754 lines
18 KiB
C
754 lines
18 KiB
C
/* $NetBSD: npf_inet.c,v 1.32 2014/07/20 00:37:41 rmind Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This material is based upon work partially supported by The
|
|
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Various protocol related helper routines.
|
|
*
|
|
* This layer manipulates npf_cache_t structure i.e. caches requested headers
|
|
* and stores which information was cached in the information bit field.
|
|
* It is also responsibility of this layer to update or invalidate the cache
|
|
* on rewrites (e.g. by translation routines).
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.32 2014/07/20 00:37:41 rmind Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <net/pfil.h>
|
|
#include <net/if.h>
|
|
#include <net/ethertypes.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/udp.h>
|
|
#include <netinet/ip_icmp.h>
|
|
|
|
#include "npf_impl.h"
|
|
|
|
/*
|
|
* npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
|
|
*/
|
|
|
|
uint16_t
|
|
npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
|
|
{
|
|
uint32_t sum;
|
|
|
|
/*
|
|
* RFC 1624:
|
|
* HC' = ~(~HC + ~m + m')
|
|
*
|
|
* Note: 1's complement sum is endian-independent (RFC 1071, page 2).
|
|
*/
|
|
sum = ~cksum & 0xffff;
|
|
sum += (~odatum & 0xffff) + ndatum;
|
|
sum = (sum >> 16) + (sum & 0xffff);
|
|
sum += (sum >> 16);
|
|
|
|
return ~sum & 0xffff;
|
|
}
|
|
|
|
uint16_t
|
|
npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
|
|
{
|
|
uint32_t sum;
|
|
|
|
/*
|
|
* Checksum 32-bit datum as as two 16-bit. Note, the first
|
|
* 32->16 bit reduction is not necessary.
|
|
*/
|
|
sum = ~cksum & 0xffff;
|
|
sum += (~odatum & 0xffff) + (ndatum & 0xffff);
|
|
|
|
sum += (~odatum >> 16) + (ndatum >> 16);
|
|
sum = (sum >> 16) + (sum & 0xffff);
|
|
sum += (sum >> 16);
|
|
return ~sum & 0xffff;
|
|
}
|
|
|
|
/*
|
|
* npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
|
|
*/
|
|
uint16_t
|
|
npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
|
|
const npf_addr_t *naddr)
|
|
{
|
|
const uint32_t *oip32 = (const uint32_t *)oaddr;
|
|
const uint32_t *nip32 = (const uint32_t *)naddr;
|
|
|
|
KASSERT(sz % sizeof(uint32_t) == 0);
|
|
do {
|
|
cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
|
|
sz -= sizeof(uint32_t);
|
|
} while (sz);
|
|
|
|
return cksum;
|
|
}
|
|
|
|
/*
|
|
* npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
|
|
* Note: used for hash function.
|
|
*/
|
|
uint32_t
|
|
npf_addr_mix(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
|
|
{
|
|
uint32_t mix = 0;
|
|
|
|
KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
|
|
|
|
for (int i = 0; i < (sz >> 2); i++) {
|
|
mix ^= a1->s6_addr32[i];
|
|
mix ^= a2->s6_addr32[i];
|
|
}
|
|
return mix;
|
|
}
|
|
|
|
/*
|
|
* npf_addr_mask: apply the mask to a given address and store the result.
|
|
*/
|
|
void
|
|
npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
|
|
const int alen, npf_addr_t *out)
|
|
{
|
|
const int nwords = alen >> 2;
|
|
uint_fast8_t length = mask;
|
|
|
|
/* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
|
|
KASSERT(length <= NPF_MAX_NETMASK);
|
|
|
|
for (int i = 0; i < nwords; i++) {
|
|
uint32_t wordmask;
|
|
|
|
if (length >= 32) {
|
|
wordmask = htonl(0xffffffff);
|
|
length -= 32;
|
|
} else if (length) {
|
|
wordmask = htonl(0xffffffff << (32 - length));
|
|
length = 0;
|
|
} else {
|
|
wordmask = 0;
|
|
}
|
|
out->s6_addr32[i] = addr->s6_addr32[i] & wordmask;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
|
|
*
|
|
* => Return 0 if equal and negative/positive if less/greater accordingly.
|
|
* => Ignore the mask, if NPF_NO_NETMASK is specified.
|
|
*/
|
|
int
|
|
npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
|
|
const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
|
|
{
|
|
npf_addr_t realaddr1, realaddr2;
|
|
|
|
if (mask1 != NPF_NO_NETMASK) {
|
|
npf_addr_mask(addr1, mask1, alen, &realaddr1);
|
|
addr1 = &realaddr1;
|
|
}
|
|
if (mask2 != NPF_NO_NETMASK) {
|
|
npf_addr_mask(addr2, mask2, alen, &realaddr2);
|
|
addr2 = &realaddr2;
|
|
}
|
|
return memcmp(addr1, addr2, alen);
|
|
}
|
|
|
|
/*
|
|
* npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
|
|
*
|
|
* => Returns all values in host byte-order.
|
|
*/
|
|
int
|
|
npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
|
|
{
|
|
const struct tcphdr *th = npc->npc_l4.tcp;
|
|
u_int thlen;
|
|
|
|
KASSERT(npf_iscached(npc, NPC_TCP));
|
|
|
|
*seq = ntohl(th->th_seq);
|
|
*ack = ntohl(th->th_ack);
|
|
*win = (uint32_t)ntohs(th->th_win);
|
|
thlen = th->th_off << 2;
|
|
|
|
if (npf_iscached(npc, NPC_IP4)) {
|
|
const struct ip *ip = npc->npc_ip.v4;
|
|
return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
|
|
} else if (npf_iscached(npc, NPC_IP6)) {
|
|
const struct ip6_hdr *ip6 = npc->npc_ip.v6;
|
|
return ntohs(ip6->ip6_plen) - thlen;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* npf_fetch_tcpopts: parse and return TCP options.
|
|
*/
|
|
bool
|
|
npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
|
|
{
|
|
nbuf_t *nbuf = npc->npc_nbuf;
|
|
const struct tcphdr *th = npc->npc_l4.tcp;
|
|
int topts_len, step;
|
|
void *nptr;
|
|
uint8_t val;
|
|
bool ok;
|
|
|
|
KASSERT(npf_iscached(npc, NPC_IP46));
|
|
KASSERT(npf_iscached(npc, NPC_TCP));
|
|
|
|
/* Determine if there are any TCP options, get their length. */
|
|
topts_len = (th->th_off << 2) - sizeof(struct tcphdr);
|
|
if (topts_len <= 0) {
|
|
/* No options. */
|
|
return false;
|
|
}
|
|
KASSERT(topts_len <= MAX_TCPOPTLEN);
|
|
|
|
/* First step: IP and TCP header up to options. */
|
|
step = npc->npc_hlen + sizeof(struct tcphdr);
|
|
nbuf_reset(nbuf);
|
|
next:
|
|
if ((nptr = nbuf_advance(nbuf, step, 1)) == NULL) {
|
|
ok = false;
|
|
goto done;
|
|
}
|
|
val = *(uint8_t *)nptr;
|
|
|
|
switch (val) {
|
|
case TCPOPT_EOL:
|
|
/* Done. */
|
|
ok = true;
|
|
goto done;
|
|
case TCPOPT_NOP:
|
|
topts_len--;
|
|
step = 1;
|
|
break;
|
|
case TCPOPT_MAXSEG:
|
|
if ((nptr = nbuf_advance(nbuf, 2, 2)) == NULL) {
|
|
ok = false;
|
|
goto done;
|
|
}
|
|
if (mss) {
|
|
if (*mss) {
|
|
memcpy(nptr, mss, sizeof(uint16_t));
|
|
} else {
|
|
memcpy(mss, nptr, sizeof(uint16_t));
|
|
}
|
|
}
|
|
topts_len -= TCPOLEN_MAXSEG;
|
|
step = 2;
|
|
break;
|
|
case TCPOPT_WINDOW:
|
|
/* TCP Window Scaling (RFC 1323). */
|
|
if ((nptr = nbuf_advance(nbuf, 2, 1)) == NULL) {
|
|
ok = false;
|
|
goto done;
|
|
}
|
|
val = *(uint8_t *)nptr;
|
|
*wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
|
|
topts_len -= TCPOLEN_WINDOW;
|
|
step = 1;
|
|
break;
|
|
default:
|
|
if ((nptr = nbuf_advance(nbuf, 1, 1)) == NULL) {
|
|
ok = false;
|
|
goto done;
|
|
}
|
|
val = *(uint8_t *)nptr;
|
|
if (val < 2 || val > topts_len) {
|
|
ok = false;
|
|
goto done;
|
|
}
|
|
topts_len -= val;
|
|
step = val - 1;
|
|
}
|
|
|
|
/* Any options left? */
|
|
if (__predict_true(topts_len > 0)) {
|
|
goto next;
|
|
}
|
|
ok = true;
|
|
done:
|
|
if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
|
|
npf_recache(npc);
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
static int
|
|
npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
|
|
{
|
|
const void *nptr = nbuf_dataptr(nbuf);
|
|
const uint8_t ver = *(const uint8_t *)nptr;
|
|
int flags = 0;
|
|
|
|
switch (ver >> 4) {
|
|
case IPVERSION: {
|
|
struct ip *ip;
|
|
|
|
ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
|
|
if (ip == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
/* Check header length and fragment offset. */
|
|
if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
|
|
return 0;
|
|
}
|
|
if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
|
|
/* Note fragmentation. */
|
|
flags |= NPC_IPFRAG;
|
|
}
|
|
|
|
/* Cache: layer 3 - IPv4. */
|
|
npc->npc_alen = sizeof(struct in_addr);
|
|
npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
|
|
npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
|
|
npc->npc_hlen = ip->ip_hl << 2;
|
|
npc->npc_proto = ip->ip_p;
|
|
|
|
npc->npc_ip.v4 = ip;
|
|
flags |= NPC_IP4;
|
|
break;
|
|
}
|
|
|
|
case (IPV6_VERSION >> 4): {
|
|
struct ip6_hdr *ip6;
|
|
struct ip6_ext *ip6e;
|
|
size_t off, hlen;
|
|
|
|
ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
|
|
if (ip6 == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
/* Set initial next-protocol value. */
|
|
hlen = sizeof(struct ip6_hdr);
|
|
npc->npc_proto = ip6->ip6_nxt;
|
|
npc->npc_hlen = hlen;
|
|
|
|
/*
|
|
* Advance by the length of the current header.
|
|
*/
|
|
off = nbuf_offset(nbuf);
|
|
while (nbuf_advance(nbuf, hlen, 0) != NULL) {
|
|
ip6e = nbuf_ensure_contig(nbuf, sizeof(*ip6e));
|
|
if (ip6e == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Determine whether we are going to continue.
|
|
*/
|
|
switch (npc->npc_proto) {
|
|
case IPPROTO_HOPOPTS:
|
|
case IPPROTO_DSTOPTS:
|
|
case IPPROTO_ROUTING:
|
|
hlen = (ip6e->ip6e_len + 1) << 3;
|
|
break;
|
|
case IPPROTO_FRAGMENT:
|
|
hlen = sizeof(struct ip6_frag);
|
|
flags |= NPC_IPFRAG;
|
|
break;
|
|
case IPPROTO_AH:
|
|
hlen = (ip6e->ip6e_len + 2) << 2;
|
|
break;
|
|
default:
|
|
hlen = 0;
|
|
break;
|
|
}
|
|
|
|
if (!hlen) {
|
|
break;
|
|
}
|
|
npc->npc_proto = ip6e->ip6e_nxt;
|
|
npc->npc_hlen += hlen;
|
|
}
|
|
|
|
/*
|
|
* Re-fetch the header pointers (nbufs might have been
|
|
* reallocated). Restore the original offset (if any).
|
|
*/
|
|
nbuf_reset(nbuf);
|
|
ip6 = nbuf_dataptr(nbuf);
|
|
if (off) {
|
|
nbuf_advance(nbuf, off, 0);
|
|
}
|
|
|
|
/* Cache: layer 3 - IPv6. */
|
|
npc->npc_alen = sizeof(struct in6_addr);
|
|
npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
|
|
npc->npc_ips[NPF_DST]= (npf_addr_t *)&ip6->ip6_dst;
|
|
|
|
npc->npc_ip.v6 = ip6;
|
|
flags |= NPC_IP6;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
/*
|
|
* npf_cache_all: general routine to cache all relevant IP (v4 or v6)
|
|
* and TCP, UDP or ICMP headers.
|
|
*
|
|
* => nbuf offset shall be set accordingly.
|
|
*/
|
|
int
|
|
npf_cache_all(npf_cache_t *npc)
|
|
{
|
|
nbuf_t *nbuf = npc->npc_nbuf;
|
|
int flags, l4flags;
|
|
u_int hlen;
|
|
|
|
/*
|
|
* This routine is a main point where the references are cached,
|
|
* therefore clear the flag as we reset.
|
|
*/
|
|
again:
|
|
nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
|
|
|
|
/*
|
|
* First, cache the L3 header (IPv4 or IPv6). If IP packet is
|
|
* fragmented, then we cannot look into L4.
|
|
*/
|
|
flags = npf_cache_ip(npc, nbuf);
|
|
if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0) {
|
|
nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
|
|
npc->npc_info |= flags;
|
|
return flags;
|
|
}
|
|
hlen = npc->npc_hlen;
|
|
|
|
switch (npc->npc_proto) {
|
|
case IPPROTO_TCP:
|
|
/* Cache: layer 4 - TCP. */
|
|
npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
|
|
sizeof(struct tcphdr));
|
|
l4flags = NPC_LAYER4 | NPC_TCP;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
/* Cache: layer 4 - UDP. */
|
|
npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
|
|
sizeof(struct udphdr));
|
|
l4flags = NPC_LAYER4 | NPC_UDP;
|
|
break;
|
|
case IPPROTO_ICMP:
|
|
/* Cache: layer 4 - ICMPv4. */
|
|
npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
|
|
offsetof(struct icmp, icmp_void));
|
|
l4flags = NPC_LAYER4 | NPC_ICMP;
|
|
break;
|
|
case IPPROTO_ICMPV6:
|
|
/* Cache: layer 4 - ICMPv6. */
|
|
npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
|
|
offsetof(struct icmp6_hdr, icmp6_data32));
|
|
l4flags = NPC_LAYER4 | NPC_ICMP;
|
|
break;
|
|
default:
|
|
l4flags = 0;
|
|
break;
|
|
}
|
|
|
|
if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
|
|
goto again;
|
|
}
|
|
|
|
/* Add the L4 flags if nbuf_advance() succeeded. */
|
|
if (l4flags && npc->npc_l4.hdr) {
|
|
flags |= l4flags;
|
|
}
|
|
npc->npc_info |= flags;
|
|
return flags;
|
|
}
|
|
|
|
void
|
|
npf_recache(npf_cache_t *npc)
|
|
{
|
|
nbuf_t *nbuf = npc->npc_nbuf;
|
|
const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
|
|
int flags __diagused;
|
|
|
|
nbuf_reset(nbuf);
|
|
npc->npc_info = 0;
|
|
flags = npf_cache_all(npc);
|
|
|
|
KASSERT((flags & mflags) == mflags);
|
|
KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
|
|
}
|
|
|
|
/*
|
|
* npf_rwrip: rewrite required IP address.
|
|
*/
|
|
bool
|
|
npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
|
|
{
|
|
KASSERT(npf_iscached(npc, NPC_IP46));
|
|
KASSERT(which == NPF_SRC || which == NPF_DST);
|
|
|
|
memcpy(npc->npc_ips[which], addr, npc->npc_alen);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* npf_rwrport: rewrite required TCP/UDP port.
|
|
*/
|
|
bool
|
|
npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
|
|
{
|
|
const int proto = npc->npc_proto;
|
|
in_port_t *oport;
|
|
|
|
KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
|
|
KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
|
|
KASSERT(which == NPF_SRC || which == NPF_DST);
|
|
|
|
/* Get the offset and store the port in it. */
|
|
if (proto == IPPROTO_TCP) {
|
|
struct tcphdr *th = npc->npc_l4.tcp;
|
|
oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
|
|
} else {
|
|
struct udphdr *uh = npc->npc_l4.udp;
|
|
oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
|
|
}
|
|
memcpy(oport, &port, sizeof(in_port_t));
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
|
|
*/
|
|
bool
|
|
npf_rwrcksum(const npf_cache_t *npc, u_int which,
|
|
const npf_addr_t *addr, const in_port_t port)
|
|
{
|
|
const npf_addr_t *oaddr = npc->npc_ips[which];
|
|
const int proto = npc->npc_proto;
|
|
const int alen = npc->npc_alen;
|
|
uint16_t *ocksum;
|
|
in_port_t oport;
|
|
|
|
KASSERT(npf_iscached(npc, NPC_LAYER4));
|
|
KASSERT(which == NPF_SRC || which == NPF_DST);
|
|
|
|
if (npf_iscached(npc, NPC_IP4)) {
|
|
struct ip *ip = npc->npc_ip.v4;
|
|
uint16_t ipsum = ip->ip_sum;
|
|
|
|
/* Recalculate IPv4 checksum and rewrite. */
|
|
ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
|
|
} else {
|
|
/* No checksum for IPv6. */
|
|
KASSERT(npf_iscached(npc, NPC_IP6));
|
|
}
|
|
|
|
/* Nothing else to do for ICMP. */
|
|
if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
|
|
return true;
|
|
}
|
|
KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
|
|
|
|
/*
|
|
* Calculate TCP/UDP checksum:
|
|
* - Skip if UDP and the current checksum is zero.
|
|
* - Fixup the IP address change.
|
|
* - Fixup the port change, if required (non-zero).
|
|
*/
|
|
if (proto == IPPROTO_TCP) {
|
|
struct tcphdr *th = npc->npc_l4.tcp;
|
|
|
|
ocksum = &th->th_sum;
|
|
oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
|
|
} else {
|
|
struct udphdr *uh = npc->npc_l4.udp;
|
|
|
|
KASSERT(proto == IPPROTO_UDP);
|
|
ocksum = &uh->uh_sum;
|
|
if (*ocksum == 0) {
|
|
/* No need to update. */
|
|
return true;
|
|
}
|
|
oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
|
|
}
|
|
|
|
uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
|
|
if (port) {
|
|
cksum = npf_fixup16_cksum(cksum, oport, port);
|
|
}
|
|
|
|
/* Rewrite TCP/UDP checksum. */
|
|
memcpy(ocksum, &cksum, sizeof(uint16_t));
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* npf_napt_rwr: perform address and/or port translation.
|
|
*/
|
|
int
|
|
npf_napt_rwr(const npf_cache_t *npc, u_int which,
|
|
const npf_addr_t *addr, const in_addr_t port)
|
|
{
|
|
const unsigned proto = npc->npc_proto;
|
|
|
|
/*
|
|
* Rewrite IP and/or TCP/UDP checksums first, since we need the
|
|
* current (old) address/port for the calculations. Then perform
|
|
* the address translation i.e. rewrite source or destination.
|
|
*/
|
|
if (!npf_rwrcksum(npc, which, addr, port)) {
|
|
return EINVAL;
|
|
}
|
|
if (!npf_rwrip(npc, which, addr)) {
|
|
return EINVAL;
|
|
}
|
|
if (port == 0) {
|
|
/* Done. */
|
|
return 0;
|
|
}
|
|
|
|
switch (proto) {
|
|
case IPPROTO_TCP:
|
|
case IPPROTO_UDP:
|
|
/* Rewrite source/destination port. */
|
|
if (!npf_rwrport(npc, which, port)) {
|
|
return EINVAL;
|
|
}
|
|
break;
|
|
case IPPROTO_ICMP:
|
|
case IPPROTO_ICMPV6:
|
|
KASSERT(npf_iscached(npc, NPC_ICMP));
|
|
/* Nothing. */
|
|
break;
|
|
default:
|
|
return ENOTSUP;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
|
|
*/
|
|
|
|
int
|
|
npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
|
|
npf_netmask_t len, uint16_t adj)
|
|
{
|
|
npf_addr_t *addr = npc->npc_ips[which];
|
|
unsigned remnant, word, preflen = len >> 4;
|
|
uint32_t sum;
|
|
|
|
KASSERT(which == NPF_SRC || which == NPF_DST);
|
|
|
|
if (!npf_iscached(npc, NPC_IP6)) {
|
|
return EINVAL;
|
|
}
|
|
if (len <= 48) {
|
|
/*
|
|
* The word to adjust. Cannot translate the 0xffff
|
|
* subnet if /48 or shorter.
|
|
*/
|
|
word = 3;
|
|
if (addr->s6_addr16[word] == 0xffff) {
|
|
return EINVAL;
|
|
}
|
|
} else {
|
|
/*
|
|
* Also, all 0s or 1s in the host part are disallowed for
|
|
* longer than /48 prefixes.
|
|
*/
|
|
if ((addr->s6_addr32[2] == 0 && addr->s6_addr32[3] == 0) ||
|
|
(addr->s6_addr32[2] == ~0U && addr->s6_addr32[3] == ~0U))
|
|
return EINVAL;
|
|
|
|
/* Determine the 16-bit word to adjust. */
|
|
for (word = 4; word < 8; word++)
|
|
if (addr->s6_addr16[word] != 0xffff)
|
|
break;
|
|
}
|
|
|
|
/* Rewrite the prefix. */
|
|
for (unsigned i = 0; i < preflen; i++) {
|
|
addr->s6_addr16[i] = pref->s6_addr16[i];
|
|
}
|
|
|
|
/*
|
|
* If prefix length is within a 16-bit word (not dividable by 16),
|
|
* then prepare a mask, determine the word and adjust it.
|
|
*/
|
|
if ((remnant = len - (preflen << 4)) != 0) {
|
|
const uint16_t wordmask = (1U << remnant) - 1;
|
|
const unsigned i = preflen;
|
|
|
|
addr->s6_addr16[i] = (pref->s6_addr16[i] & wordmask) |
|
|
(addr->s6_addr16[i] & ~wordmask);
|
|
}
|
|
|
|
/*
|
|
* Performing 1's complement sum/difference.
|
|
*/
|
|
sum = addr->s6_addr16[word] + adj;
|
|
while (sum >> 16) {
|
|
sum = (sum >> 16) + (sum & 0xffff);
|
|
}
|
|
if (sum == 0xffff) {
|
|
/* RFC 1071. */
|
|
sum = 0x0000;
|
|
}
|
|
addr->s6_addr16[word] = sum;
|
|
return 0;
|
|
}
|
|
|
|
#if defined(DDB) || defined(_NPF_TESTING)
|
|
|
|
const char *
|
|
npf_addr_dump(const npf_addr_t *addr, int alen)
|
|
{
|
|
if (alen == sizeof(struct in_addr)) {
|
|
struct in_addr ip;
|
|
memcpy(&ip, addr, alen);
|
|
return inet_ntoa(ip);
|
|
}
|
|
return "[IPv6]"; // XXX
|
|
}
|
|
|
|
#endif
|