868 lines
24 KiB
C
868 lines
24 KiB
C
/* $NetBSD: elf2ecoff.c,v 1.23 2009/04/23 14:49:32 tsutsui Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1997 Jonathan Stone
|
|
* All rights reserved.
|
|
* Copyright (c) 1995
|
|
* Ted Lemon (hereinafter referred to as the author)
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/* elf2ecoff.c
|
|
|
|
This program converts an elf executable to an ECOFF executable.
|
|
No symbol table is retained. This is useful primarily in building
|
|
net-bootable kernels for machines (e.g., DECstation and Alpha) which
|
|
only support the ECOFF object file format. */
|
|
|
|
#if HAVE_NBTOOL_CONFIG_H
|
|
#include "nbtool_config.h"
|
|
#endif
|
|
|
|
#include <sys/types.h>
|
|
#include <err.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <sys/exec_elf.h>
|
|
#include <stdio.h>
|
|
#include <sys/exec_ecoff.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
|
|
#define ISLAST(p) (p->n_un.n_name == 0 || p->n_un.n_name[0] == 0)
|
|
|
|
struct sect {
|
|
unsigned long vaddr;
|
|
unsigned long len;
|
|
};
|
|
|
|
struct elf_syms {
|
|
int nsymbols;
|
|
Elf32_Sym *elf_syms;
|
|
off_t stringsize;
|
|
char *stringtab;
|
|
};
|
|
|
|
struct ecoff_syms {
|
|
int nsymbols;
|
|
struct ecoff_extsym *ecoff_syms;
|
|
off_t stringsize;
|
|
char *stringtab;
|
|
};
|
|
|
|
int debug = 0;
|
|
|
|
int phcmp(Elf32_Phdr * h1, Elf32_Phdr * h2);
|
|
|
|
|
|
char *saveRead(int file, off_t offset, off_t len, const char *name);
|
|
void safewrite(int outfile, const void *buf, off_t len, const char *msg);
|
|
void copy(int, int, off_t, off_t);
|
|
void combine(struct sect * base, struct sect * new, int paddable);
|
|
void translate_syms(struct elf_syms *, struct ecoff_syms *);
|
|
void
|
|
elf_symbol_table_to_ecoff(int out, int in,
|
|
struct ecoff_exechdr * ep,
|
|
off_t symoff, off_t symsize,
|
|
off_t stroff, off_t strsize);
|
|
|
|
|
|
int
|
|
make_ecoff_section_hdrs(struct ecoff_exechdr * ep,
|
|
struct ecoff_scnhdr * esecs);
|
|
|
|
void
|
|
write_ecoff_symhdr(int outfile, struct ecoff_exechdr * ep,
|
|
struct ecoff_symhdr * symhdrp,
|
|
long nesyms, long extsymoff, long extstroff,
|
|
long strsize);
|
|
|
|
void pad16(int fd, int size, const char *msg);
|
|
void bswap32_region(int32_t* , int);
|
|
|
|
int *symTypeTable;
|
|
int needswap;
|
|
|
|
|
|
|
|
|
|
void
|
|
elf_read_syms(struct elf_syms * elfsymsp, int infile,
|
|
off_t symoff, off_t symsize, off_t stroff, off_t strsize);
|
|
|
|
|
|
int
|
|
main(int argc, char **argv, char **envp)
|
|
{
|
|
Elf32_Ehdr ex;
|
|
Elf32_Phdr *ph;
|
|
Elf32_Shdr *sh;
|
|
char *shstrtab;
|
|
int strtabix, symtabix;
|
|
size_t i;
|
|
int pad;
|
|
struct sect text, data, bss; /* a.out-compatible sections */
|
|
struct sect rdata, sdata, sbss; /* ECOFF-only sections */
|
|
|
|
struct ecoff_exechdr ep;
|
|
struct ecoff_scnhdr esecs[6];
|
|
struct ecoff_symhdr symhdr;
|
|
|
|
int infile, outfile;
|
|
unsigned long cur_vma = ULONG_MAX;
|
|
int symflag = 0;
|
|
int nsecs = 0;
|
|
int mipsel;
|
|
|
|
|
|
text.len = data.len = bss.len = 0;
|
|
text.vaddr = data.vaddr = bss.vaddr = 0;
|
|
|
|
rdata.len = sdata.len = sbss.len = 0;
|
|
rdata.vaddr = sdata.vaddr = sbss.vaddr = 0;
|
|
|
|
/* Check args... */
|
|
if (argc < 3 || argc > 4) {
|
|
usage:
|
|
fprintf(stderr,
|
|
"usage: elf2ecoff <elf executable> <ECOFF executable> [-s]\n");
|
|
exit(1);
|
|
}
|
|
if (argc == 4) {
|
|
if (strcmp(argv[3], "-s"))
|
|
goto usage;
|
|
symflag = 1;
|
|
}
|
|
/* Try the input file... */
|
|
if ((infile = open(argv[1], O_RDONLY)) < 0) {
|
|
fprintf(stderr, "Can't open %s for read: %s\n",
|
|
argv[1], strerror(errno));
|
|
exit(1);
|
|
}
|
|
/* Read the header, which is at the beginning of the file... */
|
|
i = read(infile, &ex, sizeof ex);
|
|
if (i != sizeof ex) {
|
|
fprintf(stderr, "ex: %s: %s.\n",
|
|
argv[1], i ? strerror(errno) : "End of file reached");
|
|
exit(1);
|
|
}
|
|
if (ex.e_ident[EI_DATA] == ELFDATA2LSB)
|
|
mipsel = 1;
|
|
else if (ex.e_ident[EI_DATA] == ELFDATA2MSB)
|
|
mipsel = 0;
|
|
else {
|
|
fprintf(stderr, "invalid ELF byte order %d\n",
|
|
ex.e_ident[EI_DATA]);
|
|
exit(1);
|
|
}
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
if (mipsel)
|
|
needswap = 1;
|
|
else
|
|
needswap = 0;
|
|
#elif BYTE_ORDER == LITTLE_ENDIAN
|
|
if (mipsel)
|
|
needswap = 0;
|
|
else
|
|
needswap = 1;
|
|
#else
|
|
#error "unknown endian"
|
|
#endif
|
|
|
|
if (needswap) {
|
|
ex.e_type = bswap16(ex.e_type);
|
|
ex.e_machine = bswap16(ex.e_machine);
|
|
ex.e_version = bswap32(ex.e_version);
|
|
ex.e_entry = bswap32(ex.e_entry);
|
|
ex.e_phoff = bswap32(ex.e_phoff);
|
|
ex.e_shoff = bswap32(ex.e_shoff);
|
|
ex.e_flags = bswap32(ex.e_flags);
|
|
ex.e_ehsize = bswap16(ex.e_ehsize);
|
|
ex.e_phentsize = bswap16(ex.e_phentsize);
|
|
ex.e_phnum = bswap16(ex.e_phnum);
|
|
ex.e_shentsize = bswap16(ex.e_shentsize);
|
|
ex.e_shnum = bswap16(ex.e_shnum);
|
|
ex.e_shstrndx = bswap16(ex.e_shstrndx);
|
|
}
|
|
|
|
/* Read the program headers... */
|
|
ph = (Elf32_Phdr *) saveRead(infile, ex.e_phoff,
|
|
ex.e_phnum * sizeof(Elf32_Phdr), "ph");
|
|
if (needswap)
|
|
bswap32_region((int32_t*)ph, sizeof(Elf32_Phdr) * ex.e_phnum);
|
|
/* Read the section headers... */
|
|
sh = (Elf32_Shdr *) saveRead(infile, ex.e_shoff,
|
|
ex.e_shnum * sizeof(Elf32_Shdr), "sh");
|
|
if (needswap)
|
|
bswap32_region((int32_t*)sh, sizeof(Elf32_Shdr) * ex.e_shnum);
|
|
|
|
/* Read in the section string table. */
|
|
shstrtab = saveRead(infile, sh[ex.e_shstrndx].sh_offset,
|
|
sh[ex.e_shstrndx].sh_size, "shstrtab");
|
|
|
|
|
|
/* Look for the symbol table and string table... Also map section
|
|
* indices to symbol types for a.out */
|
|
symtabix = 0;
|
|
strtabix = 0;
|
|
for (i = 0; i < ex.e_shnum; i++) {
|
|
char *name = shstrtab + sh[i].sh_name;
|
|
if (!strcmp(name, ".symtab"))
|
|
symtabix = i;
|
|
else
|
|
if (!strcmp(name, ".strtab"))
|
|
strtabix = i;
|
|
|
|
}
|
|
|
|
/* Figure out if we can cram the program header into an ECOFF
|
|
* header... Basically, we can't handle anything but loadable
|
|
* segments, but we can ignore some kinds of segments. We can't
|
|
* handle holes in the address space. Segments may be out of order,
|
|
* so we sort them first. */
|
|
|
|
qsort(ph, ex.e_phnum, sizeof(Elf32_Phdr),
|
|
(int (*) (const void *, const void *)) phcmp);
|
|
|
|
for (i = 0; i < ex.e_phnum; i++) {
|
|
/* Section types we can ignore... */
|
|
if (ph[i].p_type == PT_NULL || ph[i].p_type == PT_NOTE ||
|
|
ph[i].p_type == PT_PHDR ||
|
|
ph[i].p_type == PT_MIPS_REGINFO) {
|
|
|
|
if (debug) {
|
|
fprintf(stderr, " skipping PH %d type %d flags 0x%x\n",
|
|
i, ph[i].p_type, ph[i].p_flags);
|
|
}
|
|
continue;
|
|
}
|
|
/* Section types we can't handle... */
|
|
else
|
|
if (ph[i].p_type != PT_LOAD) {
|
|
fprintf(stderr, "Program header %d type %d can't be converted.\n",
|
|
i, ph[i].p_type);
|
|
exit(1);
|
|
}
|
|
/* Writable (data) segment? */
|
|
if (ph[i].p_flags & PF_W) {
|
|
struct sect ndata, nbss;
|
|
|
|
ndata.vaddr = ph[i].p_vaddr;
|
|
ndata.len = ph[i].p_filesz;
|
|
nbss.vaddr = ph[i].p_vaddr + ph[i].p_filesz;
|
|
nbss.len = ph[i].p_memsz - ph[i].p_filesz;
|
|
|
|
if (debug) {
|
|
fprintf(stderr,
|
|
" combinining PH %d type %d flags 0x%x with data, ndata = %ld, nbss =%ld\n", i, ph[i].p_type, ph[i].p_flags, ndata.len, nbss.len);
|
|
}
|
|
combine(&data, &ndata, 0);
|
|
combine(&bss, &nbss, 1);
|
|
} else {
|
|
struct sect ntxt;
|
|
|
|
ntxt.vaddr = ph[i].p_vaddr;
|
|
ntxt.len = ph[i].p_filesz;
|
|
if (debug) {
|
|
|
|
fprintf(stderr,
|
|
" combinining PH %d type %d flags 0x%x with text, len = %ld\n",
|
|
i, ph[i].p_type, ph[i].p_flags, ntxt.len);
|
|
}
|
|
combine(&text, &ntxt, 0);
|
|
}
|
|
/* Remember the lowest segment start address. */
|
|
if (ph[i].p_vaddr < cur_vma)
|
|
cur_vma = ph[i].p_vaddr;
|
|
}
|
|
|
|
/* Sections must be in order to be converted... */
|
|
if (text.vaddr > data.vaddr || data.vaddr > bss.vaddr ||
|
|
text.vaddr + text.len > data.vaddr || data.vaddr + data.len > bss.vaddr) {
|
|
fprintf(stderr, "Sections ordering prevents a.out conversion.\n");
|
|
exit(1);
|
|
}
|
|
/* If there's a data section but no text section, then the loader
|
|
* combined everything into one section. That needs to be the text
|
|
* section, so just make the data section zero length following text. */
|
|
if (data.len && !text.len) {
|
|
text = data;
|
|
data.vaddr = text.vaddr + text.len;
|
|
data.len = 0;
|
|
}
|
|
/* If there is a gap between text and data, we'll fill it when we copy
|
|
* the data, so update the length of the text segment as represented
|
|
* in a.out to reflect that, since a.out doesn't allow gaps in the
|
|
* program address space. */
|
|
if (text.vaddr + text.len < data.vaddr)
|
|
text.len = data.vaddr - text.vaddr;
|
|
|
|
/* We now have enough information to cons up an a.out header... */
|
|
ep.a.magic = ECOFF_OMAGIC;
|
|
ep.a.vstamp = 2 * 256 + 10; /* compatible with version 2.10 */
|
|
ep.a.tsize = text.len;
|
|
ep.a.dsize = data.len;
|
|
ep.a.bsize = bss.len;
|
|
ep.a.entry = ex.e_entry;
|
|
ep.a.text_start = text.vaddr;
|
|
ep.a.data_start = data.vaddr;
|
|
ep.a.bss_start = bss.vaddr;
|
|
ep.a.gprmask = 0xf3fffffe;
|
|
memset(&ep.a.cprmask, 0, sizeof ep.a.cprmask);
|
|
ep.a.gp_value = 0; /* unused. */
|
|
|
|
if (mipsel)
|
|
ep.f.f_magic = ECOFF_MAGIC_MIPSEL;
|
|
else
|
|
ep.f.f_magic = ECOFF_MAGIC_MIPSEB;
|
|
|
|
ep.f.f_nscns = 6;
|
|
ep.f.f_timdat = 0; /* bogus */
|
|
ep.f.f_symptr = 0;
|
|
ep.f.f_nsyms = sizeof(struct ecoff_symhdr);
|
|
ep.f.f_opthdr = sizeof ep.a;
|
|
ep.f.f_flags = 0x100f; /* Stripped, not sharable. */
|
|
|
|
memset(esecs, 0, sizeof(esecs));
|
|
|
|
/* Make ECOFF section headers, with empty stubs for
|
|
* .rdata/.sdata/.sbss. */
|
|
make_ecoff_section_hdrs(&ep, esecs);
|
|
|
|
nsecs = ep.f.f_nscns;
|
|
|
|
if (needswap) {
|
|
ep.f.f_magic = bswap16(ep.f.f_magic);
|
|
ep.f.f_nscns = bswap16(ep.f.f_nscns);
|
|
ep.f.f_timdat = bswap32(ep.f.f_timdat);
|
|
ep.f.f_symptr = bswap32(ep.f.f_symptr);
|
|
ep.f.f_nsyms = bswap32(ep.f.f_nsyms);
|
|
ep.f.f_opthdr = bswap16(ep.f.f_opthdr);
|
|
ep.f.f_flags = bswap16(ep.f.f_flags);
|
|
ep.a.magic = bswap16(ep.a.magic);
|
|
ep.a.vstamp = bswap16(ep.a.vstamp);
|
|
ep.a.tsize = bswap32(ep.a.tsize);
|
|
ep.a.dsize = bswap32(ep.a.dsize);
|
|
ep.a.bsize = bswap32(ep.a.bsize);
|
|
ep.a.entry = bswap32(ep.a.entry);
|
|
ep.a.text_start = bswap32(ep.a.text_start);
|
|
ep.a.data_start = bswap32(ep.a.data_start);
|
|
ep.a.bss_start = bswap32(ep.a.bss_start);
|
|
ep.a.gprmask = bswap32(ep.a.gprmask);
|
|
bswap32_region((int32_t*)ep.a.cprmask, sizeof(ep.a.cprmask));
|
|
ep.a.gp_value = bswap32(ep.a.gp_value);
|
|
for (i = 0; i < sizeof(esecs) / sizeof(esecs[0]); i++) {
|
|
esecs[i].s_paddr = bswap32(esecs[i].s_paddr);
|
|
esecs[i].s_vaddr = bswap32(esecs[i].s_vaddr);
|
|
esecs[i].s_size = bswap32(esecs[i].s_size);
|
|
esecs[i].s_scnptr = bswap32(esecs[i].s_scnptr);
|
|
esecs[i].s_relptr = bswap32(esecs[i].s_relptr);
|
|
esecs[i].s_lnnoptr = bswap32(esecs[i].s_lnnoptr);
|
|
esecs[i].s_nreloc = bswap16(esecs[i].s_nreloc);
|
|
esecs[i].s_nlnno = bswap16(esecs[i].s_nlnno);
|
|
esecs[i].s_flags = bswap32(esecs[i].s_flags);
|
|
}
|
|
}
|
|
|
|
/* Make the output file... */
|
|
if ((outfile = open(argv[2], O_WRONLY | O_CREAT, 0777)) < 0) {
|
|
fprintf(stderr, "Unable to create %s: %s\n", argv[2], strerror(errno));
|
|
exit(1);
|
|
}
|
|
/* Truncate file... */
|
|
if (ftruncate(outfile, 0)) {
|
|
warn("ftruncate %s", argv[2]);
|
|
}
|
|
/* Write the headers... */
|
|
safewrite(outfile, &ep.f, sizeof(ep.f), "ep.f: write: %s\n");
|
|
if (debug)
|
|
fprintf(stderr, "wrote %d byte file header.\n", sizeof(ep.f));
|
|
|
|
safewrite(outfile, &ep.a, sizeof(ep.a), "ep.a: write: %s\n");
|
|
if (debug)
|
|
fprintf(stderr, "wrote %d byte a.out header.\n", sizeof(ep.a));
|
|
|
|
safewrite(outfile, &esecs, sizeof(esecs[0]) * nsecs,
|
|
"esecs: write: %s\n");
|
|
if (debug)
|
|
fprintf(stderr, "wrote %d bytes of section headers.\n",
|
|
sizeof(esecs[0]) * nsecs);
|
|
|
|
|
|
pad = ((sizeof ep.f + sizeof ep.a + sizeof esecs) & 15);
|
|
if (pad) {
|
|
pad = 16 - pad;
|
|
pad16(outfile, pad, "ipad: write: %s\n");
|
|
if (debug)
|
|
fprintf(stderr, "wrote %d byte pad.\n", pad);
|
|
}
|
|
/* Copy the loadable sections. Zero-fill any gaps less than 64k;
|
|
* complain about any zero-filling, and die if we're asked to
|
|
* zero-fill more than 64k. */
|
|
for (i = 0; i < ex.e_phnum; i++) {
|
|
/* Unprocessable sections were handled above, so just verify
|
|
* that the section can be loaded before copying. */
|
|
if (ph[i].p_type == PT_LOAD && ph[i].p_filesz) {
|
|
if (cur_vma != ph[i].p_vaddr) {
|
|
unsigned long gap = ph[i].p_vaddr - cur_vma;
|
|
char obuf[1024];
|
|
if (gap > 65536) {
|
|
fprintf(stderr, "Intersegment gap (%ld bytes) too large.\n",
|
|
gap);
|
|
exit(1);
|
|
}
|
|
if (debug)
|
|
fprintf(stderr, "Warning: %ld byte intersegment gap.\n", gap);
|
|
memset(obuf, 0, sizeof obuf);
|
|
while (gap) {
|
|
int count = write(outfile, obuf, (gap > sizeof obuf
|
|
? sizeof obuf : gap));
|
|
if (count < 0) {
|
|
fprintf(stderr, "Error writing gap: %s\n",
|
|
strerror(errno));
|
|
exit(1);
|
|
}
|
|
gap -= count;
|
|
}
|
|
}
|
|
if (debug)
|
|
fprintf(stderr, "writing %d bytes...\n", ph[i].p_filesz);
|
|
copy(outfile, infile, ph[i].p_offset, ph[i].p_filesz);
|
|
cur_vma = ph[i].p_vaddr + ph[i].p_filesz;
|
|
}
|
|
}
|
|
|
|
|
|
if (debug)
|
|
fprintf(stderr, "writing syms at offset 0x%lx\n",
|
|
(u_long) ep.f.f_symptr + sizeof(symhdr));
|
|
|
|
/* Copy and translate the symbol table... */
|
|
elf_symbol_table_to_ecoff(outfile, infile, &ep,
|
|
sh[symtabix].sh_offset, sh[symtabix].sh_size,
|
|
sh[strtabix].sh_offset, sh[strtabix].sh_size);
|
|
|
|
/*
|
|
* Write a page of padding for boot PROMS that read entire pages.
|
|
* Without this, they may attempt to read past the end of the
|
|
* data section, incur an error, and refuse to boot.
|
|
*/
|
|
{
|
|
char obuf[4096];
|
|
memset(obuf, 0, sizeof obuf);
|
|
if (write(outfile, obuf, sizeof(obuf)) != sizeof(obuf)) {
|
|
fprintf(stderr, "Error writing PROM padding: %s\n",
|
|
strerror(errno));
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* Looks like we won... */
|
|
exit(0);
|
|
}
|
|
|
|
void
|
|
copy(out, in, offset, size)
|
|
int out, in;
|
|
off_t offset, size;
|
|
{
|
|
char ibuf[4096];
|
|
size_t remaining, cur, count;
|
|
|
|
/* Go to the start of the ELF symbol table... */
|
|
if (lseek(in, offset, SEEK_SET) < 0) {
|
|
perror("copy: lseek");
|
|
exit(1);
|
|
}
|
|
remaining = size;
|
|
while (remaining) {
|
|
cur = remaining;
|
|
if (cur > sizeof ibuf)
|
|
cur = sizeof ibuf;
|
|
remaining -= cur;
|
|
if ((count = read(in, ibuf, cur)) != cur) {
|
|
fprintf(stderr, "copy: read: %s\n",
|
|
count ? strerror(errno) : "premature end of file");
|
|
exit(1);
|
|
}
|
|
safewrite(out, ibuf, cur, "copy: write: %s\n");
|
|
}
|
|
}
|
|
/* Combine two segments, which must be contiguous. If pad is true, it's
|
|
okay for there to be padding between. */
|
|
void
|
|
combine(base, new, pad)
|
|
struct sect *base, *new;
|
|
int pad;
|
|
{
|
|
if (!base->len)
|
|
*base = *new;
|
|
else
|
|
if (new->len) {
|
|
if (base->vaddr + base->len != new->vaddr) {
|
|
if (pad)
|
|
base->len = new->vaddr - base->vaddr;
|
|
else {
|
|
fprintf(stderr,
|
|
"Non-contiguous data can't be converted.\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
base->len += new->len;
|
|
}
|
|
}
|
|
|
|
int
|
|
phcmp(h1, h2)
|
|
Elf32_Phdr *h1, *h2;
|
|
{
|
|
if (h1->p_vaddr > h2->p_vaddr)
|
|
return 1;
|
|
else
|
|
if (h1->p_vaddr < h2->p_vaddr)
|
|
return -1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
char
|
|
*
|
|
saveRead(int file, off_t offset, off_t len, const char *name)
|
|
{
|
|
char *tmp;
|
|
int count;
|
|
off_t off;
|
|
if ((off = lseek(file, offset, SEEK_SET)) < 0) {
|
|
fprintf(stderr, "%s: fseek: %s\n", name, strerror(errno));
|
|
exit(1);
|
|
}
|
|
if (!(tmp = (char *) malloc(len))) {
|
|
fprintf(stderr, "%s: Can't allocate %ld bytes.\n", name, (long) len);
|
|
exit(1);
|
|
}
|
|
count = read(file, tmp, len);
|
|
if (count != len) {
|
|
fprintf(stderr, "%s: read: %s.\n",
|
|
name, count ? strerror(errno) : "End of file reached");
|
|
exit(1);
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
void
|
|
safewrite(int outfile, const void *buf, off_t len, const char *msg)
|
|
{
|
|
int written;
|
|
written = write(outfile, buf, len);
|
|
if (written != len) {
|
|
fprintf(stderr, msg, strerror(errno));
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Output only three ECOFF sections, corresponding to ELF psecs
|
|
* for text, data, and bss.
|
|
*/
|
|
int
|
|
make_ecoff_section_hdrs(ep, esecs)
|
|
struct ecoff_exechdr *ep;
|
|
struct ecoff_scnhdr *esecs;
|
|
|
|
{
|
|
ep->f.f_nscns = 6; /* XXX */
|
|
|
|
strcpy(esecs[0].s_name, ".text");
|
|
strcpy(esecs[1].s_name, ".data");
|
|
strcpy(esecs[2].s_name, ".bss");
|
|
|
|
esecs[0].s_paddr = esecs[0].s_vaddr = ep->a.text_start;
|
|
esecs[1].s_paddr = esecs[1].s_vaddr = ep->a.data_start;
|
|
esecs[2].s_paddr = esecs[2].s_vaddr = ep->a.bss_start;
|
|
esecs[0].s_size = ep->a.tsize;
|
|
esecs[1].s_size = ep->a.dsize;
|
|
esecs[2].s_size = ep->a.bsize;
|
|
|
|
esecs[0].s_scnptr = ECOFF_TXTOFF(ep);
|
|
esecs[1].s_scnptr = ECOFF_DATOFF(ep);
|
|
#if 0
|
|
esecs[2].s_scnptr = esecs[1].s_scnptr +
|
|
ECOFF_ROUND(esecs[1].s_size, ECOFF_SEGMENT_ALIGNMENT(ep));
|
|
#endif
|
|
|
|
esecs[0].s_relptr = esecs[1].s_relptr = esecs[2].s_relptr = 0;
|
|
esecs[0].s_lnnoptr = esecs[1].s_lnnoptr = esecs[2].s_lnnoptr = 0;
|
|
esecs[0].s_nreloc = esecs[1].s_nreloc = esecs[2].s_nreloc = 0;
|
|
esecs[0].s_nlnno = esecs[1].s_nlnno = esecs[2].s_nlnno = 0;
|
|
|
|
esecs[1].s_flags = 0x100; /* ECOFF rdata */
|
|
esecs[3].s_flags = 0x200; /* ECOFF sdata */
|
|
esecs[4].s_flags = 0x400; /* ECOFF sbss */
|
|
|
|
/*
|
|
* Set the symbol-table offset to point at the end of any
|
|
* sections we loaded above, so later code can use it to write
|
|
* symbol table info..
|
|
*/
|
|
ep->f.f_symptr = esecs[1].s_scnptr + esecs[1].s_size;
|
|
return (ep->f.f_nscns);
|
|
}
|
|
|
|
|
|
/*
|
|
* Write the ECOFF symbol header.
|
|
* Guess at how big the symbol table will be.
|
|
* Mark all symbols as EXTERN (for now).
|
|
*/
|
|
void
|
|
write_ecoff_symhdr(out, ep, symhdrp, nesyms, extsymoff, extstroff, strsize)
|
|
int out;
|
|
struct ecoff_exechdr *ep;
|
|
struct ecoff_symhdr *symhdrp;
|
|
long nesyms, extsymoff, extstroff, strsize;
|
|
{
|
|
if (debug)
|
|
fprintf(stderr, "writing symhdr for %ld entries at offset 0x%lx\n",
|
|
nesyms, (u_long) ep->f.f_symptr);
|
|
|
|
ep->f.f_nsyms = sizeof(struct ecoff_symhdr);
|
|
|
|
memset(symhdrp, 0, sizeof(*symhdrp));
|
|
symhdrp->esymMax = nesyms;
|
|
symhdrp->magic = 0x7009;/* XXX */
|
|
symhdrp->cbExtOffset = extsymoff;
|
|
symhdrp->cbSsExtOffset = extstroff;
|
|
|
|
symhdrp->issExtMax = strsize;
|
|
if (debug)
|
|
fprintf(stderr,
|
|
"ECOFF symhdr: symhdr %x, strsize %lx, symsize %lx\n",
|
|
sizeof(*symhdrp), strsize,
|
|
(nesyms * sizeof(struct ecoff_extsym)));
|
|
|
|
if (needswap) {
|
|
bswap32_region(&symhdrp->ilineMax,
|
|
sizeof(*symhdrp) - sizeof(symhdrp->magic) -
|
|
sizeof(symhdrp->ilineMax));
|
|
symhdrp->magic = bswap16(symhdrp->magic);
|
|
symhdrp->ilineMax = bswap16(symhdrp->ilineMax);
|
|
}
|
|
|
|
safewrite(out, symhdrp, sizeof(*symhdrp),
|
|
"writing symbol header: %s\n");
|
|
}
|
|
|
|
|
|
void
|
|
elf_read_syms(elfsymsp, in, symoff, symsize, stroff, strsize)
|
|
struct elf_syms *elfsymsp;
|
|
int in;
|
|
off_t symoff, symsize;
|
|
off_t stroff, strsize;
|
|
{
|
|
register int nsyms;
|
|
int i;
|
|
nsyms = symsize / sizeof(Elf32_Sym);
|
|
|
|
/* Suck in the ELF symbol list... */
|
|
elfsymsp->elf_syms = (Elf32_Sym *)
|
|
saveRead(in, symoff, nsyms * sizeof(Elf32_Sym),
|
|
"ELF symboltable");
|
|
elfsymsp->nsymbols = nsyms;
|
|
if (needswap) {
|
|
for (i = 0; i < nsyms; i++) {
|
|
Elf32_Sym *s = &elfsymsp->elf_syms[i];
|
|
s->st_name = bswap32(s->st_name);
|
|
s->st_value = bswap32(s->st_value);
|
|
s->st_size = bswap32(s->st_size);
|
|
s->st_shndx = bswap16(s->st_shndx);
|
|
}
|
|
}
|
|
|
|
/* Suck in the ELF string table... */
|
|
elfsymsp->stringtab = (char *)
|
|
saveRead(in, stroff, strsize, "ELF string table");
|
|
elfsymsp->stringsize = strsize;
|
|
}
|
|
|
|
|
|
/*
|
|
*
|
|
*/
|
|
void
|
|
elf_symbol_table_to_ecoff(out, in, ep, symoff, symsize, stroff, strsize)
|
|
int out, in;
|
|
struct ecoff_exechdr *ep;
|
|
off_t symoff, symsize;
|
|
off_t stroff, strsize;
|
|
{
|
|
|
|
struct elf_syms elfsymtab;
|
|
struct ecoff_syms ecoffsymtab;
|
|
register u_long ecoff_symhdr_off, symtaboff, stringtaboff;
|
|
register u_long nextoff, symtabsize, ecoff_strsize;
|
|
int nsyms, i;
|
|
struct ecoff_symhdr symhdr;
|
|
int padding;
|
|
|
|
/* Read in the ELF symbols. */
|
|
elf_read_syms(&elfsymtab, in, symoff, symsize, stroff, strsize);
|
|
|
|
/* Approximate translation to ECOFF. */
|
|
translate_syms(&elfsymtab, &ecoffsymtab);
|
|
nsyms = ecoffsymtab.nsymbols;
|
|
|
|
/* Compute output ECOFF symbol- and string-table offsets. */
|
|
ecoff_symhdr_off = ep->f.f_symptr;
|
|
|
|
nextoff = ecoff_symhdr_off + sizeof(struct ecoff_symhdr);
|
|
stringtaboff = nextoff;
|
|
ecoff_strsize = ECOFF_ROUND(ecoffsymtab.stringsize,
|
|
(ECOFF_SEGMENT_ALIGNMENT(ep)));
|
|
|
|
|
|
nextoff = stringtaboff + ecoff_strsize;
|
|
symtaboff = nextoff;
|
|
symtabsize = nsyms * sizeof(struct ecoff_extsym);
|
|
symtabsize = ECOFF_ROUND(symtabsize, ECOFF_SEGMENT_ALIGNMENT(ep));
|
|
|
|
/* Write out the symbol header ... */
|
|
write_ecoff_symhdr(out, ep, &symhdr, nsyms, symtaboff,
|
|
stringtaboff, ecoffsymtab.stringsize);
|
|
|
|
/* Write out the string table... */
|
|
padding = ecoff_strsize - ecoffsymtab.stringsize;
|
|
safewrite(out, ecoffsymtab.stringtab, ecoffsymtab.stringsize,
|
|
"string table: write: %s\n");
|
|
if (padding)
|
|
pad16(out, padding, "string table: padding: %s\n");
|
|
|
|
|
|
/* Write out the symbol table... */
|
|
padding = symtabsize - (nsyms * sizeof(struct ecoff_extsym));
|
|
|
|
for (i = 0; i < nsyms; i++) {
|
|
struct ecoff_extsym *es = &ecoffsymtab.ecoff_syms[i];
|
|
es->es_flags = bswap16(es->es_flags);
|
|
es->es_ifd = bswap16(es->es_ifd);
|
|
bswap32_region(&es->es_strindex,
|
|
sizeof(*es) - sizeof(es->es_flags) - sizeof(es->es_ifd));
|
|
}
|
|
safewrite(out, ecoffsymtab.ecoff_syms,
|
|
nsyms * sizeof(struct ecoff_extsym),
|
|
"symbol table: write: %s\n");
|
|
if (padding)
|
|
pad16(out, padding, "symbols: padding: %s\n");
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* In-memory translation of ELF symbosl to ECOFF.
|
|
*/
|
|
void
|
|
translate_syms(elfp, ecoffp)
|
|
struct elf_syms *elfp;
|
|
struct ecoff_syms *ecoffp;
|
|
{
|
|
|
|
int i;
|
|
char *oldstringbase;
|
|
char *newstrings, *nsp;
|
|
|
|
int nsyms, idx;
|
|
|
|
nsyms = elfp->nsymbols;
|
|
oldstringbase = elfp->stringtab;
|
|
|
|
/* Allocate space for corresponding ECOFF symbols. */
|
|
memset(ecoffp, 0, sizeof(*ecoffp));
|
|
|
|
ecoffp->nsymbols = 0;
|
|
ecoffp->ecoff_syms = malloc(sizeof(struct ecoff_extsym) * nsyms);
|
|
|
|
/* we are going to be no bigger than the ELF symbol table. */
|
|
ecoffp->stringsize = elfp->stringsize;
|
|
ecoffp->stringtab = malloc(elfp->stringsize);
|
|
|
|
newstrings = (char *) ecoffp->stringtab;
|
|
nsp = (char *) ecoffp->stringtab;
|
|
if (!newstrings) {
|
|
fprintf(stderr, "No memory for new string table!\n");
|
|
exit(1);
|
|
}
|
|
/* Copy and translate symbols... */
|
|
idx = 0;
|
|
for (i = 0; i < nsyms; i++) {
|
|
int binding, type;
|
|
|
|
binding = ELF32_ST_BIND((elfp->elf_syms[i].st_info));
|
|
type = ELF32_ST_TYPE((elfp->elf_syms[i].st_info));
|
|
|
|
/* skip strange symbols */
|
|
if (binding == 0) {
|
|
continue;
|
|
}
|
|
/* Copy the symbol into the new table */
|
|
strcpy(nsp, oldstringbase + elfp->elf_syms[i].st_name);
|
|
ecoffp->ecoff_syms[idx].es_strindex = nsp - newstrings;
|
|
nsp += strlen(nsp) + 1;
|
|
|
|
/* translate symbol types to ECOFF XXX */
|
|
ecoffp->ecoff_syms[idx].es_type = 1;
|
|
ecoffp->ecoff_syms[idx].es_class = 5;
|
|
|
|
/* Symbol values in executables should be compatible. */
|
|
ecoffp->ecoff_syms[idx].es_value = elfp->elf_syms[i].st_value;
|
|
ecoffp->ecoff_syms[idx].es_symauxindex = 0xfffff;
|
|
|
|
idx++;
|
|
}
|
|
|
|
ecoffp->nsymbols = idx;
|
|
ecoffp->stringsize = nsp - newstrings;
|
|
}
|
|
/*
|
|
* pad to a 16-byte boundary
|
|
*/
|
|
void
|
|
pad16(int fd, int size, const char *msg)
|
|
{
|
|
safewrite(fd, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0", size, msg);
|
|
}
|
|
|
|
/* swap a 32bit region */
|
|
void
|
|
bswap32_region(int32_t* p, int len)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < len / sizeof(int32_t); i++, p++)
|
|
*p = bswap32(*p);
|
|
}
|