NetBSD/sys/altq/altq_hfsc.c
christos e41fa8a52e Complete the FREE -> free transition and add more NULL checks for malloc
returns. Although these cannot happen because M_WAITOK, the rest of the
code does them already, so this is good for consistency. From Mindaugas
2006-04-23 16:57:22 +00:00

1816 lines
39 KiB
C

/* $NetBSD: altq_hfsc.c,v 1.14 2006/04/23 16:57:22 christos Exp $ */
/* $KAME: altq_hfsc.c,v 1.9 2001/10/26 04:56:11 kjc Exp $ */
/*
* Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
*
* Permission to use, copy, modify, and distribute this software and
* its documentation is hereby granted (including for commercial or
* for-profit use), provided that both the copyright notice and this
* permission notice appear in all copies of the software, derivative
* works, or modified versions, and any portions thereof, and that
* both notices appear in supporting documentation, and that credit
* is given to Carnegie Mellon University in all publications reporting
* on direct or indirect use of this code or its derivatives.
*
* THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
* WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
* SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* Carnegie Mellon encourages (but does not require) users of this
* software to return any improvements or extensions that they make,
* and to grant Carnegie Mellon the rights to redistribute these
* changes without encumbrance.
*/
/*
* H-FSC is described in Proceedings of SIGCOMM'97,
* "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
* Real-Time and Priority Service"
* by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: altq_hfsc.c,v 1.14 2006/04/23 16:57:22 christos Exp $");
#if defined(__FreeBSD__) || defined(__NetBSD__)
#include "opt_altq.h"
#if (__FreeBSD__ != 2)
#include "opt_inet.h"
#ifdef __FreeBSD__
#include "opt_inet6.h"
#endif
#endif
#endif /* __FreeBSD__ || __NetBSD__ */
#ifdef ALTQ_HFSC /* hfsc is enabled by ALTQ_HFSC option in opt_altq.h */
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/queue.h>
#include <net/if.h>
#include <net/if_types.h>
#include <altq/altq.h>
#include <altq/altq_conf.h>
#include <altq/altq_hfsc.h>
/*
* function prototypes
*/
static struct hfsc_if *hfsc_attach __P((struct ifaltq *, u_int));
static int hfsc_detach __P((struct hfsc_if *));
static int hfsc_clear_interface __P((struct hfsc_if *));
static int hfsc_request __P((struct ifaltq *, int, void *));
static void hfsc_purge __P((struct hfsc_if *));
static struct hfsc_class *hfsc_class_create __P((struct hfsc_if *,
struct service_curve *, struct hfsc_class *, int, int));
static int hfsc_class_destroy __P((struct hfsc_class *));
static int hfsc_class_modify __P((struct hfsc_class *,
struct service_curve *, struct service_curve *));
static struct hfsc_class *hfsc_nextclass __P((struct hfsc_class *));
static int hfsc_enqueue __P((struct ifaltq *, struct mbuf *,
struct altq_pktattr *));
static struct mbuf *hfsc_dequeue __P((struct ifaltq *, int));
static int hfsc_addq __P((struct hfsc_class *, struct mbuf *));
static struct mbuf *hfsc_getq __P((struct hfsc_class *));
static struct mbuf *hfsc_pollq __P((struct hfsc_class *));
static void hfsc_purgeq __P((struct hfsc_class *));
static void set_active __P((struct hfsc_class *, int));
static void set_passive __P((struct hfsc_class *));
static void init_ed __P((struct hfsc_class *, int));
static void update_ed __P((struct hfsc_class *, int));
static void update_d __P((struct hfsc_class *, int));
static void init_v __P((struct hfsc_class *, int));
static void update_v __P((struct hfsc_class *, int));
static ellist_t *ellist_alloc __P((void));
static void ellist_destroy __P((ellist_t *));
static void ellist_insert __P((struct hfsc_class *));
static void ellist_remove __P((struct hfsc_class *));
static void ellist_update __P((struct hfsc_class *));
struct hfsc_class *ellist_get_mindl __P((ellist_t *));
static actlist_t *actlist_alloc __P((void));
static void actlist_destroy __P((actlist_t *));
static void actlist_insert __P((struct hfsc_class *));
static void actlist_remove __P((struct hfsc_class *));
static void actlist_update __P((struct hfsc_class *));
static inline u_int64_t seg_x2y __P((u_int64_t, u_int64_t));
static inline u_int64_t seg_y2x __P((u_int64_t, u_int64_t));
static inline u_int64_t m2sm __P((u_int));
static inline u_int64_t m2ism __P((u_int));
static inline u_int64_t d2dx __P((u_int));
static u_int sm2m __P((u_int64_t));
static u_int dx2d __P((u_int64_t));
static void sc2isc __P((struct service_curve *, struct internal_sc *));
static void rtsc_init __P((struct runtime_sc *, struct internal_sc *,
u_int64_t, u_int64_t));
static u_int64_t rtsc_y2x __P((struct runtime_sc *, u_int64_t));
static u_int64_t rtsc_x2y __P((struct runtime_sc *, u_int64_t));
static void rtsc_min __P((struct runtime_sc *, struct internal_sc *,
u_int64_t, u_int64_t));
int hfscopen __P((dev_t, int, int, struct lwp *));
int hfscclose __P((dev_t, int, int, struct lwp *));
int hfscioctl __P((dev_t, ioctlcmd_t, caddr_t, int, struct lwp *));
static int hfsccmd_if_attach __P((struct hfsc_attach *));
static int hfsccmd_if_detach __P((struct hfsc_interface *));
static int hfsccmd_add_class __P((struct hfsc_add_class *));
static int hfsccmd_delete_class __P((struct hfsc_delete_class *));
static int hfsccmd_modify_class __P((struct hfsc_modify_class *));
static int hfsccmd_add_filter __P((struct hfsc_add_filter *));
static int hfsccmd_delete_filter __P((struct hfsc_delete_filter *));
static int hfsccmd_class_stats __P((struct hfsc_class_stats *));
static void get_class_stats __P((struct hfsc_basic_class_stats *,
struct hfsc_class *));
static struct hfsc_class *clh_to_clp __P((struct hfsc_if *, u_long));
static u_long clp_to_clh __P((struct hfsc_class *));
/*
* macros
*/
#define is_a_parent_class(cl) ((cl)->cl_children != NULL)
/* hif_list keeps all hfsc_if's allocated. */
static struct hfsc_if *hif_list = NULL;
static struct hfsc_if *
hfsc_attach(ifq, bandwidth)
struct ifaltq *ifq;
u_int bandwidth;
{
struct hfsc_if *hif;
struct service_curve root_sc;
hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_WAITOK|M_ZERO);
if (hif == NULL)
return (NULL);
hif->hif_eligible = ellist_alloc();
if (hif->hif_eligible == NULL) {
free(hif, M_DEVBUF);
return NULL;
}
hif->hif_ifq = ifq;
/*
* create root class
*/
root_sc.m1 = bandwidth;
root_sc.d = 0;
root_sc.m2 = bandwidth;
if ((hif->hif_rootclass =
hfsc_class_create(hif, &root_sc, NULL, 0, 0)) == NULL) {
free(hif, M_DEVBUF);
return (NULL);
}
/* add this state to the hfsc list */
hif->hif_next = hif_list;
hif_list = hif;
return (hif);
}
static int
hfsc_detach(hif)
struct hfsc_if *hif;
{
(void)hfsc_clear_interface(hif);
(void)hfsc_class_destroy(hif->hif_rootclass);
/* remove this interface from the hif list */
if (hif_list == hif)
hif_list = hif->hif_next;
else {
struct hfsc_if *h;
for (h = hif_list; h != NULL; h = h->hif_next)
if (h->hif_next == hif) {
h->hif_next = hif->hif_next;
break;
}
ASSERT(h != NULL);
}
ellist_destroy(hif->hif_eligible);
free(hif, M_DEVBUF);
return (0);
}
/*
* bring the interface back to the initial state by discarding
* all the filters and classes except the root class.
*/
static int
hfsc_clear_interface(hif)
struct hfsc_if *hif;
{
struct hfsc_class *cl;
/* free the filters for this interface */
acc_discard_filters(&hif->hif_classifier, NULL, 1);
/* clear out the classes */
while ((cl = hif->hif_rootclass->cl_children) != NULL) {
/*
* remove the first leaf class found in the hierarchy
* then start over
*/
for (; cl != NULL; cl = hfsc_nextclass(cl)) {
if (!is_a_parent_class(cl)) {
(void)hfsc_class_destroy(cl);
break;
}
}
}
return (0);
}
static int
hfsc_request(ifq, req, arg)
struct ifaltq *ifq;
int req;
void *arg;
{
struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
switch (req) {
case ALTRQ_PURGE:
hfsc_purge(hif);
break;
}
return (0);
}
/* discard all the queued packets on the interface */
static void
hfsc_purge(hif)
struct hfsc_if *hif;
{
struct hfsc_class *cl;
for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
if (!qempty(cl->cl_q))
hfsc_purgeq(cl);
if (ALTQ_IS_ENABLED(hif->hif_ifq))
hif->hif_ifq->ifq_len = 0;
}
struct hfsc_class *
hfsc_class_create(hif, sc, parent, qlimit, flags)
struct hfsc_if *hif;
struct service_curve *sc;
struct hfsc_class *parent;
int qlimit, flags;
{
struct hfsc_class *cl, *p;
int s;
#ifndef ALTQ_RED
if (flags & HFCF_RED) {
printf("hfsc_class_create: RED not configured for HFSC!\n");
return (NULL);
}
#endif
cl = malloc(sizeof(struct hfsc_class), M_DEVBUF, M_WAITOK|M_ZERO);
if (cl == NULL)
return (NULL);
cl->cl_q = malloc(sizeof(class_queue_t), M_DEVBUF, M_WAITOK|M_ZERO);
if (cl->cl_q == NULL)
goto err_ret;
cl->cl_actc = actlist_alloc();
if (cl->cl_actc == NULL)
goto err_ret;
if (qlimit == 0)
qlimit = 50; /* use default */
qlimit(cl->cl_q) = qlimit;
qtype(cl->cl_q) = Q_DROPTAIL;
qlen(cl->cl_q) = 0;
cl->cl_flags = flags;
#ifdef ALTQ_RED
if (flags & (HFCF_RED|HFCF_RIO)) {
int red_flags, red_pkttime;
red_flags = 0;
if (flags & HFCF_ECN)
red_flags |= REDF_ECN;
#ifdef ALTQ_RIO
if (flags & HFCF_CLEARDSCP)
red_flags |= RIOF_CLEARDSCP;
#endif
if (sc->m2 < 8)
red_pkttime = 1000 * 1000 * 1000; /* 1 sec */
else
red_pkttime = (int64_t)hif->hif_ifq->altq_ifp->if_mtu
* 1000 * 1000 * 1000 / (sc->m2 / 8);
if (flags & HFCF_RED) {
cl->cl_red = red_alloc(0, 0, 0, 0,
red_flags, red_pkttime);
if (cl->cl_red != NULL)
qtype(cl->cl_q) = Q_RED;
}
#ifdef ALTQ_RIO
else {
cl->cl_red = (red_t *)rio_alloc(0, NULL,
red_flags, red_pkttime);
if (cl->cl_red != NULL)
qtype(cl->cl_q) = Q_RIO;
}
#endif
}
#endif /* ALTQ_RED */
if (sc != NULL && (sc->m1 != 0 || sc->m2 != 0)) {
cl->cl_rsc = malloc(sizeof(struct internal_sc), M_DEVBUF,
M_WAITOK|M_ZERO);
if (cl->cl_rsc == NULL)
goto err_ret;
sc2isc(sc, cl->cl_rsc);
rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
cl->cl_fsc = malloc(sizeof(struct internal_sc), M_DEVBUF,
M_WAITOK|M_ZERO);
if (cl->cl_fsc == NULL)
goto err_ret;
sc2isc(sc, cl->cl_fsc);
rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
}
cl->cl_id = hif->hif_classid++;
cl->cl_handle = (u_long)cl; /* XXX: just a pointer to this class */
cl->cl_hif = hif;
cl->cl_parent = parent;
s = splnet();
hif->hif_classes++;
if (flags & HFCF_DEFAULTCLASS)
hif->hif_defaultclass = cl;
/* add this class to the children list of the parent */
if (parent == NULL) {
/* this is root class */
}
else if ((p = parent->cl_children) == NULL)
parent->cl_children = cl;
else {
while (p->cl_siblings != NULL)
p = p->cl_siblings;
p->cl_siblings = cl;
}
splx(s);
return (cl);
err_ret:
if (cl->cl_actc != NULL)
actlist_destroy(cl->cl_actc);
if (cl->cl_red != NULL) {
#ifdef ALTQ_RIO
if (q_is_rio(cl->cl_q))
rio_destroy((rio_t *)cl->cl_red);
#endif
#ifdef ALTQ_RED
if (q_is_red(cl->cl_q))
red_destroy(cl->cl_red);
#endif
}
if (cl->cl_fsc != NULL)
free(cl->cl_fsc, M_DEVBUF);
if (cl->cl_rsc != NULL)
free(cl->cl_rsc, M_DEVBUF);
if (cl->cl_q != NULL)
free(cl->cl_q, M_DEVBUF);
free(cl, M_DEVBUF);
return (NULL);
}
static int
hfsc_class_destroy(cl)
struct hfsc_class *cl;
{
int s;
if (is_a_parent_class(cl))
return (EBUSY);
s = splnet();
/* delete filters referencing to this class */
acc_discard_filters(&cl->cl_hif->hif_classifier, cl, 0);
if (!qempty(cl->cl_q))
hfsc_purgeq(cl);
if (cl->cl_parent == NULL) {
/* this is root class */
} else {
struct hfsc_class *p = cl->cl_parent->cl_children;
if (p == cl)
cl->cl_parent->cl_children = cl->cl_siblings;
else do {
if (p->cl_siblings == cl) {
p->cl_siblings = cl->cl_siblings;
break;
}
} while ((p = p->cl_siblings) != NULL);
ASSERT(p != NULL);
}
cl->cl_hif->hif_classes--;
splx(s);
actlist_destroy(cl->cl_actc);
if (cl->cl_red != NULL) {
#ifdef ALTQ_RIO
if (q_is_rio(cl->cl_q))
rio_destroy((rio_t *)cl->cl_red);
#endif
#ifdef ALTQ_RED
if (q_is_red(cl->cl_q))
red_destroy(cl->cl_red);
#endif
}
if (cl->cl_fsc != NULL)
free(cl->cl_fsc, M_DEVBUF);
if (cl->cl_rsc != NULL)
free(cl->cl_rsc, M_DEVBUF);
free(cl->cl_q, M_DEVBUF);
free(cl, M_DEVBUF);
return (0);
}
static int
hfsc_class_modify(cl, rsc, fsc)
struct hfsc_class *cl;
struct service_curve *rsc, *fsc;
{
struct internal_sc *rsc_tmp, *fsc_tmp;
int s;
if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0) &&
cl->cl_rsc == NULL) {
rsc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
M_WAITOK|M_ZERO);
if (rsc_tmp == NULL)
return (ENOMEM);
} else
rsc_tmp = NULL;
if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0) &&
cl->cl_fsc == NULL) {
fsc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
M_WAITOK|M_ZERO);
if (fsc_tmp == NULL)
return (ENOMEM);
} else
fsc_tmp = NULL;
s = splnet();
if (!qempty(cl->cl_q))
hfsc_purgeq(cl);
if (rsc != NULL) {
if (rsc->m1 == 0 && rsc->m2 == 0) {
if (cl->cl_rsc != NULL) {
free(cl->cl_rsc, M_DEVBUF);
cl->cl_rsc = NULL;
}
} else {
if (cl->cl_rsc == NULL)
cl->cl_rsc = rsc_tmp;
sc2isc(rsc, cl->cl_rsc);
rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
}
}
if (fsc != NULL) {
if (fsc->m1 == 0 && fsc->m2 == 0) {
if (cl->cl_fsc != NULL) {
free(cl->cl_fsc, M_DEVBUF);
cl->cl_fsc = NULL;
}
} else {
if (cl->cl_fsc == NULL)
cl->cl_fsc = fsc_tmp;
sc2isc(fsc, cl->cl_fsc);
rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
}
}
splx(s);
return (0);
}
/*
* hfsc_nextclass returns the next class in the tree.
* usage:
* for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
* do_something;
*/
static struct hfsc_class *
hfsc_nextclass(cl)
struct hfsc_class *cl;
{
if (cl->cl_children != NULL)
cl = cl->cl_children;
else if (cl->cl_siblings != NULL)
cl = cl->cl_siblings;
else {
while ((cl = cl->cl_parent) != NULL)
if (cl->cl_siblings) {
cl = cl->cl_siblings;
break;
}
}
return (cl);
}
/*
* hfsc_enqueue is an enqueue function to be registered to
* (*altq_enqueue) in struct ifaltq.
*/
static int
hfsc_enqueue(ifq, m, pktattr)
struct ifaltq *ifq;
struct mbuf *m;
struct altq_pktattr *pktattr;
{
struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
struct hfsc_class *cl;
int len;
/* grab class set by classifier */
if (pktattr == NULL || (cl = pktattr->pattr_class) == NULL)
cl = hif->hif_defaultclass;
cl->cl_pktattr = pktattr; /* save proto hdr used by ECN */
len = m_pktlen(m);
if (hfsc_addq(cl, m) != 0) {
/* drop occurred. mbuf was freed in hfsc_addq. */
PKTCNTR_ADD(&cl->cl_stats.drop_cnt, len);
return (ENOBUFS);
}
IFQ_INC_LEN(ifq);
cl->cl_hif->hif_packets++;
/* successfully queued. */
if (qlen(cl->cl_q) == 1)
set_active(cl, m_pktlen(m));
#ifdef HFSC_PKTLOG
/* put the logging_hook here */
#endif
return (0);
}
/*
* hfsc_dequeue is a dequeue function to be registered to
* (*altq_dequeue) in struct ifaltq.
*
* note: ALTDQ_POLL returns the next packet without removing the packet
* from the queue. ALTDQ_REMOVE is a normal dequeue operation.
* ALTDQ_REMOVE must return the same packet if called immediately
* after ALTDQ_POLL.
*/
static struct mbuf *
hfsc_dequeue(ifq, op)
struct ifaltq *ifq;
int op;
{
struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
struct hfsc_class *cl;
struct mbuf *m;
int len, next_len;
int realtime = 0;
if (hif->hif_packets == 0)
/* no packet in the tree */
return (NULL);
if (op == ALTDQ_REMOVE && hif->hif_pollcache != NULL) {
u_int64_t cur_time;
cl = hif->hif_pollcache;
hif->hif_pollcache = NULL;
/* check if the class was scheduled by real-time criteria */
if (cl->cl_rsc != NULL) {
cur_time = read_machclk();
realtime = (cl->cl_e <= cur_time);
}
} else {
/*
* if there are eligible classes, use real-time criteria.
* find the class with the minimum deadline among
* the eligible classes.
*/
if ((cl = ellist_get_mindl(hif->hif_eligible)) != NULL) {
realtime = 1;
} else {
/*
* use link-sharing criteria
* get the class with the minimum vt in the hierarchy
*/
cl = hif->hif_rootclass;
while (is_a_parent_class(cl)) {
cl = actlist_first(cl->cl_actc);
if (cl == NULL)
return (NULL);
}
}
if (op == ALTDQ_POLL) {
hif->hif_pollcache = cl;
m = hfsc_pollq(cl);
return (m);
}
}
m = hfsc_getq(cl);
len = m_pktlen(m);
cl->cl_hif->hif_packets--;
IFQ_DEC_LEN(ifq);
PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, len);
update_v(cl, len);
if (realtime)
cl->cl_cumul += len;
if (!qempty(cl->cl_q)) {
if (cl->cl_rsc != NULL) {
/* update ed */
next_len = m_pktlen(qhead(cl->cl_q));
if (realtime)
update_ed(cl, next_len);
else
update_d(cl, next_len);
}
} else {
/* the class becomes passive */
set_passive(cl);
}
#ifdef HFSC_PKTLOG
/* put the logging_hook here */
#endif
return (m);
}
static int
hfsc_addq(cl, m)
struct hfsc_class *cl;
struct mbuf *m;
{
#ifdef ALTQ_RIO
if (q_is_rio(cl->cl_q))
return rio_addq((rio_t *)cl->cl_red, cl->cl_q,
m, cl->cl_pktattr);
#endif
#ifdef ALTQ_RED
if (q_is_red(cl->cl_q))
return red_addq(cl->cl_red, cl->cl_q, m, cl->cl_pktattr);
#endif
if (qlen(cl->cl_q) >= qlimit(cl->cl_q)) {
m_freem(m);
return (-1);
}
if (cl->cl_flags & HFCF_CLEARDSCP)
write_dsfield(m, cl->cl_pktattr, 0);
_addq(cl->cl_q, m);
return (0);
}
static struct mbuf *
hfsc_getq(cl)
struct hfsc_class *cl;
{
#ifdef ALTQ_RIO
if (q_is_rio(cl->cl_q))
return rio_getq((rio_t *)cl->cl_red, cl->cl_q);
#endif
#ifdef ALTQ_RED
if (q_is_red(cl->cl_q))
return red_getq(cl->cl_red, cl->cl_q);
#endif
return _getq(cl->cl_q);
}
static struct mbuf *
hfsc_pollq(cl)
struct hfsc_class *cl;
{
return qhead(cl->cl_q);
}
static void
hfsc_purgeq(cl)
struct hfsc_class *cl;
{
struct mbuf *m;
if (qempty(cl->cl_q))
return;
while ((m = _getq(cl->cl_q)) != NULL) {
PKTCNTR_ADD(&cl->cl_stats.drop_cnt, m_pktlen(m));
m_freem(m);
}
ASSERT(qlen(cl->cl_q) == 0);
set_passive(cl);
}
static void
set_active(cl, len)
struct hfsc_class *cl;
int len;
{
if (cl->cl_rsc != NULL)
init_ed(cl, len);
if (cl->cl_fsc != NULL)
init_v(cl, len);
cl->cl_stats.period++;
}
static void
set_passive(cl)
struct hfsc_class *cl;
{
if (cl->cl_rsc != NULL)
ellist_remove(cl);
if (cl->cl_fsc != NULL) {
while (cl->cl_parent != NULL) {
if (--cl->cl_nactive == 0) {
/* remove this class from the vt list */
actlist_remove(cl);
} else
/* still has active children */
break;
/* go up to the parent class */
cl = cl->cl_parent;
}
}
}
static void
init_ed(cl, next_len)
struct hfsc_class *cl;
int next_len;
{
u_int64_t cur_time;
cur_time = read_machclk();
/* update the deadline curve */
rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);
/*
* update the eligible curve.
* for concave, it is equal to the deadline curve.
* for convex, it is a linear curve with slope m2.
*/
cl->cl_eligible = cl->cl_deadline;
if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
cl->cl_eligible.dx = 0;
cl->cl_eligible.dy = 0;
}
/* compute e and d */
cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
ellist_insert(cl);
}
static void
update_ed(cl, next_len)
struct hfsc_class *cl;
int next_len;
{
cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
ellist_update(cl);
}
static void
update_d(cl, next_len)
struct hfsc_class *cl;
int next_len;
{
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
}
static void
init_v(cl, len)
struct hfsc_class *cl;
int len;
{
struct hfsc_class *min_cl, *max_cl;
while (cl->cl_parent != NULL) {
if (cl->cl_nactive++ > 0)
/* already active */
break;
/*
* if parent became idle while this class was idle.
* reset vt and the runtime service curve.
*/
if (cl->cl_parent->cl_nactive == 0 ||
cl->cl_parent->cl_vtperiod != cl->cl_parentperiod) {
cl->cl_vt = 0;
rtsc_init(&cl->cl_virtual, cl->cl_fsc,
0, cl->cl_total);
}
min_cl = actlist_first(cl->cl_parent->cl_actc);
if (min_cl != NULL) {
u_int64_t vt;
/*
* set vt to the average of the min and max classes.
* if the parent's period didn't change,
* don't decrease vt of the class.
*/
max_cl = actlist_last(cl->cl_parent->cl_actc);
vt = (min_cl->cl_vt + max_cl->cl_vt) / 2;
if (cl->cl_parent->cl_vtperiod != cl->cl_parentperiod
|| vt > cl->cl_vt)
cl->cl_vt = vt;
}
/* update the virtual curve */
rtsc_min(&cl->cl_virtual, cl->cl_fsc, cl->cl_vt, cl->cl_total);
cl->cl_vtperiod++; /* increment vt period */
cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
if (cl->cl_parent->cl_nactive == 0)
cl->cl_parentperiod++;
actlist_insert(cl);
/* go up to the parent class */
cl = cl->cl_parent;
}
}
static void
update_v(cl, len)
struct hfsc_class *cl;
int len;
{
while (cl->cl_parent != NULL) {
cl->cl_total += len;
if (cl->cl_fsc != NULL) {
cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total);
/* update the vt list */
actlist_update(cl);
}
/* go up to the parent class */
cl = cl->cl_parent;
}
}
/*
* TAILQ based ellist and actlist implementation
* (ion wanted to make a calendar queue based implementation)
*/
/*
* eligible list holds backlogged classes being sorted by their eligible times.
* there is one eligible list per interface.
*/
static ellist_t *
ellist_alloc()
{
ellist_t *head;
head = malloc(sizeof(ellist_t), M_DEVBUF, M_WAITOK);
if (head != NULL)
TAILQ_INIT(head);
return (head);
}
static void
ellist_destroy(head)
ellist_t *head;
{
free(head, M_DEVBUF);
}
static void
ellist_insert(cl)
struct hfsc_class *cl;
{
struct hfsc_if *hif = cl->cl_hif;
struct hfsc_class *p;
/* check the last entry first */
if ((p = TAILQ_LAST(hif->hif_eligible, _eligible)) == NULL ||
p->cl_e <= cl->cl_e) {
TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
return;
}
TAILQ_FOREACH(p, hif->hif_eligible, cl_ellist) {
if (cl->cl_e < p->cl_e) {
TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
return;
}
}
ASSERT(0); /* should not reach here */
}
static void
ellist_remove(cl)
struct hfsc_class *cl;
{
struct hfsc_if *hif = cl->cl_hif;
TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
}
static void
ellist_update(cl)
struct hfsc_class *cl;
{
struct hfsc_if *hif = cl->cl_hif;
struct hfsc_class *p, *last;
/*
* the eligible time of a class increases monotonically.
* if the next entry has a larger eligible time, nothing to do.
*/
p = TAILQ_NEXT(cl, cl_ellist);
if (p == NULL || cl->cl_e <= p->cl_e)
return;
/* check the last entry */
last = TAILQ_LAST(hif->hif_eligible, _eligible);
ASSERT(last != NULL);
if (last->cl_e <= cl->cl_e) {
TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
return;
}
/*
* the new position must be between the next entry
* and the last entry
*/
while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) {
if (cl->cl_e < p->cl_e) {
TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
return;
}
}
ASSERT(0); /* should not reach here */
}
/* find the class with the minimum deadline among the eligible classes */
struct hfsc_class *
ellist_get_mindl(head)
ellist_t *head;
{
struct hfsc_class *p, *cl = NULL;
u_int64_t cur_time;
cur_time = read_machclk();
TAILQ_FOREACH(p, head, cl_ellist) {
if (p->cl_e > cur_time)
break;
if (cl == NULL || p->cl_d < cl->cl_d)
cl = p;
}
return (cl);
}
/*
* active children list holds backlogged child classes being sorted
* by their virtual time.
* each intermediate class has one active children list.
*/
static actlist_t *
actlist_alloc()
{
actlist_t *head;
head = malloc(sizeof(actlist_t), M_DEVBUF, M_WAITOK);
if (head != NULL)
TAILQ_INIT(head);
return (head);
}
static void
actlist_destroy(head)
actlist_t *head;
{
free(head, M_DEVBUF);
}
static void
actlist_insert(cl)
struct hfsc_class *cl;
{
struct hfsc_class *p;
/* check the last entry first */
if ((p = TAILQ_LAST(cl->cl_parent->cl_actc, _active)) == NULL
|| p->cl_vt <= cl->cl_vt) {
TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
return;
}
TAILQ_FOREACH(p, cl->cl_parent->cl_actc, cl_actlist) {
if (cl->cl_vt < p->cl_vt) {
TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
return;
}
}
ASSERT(0); /* should not reach here */
}
static void
actlist_remove(cl)
struct hfsc_class *cl;
{
TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
}
static void
actlist_update(cl)
struct hfsc_class *cl;
{
struct hfsc_class *p, *last;
/*
* the virtual time of a class increases monotonically during its
* backlogged period.
* if the next entry has a larger virtual time, nothing to do.
*/
p = TAILQ_NEXT(cl, cl_actlist);
if (p == NULL || cl->cl_vt <= p->cl_vt)
return;
/* check the last entry */
last = TAILQ_LAST(cl->cl_parent->cl_actc, _active);
ASSERT(last != NULL);
if (last->cl_vt <= cl->cl_vt) {
TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
return;
}
/*
* the new position must be between the next entry
* and the last entry
*/
while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) {
if (cl->cl_vt < p->cl_vt) {
TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
return;
}
}
ASSERT(0); /* should not reach here */
}
/*
* service curve support functions
*
* external service curve parameters
* m: bits/sec
* d: msec
* internal service curve parameters
* sm: (bytes/tsc_interval) << SM_SHIFT
* ism: (tsc_count/byte) << ISM_SHIFT
* dx: tsc_count
*
* SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits.
* we should be able to handle 100K-1Gbps linkspeed with 200Hz-1GHz CPU
* speed. SM_SHIFT and ISM_SHIFT are selected to have at least 3 effective
* digits in decimal using the following table.
*
* bits/set 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
* ----------+-------------------------------------------------------
* bytes/nsec 12.5e-6 125e-6 1250e-6 12500e-6 125000e-6
* sm(500MHz) 25.0e-6 250e-6 2500e-6 25000e-6 250000e-6
* sm(200MHz) 62.5e-6 625e-6 6250e-6 62500e-6 625000e-6
*
* nsec/byte 80000 8000 800 80 8
* ism(500MHz) 40000 4000 400 40 4
* ism(200MHz) 16000 1600 160 16 1.6
*/
#define SM_SHIFT 24
#define ISM_SHIFT 10
#define SC_LARGEVAL (1LL << 32)
#define SC_INFINITY 0xffffffffffffffffLL
static inline u_int64_t
seg_x2y(x, sm)
u_int64_t x;
u_int64_t sm;
{
u_int64_t y;
if (x < SC_LARGEVAL)
y = x * sm >> SM_SHIFT;
else
y = (x >> SM_SHIFT) * sm;
return (y);
}
static inline u_int64_t
seg_y2x(y, ism)
u_int64_t y;
u_int64_t ism;
{
u_int64_t x;
if (y == 0)
x = 0;
else if (ism == SC_INFINITY)
x = SC_INFINITY;
else if (y < SC_LARGEVAL)
x = y * ism >> ISM_SHIFT;
else
x = (y >> ISM_SHIFT) * ism;
return (x);
}
static inline u_int64_t
m2sm(m)
u_int m;
{
u_int64_t sm;
sm = ((u_int64_t)m << SM_SHIFT) / 8 / machclk_freq;
return (sm);
}
static inline u_int64_t
m2ism(m)
u_int m;
{
u_int64_t ism;
if (m == 0)
ism = SC_INFINITY;
else
ism = ((u_int64_t)machclk_freq << ISM_SHIFT) * 8 / m;
return (ism);
}
static inline u_int64_t
d2dx(d)
u_int d;
{
u_int64_t dx;
dx = ((u_int64_t)d * machclk_freq) / 1000;
return (dx);
}
static u_int
sm2m(sm)
u_int64_t sm;
{
u_int64_t m;
m = (sm * 8 * machclk_freq) >> SM_SHIFT;
return ((u_int)m);
}
static u_int
dx2d(dx)
u_int64_t dx;
{
u_int64_t d;
d = dx * 1000 / machclk_freq;
return ((u_int)d);
}
static void
sc2isc(sc, isc)
struct service_curve *sc;
struct internal_sc *isc;
{
isc->sm1 = m2sm(sc->m1);
isc->ism1 = m2ism(sc->m1);
isc->dx = d2dx(sc->d);
isc->dy = seg_x2y(isc->dx, isc->sm1);
isc->sm2 = m2sm(sc->m2);
isc->ism2 = m2ism(sc->m2);
}
/*
* initialize the runtime service curve with the given internal
* service curve starting at (x, y).
*/
static void
rtsc_init(rtsc, isc, x, y)
struct runtime_sc *rtsc;
struct internal_sc *isc;
u_int64_t x, y;
{
rtsc->x = x;
rtsc->y = y;
rtsc->sm1 = isc->sm1;
rtsc->ism1 = isc->ism1;
rtsc->dx = isc->dx;
rtsc->dy = isc->dy;
rtsc->sm2 = isc->sm2;
rtsc->ism2 = isc->ism2;
}
/*
* calculate the y-projection of the runtime service curve by the
* given x-projection value
*/
static u_int64_t
rtsc_y2x(rtsc, y)
struct runtime_sc *rtsc;
u_int64_t y;
{
u_int64_t x;
if (y < rtsc->y)
x = rtsc->x;
else if (y <= rtsc->y + rtsc->dy) {
/* x belongs to the 1st segment */
if (rtsc->dy == 0)
x = rtsc->x + rtsc->dx;
else
x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
} else {
/* x belongs to the 2nd segment */
x = rtsc->x + rtsc->dx
+ seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
}
return (x);
}
static u_int64_t
rtsc_x2y(rtsc, x)
struct runtime_sc *rtsc;
u_int64_t x;
{
u_int64_t y;
if (x <= rtsc->x)
y = rtsc->y;
else if (x <= rtsc->x + rtsc->dx)
/* y belongs to the 1st segment */
y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
else
/* y belongs to the 2nd segment */
y = rtsc->y + rtsc->dy
+ seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
return (y);
}
/*
* update the runtime service curve by taking the minimum of the current
* runtime service curve and the service curve starting at (x, y).
*/
static void
rtsc_min(rtsc, isc, x, y)
struct runtime_sc *rtsc;
struct internal_sc *isc;
u_int64_t x, y;
{
u_int64_t y1, y2, dx, dy;
if (isc->sm1 <= isc->sm2) {
/* service curve is convex */
y1 = rtsc_x2y(rtsc, x);
if (y1 < y)
/* the current rtsc is smaller */
return;
rtsc->x = x;
rtsc->y = y;
return;
}
/*
* service curve is concave
* compute the two y values of the current rtsc
* y1: at x
* y2: at (x + dx)
*/
y1 = rtsc_x2y(rtsc, x);
if (y1 <= y) {
/* rtsc is below isc, no change to rtsc */
return;
}
y2 = rtsc_x2y(rtsc, x + isc->dx);
if (y2 >= y + isc->dy) {
/* rtsc is above isc, replace rtsc by isc */
rtsc->x = x;
rtsc->y = y;
rtsc->dx = isc->dx;
rtsc->dy = isc->dy;
return;
}
/*
* the two curves intersect
* compute the offsets (dx, dy) using the reverse
* function of seg_x2y()
* seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
*/
dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2);
/*
* check if (x, y1) belongs to the 1st segment of rtsc.
* if so, add the offset.
*/
if (rtsc->x + rtsc->dx > x)
dx += rtsc->x + rtsc->dx - x;
dy = seg_x2y(dx, isc->sm1);
rtsc->x = x;
rtsc->y = y;
rtsc->dx = dx;
rtsc->dy = dy;
return;
}
/*
* hfsc device interface
*/
int
hfscopen(dev, flag, fmt, l)
dev_t dev;
int flag, fmt;
struct lwp *l;
{
if (machclk_freq == 0)
init_machclk();
if (machclk_freq == 0) {
printf("hfsc: no CPU clock available!\n");
return (ENXIO);
}
/* everything will be done when the queueing scheme is attached. */
return 0;
}
int
hfscclose(dev, flag, fmt, l)
dev_t dev;
int flag, fmt;
struct lwp *l;
{
struct hfsc_if *hif;
int err, error = 0;
while ((hif = hif_list) != NULL) {
/* destroy all */
if (ALTQ_IS_ENABLED(hif->hif_ifq))
altq_disable(hif->hif_ifq);
err = altq_detach(hif->hif_ifq);
if (err == 0)
err = hfsc_detach(hif);
if (err != 0 && error == 0)
error = err;
}
return error;
}
int
hfscioctl(dev, cmd, addr, flag, l)
dev_t dev;
ioctlcmd_t cmd;
caddr_t addr;
int flag;
struct lwp *l;
{
struct hfsc_if *hif;
struct hfsc_interface *ifacep;
struct proc* p = l->l_proc;
int error = 0;
/* check super-user privilege */
switch (cmd) {
case HFSC_GETSTATS:
break;
default:
#if (__FreeBSD_version > 400000)
if ((error = suser(p)) != 0)
return (error);
#else
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
return (error);
#endif
break;
}
switch (cmd) {
case HFSC_IF_ATTACH:
error = hfsccmd_if_attach((struct hfsc_attach *)addr);
break;
case HFSC_IF_DETACH:
error = hfsccmd_if_detach((struct hfsc_interface *)addr);
break;
case HFSC_ENABLE:
case HFSC_DISABLE:
case HFSC_CLEAR_HIERARCHY:
ifacep = (struct hfsc_interface *)addr;
if ((hif = altq_lookup(ifacep->hfsc_ifname,
ALTQT_HFSC)) == NULL) {
error = EBADF;
break;
}
switch (cmd) {
case HFSC_ENABLE:
if (hif->hif_defaultclass == NULL) {
#if 1
printf("hfsc: no default class\n");
#endif
error = EINVAL;
break;
}
error = altq_enable(hif->hif_ifq);
break;
case HFSC_DISABLE:
error = altq_disable(hif->hif_ifq);
break;
case HFSC_CLEAR_HIERARCHY:
hfsc_clear_interface(hif);
break;
}
break;
case HFSC_ADD_CLASS:
error = hfsccmd_add_class((struct hfsc_add_class *)addr);
break;
case HFSC_DEL_CLASS:
error = hfsccmd_delete_class((struct hfsc_delete_class *)addr);
break;
case HFSC_MOD_CLASS:
error = hfsccmd_modify_class((struct hfsc_modify_class *)addr);
break;
case HFSC_ADD_FILTER:
error = hfsccmd_add_filter((struct hfsc_add_filter *)addr);
break;
case HFSC_DEL_FILTER:
error = hfsccmd_delete_filter((struct hfsc_delete_filter *)addr);
break;
case HFSC_GETSTATS:
error = hfsccmd_class_stats((struct hfsc_class_stats *)addr);
break;
default:
error = EINVAL;
break;
}
return error;
}
static int
hfsccmd_if_attach(ap)
struct hfsc_attach *ap;
{
struct hfsc_if *hif;
struct ifnet *ifp;
int error;
if ((ifp = ifunit(ap->iface.hfsc_ifname)) == NULL)
return (ENXIO);
if ((hif = hfsc_attach(&ifp->if_snd, ap->bandwidth)) == NULL)
return (ENOMEM);
/*
* set HFSC to this ifnet structure.
*/
if ((error = altq_attach(&ifp->if_snd, ALTQT_HFSC, hif,
hfsc_enqueue, hfsc_dequeue, hfsc_request,
&hif->hif_classifier, acc_classify)) != 0)
(void)hfsc_detach(hif);
return (error);
}
static int
hfsccmd_if_detach(ap)
struct hfsc_interface *ap;
{
struct hfsc_if *hif;
int error;
if ((hif = altq_lookup(ap->hfsc_ifname, ALTQT_HFSC)) == NULL)
return (EBADF);
if (ALTQ_IS_ENABLED(hif->hif_ifq))
altq_disable(hif->hif_ifq);
if ((error = altq_detach(hif->hif_ifq)))
return (error);
return hfsc_detach(hif);
}
static int
hfsccmd_add_class(ap)
struct hfsc_add_class *ap;
{
struct hfsc_if *hif;
struct hfsc_class *cl, *parent;
if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
return (EBADF);
if ((parent = clh_to_clp(hif, ap->parent_handle)) == NULL) {
if (ap->parent_handle == HFSC_ROOTCLASS_HANDLE)
parent = hif->hif_rootclass;
else
return (EINVAL);
}
if ((cl = hfsc_class_create(hif, &ap->service_curve, parent,
ap->qlimit, ap->flags)) == NULL)
return (ENOMEM);
/* return a class handle to the user */
ap->class_handle = clp_to_clh(cl);
return (0);
}
static int
hfsccmd_delete_class(ap)
struct hfsc_delete_class *ap;
{
struct hfsc_if *hif;
struct hfsc_class *cl;
if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
return (EBADF);
if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
return (EINVAL);
return hfsc_class_destroy(cl);
}
static int
hfsccmd_modify_class(ap)
struct hfsc_modify_class *ap;
{
struct hfsc_if *hif;
struct hfsc_class *cl;
struct service_curve *rsc = NULL;
struct service_curve *fsc = NULL;
if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
return (EBADF);
if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
return (EINVAL);
if (ap->sctype & HFSC_REALTIMESC)
rsc = &ap->service_curve;
if (ap->sctype & HFSC_LINKSHARINGSC)
fsc = &ap->service_curve;
return hfsc_class_modify(cl, rsc, fsc);
}
static int
hfsccmd_add_filter(ap)
struct hfsc_add_filter *ap;
{
struct hfsc_if *hif;
struct hfsc_class *cl;
if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
return (EBADF);
if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
return (EINVAL);
if (is_a_parent_class(cl)) {
#if 1
printf("hfsccmd_add_filter: not a leaf class!\n");
#endif
return (EINVAL);
}
return acc_add_filter(&hif->hif_classifier, &ap->filter,
cl, &ap->filter_handle);
}
static int
hfsccmd_delete_filter(ap)
struct hfsc_delete_filter *ap;
{
struct hfsc_if *hif;
if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
return (EBADF);
return acc_delete_filter(&hif->hif_classifier,
ap->filter_handle);
}
static int
hfsccmd_class_stats(ap)
struct hfsc_class_stats *ap;
{
struct hfsc_if *hif;
struct hfsc_class *cl;
struct hfsc_basic_class_stats stats, *usp;
int n, nclasses, error;
if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
return (EBADF);
ap->cur_time = read_machclk();
ap->hif_classes = hif->hif_classes;
ap->hif_packets = hif->hif_packets;
/* skip the first N classes in the tree */
nclasses = ap->nskip;
for (cl = hif->hif_rootclass, n = 0; cl != NULL && n < nclasses;
cl = hfsc_nextclass(cl), n++)
;
if (n != nclasses)
return (EINVAL);
/* then, read the next N classes in the tree */
nclasses = ap->nclasses;
usp = ap->stats;
for (n = 0; cl != NULL && n < nclasses; cl = hfsc_nextclass(cl), n++) {
get_class_stats(&stats, cl);
if ((error = copyout((caddr_t)&stats, (caddr_t)usp++,
sizeof(stats))) != 0)
return (error);
}
ap->nclasses = n;
return (0);
}
static void get_class_stats(sp, cl)
struct hfsc_basic_class_stats *sp;
struct hfsc_class *cl;
{
sp->class_id = cl->cl_id;
sp->class_handle = clp_to_clh(cl);
if (cl->cl_rsc != NULL) {
sp->rsc.m1 = sm2m(cl->cl_rsc->sm1);
sp->rsc.d = dx2d(cl->cl_rsc->dx);
sp->rsc.m2 = sm2m(cl->cl_rsc->sm2);
} else {
sp->rsc.m1 = 0;
sp->rsc.d = 0;
sp->rsc.m2 = 0;
}
if (cl->cl_fsc != NULL) {
sp->fsc.m1 = sm2m(cl->cl_fsc->sm1);
sp->fsc.d = dx2d(cl->cl_fsc->dx);
sp->fsc.m2 = sm2m(cl->cl_fsc->sm2);
} else {
sp->fsc.m1 = 0;
sp->fsc.d = 0;
sp->fsc.m2 = 0;
}
sp->total = cl->cl_total;
sp->cumul = cl->cl_cumul;
sp->d = cl->cl_d;
sp->e = cl->cl_e;
sp->vt = cl->cl_vt;
sp->qlength = qlen(cl->cl_q);
sp->xmit_cnt = cl->cl_stats.xmit_cnt;
sp->drop_cnt = cl->cl_stats.drop_cnt;
sp->period = cl->cl_stats.period;
sp->qtype = qtype(cl->cl_q);
#ifdef ALTQ_RED
if (q_is_red(cl->cl_q))
red_getstats(cl->cl_red, &sp->red[0]);
#endif
#ifdef ALTQ_RIO
if (q_is_rio(cl->cl_q))
rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
#endif
}
/* convert a class handle to the corresponding class pointer */
static struct hfsc_class *
clh_to_clp(hif, chandle)
struct hfsc_if *hif;
u_long chandle;
{
struct hfsc_class *cl;
cl = (struct hfsc_class *)chandle;
if (chandle != ALIGN(cl)) {
#if 1
printf("clh_to_cl: unaligned pointer %p\n", cl);
#endif
return (NULL);
}
if (cl == NULL || cl->cl_handle != chandle || cl->cl_hif != hif)
return (NULL);
return (cl);
}
/* convert a class pointer to the corresponding class handle */
static u_long
clp_to_clh(cl)
struct hfsc_class *cl;
{
if (cl->cl_parent == NULL)
return (HFSC_ROOTCLASS_HANDLE); /* XXX */
return (cl->cl_handle);
}
#ifdef KLD_MODULE
static struct altqsw hfsc_sw =
{"hfsc", hfscopen, hfscclose, hfscioctl};
ALTQ_MODULE(altq_hfsc, ALTQT_HFSC, &hfsc_sw);
#endif /* KLD_MODULE */
#endif /* ALTQ_HFSC */