NetBSD/sys/kern/kern_rndq.c
tls 9d8dce6eca Fix hardware RNGs -- accept their entropy estimates *rather than* using
timestamps to estimate the entropy of their input.  I'd accidentally
made it so no entropy was ever counted from them at all.
2012-10-27 01:29:02 +00:00

1076 lines
27 KiB
C

/* $NetBSD: kern_rndq.c,v 1.6 2012/10/27 01:29:02 tls Exp $ */
/*-
* Copyright (c) 1997-2011 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Michael Graff <explorer@flame.org> and Thor Lancelot Simon.
* This code uses ideas and algorithms from the Linux driver written by
* Ted Ts'o.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_rndq.c,v 1.6 2012/10/27 01:29:02 tls Exp $");
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/fcntl.h>
#include <sys/select.h>
#include <sys/poll.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/rnd.h>
#include <sys/vnode.h>
#include <sys/pool.h>
#include <sys/kauth.h>
#include <sys/once.h>
#include <sys/rngtest.h>
#include <sys/cpu.h> /* XXX temporary, see rnd_detach_source */
#include <dev/rnd_private.h>
#if defined(__HAVE_CPU_COUNTER) && !defined(_RUMPKERNEL) /* XXX: bad pooka */
#include <machine/cpu_counter.h>
#endif
#ifdef RND_DEBUG
#define DPRINTF(l,x) if (rnd_debug & (l)) printf x
int rnd_debug = 0;
#else
#define DPRINTF(l,x)
#endif
#define RND_DEBUG_WRITE 0x0001
#define RND_DEBUG_READ 0x0002
#define RND_DEBUG_IOCTL 0x0004
#define RND_DEBUG_SNOOZE 0x0008
/*
* list devices attached
*/
#if 0
#define RND_VERBOSE
#endif
/*
* The size of a temporary buffer, kmem_alloc()ed when needed, and used for
* reading and writing data.
*/
#define RND_TEMP_BUFFER_SIZE 128
/*
* This is a little bit of state information attached to each device that we
* collect entropy from. This is simply a collection buffer, and when it
* is full it will be "detached" from the source and added to the entropy
* pool after entropy is distilled as much as possible.
*/
#define RND_SAMPLE_COUNT 64 /* collect N samples, then compress */
typedef struct _rnd_sample_t {
SIMPLEQ_ENTRY(_rnd_sample_t) next;
krndsource_t *source;
int cursor;
int entropy;
u_int32_t ts[RND_SAMPLE_COUNT];
u_int32_t values[RND_SAMPLE_COUNT];
} rnd_sample_t;
/*
* The event queue. Fields are altered at an interrupt level.
* All accesses must be protected with the mutex.
*/
volatile int rnd_timeout_pending;
SIMPLEQ_HEAD(, _rnd_sample_t) rnd_samples;
kmutex_t rnd_mtx;
/*
* Entropy sinks: usually other generators waiting to be rekeyed.
*
* A sink's callback MUST NOT re-add the sink to the list, or
* list corruption will occur. The list is protected by the
* rndsink_mtx, which must be released before calling any sink's
* callback.
*/
TAILQ_HEAD(, rndsink) rnd_sinks;
kmutex_t rndsink_mtx;
/*
* Memory pool for sample buffers
*/
static pool_cache_t rnd_mempc;
/*
* Our random pool. This is defined here rather than using the general
* purpose one defined in rndpool.c.
*
* Samples are collected and queued into a separate mutex-protected queue
* (rnd_samples, see above), and processed in a timeout routine; therefore,
* the mutex protecting the random pool is at IPL_SOFTCLOCK() as well.
*/
rndpool_t rnd_pool;
kmutex_t rndpool_mtx;
kcondvar_t rndpool_cv;
/*
* This source is used to easily "remove" queue entries when the source
* which actually generated the events is going away.
*/
static krndsource_t rnd_source_no_collect = {
/* LIST_ENTRY list */
.name = { 'N', 'o', 'C', 'o', 'l', 'l', 'e', 'c', 't',
0, 0, 0, 0, 0, 0, 0 },
.last_time = 0, .last_delta = 0, .last_delta2 = 0, .total = 0,
.type = RND_TYPE_UNKNOWN,
.flags = (RND_FLAG_NO_COLLECT |
RND_FLAG_NO_ESTIMATE |
RND_TYPE_UNKNOWN),
.state = NULL,
.test_cnt = 0,
.test = NULL
};
struct callout rnd_callout, skew_callout;
void rnd_wakeup_readers(void);
static inline u_int32_t rnd_estimate_entropy(krndsource_t *, u_int32_t);
static inline u_int32_t rnd_counter(void);
static void rnd_timeout(void *);
static void rnd_process_events(void *);
u_int32_t rnd_extract_data_locked(void *, u_int32_t, u_int32_t); /* XXX */
static void rnd_add_data_ts(krndsource_t *, const void *const,
uint32_t, uint32_t, uint32_t);
int rnd_ready = 0;
int rnd_initial_entropy = 0;
#ifdef DIAGNOSTIC
static int rnd_tested = 0;
static rngtest_t rnd_rt;
static uint8_t rnd_testbits[sizeof(rnd_rt.rt_b)];
#endif
LIST_HEAD(, krndsource) rnd_sources;
rndsave_t *boot_rsp;
/*
* Generate a 32-bit counter. This should be more machine dependent,
* using cycle counters and the like when possible.
*/
static inline u_int32_t
rnd_counter(void)
{
struct timeval tv;
#if defined(__HAVE_CPU_COUNTER) && !defined(_RUMPKERNEL) /* XXX: bad pooka */
if (cpu_hascounter())
return (cpu_counter32());
#endif
if (rnd_ready) {
microtime(&tv);
return (tv.tv_sec * 1000000 + tv.tv_usec);
}
/* when called from rnd_init, its too early to call microtime safely */
return (0);
}
/*
* Check to see if there are readers waiting on us. If so, kick them.
*/
void
rnd_wakeup_readers(void)
{
rndsink_t *sink, *tsink;
TAILQ_HEAD(, rndsink) sunk = TAILQ_HEAD_INITIALIZER(sunk);
mutex_spin_enter(&rndpool_mtx);
if (rndpool_get_entropy_count(&rnd_pool) < RND_ENTROPY_THRESHOLD * 8) {
mutex_spin_exit(&rndpool_mtx);
return;
}
/*
* First, take care of in-kernel consumers needing rekeying.
*/
mutex_spin_enter(&rndsink_mtx);
TAILQ_FOREACH_SAFE(sink, &rnd_sinks, tailq, tsink) {
if (!mutex_tryenter(&sink->mtx)) {
#ifdef RND_VERBOSE
printf("rnd_wakeup_readers: "
"skipping busy rndsink\n");
#endif
continue;
}
KASSERT(RSTATE_PENDING == sink->state);
if ((sink->len + RND_ENTROPY_THRESHOLD) * 8 <
rndpool_get_entropy_count(&rnd_pool)) {
/* We have enough entropy to sink some here. */
if (rndpool_extract_data(&rnd_pool, sink->data,
sink->len, RND_EXTRACT_GOOD)
!= sink->len) {
panic("could not extract estimated "
"entropy from pool");
}
sink->state = RSTATE_HASBITS;
/* Move this sink to the list of pending callbacks */
TAILQ_REMOVE(&rnd_sinks, sink, tailq);
TAILQ_INSERT_HEAD(&sunk, sink, tailq);
} else {
mutex_exit(&sink->mtx);
}
}
mutex_spin_exit(&rndsink_mtx);
/*
* If we still have enough new bits to do something, feed userspace.
*/
if (rndpool_get_entropy_count(&rnd_pool) > RND_ENTROPY_THRESHOLD * 8) {
#ifdef RND_VERBOSE
if (!rnd_initial_entropy)
printf("rnd: have initial entropy (%u)\n",
rndpool_get_entropy_count(&rnd_pool));
#endif
rnd_initial_entropy = 1;
mutex_spin_exit(&rndpool_mtx);
} else {
mutex_spin_exit(&rndpool_mtx);
}
/*
* Now that we have dropped the mutex, we can run sinks' callbacks.
* Since we have reused the "tailq" member of the sink structure for
* this temporary on-stack queue, the callback must NEVER re-add
* the sink to the main queue, or our on-stack queue will become
* corrupt.
*/
while ((sink = TAILQ_FIRST(&sunk))) {
#ifdef RND_VERBOSE
printf("supplying %d bytes to entropy sink \"%s\""
" (cb %p, arg %p).\n",
(int)sink->len, sink->name, sink->cb, sink->arg);
#endif
sink->state = RSTATE_HASBITS;
sink->cb(sink->arg);
TAILQ_REMOVE(&sunk, sink, tailq);
mutex_spin_exit(&sink->mtx);
}
}
/*
* Use the timing of the event to estimate the entropy gathered.
* If all the differentials (first, second, and third) are non-zero, return
* non-zero. If any of these are zero, return zero.
*/
static inline u_int32_t
rnd_estimate_entropy(krndsource_t *rs, u_int32_t t)
{
int32_t delta, delta2, delta3;
/*
* If the time counter has overflowed, calculate the real difference.
* If it has not, it is simplier.
*/
if (t < rs->last_time)
delta = UINT_MAX - rs->last_time + t;
else
delta = rs->last_time - t;
if (delta < 0)
delta = -delta;
/*
* Calculate the second and third order differentials
*/
delta2 = rs->last_delta - delta;
if (delta2 < 0)
delta2 = -delta2;
delta3 = rs->last_delta2 - delta2;
if (delta3 < 0)
delta3 = -delta3;
rs->last_time = t;
rs->last_delta = delta;
rs->last_delta2 = delta2;
/*
* If any delta is 0, we got no entropy. If all are non-zero, we
* might have something.
*/
if (delta == 0 || delta2 == 0 || delta3 == 0)
return (0);
return (1);
}
#if defined(__HAVE_CPU_COUNTER) && !defined(_RUMPKERNEL)
static void
rnd_skew(void *arg)
{
static krndsource_t skewsrc;
static int live, flipflop;
/*
* Only one instance of this callout will ever be scheduled
* at a time (it is only ever scheduled by itself). So no
* locking is required here.
*/
/*
* Even on systems with seemingly stable clocks, the
* entropy estimator seems to think we get 1 bit here
* about every 2 calls. That seems like too much. Set
* NO_ESTIMATE on this source until we can better analyze
* the entropy of its output.
*/
if (__predict_false(!live)) {
rnd_attach_source(&skewsrc, "callout", RND_TYPE_SKEW,
RND_FLAG_NO_ESTIMATE);
live = 1;
}
flipflop = !flipflop;
if (flipflop) {
rnd_add_uint32(&skewsrc, rnd_counter());
callout_schedule(&skew_callout, hz);
} else {
callout_schedule(&skew_callout, 1);
}
}
#endif
/*
* initialize the global random pool for our use.
* rnd_init() must be called very early on in the boot process, so
* the pool is ready for other devices to attach as sources.
*/
void
rnd_init(void)
{
u_int32_t c;
if (rnd_ready)
return;
mutex_init(&rnd_mtx, MUTEX_DEFAULT, IPL_VM);
mutex_init(&rndsink_mtx, MUTEX_DEFAULT, IPL_VM);
callout_init(&rnd_callout, CALLOUT_MPSAFE);
callout_setfunc(&rnd_callout, rnd_timeout, NULL);
/*
* take a counter early, hoping that there's some variance in
* the following operations
*/
c = rnd_counter();
LIST_INIT(&rnd_sources);
SIMPLEQ_INIT(&rnd_samples);
TAILQ_INIT(&rnd_sinks);
rndpool_init(&rnd_pool);
mutex_init(&rndpool_mtx, MUTEX_DEFAULT, IPL_VM);
cv_init(&rndpool_cv, "rndread");
rnd_mempc = pool_cache_init(sizeof(rnd_sample_t), 0, 0, 0,
"rndsample", NULL, IPL_VM,
NULL, NULL, NULL);
/* Mix *something*, *anything* into the pool to help it get started.
* However, it's not safe for rnd_counter() to call microtime() yet,
* so on some platforms we might just end up with zeros anyway.
* XXX more things to add would be nice.
*/
if (c) {
mutex_spin_enter(&rndpool_mtx);
rndpool_add_data(&rnd_pool, &c, sizeof(c), 1);
c = rnd_counter();
rndpool_add_data(&rnd_pool, &c, sizeof(c), 1);
mutex_spin_exit(&rndpool_mtx);
}
rnd_ready = 1;
/*
* If we have a cycle counter, take its error with respect
* to the callout mechanism as a source of entropy, ala
* TrueRand.
*
* XXX This will do little when the cycle counter *is* what's
* XXX clocking the callout mechanism. How to get this right
* XXX without unsightly spelunking in the timecounter code?
*/
#if defined(__HAVE_CPU_COUNTER) && !defined(_RUMPKERNEL) /* XXX: bad pooka */
callout_init(&skew_callout, CALLOUT_MPSAFE);
callout_setfunc(&skew_callout, rnd_skew, NULL);
rnd_skew(NULL);
#endif
#ifdef RND_VERBOSE
printf("rnd: initialised (%u)%s", RND_POOLBITS,
c ? " with counter\n" : "\n");
#endif
if (boot_rsp != NULL) {
mutex_spin_enter(&rndpool_mtx);
rndpool_add_data(&rnd_pool, boot_rsp->data,
sizeof(boot_rsp->data),
MIN(boot_rsp->entropy,
RND_POOLBITS / 2));
if (rndpool_get_entropy_count(&rnd_pool) >
RND_ENTROPY_THRESHOLD * 8) {
rnd_initial_entropy = 1;
}
mutex_spin_exit(&rndpool_mtx);
#ifdef RND_VERBOSE
printf("rnd: seeded with %d bits\n",
MIN(boot_rsp->entropy, RND_POOLBITS / 2));
#endif
memset(boot_rsp, 0, sizeof(*boot_rsp));
}
}
static rnd_sample_t *
rnd_sample_allocate(krndsource_t *source)
{
rnd_sample_t *c;
c = pool_cache_get(rnd_mempc, PR_WAITOK);
if (c == NULL)
return (NULL);
c->source = source;
c->cursor = 0;
c->entropy = 0;
return (c);
}
/*
* Don't wait on allocation. To be used in an interrupt context.
*/
static rnd_sample_t *
rnd_sample_allocate_isr(krndsource_t *source)
{
rnd_sample_t *c;
c = pool_cache_get(rnd_mempc, PR_NOWAIT);
if (c == NULL)
return (NULL);
c->source = source;
c->cursor = 0;
c->entropy = 0;
return (c);
}
static void
rnd_sample_free(rnd_sample_t *c)
{
memset(c, 0, sizeof(*c));
pool_cache_put(rnd_mempc, c);
}
/*
* Add a source to our list of sources.
*/
void
rnd_attach_source(krndsource_t *rs, const char *name, u_int32_t type,
u_int32_t flags)
{
u_int32_t ts;
ts = rnd_counter();
strlcpy(rs->name, name, sizeof(rs->name));
rs->last_time = ts;
rs->last_delta = 0;
rs->last_delta2 = 0;
rs->total = 0;
/*
* Force network devices to not collect any entropy by
* default.
*/
if (type == RND_TYPE_NET)
flags |= (RND_FLAG_NO_COLLECT | RND_FLAG_NO_ESTIMATE);
/*
* Hardware RNGs get extra space for statistical testing.
*/
if (type == RND_TYPE_RNG) {
rs->test = kmem_alloc(sizeof(rngtest_t), KM_NOSLEEP);
rs->test_cnt = 0;
} else {
rs->test = NULL;
rs->test_cnt = -1;
}
rs->type = type;
rs->flags = flags;
rs->state = rnd_sample_allocate(rs);
mutex_spin_enter(&rndpool_mtx);
LIST_INSERT_HEAD(&rnd_sources, rs, list);
#ifdef RND_VERBOSE
printf("rnd: %s attached as an entropy source (", rs->name);
if (!(flags & RND_FLAG_NO_COLLECT)) {
printf("collecting");
if (flags & RND_FLAG_NO_ESTIMATE)
printf(" without estimation");
}
else
printf("off");
printf(")\n");
#endif
/*
* Again, put some more initial junk in the pool.
* XXX Bogus, but harder to guess than zeros.
*/
rndpool_add_data(&rnd_pool, &ts, sizeof(u_int32_t), 1);
mutex_spin_exit(&rndpool_mtx);
}
/*
* Remove a source from our list of sources.
*/
void
rnd_detach_source(krndsource_t *source)
{
rnd_sample_t *sample;
mutex_spin_enter(&rnd_mtx);
LIST_REMOVE(source, list);
/*
* If there are samples queued up "remove" them from the sample queue
* by setting the source to the no-collect pseudosource.
*/
sample = SIMPLEQ_FIRST(&rnd_samples);
while (sample != NULL) {
if (sample->source == source)
sample->source = &rnd_source_no_collect;
sample = SIMPLEQ_NEXT(sample, next);
}
mutex_spin_exit(&rnd_mtx);
if (!cpu_softintr_p()) { /* XXX XXX very temporary "fix" */
if (source->state) {
rnd_sample_free(source->state);
source->state = NULL;
}
if (source->test) {
kmem_free(source->test, sizeof(rngtest_t));
}
}
#ifdef RND_VERBOSE
printf("rnd: %s detached as an entropy source\n", source->name);
#endif
}
/*
* Add a 32-bit value to the entropy pool. The rs parameter should point to
* the source-specific source structure.
*/
void
_rnd_add_uint32(krndsource_t *rs, u_int32_t val)
{
u_int32_t ts;
u_int32_t entropy = 0;
if (rs->flags & RND_FLAG_NO_COLLECT)
return;
/*
* Sample the counter as soon as possible to avoid
* entropy overestimation.
*/
ts = rnd_counter();
/*
* If we are estimating entropy on this source,
* calculate differentials.
*/
if ((rs->flags & RND_FLAG_NO_ESTIMATE) == 0) {
entropy = rnd_estimate_entropy(rs, ts);
}
rnd_add_data_ts(rs, &val, sizeof(val), entropy, ts);
}
void
rnd_add_data(krndsource_t *rs, const void *const data, uint32_t len,
uint32_t entropy)
{
/*
* This interface is meant for feeding data which is,
* itself, random. Don't estimate entropy based on
* timestamp, just directly add the data.
*/
rnd_add_data_ts(rs, data, len, entropy, rnd_counter());
}
static void
rnd_add_data_ts(krndsource_t *rs, const void *const data, u_int32_t len,
u_int32_t entropy, uint32_t ts)
{
rnd_sample_t *state = NULL;
const uint32_t *dint = data;
int todo, done, filled = 0;
SIMPLEQ_HEAD(, _rnd_sample_t) tmp_samples =
SIMPLEQ_HEAD_INITIALIZER(tmp_samples);
if (rs->flags & RND_FLAG_NO_COLLECT) {
return;
}
/*
* Loop over data packaging it into sample buffers.
* If a sample buffer allocation fails, drop all data.
*/
todo = len / sizeof(*dint);
for (done = 0; done < todo ; done++) {
state = rs->state;
if (state == NULL) {
state = rnd_sample_allocate_isr(rs);
if (__predict_false(state == NULL)) {
break;
}
rs->state = state;
}
state->ts[state->cursor] = ts;
state->values[state->cursor] = dint[done];
state->cursor++;
if (state->cursor == RND_SAMPLE_COUNT) {
SIMPLEQ_INSERT_HEAD(&tmp_samples, state, next);
filled++;
rs->state = NULL;
}
}
if (__predict_false(state == NULL)) {
while ((state = SIMPLEQ_FIRST(&tmp_samples))) {
SIMPLEQ_REMOVE_HEAD(&tmp_samples, next);
rnd_sample_free(state);
}
return;
}
/*
* Claim all the entropy on the last one we send to
* the pool, so we don't rely on it being evenly distributed
* in the supplied data.
*
* XXX The rndpool code must accept samples with more
* XXX claimed entropy than bits for this to work right.
*/
state->entropy += entropy;
rs->total += entropy;
/*
* If we didn't finish any sample buffers, we're done.
*/
if (!filled) {
return;
}
mutex_spin_enter(&rnd_mtx);
while ((state = SIMPLEQ_FIRST(&tmp_samples))) {
SIMPLEQ_REMOVE_HEAD(&tmp_samples, next);
SIMPLEQ_INSERT_HEAD(&rnd_samples, state, next);
}
/*
* If we are still starting up, cause immediate processing of
* the queued samples. Otherwise, if the timeout isn't
* pending, have it run in the near future.
*/
if (__predict_false(cold)) {
#ifdef RND_VERBOSE
printf("rnd: directly processing boot-time events.\n");
#endif
rnd_process_events(NULL); /* Drops lock! */
return;
}
if (rnd_timeout_pending == 0) {
rnd_timeout_pending = 1;
mutex_spin_exit(&rnd_mtx);
callout_schedule(&rnd_callout, 1);
return;
}
mutex_spin_exit(&rnd_mtx);
}
static int
rnd_hwrng_test(rnd_sample_t *sample)
{
krndsource_t *source = sample->source;
size_t cmplen;
uint8_t *v1, *v2;
size_t resid, totest;
KASSERT(source->type = RND_TYPE_RNG);
/*
* Continuous-output test: compare two halves of the
* sample buffer to each other. The sample buffer (64 ints,
* so either 256 or 512 bytes on any modern machine) should be
* much larger than a typical hardware RNG output, so this seems
* a reasonable way to do it without retaining extra data.
*/
cmplen = sizeof(sample->values) / 2;
v1 = (uint8_t *)sample->values;
v2 = (uint8_t *)sample->values + cmplen;
if (__predict_false(!memcmp(v1, v2, cmplen))) {
printf("rnd: source \"%s\" failed continuous-output test.\n",
source->name);
return 1;
}
/*
* FIPS 140 statistical RNG test. We must accumulate 20,000 bits.
*/
if (__predict_true(source->test_cnt == -1)) {
/* already passed the test */
return 0;
}
resid = FIPS140_RNG_TEST_BYTES - source->test_cnt;
totest = MIN(RND_SAMPLE_COUNT * 4, resid);
memcpy(source->test->rt_b + source->test_cnt, sample->values, totest);
resid -= totest;
source->test_cnt += totest;
if (resid == 0) {
strlcpy(source->test->rt_name, source->name,
sizeof(source->test->rt_name));
if (rngtest(source->test)) {
printf("rnd: source \"%s\" failed statistical test.",
source->name);
return 1;
}
source->test_cnt = -1;
memset(source->test, 0, sizeof(*source->test));
}
return 0;
}
/*
* Process the events in the ring buffer. Called by rnd_timeout or
* by the add routines directly if the callout has never fired (that
* is, if we are "cold" -- just booted).
*
* Call with rnd_mtx held -- WILL RELEASE IT.
*/
static void
rnd_process_events(void *arg)
{
rnd_sample_t *sample;
krndsource_t *source, *badsource = NULL;
u_int32_t entropy;
SIMPLEQ_HEAD(, _rnd_sample_t) dq_samples =
SIMPLEQ_HEAD_INITIALIZER(dq_samples);
SIMPLEQ_HEAD(, _rnd_sample_t) df_samples =
SIMPLEQ_HEAD_INITIALIZER(df_samples);
TAILQ_HEAD(, rndsink) sunk = TAILQ_HEAD_INITIALIZER(sunk);
/*
* Sample queue is protected by rnd_mtx, drain to onstack queue
* and drop lock.
*/
while ((sample = SIMPLEQ_FIRST(&rnd_samples))) {
SIMPLEQ_REMOVE_HEAD(&rnd_samples, next);
/*
* We repeat this check here, since it is possible
* the source was disabled before we were called, but
* after the entry was queued.
*/
if (__predict_false(sample->source->flags
& RND_FLAG_NO_COLLECT)) {
SIMPLEQ_INSERT_TAIL(&df_samples, sample, next);
} else {
SIMPLEQ_INSERT_TAIL(&dq_samples, sample, next);
}
}
mutex_spin_exit(&rnd_mtx);
/* Don't thrash the rndpool mtx either. Hold, add all samples. */
mutex_spin_enter(&rndpool_mtx);
while ((sample = SIMPLEQ_FIRST(&dq_samples))) {
SIMPLEQ_REMOVE_HEAD(&dq_samples, next);
source = sample->source;
entropy = sample->entropy;
/*
* Hardware generators are great but sometimes they
* have...hardware issues. Don't use any data from
* them unless it passes some tests.
*/
if (source->type == RND_TYPE_RNG) {
if (__predict_false(rnd_hwrng_test(sample))) {
/*
* Detach the bad source. See below.
*/
badsource = source;
printf("rnd: detaching source \"%s\".",
badsource->name);
break;
}
}
rndpool_add_data(&rnd_pool, sample->values,
RND_SAMPLE_COUNT * 4, 0);
rndpool_add_data(&rnd_pool, sample->ts,
RND_SAMPLE_COUNT * 4, entropy);
source->total += sample->entropy;
SIMPLEQ_INSERT_TAIL(&df_samples, sample, next);
}
mutex_spin_exit(&rndpool_mtx);
/* Now we hold no locks: clean up. */
if (__predict_false(badsource)) {
/*
* The detach routine frees any samples we have not
* dequeued ourselves. For sanity's sake, we simply
* free (without using) all dequeued samples from the
* point at which we detected a problem onwards.
*/
rnd_detach_source(badsource);
while ((sample = SIMPLEQ_FIRST(&dq_samples))) {
SIMPLEQ_REMOVE_HEAD(&dq_samples, next);
rnd_sample_free(sample);
}
}
while ((sample = SIMPLEQ_FIRST(&df_samples))) {
SIMPLEQ_REMOVE_HEAD(&df_samples, next);
rnd_sample_free(sample);
}
/*
* Wake up any potential readers waiting.
*/
rnd_wakeup_readers();
}
/*
* Timeout, run to process the events in the ring buffer.
*/
static void
rnd_timeout(void *arg)
{
mutex_spin_enter(&rnd_mtx);
rnd_timeout_pending = 0;
rnd_process_events(arg);
}
u_int32_t
rnd_extract_data_locked(void *p, u_int32_t len, u_int32_t flags)
{
static int timed_in;
KASSERT(mutex_owned(&rndpool_mtx));
if (__predict_false(!timed_in)) {
if (boottime.tv_sec) {
rndpool_add_data(&rnd_pool, &boottime,
sizeof(boottime), 0);
}
timed_in++;
}
if (__predict_false(!rnd_initial_entropy)) {
u_int32_t c;
#ifdef RND_VERBOSE
printf("rnd: WARNING! initial entropy low (%u).\n",
rndpool_get_entropy_count(&rnd_pool));
#endif
/* Try once again to put something in the pool */
c = rnd_counter();
rndpool_add_data(&rnd_pool, &c, sizeof(u_int32_t), 1);
}
#ifdef DIAGNOSTIC
while (!rnd_tested) {
int entropy_count;
entropy_count = rndpool_get_entropy_count(&rnd_pool);
#ifdef RND_VERBOSE
printf("rnd: starting statistical RNG test, entropy = %d.\n",
entropy_count);
#endif
if (rndpool_extract_data(&rnd_pool, rnd_rt.rt_b,
sizeof(rnd_rt.rt_b), RND_EXTRACT_ANY)
!= sizeof(rnd_rt.rt_b)) {
panic("rnd: could not get bits for statistical test");
}
/*
* Stash the tested bits so we can put them back in the
* pool, restoring the entropy count. DO NOT rely on
* rngtest to maintain the bits pristine -- we could end
* up adding back non-random data claiming it were pure
* entropy.
*/
memcpy(rnd_testbits, rnd_rt.rt_b, sizeof(rnd_rt.rt_b));
strlcpy(rnd_rt.rt_name, "entropy pool", sizeof(rnd_rt.rt_name));
if (rngtest(&rnd_rt)) {
/*
* The probabiliity of a Type I error is 3/10000,
* but note this can only happen at boot time.
* The relevant standard says to reset the module,
* but developers objected...
*/
printf("rnd: WARNING, ENTROPY POOL FAILED "
"STATISTICAL TEST!\n");
continue;
}
memset(&rnd_rt, 0, sizeof(rnd_rt));
rndpool_add_data(&rnd_pool, rnd_testbits, sizeof(rnd_testbits),
entropy_count);
memset(rnd_testbits, 0, sizeof(rnd_testbits));
#ifdef RND_VERBOSE
printf("rnd: statistical RNG test done, entropy = %d.\n",
rndpool_get_entropy_count(&rnd_pool));
#endif
rnd_tested++;
}
#endif
return rndpool_extract_data(&rnd_pool, p, len, flags);
}
u_int32_t
rnd_extract_data(void *p, u_int32_t len, u_int32_t flags)
{
uint32_t retval;
mutex_spin_enter(&rndpool_mtx);
retval = rnd_extract_data_locked(p, len, flags);
mutex_spin_exit(&rndpool_mtx);
return retval;
}
void
rndsink_attach(rndsink_t *rs)
{
#ifdef RND_VERBOSE
printf("rnd: entropy sink \"%s\" wants %d bytes of data.\n",
rs->name, (int)rs->len);
#endif
KASSERT(mutex_owned(&rs->mtx));
KASSERT(rs->state = RSTATE_PENDING);
mutex_spin_enter(&rndsink_mtx);
TAILQ_INSERT_TAIL(&rnd_sinks, rs, tailq);
mutex_spin_exit(&rndsink_mtx);
mutex_spin_enter(&rnd_mtx);
if (rnd_timeout_pending == 0) {
rnd_timeout_pending = 1;
callout_schedule(&rnd_callout, 1);
}
mutex_spin_exit(&rnd_mtx);
}
void
rndsink_detach(rndsink_t *rs)
{
rndsink_t *sink, *tsink;
#ifdef RND_VERBOSE
printf("rnd: entropy sink \"%s\" no longer wants data.\n", rs->name);
#endif
KASSERT(mutex_owned(&rs->mtx));
mutex_spin_enter(&rndsink_mtx);
TAILQ_FOREACH_SAFE(sink, &rnd_sinks, tailq, tsink) {
if (sink == rs) {
TAILQ_REMOVE(&rnd_sinks, rs, tailq);
}
}
mutex_spin_exit(&rndsink_mtx);
}
void
rnd_seed(void *base, size_t len)
{
SHA1_CTX s;
uint8_t digest[SHA1_DIGEST_LENGTH];
if (len != sizeof(*boot_rsp)) {
aprint_error("rnd: bad seed length %d\n", (int)len);
return;
}
boot_rsp = (rndsave_t *)base;
SHA1Init(&s);
SHA1Update(&s, (uint8_t *)&boot_rsp->entropy,
sizeof(boot_rsp->entropy));
SHA1Update(&s, boot_rsp->data, sizeof(boot_rsp->data));
SHA1Final(digest, &s);
if (memcmp(digest, boot_rsp->digest, sizeof(digest))) {
aprint_error("rnd: bad seed checksum\n");
return;
}
/*
* It's not really well-defined whether bootloader-supplied
* modules run before or after rnd_init(). Handle both cases.
*/
if (rnd_ready) {
#ifdef RND_VERBOSE
printf("rnd: ready, feeding in seed data directly.\n");
#endif
mutex_spin_enter(&rndpool_mtx);
rndpool_add_data(&rnd_pool, boot_rsp->data,
sizeof(boot_rsp->data),
MIN(boot_rsp->entropy, RND_POOLBITS / 2));
memset(boot_rsp, 0, sizeof(*boot_rsp));
mutex_spin_exit(&rndpool_mtx);
} else {
#ifdef RND_VERBOSE
printf("rnd: not ready, deferring seed feed.\n");
#endif
}
}