ea5ec0212d
- move per VP data into struct sadata_vp referenced from l->l_savp * VP id * lock on VP data * LWP on VP * recently blocked LWP on VP * queue of LWPs woken which ran on this VP before sleep * faultaddr * LWP cache for upcalls * upcall queue - add current concurrency and requested concurrency variables - make process exit run LWP on all VPs - make signal delivery consider all VPs - make timer events consider all VPs - add sa_newsavp to allocate new sadata_vp structure - add sa_increaseconcurrency to prepare new VP - make sys_sa_setconcurrency request new VP or wakeup idle VP - make sa_yield lower current concurrency - set sa_cpu = VP id in upcalls - maintain cached LWPs per VP
858 lines
24 KiB
C
858 lines
24 KiB
C
/* $NetBSD: fault.c,v 1.49 2004/03/14 01:08:47 cl Exp $ */
|
|
|
|
/*
|
|
* Copyright 2003 Wasabi Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Written by Steve C. Woodford for Wasabi Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project by
|
|
* Wasabi Systems, Inc.
|
|
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*
|
|
* Copyright (c) 1994-1997 Mark Brinicombe.
|
|
* Copyright (c) 1994 Brini.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software written for Brini by Mark Brinicombe
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Brini.
|
|
* 4. The name of the company nor the name of the author may be used to
|
|
* endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* RiscBSD kernel project
|
|
*
|
|
* fault.c
|
|
*
|
|
* Fault handlers
|
|
*
|
|
* Created : 28/11/94
|
|
*/
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_kgdb.h"
|
|
|
|
#include <sys/types.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: fault.c,v 1.49 2004/03/14 01:08:47 cl Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/savar.h>
|
|
#include <sys/user.h>
|
|
#include <sys/kernel.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <arm/cpuconf.h>
|
|
|
|
#include <machine/frame.h>
|
|
#include <arm/arm32/katelib.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/intr.h>
|
|
#if defined(DDB) || defined(KGDB)
|
|
#include <machine/db_machdep.h>
|
|
#ifdef KGDB
|
|
#include <sys/kgdb.h>
|
|
#endif
|
|
#if !defined(DDB)
|
|
#define kdb_trap kgdb_trap
|
|
#endif
|
|
#endif
|
|
|
|
#include <arch/arm/arm/disassem.h>
|
|
#include <arm/arm32/machdep.h>
|
|
|
|
extern char fusubailout[];
|
|
|
|
#ifdef DEBUG
|
|
int last_fault_code; /* For the benefit of pmap_fault_fixup() */
|
|
#endif
|
|
|
|
#if defined(CPU_ARM3) || defined(CPU_ARM6) || \
|
|
defined(CPU_ARM7) || defined(CPU_ARM7TDMI)
|
|
/* These CPUs may need data/prefetch abort fixups */
|
|
#define CPU_ABORT_FIXUP_REQUIRED
|
|
#endif
|
|
|
|
struct data_abort {
|
|
int (*func)(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
|
|
const char *desc;
|
|
};
|
|
|
|
static int dab_fatal(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
|
|
static int dab_align(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
|
|
static int dab_buserr(trapframe_t *, u_int, u_int, struct lwp *, ksiginfo_t *);
|
|
|
|
static const struct data_abort data_aborts[] = {
|
|
{dab_fatal, "Vector Exception"},
|
|
{dab_align, "Alignment Fault 1"},
|
|
{dab_fatal, "Terminal Exception"},
|
|
{dab_align, "Alignment Fault 3"},
|
|
{dab_buserr, "External Linefetch Abort (S)"},
|
|
{NULL, "Translation Fault (S)"},
|
|
{dab_buserr, "External Linefetch Abort (P)"},
|
|
{NULL, "Translation Fault (P)"},
|
|
{dab_buserr, "External Non-Linefetch Abort (S)"},
|
|
{NULL, "Domain Fault (S)"},
|
|
{dab_buserr, "External Non-Linefetch Abort (P)"},
|
|
{NULL, "Domain Fault (P)"},
|
|
{dab_buserr, "External Translation Abort (L1)"},
|
|
{NULL, "Permission Fault (S)"},
|
|
{dab_buserr, "External Translation Abort (L2)"},
|
|
{NULL, "Permission Fault (P)"}
|
|
};
|
|
|
|
/* Determine if a fault came from user mode */
|
|
#define TRAP_USERMODE(tf) ((tf->tf_spsr & PSR_MODE) == PSR_USR32_MODE)
|
|
|
|
/* Determine if 'x' is a permission fault */
|
|
#define IS_PERMISSION_FAULT(x) \
|
|
(((1 << ((x) & FAULT_TYPE_MASK)) & \
|
|
((1 << FAULT_PERM_P) | (1 << FAULT_PERM_S))) != 0)
|
|
|
|
#if 0
|
|
/* maybe one day we'll do emulations */
|
|
#define TRAPSIGNAL(l,k) (*(l)->l_proc->p_emul->e_trapsignal)((l), (k))
|
|
#else
|
|
#define TRAPSIGNAL(l,k) trapsignal((l), (k))
|
|
#endif
|
|
|
|
static __inline void
|
|
call_trapsignal(struct lwp *l, ksiginfo_t *ksi)
|
|
{
|
|
|
|
KERNEL_PROC_LOCK(l->l_proc);
|
|
TRAPSIGNAL(l, ksi);
|
|
KERNEL_PROC_UNLOCK(l->l_proc);
|
|
}
|
|
|
|
static __inline int
|
|
data_abort_fixup(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l)
|
|
{
|
|
#ifdef CPU_ABORT_FIXUP_REQUIRED
|
|
int error;
|
|
|
|
/* Call the CPU specific data abort fixup routine */
|
|
error = cpu_dataabt_fixup(tf);
|
|
if (__predict_true(error != ABORT_FIXUP_FAILED))
|
|
return (error);
|
|
|
|
/*
|
|
* Oops, couldn't fix up the instruction
|
|
*/
|
|
printf("data_abort_fixup: fixup for %s mode data abort failed.\n",
|
|
TRAP_USERMODE(tf) ? "user" : "kernel");
|
|
printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
|
|
*((u_int *)tf->tf_pc));
|
|
disassemble(tf->tf_pc);
|
|
|
|
/* Die now if this happened in kernel mode */
|
|
if (!TRAP_USERMODE(tf))
|
|
dab_fatal(tf, fsr, far, l, NULL);
|
|
|
|
return (error);
|
|
#else
|
|
return (ABORT_FIXUP_OK);
|
|
#endif /* CPU_ABORT_FIXUP_REQUIRED */
|
|
}
|
|
|
|
void
|
|
data_abort_handler(trapframe_t *tf)
|
|
{
|
|
struct vm_map *map;
|
|
struct pcb *pcb;
|
|
struct lwp *l;
|
|
u_int user, far, fsr;
|
|
vm_prot_t ftype;
|
|
void *onfault;
|
|
vaddr_t va;
|
|
int error;
|
|
ksiginfo_t ksi;
|
|
|
|
/* Grab FAR/FSR before enabling interrupts */
|
|
far = cpu_faultaddress();
|
|
fsr = cpu_faultstatus();
|
|
|
|
/* Update vmmeter statistics */
|
|
uvmexp.traps++;
|
|
|
|
/* Re-enable interrupts if they were enabled previously */
|
|
if (__predict_true((tf->tf_spsr & I32_bit) == 0))
|
|
enable_interrupts(I32_bit);
|
|
|
|
/* Get the current lwp structure or lwp0 if there is none */
|
|
l = (curlwp != NULL) ? curlwp : &lwp0;
|
|
|
|
/* Data abort came from user mode? */
|
|
user = TRAP_USERMODE(tf);
|
|
|
|
/* Grab the current pcb */
|
|
pcb = &l->l_addr->u_pcb;
|
|
|
|
/* Invoke the appropriate handler, if necessary */
|
|
if (__predict_false(data_aborts[fsr & FAULT_TYPE_MASK].func != NULL)) {
|
|
if ((data_aborts[fsr & FAULT_TYPE_MASK].func)(tf, fsr, far,
|
|
l, &ksi))
|
|
goto do_trapsignal;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* At this point, we're dealing with one of the following data aborts:
|
|
*
|
|
* FAULT_TRANS_S - Translation -- Section
|
|
* FAULT_TRANS_P - Translation -- Page
|
|
* FAULT_DOMAIN_S - Domain -- Section
|
|
* FAULT_DOMAIN_P - Domain -- Page
|
|
* FAULT_PERM_S - Permission -- Section
|
|
* FAULT_PERM_P - Permission -- Page
|
|
*
|
|
* These are the main virtual memory-related faults signalled by
|
|
* the MMU.
|
|
*/
|
|
|
|
/* fusubailout is used by [fs]uswintr to avoid page faulting */
|
|
if (__predict_false(pcb->pcb_onfault == fusubailout)) {
|
|
tf->tf_r0 = EFAULT;
|
|
tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
|
|
return;
|
|
}
|
|
|
|
if (user)
|
|
l->l_addr->u_pcb.pcb_tf = tf;
|
|
|
|
/*
|
|
* Make sure the Program Counter is sane. We could fall foul of
|
|
* someone executing Thumb code, in which case the PC might not
|
|
* be word-aligned. This would cause a kernel alignment fault
|
|
* further down if we have to decode the current instruction.
|
|
* XXX: It would be nice to be able to support Thumb at some point.
|
|
*/
|
|
if (__predict_false((tf->tf_pc & 3) != 0)) {
|
|
if (user) {
|
|
/*
|
|
* Give the user an illegal instruction signal.
|
|
*/
|
|
/* Deliver a SIGILL to the process */
|
|
KSI_INIT_TRAP(&ksi);
|
|
ksi.ksi_signo = SIGILL;
|
|
ksi.ksi_code = ILL_ILLOPC;
|
|
ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
|
|
ksi.ksi_trap = fsr;
|
|
goto do_trapsignal;
|
|
}
|
|
|
|
/*
|
|
* The kernel never executes Thumb code.
|
|
*/
|
|
printf("\ndata_abort_fault: Misaligned Kernel-mode "
|
|
"Program Counter\n");
|
|
dab_fatal(tf, fsr, far, l, NULL);
|
|
}
|
|
|
|
/* See if the CPU state needs to be fixed up */
|
|
switch (data_abort_fixup(tf, fsr, far, l)) {
|
|
case ABORT_FIXUP_RETURN:
|
|
return;
|
|
case ABORT_FIXUP_FAILED:
|
|
/* Deliver a SIGILL to the process */
|
|
KSI_INIT_TRAP(&ksi);
|
|
ksi.ksi_signo = SIGILL;
|
|
ksi.ksi_code = ILL_ILLOPC;
|
|
ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
|
|
ksi.ksi_trap = fsr;
|
|
goto do_trapsignal;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
va = trunc_page((vaddr_t)far);
|
|
|
|
/*
|
|
* It is only a kernel address space fault iff:
|
|
* 1. user == 0 and
|
|
* 2. pcb_onfault not set or
|
|
* 3. pcb_onfault set and not LDRT/LDRBT/STRT/STRBT instruction.
|
|
*/
|
|
if (user == 0 && (va >= VM_MIN_KERNEL_ADDRESS ||
|
|
(va < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW)) &&
|
|
__predict_true((pcb->pcb_onfault == NULL ||
|
|
(ReadWord(tf->tf_pc) & 0x05200000) != 0x04200000))) {
|
|
map = kernel_map;
|
|
|
|
/* Was the fault due to the FPE/IPKDB ? */
|
|
if (__predict_false((tf->tf_spsr & PSR_MODE)==PSR_UND32_MODE)) {
|
|
KSI_INIT_TRAP(&ksi);
|
|
ksi.ksi_signo = SIGSEGV;
|
|
ksi.ksi_code = SEGV_ACCERR;
|
|
ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
|
|
ksi.ksi_trap = fsr;
|
|
|
|
/*
|
|
* Force exit via userret()
|
|
* This is necessary as the FPE is an extension to
|
|
* userland that actually runs in a priveledged mode
|
|
* but uses USR mode permissions for its accesses.
|
|
*/
|
|
user = 1;
|
|
goto do_trapsignal;
|
|
}
|
|
} else {
|
|
map = &l->l_proc->p_vmspace->vm_map;
|
|
if (l->l_flag & L_SA) {
|
|
l->l_savp->savp_faultaddr = (vaddr_t)far;
|
|
l->l_flag |= L_SA_PAGEFAULT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We need to know whether the page should be mapped
|
|
* as R or R/W. The MMU does not give us the info as
|
|
* to whether the fault was caused by a read or a write.
|
|
*
|
|
* However, we know that a permission fault can only be
|
|
* the result of a write to a read-only location, so
|
|
* we can deal with those quickly.
|
|
*
|
|
* Otherwise we need to disassemble the instruction
|
|
* responsible to determine if it was a write.
|
|
*/
|
|
if (IS_PERMISSION_FAULT(fsr))
|
|
ftype = VM_PROT_WRITE;
|
|
else {
|
|
u_int insn = ReadWord(tf->tf_pc);
|
|
|
|
if (((insn & 0x0c100000) == 0x04000000) || /* STR/STRB */
|
|
((insn & 0x0e1000b0) == 0x000000b0) || /* STRH/STRD */
|
|
((insn & 0x0a100000) == 0x08000000)) /* STM/CDT */
|
|
ftype = VM_PROT_WRITE;
|
|
else
|
|
if ((insn & 0x0fb00ff0) == 0x01000090) /* SWP */
|
|
ftype = VM_PROT_READ | VM_PROT_WRITE;
|
|
else
|
|
ftype = VM_PROT_READ;
|
|
}
|
|
|
|
/*
|
|
* See if the fault is as a result of ref/mod emulation,
|
|
* or domain mismatch.
|
|
*/
|
|
#ifdef DEBUG
|
|
last_fault_code = fsr;
|
|
#endif
|
|
if (pmap_fault_fixup(map->pmap, va, ftype, user)) {
|
|
if (map != kernel_map)
|
|
l->l_flag &= ~L_SA_PAGEFAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (__predict_false(current_intr_depth > 0)) {
|
|
if (pcb->pcb_onfault) {
|
|
tf->tf_r0 = EINVAL;
|
|
tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
|
|
return;
|
|
}
|
|
printf("\nNon-emulated page fault with intr_depth > 0\n");
|
|
dab_fatal(tf, fsr, far, l, NULL);
|
|
}
|
|
|
|
onfault = pcb->pcb_onfault;
|
|
pcb->pcb_onfault = NULL;
|
|
error = uvm_fault(map, va, 0, ftype);
|
|
pcb->pcb_onfault = onfault;
|
|
|
|
if (map != kernel_map)
|
|
l->l_flag &= ~L_SA_PAGEFAULT;
|
|
|
|
if (__predict_true(error == 0)) {
|
|
if (user)
|
|
uvm_grow(l->l_proc, va); /* Record any stack growth */
|
|
goto out;
|
|
}
|
|
|
|
if (user == 0) {
|
|
if (pcb->pcb_onfault) {
|
|
tf->tf_r0 = error;
|
|
tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
|
|
return;
|
|
}
|
|
|
|
printf("\nuvm_fault(%p, %lx, %x, 0) -> %x\n", map, va, ftype,
|
|
error);
|
|
dab_fatal(tf, fsr, far, l, NULL);
|
|
}
|
|
|
|
KSI_INIT_TRAP(&ksi);
|
|
|
|
if (error == ENOMEM) {
|
|
printf("UVM: pid %d (%s), uid %d killed: "
|
|
"out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
|
|
(l->l_proc->p_cred && l->l_proc->p_ucred) ?
|
|
l->l_proc->p_ucred->cr_uid : -1);
|
|
ksi.ksi_signo = SIGKILL;
|
|
} else
|
|
ksi.ksi_signo = SIGSEGV;
|
|
|
|
ksi.ksi_code = (error == EACCES) ? SEGV_ACCERR : SEGV_MAPERR;
|
|
ksi.ksi_addr = (u_int32_t *)(intptr_t) far;
|
|
ksi.ksi_trap = fsr;
|
|
|
|
do_trapsignal:
|
|
call_trapsignal(l, &ksi);
|
|
out:
|
|
/* If returning to user mode, make sure to invoke userret() */
|
|
if (user)
|
|
userret(l);
|
|
}
|
|
|
|
/*
|
|
* dab_fatal() handles the following data aborts:
|
|
*
|
|
* FAULT_WRTBUF_0 - Vector Exception
|
|
* FAULT_WRTBUF_1 - Terminal Exception
|
|
*
|
|
* We should never see these on a properly functioning system.
|
|
*
|
|
* This function is also called by the other handlers if they
|
|
* detect a fatal problem.
|
|
*
|
|
* Note: If 'l' is NULL, we assume we're dealing with a prefetch abort.
|
|
*/
|
|
static int
|
|
dab_fatal(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
|
|
{
|
|
const char *mode;
|
|
|
|
mode = TRAP_USERMODE(tf) ? "user" : "kernel";
|
|
|
|
if (l != NULL) {
|
|
printf("Fatal %s mode data abort: '%s'\n", mode,
|
|
data_aborts[fsr & FAULT_TYPE_MASK].desc);
|
|
printf("trapframe: %p\nFSR=%08x, FAR=", tf, fsr);
|
|
if ((fsr & FAULT_IMPRECISE) == 0)
|
|
printf("%08x, ", far);
|
|
else
|
|
printf("Invalid, ");
|
|
printf("spsr=%08x\n", tf->tf_spsr);
|
|
} else {
|
|
printf("Fatal %s mode prefetch abort at 0x%08x\n",
|
|
mode, tf->tf_pc);
|
|
printf("trapframe: %p, spsr=%08x\n", tf, tf->tf_spsr);
|
|
}
|
|
|
|
printf("r0 =%08x, r1 =%08x, r2 =%08x, r3 =%08x\n",
|
|
tf->tf_r0, tf->tf_r1, tf->tf_r2, tf->tf_r3);
|
|
printf("r4 =%08x, r5 =%08x, r6 =%08x, r7 =%08x\n",
|
|
tf->tf_r4, tf->tf_r5, tf->tf_r6, tf->tf_r7);
|
|
printf("r8 =%08x, r9 =%08x, r10=%08x, r11=%08x\n",
|
|
tf->tf_r8, tf->tf_r9, tf->tf_r10, tf->tf_r11);
|
|
printf("r12=%08x, ", tf->tf_r12);
|
|
|
|
if (TRAP_USERMODE(tf))
|
|
printf("usp=%08x, ulr=%08x",
|
|
tf->tf_usr_sp, tf->tf_usr_lr);
|
|
else
|
|
printf("ssp=%08x, slr=%08x",
|
|
tf->tf_svc_sp, tf->tf_svc_lr);
|
|
printf(", pc =%08x\n\n", tf->tf_pc);
|
|
|
|
#if defined(DDB) || defined(KGDB)
|
|
kdb_trap(T_FAULT, tf);
|
|
#endif
|
|
panic("Fatal abort");
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
/*
|
|
* dab_align() handles the following data aborts:
|
|
*
|
|
* FAULT_ALIGN_0 - Alignment fault
|
|
* FAULT_ALIGN_0 - Alignment fault
|
|
*
|
|
* These faults are fatal if they happen in kernel mode. Otherwise, we
|
|
* deliver a bus error to the process.
|
|
*/
|
|
static int
|
|
dab_align(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l, ksiginfo_t *ksi)
|
|
{
|
|
|
|
/* Alignment faults are always fatal if they occur in kernel mode */
|
|
if (!TRAP_USERMODE(tf))
|
|
dab_fatal(tf, fsr, far, l, NULL);
|
|
|
|
/* pcb_onfault *must* be NULL at this point */
|
|
KDASSERT(l->l_addr->u_pcb.pcb_onfault == NULL);
|
|
|
|
/* See if the CPU state needs to be fixed up */
|
|
(void) data_abort_fixup(tf, fsr, far, l);
|
|
|
|
/* Deliver a bus error signal to the process */
|
|
KSI_INIT_TRAP(ksi);
|
|
ksi->ksi_signo = SIGBUS;
|
|
ksi->ksi_code = BUS_ADRALN;
|
|
ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
|
|
ksi->ksi_trap = fsr;
|
|
|
|
l->l_addr->u_pcb.pcb_tf = tf;
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* dab_buserr() handles the following data aborts:
|
|
*
|
|
* FAULT_BUSERR_0 - External Abort on Linefetch -- Section
|
|
* FAULT_BUSERR_1 - External Abort on Linefetch -- Page
|
|
* FAULT_BUSERR_2 - External Abort on Non-linefetch -- Section
|
|
* FAULT_BUSERR_3 - External Abort on Non-linefetch -- Page
|
|
* FAULT_BUSTRNL1 - External abort on Translation -- Level 1
|
|
* FAULT_BUSTRNL2 - External abort on Translation -- Level 2
|
|
*
|
|
* If pcb_onfault is set, flag the fault and return to the handler.
|
|
* If the fault occurred in user mode, give the process a SIGBUS.
|
|
*
|
|
* Note: On XScale, FAULT_BUSERR_0, FAULT_BUSERR_1, and FAULT_BUSERR_2
|
|
* can be flagged as imprecise in the FSR. This causes a real headache
|
|
* since some of the machine state is lost. In this case, tf->tf_pc
|
|
* may not actually point to the offending instruction. In fact, if
|
|
* we've taken a double abort fault, it generally points somewhere near
|
|
* the top of "data_abort_entry" in exception.S.
|
|
*
|
|
* In all other cases, these data aborts are considered fatal.
|
|
*/
|
|
static int
|
|
dab_buserr(trapframe_t *tf, u_int fsr, u_int far, struct lwp *l,
|
|
ksiginfo_t *ksi)
|
|
{
|
|
struct pcb *pcb = &l->l_addr->u_pcb;
|
|
|
|
#ifdef __XSCALE__
|
|
if ((fsr & FAULT_IMPRECISE) != 0 &&
|
|
(tf->tf_spsr & PSR_MODE) == PSR_ABT32_MODE) {
|
|
/*
|
|
* Oops, an imprecise, double abort fault. We've lost the
|
|
* r14_abt/spsr_abt values corresponding to the original
|
|
* abort, and the spsr saved in the trapframe indicates
|
|
* ABT mode.
|
|
*/
|
|
tf->tf_spsr &= ~PSR_MODE;
|
|
|
|
/*
|
|
* We use a simple heuristic to determine if the double abort
|
|
* happened as a result of a kernel or user mode access.
|
|
* If the current trapframe is at the top of the kernel stack,
|
|
* the fault _must_ have come from user mode.
|
|
*/
|
|
if (tf != ((trapframe_t *)pcb->pcb_un.un_32.pcb32_sp) - 1) {
|
|
/*
|
|
* Kernel mode. We're either about to die a
|
|
* spectacular death, or pcb_onfault will come
|
|
* to our rescue. Either way, the current value
|
|
* of tf->tf_pc is irrelevant.
|
|
*/
|
|
tf->tf_spsr |= PSR_SVC32_MODE;
|
|
if (pcb->pcb_onfault == NULL)
|
|
printf("\nKernel mode double abort!\n");
|
|
} else {
|
|
/*
|
|
* User mode. We've lost the program counter at the
|
|
* time of the fault (not that it was accurate anyway;
|
|
* it's not called an imprecise fault for nothing).
|
|
* About all we can do is copy r14_usr to tf_pc and
|
|
* hope for the best. The process is about to get a
|
|
* SIGBUS, so it's probably history anyway.
|
|
*/
|
|
tf->tf_spsr |= PSR_USR32_MODE;
|
|
tf->tf_pc = tf->tf_usr_lr;
|
|
}
|
|
}
|
|
|
|
/* FAR is invalid for imprecise exceptions */
|
|
if ((fsr & FAULT_IMPRECISE) != 0)
|
|
far = 0;
|
|
#endif /* __XSCALE__ */
|
|
|
|
if (pcb->pcb_onfault) {
|
|
KDASSERT(TRAP_USERMODE(tf) == 0);
|
|
tf->tf_r0 = EFAULT;
|
|
tf->tf_pc = (register_t)(intptr_t) pcb->pcb_onfault;
|
|
return (0);
|
|
}
|
|
|
|
/* See if the CPU state needs to be fixed up */
|
|
(void) data_abort_fixup(tf, fsr, far, l);
|
|
|
|
/*
|
|
* At this point, if the fault happened in kernel mode, we're toast
|
|
*/
|
|
if (!TRAP_USERMODE(tf))
|
|
dab_fatal(tf, fsr, far, l, NULL);
|
|
|
|
/* Deliver a bus error signal to the process */
|
|
KSI_INIT_TRAP(ksi);
|
|
ksi->ksi_signo = SIGBUS;
|
|
ksi->ksi_code = BUS_ADRERR;
|
|
ksi->ksi_addr = (u_int32_t *)(intptr_t)far;
|
|
ksi->ksi_trap = fsr;
|
|
|
|
l->l_addr->u_pcb.pcb_tf = tf;
|
|
|
|
return (1);
|
|
}
|
|
|
|
static __inline int
|
|
prefetch_abort_fixup(trapframe_t *tf)
|
|
{
|
|
#ifdef CPU_ABORT_FIXUP_REQUIRED
|
|
int error;
|
|
|
|
/* Call the CPU specific prefetch abort fixup routine */
|
|
error = cpu_prefetchabt_fixup(tf);
|
|
if (__predict_true(error != ABORT_FIXUP_FAILED))
|
|
return (error);
|
|
|
|
/*
|
|
* Oops, couldn't fix up the instruction
|
|
*/
|
|
printf(
|
|
"prefetch_abort_fixup: fixup for %s mode prefetch abort failed.\n",
|
|
TRAP_USERMODE(tf) ? "user" : "kernel");
|
|
printf("pc = 0x%08x, opcode 0x%08x, insn = ", tf->tf_pc,
|
|
*((u_int *)tf->tf_pc));
|
|
disassemble(tf->tf_pc);
|
|
|
|
/* Die now if this happened in kernel mode */
|
|
if (!TRAP_USERMODE(tf))
|
|
dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
|
|
|
|
return (error);
|
|
#else
|
|
return (ABORT_FIXUP_OK);
|
|
#endif /* CPU_ABORT_FIXUP_REQUIRED */
|
|
}
|
|
|
|
/*
|
|
* void prefetch_abort_handler(trapframe_t *tf)
|
|
*
|
|
* Abort handler called when instruction execution occurs at
|
|
* a non existent or restricted (access permissions) memory page.
|
|
* If the address is invalid and we were in SVC mode then panic as
|
|
* the kernel should never prefetch abort.
|
|
* If the address is invalid and the page is mapped then the user process
|
|
* does no have read permission so send it a signal.
|
|
* Otherwise fault the page in and try again.
|
|
*/
|
|
void
|
|
prefetch_abort_handler(trapframe_t *tf)
|
|
{
|
|
struct lwp *l;
|
|
struct vm_map *map;
|
|
vaddr_t fault_pc, va;
|
|
ksiginfo_t ksi;
|
|
int error;
|
|
|
|
/* Update vmmeter statistics */
|
|
uvmexp.traps++;
|
|
|
|
/*
|
|
* Enable IRQ's (disabled by the abort) This always comes
|
|
* from user mode so we know interrupts were not disabled.
|
|
* But we check anyway.
|
|
*/
|
|
if (__predict_true((tf->tf_spsr & I32_bit) == 0))
|
|
enable_interrupts(I32_bit);
|
|
|
|
/* See if the CPU state needs to be fixed up */
|
|
switch (prefetch_abort_fixup(tf)) {
|
|
case ABORT_FIXUP_RETURN:
|
|
return;
|
|
case ABORT_FIXUP_FAILED:
|
|
/* Deliver a SIGILL to the process */
|
|
KSI_INIT_TRAP(&ksi);
|
|
ksi.ksi_signo = SIGILL;
|
|
ksi.ksi_code = ILL_ILLOPC;
|
|
ksi.ksi_addr = (u_int32_t *)(intptr_t) tf->tf_pc;
|
|
l = curlwp;
|
|
l->l_addr->u_pcb.pcb_tf = tf;
|
|
goto do_trapsignal;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Prefetch aborts cannot happen in kernel mode */
|
|
if (__predict_false(!TRAP_USERMODE(tf)))
|
|
dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
|
|
|
|
/* Get fault address */
|
|
fault_pc = tf->tf_pc;
|
|
l = curlwp;
|
|
l->l_addr->u_pcb.pcb_tf = tf;
|
|
|
|
/* Ok validate the address, can only execute in USER space */
|
|
if (__predict_false(fault_pc >= VM_MAXUSER_ADDRESS ||
|
|
(fault_pc < VM_MIN_ADDRESS && vector_page == ARM_VECTORS_LOW))) {
|
|
KSI_INIT_TRAP(&ksi);
|
|
ksi.ksi_signo = SIGSEGV;
|
|
ksi.ksi_code = SEGV_ACCERR;
|
|
ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
|
|
ksi.ksi_trap = fault_pc;
|
|
goto do_trapsignal;
|
|
}
|
|
|
|
map = &l->l_proc->p_vmspace->vm_map;
|
|
va = trunc_page(fault_pc);
|
|
|
|
/*
|
|
* See if the pmap can handle this fault on its own...
|
|
*/
|
|
#ifdef DEBUG
|
|
last_fault_code = -1;
|
|
#endif
|
|
if (pmap_fault_fixup(map->pmap, va, VM_PROT_READ, 1))
|
|
goto out;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (__predict_false(current_intr_depth > 0)) {
|
|
printf("\nNon-emulated prefetch abort with intr_depth > 0\n");
|
|
dab_fatal(tf, 0, tf->tf_pc, NULL, NULL);
|
|
}
|
|
#endif
|
|
|
|
error = uvm_fault(map, va, 0, VM_PROT_READ);
|
|
if (__predict_true(error == 0))
|
|
goto out;
|
|
|
|
KSI_INIT_TRAP(&ksi);
|
|
|
|
if (error == ENOMEM) {
|
|
printf("UVM: pid %d (%s), uid %d killed: "
|
|
"out of swap\n", l->l_proc->p_pid, l->l_proc->p_comm,
|
|
(l->l_proc->p_cred && l->l_proc->p_ucred) ?
|
|
l->l_proc->p_ucred->cr_uid : -1);
|
|
ksi.ksi_signo = SIGKILL;
|
|
} else
|
|
ksi.ksi_signo = SIGSEGV;
|
|
|
|
ksi.ksi_code = SEGV_MAPERR;
|
|
ksi.ksi_addr = (u_int32_t *)(intptr_t) fault_pc;
|
|
ksi.ksi_trap = fault_pc;
|
|
|
|
do_trapsignal:
|
|
call_trapsignal(l, &ksi);
|
|
|
|
out:
|
|
userret(l);
|
|
}
|
|
|
|
/*
|
|
* Tentatively read an 8, 16, or 32-bit value from 'addr'.
|
|
* If the read succeeds, the value is written to 'rptr' and zero is returned.
|
|
* Else, return EFAULT.
|
|
*/
|
|
int
|
|
badaddr_read(void *addr, size_t size, void *rptr)
|
|
{
|
|
extern int badaddr_read_1(const uint8_t *, uint8_t *);
|
|
extern int badaddr_read_2(const uint16_t *, uint16_t *);
|
|
extern int badaddr_read_4(const uint32_t *, uint32_t *);
|
|
union {
|
|
uint8_t v1;
|
|
uint16_t v2;
|
|
uint32_t v4;
|
|
} u;
|
|
struct pcb *curpcb_save;
|
|
int rv, s;
|
|
|
|
cpu_drain_writebuf();
|
|
|
|
/*
|
|
* We might be called at interrupt time, so arrange to steal
|
|
* lwp0's PCB temporarily, if required, so that pcb_onfault
|
|
* handling works correctly.
|
|
*/
|
|
s = splhigh();
|
|
if ((curpcb_save = curpcb) == NULL)
|
|
curpcb = &lwp0.l_addr->u_pcb;
|
|
|
|
/* Read from the test address. */
|
|
switch (size) {
|
|
case sizeof(uint8_t):
|
|
rv = badaddr_read_1(addr, &u.v1);
|
|
if (rv == 0 && rptr)
|
|
*(uint8_t *) rptr = u.v1;
|
|
break;
|
|
|
|
case sizeof(uint16_t):
|
|
rv = badaddr_read_2(addr, &u.v2);
|
|
if (rv == 0 && rptr)
|
|
*(uint16_t *) rptr = u.v2;
|
|
break;
|
|
|
|
case sizeof(uint32_t):
|
|
rv = badaddr_read_4(addr, &u.v4);
|
|
if (rv == 0 && rptr)
|
|
*(uint32_t *) rptr = u.v4;
|
|
break;
|
|
|
|
default:
|
|
curpcb = curpcb_save;
|
|
panic("badaddr: invalid size (%lu)", (u_long) size);
|
|
}
|
|
|
|
/* Restore curpcb */
|
|
curpcb = curpcb_save;
|
|
splx(s);
|
|
|
|
/* Return EFAULT if the address was invalid, else zero */
|
|
return (rv);
|
|
}
|