, which works out to between 500 and 600K. This can
* be tuned by changing a #define in if_tireg.h.
*/
static int ti_alloc_jumbo_mem(sc)
struct ti_softc *sc;
{
caddr_t ptr;
int i;
struct ti_jpool_entry *entry;
bus_dma_segment_t dmaseg;
int error, dmanseg;
/* Grab a big chunk o' storage. */
if ((error = bus_dmamem_alloc(sc->sc_dmat,
TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
BUS_DMA_NOWAIT)) != 0) {
printf("%s: can't allocate jumbo buffer, error = %d\n",
sc->sc_dev.dv_xname, error);
return (error);
}
if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
TI_JMEM, (caddr_t *)&sc->ti_cdata.ti_jumbo_buf,
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
printf("%s: can't map jumbo buffer, error = %d\n",
sc->sc_dev.dv_xname, error);
return (error);
}
if ((error = bus_dmamap_create(sc->sc_dmat,
TI_JMEM, 1,
TI_JMEM, 0, BUS_DMA_NOWAIT,
&sc->jumbo_dmamap)) != 0) {
printf("%s: can't create jumbo buffer DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
return (error);
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
BUS_DMA_NOWAIT)) != 0) {
printf("%s: can't load jumbo buffer DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
return (error);
}
sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
SIMPLEQ_INIT(&sc->ti_jfree_listhead);
SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
/*
* Now divide it up into 9K pieces and save the addresses
* in an array.
*/
ptr = sc->ti_cdata.ti_jumbo_buf;
for (i = 0; i < TI_JSLOTS; i++) {
sc->ti_cdata.ti_jslots[i] = ptr;
ptr += TI_JLEN;
entry = malloc(sizeof(struct ti_jpool_entry),
M_DEVBUF, M_NOWAIT);
if (entry == NULL) {
free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
sc->ti_cdata.ti_jumbo_buf = NULL;
printf("%s: no memory for jumbo "
"buffer queue!\n", sc->sc_dev.dv_xname);
return(ENOBUFS);
}
entry->slot = i;
SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
jpool_entries);
}
return(0);
}
/*
* Allocate a jumbo buffer.
*/
static void *ti_jalloc(sc)
struct ti_softc *sc;
{
struct ti_jpool_entry *entry;
entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
if (entry == NULL) {
printf("%s: no free jumbo buffers\n", sc->sc_dev.dv_xname);
return(NULL);
}
SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
return(sc->ti_cdata.ti_jslots[entry->slot]);
}
/*
* Release a jumbo buffer.
*/
static void ti_jfree(buf, size, arg)
caddr_t buf;
u_int size;
void *arg;
{
struct ti_softc *sc;
int i;
struct ti_jpool_entry *entry;
/* Extract the softc struct pointer. */
sc = (struct ti_softc *)arg;
if (sc == NULL)
panic("ti_jfree: didn't get softc pointer!");
/* calculate the slot this buffer belongs to */
i = ((caddr_t)buf
- (caddr_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
if ((i < 0) || (i >= TI_JSLOTS))
panic("ti_jfree: asked to free buffer that we don't manage!");
entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
if (entry == NULL)
panic("ti_jfree: buffer not in use!");
entry->slot = i;
SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead,
entry, jpool_entries);
SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead,
entry, jpool_entries);
return;
}
/*
* Intialize a standard receive ring descriptor.
*/
static int ti_newbuf_std(sc, i, m, dmamap)
struct ti_softc *sc;
int i;
struct mbuf *m;
bus_dmamap_t dmamap; /* required if (m != NULL) */
{
struct mbuf *m_new = NULL;
struct ti_rx_desc *r;
int error;
if (dmamap == NULL) {
/* if (m) panic() */
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, BUS_DMA_NOWAIT,
&dmamap)) != 0) {
printf("%s: can't create recv map, error = %d\n",
sc->sc_dev.dv_xname, error);
return(ENOMEM);
}
}
sc->std_dmamap[i] = dmamap;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("%s: mbuf allocation failed "
"-- packet dropped!\n", sc->sc_dev.dv_xname);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("%s: cluster allocation failed "
"-- packet dropped!\n", sc->sc_dev.dv_xname);
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_adj(m_new, ETHER_ALIGN);
if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
mtod(m_new, caddr_t), m_new->m_len, NULL,
BUS_DMA_NOWAIT)) != 0) {
printf("%s: can't load recv map, error = %d\n",
sc->sc_dev.dv_xname, error);
return (ENOMEM);
}
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
m_adj(m_new, ETHER_ALIGN);
/* reuse the dmamap */
}
sc->ti_cdata.ti_rx_std_chain[i] = m_new;
r = &sc->ti_rdata->ti_rx_std_ring[i];
TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
r->ti_type = TI_BDTYPE_RECV_BD;
r->ti_flags = 0;
if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
r->ti_flags |= TI_BDFLAG_IP_CKSUM;
if (sc->ethercom.ec_if.if_capenable &
(IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
r->ti_len = m_new->m_len; /* == ds_len */
r->ti_idx = i;
return(0);
}
/*
* Intialize a mini receive ring descriptor. This only applies to
* the Tigon 2.
*/
static int ti_newbuf_mini(sc, i, m, dmamap)
struct ti_softc *sc;
int i;
struct mbuf *m;
bus_dmamap_t dmamap; /* required if (m != NULL) */
{
struct mbuf *m_new = NULL;
struct ti_rx_desc *r;
int error;
if (dmamap == NULL) {
/* if (m) panic() */
if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
MHLEN, 0, BUS_DMA_NOWAIT,
&dmamap)) != 0) {
printf("%s: can't create recv map, error = %d\n",
sc->sc_dev.dv_xname, error);
return(ENOMEM);
}
}
sc->mini_dmamap[i] = dmamap;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("%s: mbuf allocation failed "
"-- packet dropped!\n", sc->sc_dev.dv_xname);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MHLEN;
m_adj(m_new, ETHER_ALIGN);
if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
mtod(m_new, caddr_t), m_new->m_len, NULL,
BUS_DMA_NOWAIT)) != 0) {
printf("%s: can't load recv map, error = %d\n",
sc->sc_dev.dv_xname, error);
return (ENOMEM);
}
} else {
m_new = m;
m_new->m_data = m_new->m_pktdat;
m_new->m_len = m_new->m_pkthdr.len = MHLEN;
m_adj(m_new, ETHER_ALIGN);
/* reuse the dmamap */
}
r = &sc->ti_rdata->ti_rx_mini_ring[i];
sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
r->ti_type = TI_BDTYPE_RECV_BD;
r->ti_flags = TI_BDFLAG_MINI_RING;
if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
r->ti_flags |= TI_BDFLAG_IP_CKSUM;
if (sc->ethercom.ec_if.if_capenable &
(IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
r->ti_len = m_new->m_len; /* == ds_len */
r->ti_idx = i;
return(0);
}
/*
* Initialize a jumbo receive ring descriptor. This allocates
* a jumbo buffer from the pool managed internally by the driver.
*/
static int ti_newbuf_jumbo(sc, i, m)
struct ti_softc *sc;
int i;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
struct ti_rx_desc *r;
if (m == NULL) {
caddr_t *buf = NULL;
/* Allocate the mbuf. */
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("%s: mbuf allocation failed "
"-- packet dropped!\n", sc->sc_dev.dv_xname);
return(ENOBUFS);
}
/* Allocate the jumbo buffer */
buf = ti_jalloc(sc);
if (buf == NULL) {
m_freem(m_new);
printf("%s: jumbo allocation failed "
"-- packet dropped!\n", sc->sc_dev.dv_xname);
return(ENOBUFS);
}
/* Attach the buffer to the mbuf. */
m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
m_new->m_flags |= M_EXT;
m_new->m_len = m_new->m_pkthdr.len =
m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
m_new->m_ext.ext_free = ti_jfree;
m_new->m_ext.ext_arg = sc;
MCLINITREFERENCE(m_new);
} else {
m_new = m;
m_new->m_data = m_new->m_ext.ext_buf;
m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
}
m_adj(m_new, ETHER_ALIGN);
/* Set up the descriptor. */
r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
((caddr_t)mtod(m_new, caddr_t)
- (caddr_t)sc->ti_cdata.ti_jumbo_buf);
r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
r->ti_flags = TI_BDFLAG_JUMBO_RING;
if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4)
r->ti_flags |= TI_BDFLAG_IP_CKSUM;
if (sc->ethercom.ec_if.if_capenable &
(IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
r->ti_len = m_new->m_len;
r->ti_idx = i;
return(0);
}
/*
* The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
* that's 1MB or memory, which is a lot. For now, we fill only the first
* 256 ring entries and hope that our CPU is fast enough to keep up with
* the NIC.
*/
static int ti_init_rx_ring_std(sc)
struct ti_softc *sc;
{
int i;
struct ti_cmd_desc cmd;
for (i = 0; i < TI_SSLOTS; i++) {
if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
return(ENOBUFS);
};
TI_UPDATE_STDPROD(sc, i - 1);
sc->ti_std = i - 1;
return(0);
}
static void ti_free_rx_ring_std(sc)
struct ti_softc *sc;
{
int i;
for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
sc->ti_cdata.ti_rx_std_chain[i] = NULL;
/* if (sc->std_dmamap[i] == 0) panic() */
bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
sc->std_dmamap[i] = 0;
}
bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
sizeof(struct ti_rx_desc));
}
return;
}
static int ti_init_rx_ring_jumbo(sc)
struct ti_softc *sc;
{
int i;
struct ti_cmd_desc cmd;
for (i = 0; i < (TI_JSLOTS - 20); i++) {
if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
return(ENOBUFS);
};
TI_UPDATE_JUMBOPROD(sc, i - 1);
sc->ti_jumbo = i - 1;
return(0);
}
static void ti_free_rx_ring_jumbo(sc)
struct ti_softc *sc;
{
int i;
for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
}
bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
sizeof(struct ti_rx_desc));
}
return;
}
static int ti_init_rx_ring_mini(sc)
struct ti_softc *sc;
{
int i;
for (i = 0; i < TI_MSLOTS; i++) {
if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
return(ENOBUFS);
};
TI_UPDATE_MINIPROD(sc, i - 1);
sc->ti_mini = i - 1;
return(0);
}
static void ti_free_rx_ring_mini(sc)
struct ti_softc *sc;
{
int i;
for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
/* if (sc->mini_dmamap[i] == 0) panic() */
bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
sc->mini_dmamap[i] = 0;
}
bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
sizeof(struct ti_rx_desc));
}
return;
}
static void ti_free_tx_ring(sc)
struct ti_softc *sc;
{
int i;
struct txdmamap_pool_entry *dma;
if (sc->ti_rdata->ti_tx_ring == NULL)
return;
for (i = 0; i < TI_TX_RING_CNT; i++) {
if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
m_freem(sc->ti_cdata.ti_tx_chain[i]);
sc->ti_cdata.ti_tx_chain[i] = NULL;
/* if (sc->txdma[i] == 0) panic() */
SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
link);
sc->txdma[i] = 0;
}
bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
sizeof(struct ti_tx_desc));
}
while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
free(dma, M_DEVBUF);
}
return;
}
static int ti_init_tx_ring(sc)
struct ti_softc *sc;
{
int i, error;
bus_dmamap_t dmamap;
struct txdmamap_pool_entry *dma;
sc->ti_txcnt = 0;
sc->ti_tx_saved_considx = 0;
CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
SIMPLEQ_INIT(&sc->txdma_list);
for (i = 0; i < TI_RSLOTS; i++) {
/* I've seen mbufs with 30 fragments. */
if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
40, ETHER_MAX_LEN_JUMBO, 0,
BUS_DMA_NOWAIT, &dmamap)) != 0) {
printf("%s: can't create tx map, error = %d\n",
sc->sc_dev.dv_xname, error);
return(ENOMEM);
}
dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
if (!dma) {
printf("%s: can't alloc txdmamap_pool_entry\n",
sc->sc_dev.dv_xname);
bus_dmamap_destroy(sc->sc_dmat, dmamap);
return (ENOMEM);
}
dma->dmamap = dmamap;
SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
}
return(0);
}
/*
* The Tigon 2 firmware has a new way to add/delete multicast addresses,
* but we have to support the old way too so that Tigon 1 cards will
* work.
*/
void ti_add_mcast(sc, addr)
struct ti_softc *sc;
struct ether_addr *addr;
{
struct ti_cmd_desc cmd;
u_int16_t *m;
u_int32_t ext[2] = {0, 0};
m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
switch(sc->ti_hwrev) {
case TI_HWREV_TIGON:
CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
break;
case TI_HWREV_TIGON_II:
ext[0] = htons(m[0]);
ext[1] = (htons(m[1]) << 16) | htons(m[2]);
TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
break;
default:
printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
break;
}
return;
}
void ti_del_mcast(sc, addr)
struct ti_softc *sc;
struct ether_addr *addr;
{
struct ti_cmd_desc cmd;
u_int16_t *m;
u_int32_t ext[2] = {0, 0};
m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
switch(sc->ti_hwrev) {
case TI_HWREV_TIGON:
CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
break;
case TI_HWREV_TIGON_II:
ext[0] = htons(m[0]);
ext[1] = (htons(m[1]) << 16) | htons(m[2]);
TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
break;
default:
printf("%s: unknown hwrev\n", sc->sc_dev.dv_xname);
break;
}
return;
}
/*
* Configure the Tigon's multicast address filter.
*
* The actual multicast table management is a bit of a pain, thanks to
* slight brain damage on the part of both Alteon and us. With our
* multicast code, we are only alerted when the multicast address table
* changes and at that point we only have the current list of addresses:
* we only know the current state, not the previous state, so we don't
* actually know what addresses were removed or added. The firmware has
* state, but we can't get our grubby mits on it, and there is no 'delete
* all multicast addresses' command. Hence, we have to maintain our own
* state so we know what addresses have been programmed into the NIC at
* any given time.
*/
static void ti_setmulti(sc)
struct ti_softc *sc;
{
struct ifnet *ifp;
struct ti_cmd_desc cmd;
struct ti_mc_entry *mc;
u_int32_t intrs;
struct ether_multi *enm;
struct ether_multistep step;
ifp = &sc->ethercom.ec_if;
/* Disable interrupts. */
intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
/* First, zot all the existing filters. */
while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
ti_del_mcast(sc, &mc->mc_addr);
SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
free(mc, M_DEVBUF);
}
/*
* Remember all multicast addresses so that we can delete them
* later. Punt if there is a range of addresses or memory shortage.
*/
ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0)
goto allmulti;
if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
M_NOWAIT)) == NULL)
goto allmulti;
memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
ETHER_NEXT_MULTI(step, enm);
}
/* Accept only programmed multicast addresses */
ifp->if_flags &= ~IFF_ALLMULTI;
TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
/* Now program new ones. */
for (mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead); mc != NULL;
mc = SIMPLEQ_NEXT(mc, mc_entries))
ti_add_mcast(sc, &mc->mc_addr);
/* Re-enable interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
return;
allmulti:
/* No need to keep individual multicast addresses */
while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc,
mc_entries);
free(mc, M_DEVBUF);
}
/* Accept all multicast addresses */
ifp->if_flags |= IFF_ALLMULTI;
TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
/* Re-enable interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
}
/*
* Check to see if the BIOS has configured us for a 64 bit slot when
* we aren't actually in one. If we detect this condition, we can work
* around it on the Tigon 2 by setting a bit in the PCI state register,
* but for the Tigon 1 we must give up and abort the interface attach.
*/
static int ti_64bitslot_war(sc)
struct ti_softc *sc;
{
if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
CSR_WRITE_4(sc, 0x600, 0);
CSR_WRITE_4(sc, 0x604, 0);
CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
if (sc->ti_hwrev == TI_HWREV_TIGON)
return(EINVAL);
else {
TI_SETBIT(sc, TI_PCI_STATE,
TI_PCISTATE_32BIT_BUS);
return(0);
}
}
}
return(0);
}
/*
* Do endian, PCI and DMA initialization. Also check the on-board ROM
* self-test results.
*/
static int ti_chipinit(sc)
struct ti_softc *sc;
{
u_int32_t cacheline;
u_int32_t pci_writemax = 0;
/* Initialize link to down state. */
sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
/* Set endianness before we access any non-PCI registers. */
#if BYTE_ORDER == BIG_ENDIAN
CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
#else
CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
#endif
/* Check the ROM failed bit to see if self-tests passed. */
if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
printf("%s: board self-diagnostics failed!\n",
sc->sc_dev.dv_xname);
return(ENODEV);
}
/* Halt the CPU. */
TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
/* Figure out the hardware revision. */
switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
case TI_REV_TIGON_I:
sc->ti_hwrev = TI_HWREV_TIGON;
break;
case TI_REV_TIGON_II:
sc->ti_hwrev = TI_HWREV_TIGON_II;
break;
default:
printf("%s: unsupported chip revision\n", sc->sc_dev.dv_xname);
return(ENODEV);
}
/* Do special setup for Tigon 2. */
if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
}
/* Set up the PCI state register. */
CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
}
/* Clear the read/write max DMA parameters. */
TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
TI_PCISTATE_READ_MAXDMA));
/* Get cache line size. */
cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
/*
* If the system has set enabled the PCI memory write
* and invalidate command in the command register, set
* the write max parameter accordingly. This is necessary
* to use MWI with the Tigon 2.
*/
if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
& PCI_COMMAND_INVALIDATE_ENABLE) {
switch(cacheline) {
case 1:
case 4:
case 8:
case 16:
case 32:
case 64:
break;
default:
/* Disable PCI memory write and invalidate. */
if (bootverbose)
printf("%s: cache line size %d not "
"supported; disabling PCI MWI\n",
sc->sc_dev.dv_xname, cacheline);
CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
& ~PCI_COMMAND_INVALIDATE_ENABLE);
break;
}
}
#ifdef __brokenalpha__
/*
* From the Alteon sample driver:
* Must insure that we do not cross an 8K (bytes) boundary
* for DMA reads. Our highest limit is 1K bytes. This is a
* restriction on some ALPHA platforms with early revision
* 21174 PCI chipsets, such as the AlphaPC 164lx
*/
TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
#else
TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
#endif
/* This sets the min dma param all the way up (0xff). */
TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
/* Configure DMA variables. */
#if BYTE_ORDER == BIG_ENDIAN
CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
TI_OPMODE_DONT_FRAG_JUMBO);
#else
CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
#endif
/*
* Only allow 1 DMA channel to be active at a time.
* I don't think this is a good idea, but without it
* the firmware racks up lots of nicDmaReadRingFull
* errors.
* Incompatible with hardware assisted checksums.
*/
if ((sc->ethercom.ec_if.if_capenable &
(IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4|IFCAP_CSUM_IPv4)) == 0)
TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
/* Recommended settings from Tigon manual. */
CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
if (ti_64bitslot_war(sc)) {
printf("%s: bios thinks we're in a 64 bit slot, "
"but we aren't", sc->sc_dev.dv_xname);
return(EINVAL);
}
return(0);
}
/*
* Initialize the general information block and firmware, and
* start the CPU(s) running.
*/
static int ti_gibinit(sc)
struct ti_softc *sc;
{
struct ti_rcb *rcb;
int i;
struct ifnet *ifp;
ifp = &sc->ethercom.ec_if;
/* Disable interrupts for now. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
/* Tell the chip where to find the general information block. */
CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, sc->info_dmaaddr +
((caddr_t)&sc->ti_rdata->ti_info - (caddr_t)sc->ti_rdata));
/* Load the firmware into SRAM. */
ti_loadfw(sc);
/* Set up the contents of the general info and ring control blocks. */
/* Set up the event ring and producer pointer. */
rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
((caddr_t)&sc->ti_rdata->ti_event_ring - (caddr_t)sc->ti_rdata);
rcb->ti_flags = 0;
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_ev_prodidx_r
- (caddr_t)sc->ti_rdata);
sc->ti_ev_prodidx.ti_idx = 0;
CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
sc->ti_ev_saved_considx = 0;
/* Set up the command ring and producer mailbox. */
rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
rcb->ti_flags = 0;
rcb->ti_max_len = 0;
for (i = 0; i < TI_CMD_RING_CNT; i++) {
CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
}
CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
sc->ti_cmd_saved_prodidx = 0;
/*
* Assign the address of the stats refresh buffer.
* We re-use the current stats buffer for this to
* conserve memory.
*/
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_info.ti_stats
- (caddr_t)sc->ti_rdata);
/* Set up the standard receive ring. */
rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
((caddr_t)&sc->ti_rdata->ti_rx_std_ring
- (caddr_t)sc->ti_rdata);
rcb->ti_max_len = ETHER_MAX_LEN;
rcb->ti_flags = 0;
if (ifp->if_capenable & IFCAP_CSUM_IPv4)
rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
if (sc->ethercom.ec_nvlans != 0)
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
/* Set up the jumbo receive ring. */
rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
((caddr_t)&sc->ti_rdata->ti_rx_jumbo_ring - (caddr_t)sc->ti_rdata);
rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
rcb->ti_flags = 0;
if (ifp->if_capenable & IFCAP_CSUM_IPv4)
rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
if (sc->ethercom.ec_nvlans != 0)
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
/*
* Set up the mini ring. Only activated on the
* Tigon 2 but the slot in the config block is
* still there on the Tigon 1.
*/
rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
((caddr_t)&sc->ti_rdata->ti_rx_mini_ring - (caddr_t)sc->ti_rdata);
rcb->ti_max_len = MHLEN - ETHER_ALIGN;
if (sc->ti_hwrev == TI_HWREV_TIGON)
rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
else
rcb->ti_flags = 0;
if (ifp->if_capenable & IFCAP_CSUM_IPv4)
rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
if (sc->ethercom.ec_nvlans != 0)
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
/*
* Set up the receive return ring.
*/
rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
((caddr_t)&sc->ti_rdata->ti_rx_return_ring - (caddr_t)sc->ti_rdata);
rcb->ti_flags = 0;
rcb->ti_max_len = TI_RETURN_RING_CNT;
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_return_prodidx_r
- (caddr_t)sc->ti_rdata);
/*
* Set up the tx ring. Note: for the Tigon 2, we have the option
* of putting the transmit ring in the host's address space and
* letting the chip DMA it instead of leaving the ring in the NIC's
* memory and accessing it through the shared memory region. We
* do this for the Tigon 2, but it doesn't work on the Tigon 1,
* so we have to revert to the shared memory scheme if we detect
* a Tigon 1 chip.
*/
CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
if (sc->ti_hwrev == TI_HWREV_TIGON) {
sc->ti_rdata->ti_tx_ring_nic =
(struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
}
bzero((char *)sc->ti_rdata->ti_tx_ring,
TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
if (sc->ti_hwrev == TI_HWREV_TIGON)
rcb->ti_flags = 0;
else
rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
if (ifp->if_capenable & IFCAP_CSUM_IPv4)
rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
/*
* When we get the packet, there is a pseudo-header seed already
* in the th_sum or uh_sum field. Make sure the firmware doesn't
* compute the pseudo-header checksum again!
*/
if (ifp->if_capenable & (IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
TI_RCB_FLAG_NO_PHDR_CKSUM;
if (sc->ethercom.ec_nvlans != 0)
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
rcb->ti_max_len = TI_TX_RING_CNT;
if (sc->ti_hwrev == TI_HWREV_TIGON)
TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
else
TI_HOSTADDR(rcb->ti_hostaddr) = sc->info_dmaaddr +
((caddr_t)&sc->ti_rdata->ti_tx_ring
- (caddr_t)sc->ti_rdata);
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
sc->info_dmaaddr + ((caddr_t)&sc->ti_rdata->ti_tx_considx_r
- (caddr_t)sc->ti_rdata);
/* Set up tuneables */
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
(sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
(sc->ti_rx_coal_ticks / 10));
else
CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
/* Turn interrupts on. */
CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
/* Start CPU. */
TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
return(0);
}
/*
* look for id in the device list, returning the first match
*/
static const struct ti_type *
ti_type_match(pa)
struct pci_attach_args *pa;
{
const struct ti_type *t;
t = ti_devs;
while(t->ti_name != NULL) {
if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
(PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
return (t);
}
t++;
}
return(NULL);
}
/*
* Probe for a Tigon chip. Check the PCI vendor and device IDs
* against our list and return its name if we find a match.
*/
static int ti_probe(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct pci_attach_args *pa = aux;
const struct ti_type *t;
t = ti_type_match(pa);
return((t == NULL) ? 0 : 1);
}
static void ti_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
u_int32_t command;
struct ifnet *ifp;
struct ti_softc *sc;
u_char eaddr[ETHER_ADDR_LEN];
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
bus_dma_segment_t dmaseg;
int error, dmanseg, nolinear;
const struct ti_type *t;
t = ti_type_match(pa);
if (t == NULL) {
printf("ti_attach: were did the card go ?\n");
return;
}
printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
sc = (struct ti_softc *)self;
/*
* Map control/status registers.
*/
nolinear = 0;
if (pci_mapreg_map(pa, 0x10,
PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
NULL, NULL)) {
nolinear = 1;
if (pci_mapreg_map(pa, 0x10,
PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
printf(": can't map memory space\n");
return;
}
}
if (nolinear == 0)
sc->ti_vhandle = (void *)(sc->ti_bhandle); /* XXX XXX XXX */
else
sc->ti_vhandle = NULL;
command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
command |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
/* Allocate interrupt */
if (pci_intr_map(pa, &ih)) {
printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
return;;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
if (sc->sc_ih == NULL) {
printf("%s: couldn't establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;;
}
printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
/*
* Add shutdown hook so that DMA is disabled prior to reboot. Not
* doing do could allow DMA to corrupt kernel memory during the
* reboot before the driver initializes.
*/
(void) shutdownhook_establish(ti_shutdown, sc);
if (ti_chipinit(sc)) {
printf("%s: chip initialization failed\n", self->dv_xname);
goto fail2;
}
if (sc->ti_hwrev == TI_HWREV_TIGON && nolinear == 1) {
printf("%s: memory space not mapped linear\n", self->dv_xname);
}
/* Zero out the NIC's on-board SRAM. */
ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
/* Init again -- zeroing memory may have clobbered some registers. */
if (ti_chipinit(sc)) {
printf("%s: chip initialization failed\n", self->dv_xname);
goto fail2;
}
/*
* Get station address from the EEPROM. Note: the manual states
* that the MAC address is at offset 0x8c, however the data is
* stored as two longwords (since that's how it's loaded into
* the NIC). This means the MAC address is actually preceeded
* by two zero bytes. We need to skip over those.
*/
if (ti_read_eeprom(sc, (caddr_t)&eaddr,
TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
printf("%s: failed to read station address\n", self->dv_xname);
goto fail2;
}
/*
* A Tigon chip was detected. Inform the world.
*/
printf("%s: Ethernet address: %s\n", self->dv_xname,
ether_sprintf(eaddr));
sc->sc_dmat = pa->pa_dmat;
/* Allocate the general information block and ring buffers. */
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
BUS_DMA_NOWAIT)) != 0) {
printf("%s: can't allocate ring buffer, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail2;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
sizeof(struct ti_ring_data), (caddr_t *)&sc->ti_rdata,
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
printf("%s: can't map ring buffer, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail2;
}
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct ti_ring_data), 1,
sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
&sc->info_dmamap)) != 0) {
printf("%s: can't create ring buffer DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
BUS_DMA_NOWAIT)) != 0) {
printf("%s: can't load ring buffer DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail2;
}
sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
/* Try to allocate memory for jumbo buffers. */
if (ti_alloc_jumbo_mem(sc)) {
printf("%s: jumbo buffer allocation failed\n", self->dv_xname);
goto fail2;
}
SIMPLEQ_INIT(&sc->ti_mc_listhead);
/*
* We really need a better way to tell a 1000baseTX card
* from a 1000baseSX one, since in theory there could be
* OEMed 1000baseTX cards from lame vendors who aren't
* clever enough to change the PCI ID. For the moment
* though, the AceNIC is the only copper card available.
*/
if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
(PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
sc->ti_copper = 1;
else
sc->ti_copper = 0;
/* Set default tuneable values. */
sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
sc->ti_rx_max_coal_bds = 64;
sc->ti_tx_max_coal_bds = 128;
sc->ti_tx_buf_ratio = 21;
/* Set up ifnet structure */
ifp = &sc->ethercom.ec_if;
ifp->if_softc = sc;
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = ti_ioctl;
ifp->if_start = ti_start;
ifp->if_watchdog = ti_watchdog;
IFQ_SET_READY(&ifp->if_snd);
#if 0
/*
* XXX This is not really correct -- we don't necessarily
* XXX want to queue up as many as we can transmit at the
* XXX upper layer like that. Someone with a board should
* XXX check to see how this affects performance.
*/
ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
#endif
/*
* We can support 802.1Q VLAN-sized frames.
*/
sc->ethercom.ec_capabilities |=
ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
/*
* We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
*/
ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
IFCAP_CSUM_UDPv4;
/* Set up ifmedia support. */
ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
if (sc->ti_copper) {
/*
* Copper cards allow manual 10/100 mode selection,
* but not manual 1000baseTX mode selection. Why?
* Becuase currently there's no way to specify the
* master/slave setting through the firmware interface,
* so Alteon decided to just bag it and handle it
* via autonegotiation.
*/
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_1000_TX|IFM_FDX, 0, NULL);
} else {
/* Fiber cards don't support 10/100 modes. */
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
}
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp, eaddr);
return;
fail2:
pci_intr_disestablish(pc, sc->sc_ih);
return;
}
/*
* Frame reception handling. This is called if there's a frame
* on the receive return list.
*
* Note: we have to be able to handle three possibilities here:
* 1) the frame is from the mini receive ring (can only happen)
* on Tigon 2 boards)
* 2) the frame is from the jumbo receive ring
* 3) the frame is from the standard receive ring
*/
static void ti_rxeof(sc)
struct ti_softc *sc;
{
struct ifnet *ifp;
struct ti_cmd_desc cmd;
ifp = &sc->ethercom.ec_if;
while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
struct ti_rx_desc *cur_rx;
u_int32_t rxidx;
struct mbuf *m = NULL;
u_int16_t vlan_tag = 0;
int have_tag = 0;
struct ether_header *eh;
bus_dmamap_t dmamap;
cur_rx =
&sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
rxidx = cur_rx->ti_idx;
TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
have_tag = 1;
vlan_tag = cur_rx->ti_vlan_tag;
}
if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
ifp->if_ierrors++;
ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
continue;
}
if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
== ENOBUFS) {
ifp->if_ierrors++;
ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
continue;
}
} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
dmamap = sc->mini_dmamap[rxidx];
sc->mini_dmamap[rxidx] = 0;
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
ifp->if_ierrors++;
ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
continue;
}
if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
== ENOBUFS) {
ifp->if_ierrors++;
ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
continue;
}
} else {
TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
m = sc->ti_cdata.ti_rx_std_chain[rxidx];
sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
dmamap = sc->std_dmamap[rxidx];
sc->std_dmamap[rxidx] = 0;
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
ifp->if_ierrors++;
ti_newbuf_std(sc, sc->ti_std, m, dmamap);
continue;
}
if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
== ENOBUFS) {
ifp->if_ierrors++;
ti_newbuf_std(sc, sc->ti_std, m, dmamap);
continue;
}
}
m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
#if NBPFILTER > 0
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
eh = mtod(m, struct ether_header *);
switch (ntohs(eh->ether_type)) {
case ETHERTYPE_IP:
{
struct ip *ip = (struct ip *) (eh + 1);
/*
* Note the Tigon firmware does not invert
* the checksum for us, hence the XOR.
*/
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
/*
* ntohs() the constant so the compiler can
* optimize...
*
* XXX Figure out a sane way to deal with
* fragmented packets.
*/
if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
switch (ip->ip_p) {
case IPPROTO_TCP:
m->m_pkthdr.csum_data =
cur_rx->ti_tcp_udp_cksum;
m->m_pkthdr.csum_flags |=
M_CSUM_TCPv4|M_CSUM_DATA;
break;
case IPPROTO_UDP:
m->m_pkthdr.csum_data =
cur_rx->ti_tcp_udp_cksum;
m->m_pkthdr.csum_flags |=
M_CSUM_UDPv4|M_CSUM_DATA;
break;
default:
/* Nothing */;
}
}
break;
}
default:
/* Nothing. */
break;
}
if (have_tag) {
struct mbuf *n;
n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
if (n) {
*mtod(n, int *) = vlan_tag;
n->m_len = sizeof(int);
} else {
printf("%s: no mbuf for tag\n", ifp->if_xname);
m_freem(m);
continue;
}
have_tag = vlan_tag = 0;
}
(*ifp->if_input)(ifp, m);
}
/* Only necessary on the Tigon 1. */
if (sc->ti_hwrev == TI_HWREV_TIGON)
CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
sc->ti_rx_saved_considx);
TI_UPDATE_STDPROD(sc, sc->ti_std);
TI_UPDATE_MINIPROD(sc, sc->ti_mini);
TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
return;
}
static void ti_txeof(sc)
struct ti_softc *sc;
{
struct ti_tx_desc *cur_tx = NULL;
struct ifnet *ifp;
ifp = &sc->ethercom.ec_if;
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
u_int32_t idx = 0;
idx = sc->ti_tx_saved_considx;
if (sc->ti_hwrev == TI_HWREV_TIGON) {
if (idx > 383)
CSR_WRITE_4(sc, TI_WINBASE,
TI_TX_RING_BASE + 6144);
else if (idx > 255)
CSR_WRITE_4(sc, TI_WINBASE,
TI_TX_RING_BASE + 4096);
else if (idx > 127)
CSR_WRITE_4(sc, TI_WINBASE,
TI_TX_RING_BASE + 2048);
else
CSR_WRITE_4(sc, TI_WINBASE,
TI_TX_RING_BASE);
cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
} else
cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
if (cur_tx->ti_flags & TI_BDFLAG_END)
ifp->if_opackets++;
if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
m_freem(sc->ti_cdata.ti_tx_chain[idx]);
sc->ti_cdata.ti_tx_chain[idx] = NULL;
/* if (sc->txdma[idx] == 0) panic() */
SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[idx],
link);
sc->txdma[idx] = 0;
}
sc->ti_txcnt--;
TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
ifp->if_timer = 0;
}
if (cur_tx != NULL)
ifp->if_flags &= ~IFF_OACTIVE;
return;
}
static int ti_intr(xsc)
void *xsc;
{
struct ti_softc *sc;
struct ifnet *ifp;
sc = xsc;
ifp = &sc->ethercom.ec_if;
#ifdef notdef
/* Avoid this for now -- checking this register is expensive. */
/* Make sure this is really our interrupt. */
if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
return (0);
#endif
/* Ack interrupt and stop others from occuring. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
if (ifp->if_flags & IFF_RUNNING) {
/* Check RX return ring producer/consumer */
ti_rxeof(sc);
/* Check TX ring producer/consumer */
ti_txeof(sc);
}
ti_handle_events(sc);
/* Re-enable interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
if ((ifp->if_flags & IFF_RUNNING) != 0 &&
IFQ_IS_EMPTY(&ifp->if_snd) == 0)
ti_start(ifp);
return (1);
}
static void ti_stats_update(sc)
struct ti_softc *sc;
{
struct ifnet *ifp;
ifp = &sc->ethercom.ec_if;
ifp->if_collisions +=
(sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
ifp->if_collisions;
return;
}
/*
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
* pointers to descriptors.
*/
static int ti_encap(sc, m_head, txidx)
struct ti_softc *sc;
struct mbuf *m_head;
u_int32_t *txidx;
{
struct ti_tx_desc *f = NULL;
u_int32_t frag, cur, cnt = 0;
struct txdmamap_pool_entry *dma;
bus_dmamap_t dmamap;
int error, i;
struct mbuf *n;
u_int16_t csum_flags = 0;
dma = SIMPLEQ_FIRST(&sc->txdma_list);
if (dma == NULL) {
return ENOMEM;
}
dmamap = dma->dmamap;
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head, 0);
if (error) {
struct mbuf *m;
int i = 0;
for (m = m_head; m; m = m->m_next)
i++;
printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
"error %d\n", m_head->m_pkthdr.len, i, error);
return (ENOMEM);
}
cur = frag = *txidx;
if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
/* IP header checksum field must be 0! */
csum_flags |= TI_BDFLAG_IP_CKSUM;
}
if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
/* XXX fragmented packet checksum capability? */
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
for (i = 0; i < dmamap->dm_nsegs; i++) {
if (sc->ti_hwrev == TI_HWREV_TIGON) {
if (frag > 383)
CSR_WRITE_4(sc, TI_WINBASE,
TI_TX_RING_BASE + 6144);
else if (frag > 255)
CSR_WRITE_4(sc, TI_WINBASE,
TI_TX_RING_BASE + 4096);
else if (frag > 127)
CSR_WRITE_4(sc, TI_WINBASE,
TI_TX_RING_BASE + 2048);
else
CSR_WRITE_4(sc, TI_WINBASE,
TI_TX_RING_BASE);
f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
} else
f = &sc->ti_rdata->ti_tx_ring[frag];
if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
break;
TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
f->ti_len = dmamap->dm_segs[i].ds_len;
f->ti_flags = csum_flags;
n = m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN);
if (n) {
f->ti_flags |= TI_BDFLAG_VLAN_TAG;
f->ti_vlan_tag = *mtod(n, int *);
} else {
f->ti_vlan_tag = 0;
}
/*
* Sanity check: avoid coming within 16 descriptors
* of the end of the ring.
*/
if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
return(ENOBUFS);
cur = frag;
TI_INC(frag, TI_TX_RING_CNT);
cnt++;
}
if (i < dmamap->dm_nsegs)
return(ENOBUFS);
if (frag == sc->ti_tx_saved_considx)
return(ENOBUFS);
if (sc->ti_hwrev == TI_HWREV_TIGON)
sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
TI_BDFLAG_END;
else
sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
sc->ti_cdata.ti_tx_chain[cur] = m_head;
SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, dma, link);
sc->txdma[cur] = dma;
sc->ti_txcnt += cnt;
*txidx = frag;
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit descriptors.
*/
static void ti_start(ifp)
struct ifnet *ifp;
{
struct ti_softc *sc;
struct mbuf *m_head = NULL;
u_int32_t prodidx = 0;
sc = ifp->if_softc;
prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
IFQ_POLL(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (ti_encap(sc, m_head, &prodidx)) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m_head);
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m_head);
#endif
}
/* Transmit */
CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void ti_init(xsc)
void *xsc;
{
struct ti_softc *sc = xsc;
int s;
s = splnet();
/* Cancel pending I/O and flush buffers. */
ti_stop(sc);
/* Init the gen info block, ring control blocks and firmware. */
if (ti_gibinit(sc)) {
printf("%s: initialization failure\n", sc->sc_dev.dv_xname);
splx(s);
return;
}
splx(s);
return;
}
static void ti_init2(sc)
struct ti_softc *sc;
{
struct ti_cmd_desc cmd;
struct ifnet *ifp;
u_int8_t *m;
struct ifmedia *ifm;
int tmp;
ifp = &sc->ethercom.ec_if;
/* Specify MTU and interface index. */
CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dev.dv_unit); /* ??? */
tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
tmp += ETHER_VLAN_ENCAP_LEN;
CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
/* Load our MAC address. */
m = (u_int8_t *)LLADDR(ifp->if_sadl);
CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
| (m[4] << 8) | m[5]);
TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
/* Enable or disable promiscuous mode as needed. */
if (ifp->if_flags & IFF_PROMISC) {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
} else {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
}
/* Program multicast filter. */
ti_setmulti(sc);
/*
* If this is a Tigon 1, we should tell the
* firmware to use software packet filtering.
*/
if (sc->ti_hwrev == TI_HWREV_TIGON) {
TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
}
/* Init RX ring. */
ti_init_rx_ring_std(sc);
/* Init jumbo RX ring. */
if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
ti_init_rx_ring_jumbo(sc);
/*
* If this is a Tigon 2, we can also configure the
* mini ring.
*/
if (sc->ti_hwrev == TI_HWREV_TIGON_II)
ti_init_rx_ring_mini(sc);
CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
sc->ti_rx_saved_considx = 0;
/* Init TX ring. */
ti_init_tx_ring(sc);
/* Tell firmware we're alive. */
TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
/* Enable host interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Make sure to set media properly. We have to do this
* here since we have to issue commands in order to set
* the link negotiation and we can't issue commands until
* the firmware is running.
*/
ifm = &sc->ifmedia;
tmp = ifm->ifm_media;
ifm->ifm_media = ifm->ifm_cur->ifm_media;
ti_ifmedia_upd(ifp);
ifm->ifm_media = tmp;
return;
}
/*
* Set media options.
*/
static int ti_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct ti_softc *sc;
struct ifmedia *ifm;
struct ti_cmd_desc cmd;
sc = ifp->if_softc;
ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return(EINVAL);
switch(IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
TI_LNK_AUTONEGENB|TI_LNK_ENB);
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
TI_CMD_CODE_NEGOTIATE_BOTH, 0);
break;
case IFM_1000_SX:
case IFM_1000_TX:
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
CSR_WRITE_4(sc, TI_GCR_GLINK,
TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
} else {
CSR_WRITE_4(sc, TI_GCR_GLINK,
TI_GLNK_PREF|TI_GLNK_1000MB|
TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
}
CSR_WRITE_4(sc, TI_GCR_LINK, 0);
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
break;
case IFM_100_FX:
case IFM_10_FL:
case IFM_100_TX:
case IFM_10_T:
CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
} else {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
}
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
} else {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
}
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
TI_CMD_CODE_NEGOTIATE_10_100, 0);
break;
}
sc->ethercom.ec_if.if_baudrate =
ifmedia_baudrate(ifm->ifm_media);
return(0);
}
/*
* Report current media status.
*/
static void ti_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct ti_softc *sc;
u_int32_t media = 0;
sc = ifp->if_softc;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
return;
ifmr->ifm_status |= IFM_ACTIVE;
if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
if (sc->ti_copper)
ifmr->ifm_active |= IFM_1000_TX;
else
ifmr->ifm_active |= IFM_1000_SX;
if (media & TI_GLNK_FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
if (sc->ti_copper) {
if (media & TI_LNK_100MB)
ifmr->ifm_active |= IFM_100_TX;
if (media & TI_LNK_10MB)
ifmr->ifm_active |= IFM_10_T;
} else {
if (media & TI_LNK_100MB)
ifmr->ifm_active |= IFM_100_FX;
if (media & TI_LNK_10MB)
ifmr->ifm_active |= IFM_10_FL;
}
if (media & TI_LNK_FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
if (media & TI_LNK_HALF_DUPLEX)
ifmr->ifm_active |= IFM_HDX;
}
sc->ethercom.ec_if.if_baudrate =
ifmedia_baudrate(sc->ifmedia.ifm_media);
return;
}
static int
ti_ether_ioctl(ifp, cmd, data)
struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct ifaddr *ifa = (struct ifaddr *) data;
struct ti_softc *sc = ifp->if_softc;
if ((ifp->if_flags & IFF_UP) == 0) {
ifp->if_flags |= IFF_UP;
ti_init(sc);
}
switch (cmd) {
case SIOCSIFADDR:
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
arp_ifinit(ifp, ifa);
break;
#endif
#ifdef NS
case AF_NS:
{
struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host = *(union ns_host *)
LLADDR(ifp->if_sadl);
else
bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
ifp->if_addrlen);
break;
}
#endif
default:
break;
}
break;
default:
return (EINVAL);
}
return (0);
}
static int ti_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct ti_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
struct ti_cmd_desc cmd;
s = splnet();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
error = ti_ether_ioctl(ifp, command, data);
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu > ETHERMTU_JUMBO)
error = EINVAL;
else {
ifp->if_mtu = ifr->ifr_mtu;
ti_init(sc);
}
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
/*
* If only the state of the PROMISC flag changed,
* then just use the 'set promisc mode' command
* instead of reinitializing the entire NIC. Doing
* a full re-init means reloading the firmware and
* waiting for it to start up, which may take a
* second or two.
*/
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->ti_if_flags & IFF_PROMISC)) {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
TI_CMD_CODE_PROMISC_ENB, 0);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->ti_if_flags & IFF_PROMISC) {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
TI_CMD_CODE_PROMISC_DIS, 0);
} else
ti_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING) {
ti_stop(sc);
}
}
sc->ti_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = (command == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->ethercom) :
ether_delmulti(ifr, &sc->ethercom);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
ti_setmulti(sc);
error = 0;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
static void ti_watchdog(ifp)
struct ifnet *ifp;
{
struct ti_softc *sc;
sc = ifp->if_softc;
printf("%s: watchdog timeout -- resetting\n", sc->sc_dev.dv_xname);
ti_stop(sc);
ti_init(sc);
ifp->if_oerrors++;
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void ti_stop(sc)
struct ti_softc *sc;
{
struct ifnet *ifp;
struct ti_cmd_desc cmd;
ifp = &sc->ethercom.ec_if;
/* Disable host interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
/*
* Tell firmware we're shutting down.
*/
TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
/* Halt and reinitialize. */
ti_chipinit(sc);
ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
ti_chipinit(sc);
/* Free the RX lists. */
ti_free_rx_ring_std(sc);
/* Free jumbo RX list. */
ti_free_rx_ring_jumbo(sc);
/* Free mini RX list. */
ti_free_rx_ring_mini(sc);
/* Free TX buffers. */
ti_free_tx_ring(sc);
sc->ti_ev_prodidx.ti_idx = 0;
sc->ti_return_prodidx.ti_idx = 0;
sc->ti_tx_considx.ti_idx = 0;
sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void ti_shutdown(v)
void *v;
{
struct ti_softc *sc = v;
ti_chipinit(sc);
return;
}