764 lines
20 KiB
C
764 lines
20 KiB
C
/* $NetBSD: kern_exit.c,v 1.107 2003/01/18 10:06:26 thorpej Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1989, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_exit.c 8.10 (Berkeley) 2/23/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_exit.c,v 1.107 2003/01/18 10:06:26 thorpej Exp $");
|
|
|
|
#include "opt_ktrace.h"
|
|
#include "opt_perfctrs.h"
|
|
#include "opt_systrace.h"
|
|
#include "opt_sysv.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/time.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktrace.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/file.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/resourcevar.h>
|
|
#if defined(PERFCTRS)
|
|
#include <sys/pmc.h>
|
|
#endif
|
|
#include <sys/ptrace.h>
|
|
#include <sys/acct.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/ras.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sa.h>
|
|
#include <sys/savar.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/syscallargs.h>
|
|
#include <sys/systrace.h>
|
|
|
|
#include <machine/cpu.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#define DEBUG_EXIT
|
|
|
|
#ifdef DEBUG_EXIT
|
|
int debug_exit = 0;
|
|
#define DPRINTF(x) if (debug_exit) printf x
|
|
#else
|
|
#define DPRINTF(x)
|
|
#endif
|
|
|
|
static void lwp_exit_hook(struct lwp *, void *);
|
|
|
|
/*
|
|
* exit --
|
|
* Death of process.
|
|
*/
|
|
int
|
|
sys_exit(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys_exit_args /* {
|
|
syscallarg(int) rval;
|
|
} */ *uap = v;
|
|
|
|
/* Don't call exit1() multiple times in the same process.*/
|
|
if (l->l_proc->p_flag & P_WEXIT)
|
|
lwp_exit(l);
|
|
|
|
exit1(l, W_EXITCODE(SCARG(uap, rval), 0));
|
|
/* NOTREACHED */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Exit: deallocate address space and other resources, change proc state
|
|
* to zombie, and unlink proc from allproc and parent's lists. Save exit
|
|
* status and rusage for wait(). Check for child processes and orphan them.
|
|
*/
|
|
void
|
|
exit1(struct lwp *l, int rv)
|
|
{
|
|
struct proc *p, *q, *nq;
|
|
int s;
|
|
|
|
p = l->l_proc;
|
|
|
|
if (__predict_false(p == initproc))
|
|
panic("init died (signal %d, exit %d)",
|
|
WTERMSIG(rv), WEXITSTATUS(rv));
|
|
|
|
DPRINTF(("exit1: %d.%d exiting.\n", p->p_pid, l->l_lid));
|
|
/*
|
|
* Disable scheduler activation upcalls.
|
|
* We're trying to get out of here.
|
|
*/
|
|
if (l->l_flag & L_SA) {
|
|
l->l_flag &= ~L_SA;
|
|
p->p_flag &= ~P_SA;
|
|
}
|
|
|
|
#ifdef PGINPROF
|
|
vmsizmon();
|
|
#endif
|
|
if (p->p_flag & P_PROFIL)
|
|
stopprofclock(p);
|
|
p->p_ru = pool_get(&rusage_pool, PR_WAITOK);
|
|
/*
|
|
* If parent is waiting for us to exit or exec, P_PPWAIT is set; we
|
|
* wake up the parent early to avoid deadlock.
|
|
*/
|
|
p->p_flag |= P_WEXIT;
|
|
if (p->p_flag & P_PPWAIT) {
|
|
p->p_flag &= ~P_PPWAIT;
|
|
wakeup((caddr_t)p->p_pptr);
|
|
}
|
|
sigfillset(&p->p_sigctx.ps_sigignore);
|
|
sigemptyset(&p->p_sigctx.ps_siglist);
|
|
p->p_sigctx.ps_sigcheck = 0;
|
|
timers_free(p, TIMERS_ALL);
|
|
|
|
if (p->p_nlwps > 1)
|
|
exit_lwps(l);
|
|
|
|
#if defined(__HAVE_RAS)
|
|
ras_purgeall(p);
|
|
#endif
|
|
|
|
/*
|
|
* Close open files and release open-file table.
|
|
* This may block!
|
|
*/
|
|
fdfree(p);
|
|
cwdfree(p);
|
|
|
|
doexithooks(p);
|
|
|
|
if (SESS_LEADER(p)) {
|
|
struct session *sp = p->p_session;
|
|
|
|
if (sp->s_ttyvp) {
|
|
/*
|
|
* Controlling process.
|
|
* Signal foreground pgrp,
|
|
* drain controlling terminal
|
|
* and revoke access to controlling terminal.
|
|
*/
|
|
if (sp->s_ttyp->t_session == sp) {
|
|
if (sp->s_ttyp->t_pgrp)
|
|
pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
|
|
(void) ttywait(sp->s_ttyp);
|
|
/*
|
|
* The tty could have been revoked
|
|
* if we blocked.
|
|
*/
|
|
if (sp->s_ttyvp)
|
|
VOP_REVOKE(sp->s_ttyvp, REVOKEALL);
|
|
}
|
|
if (sp->s_ttyvp)
|
|
vrele(sp->s_ttyvp);
|
|
sp->s_ttyvp = NULL;
|
|
/*
|
|
* s_ttyp is not zero'd; we use this to indicate
|
|
* that the session once had a controlling terminal.
|
|
* (for logging and informational purposes)
|
|
*/
|
|
}
|
|
sp->s_leader = NULL;
|
|
}
|
|
fixjobc(p, p->p_pgrp, 0);
|
|
(void)acct_process(p);
|
|
#ifdef KTRACE
|
|
/*
|
|
* release trace file
|
|
*/
|
|
ktrderef(p);
|
|
#endif
|
|
#ifdef SYSTRACE
|
|
systrace_sys_exit(p);
|
|
#endif
|
|
/*
|
|
* If emulation has process exit hook, call it now.
|
|
*/
|
|
if (p->p_emul->e_proc_exit)
|
|
(*p->p_emul->e_proc_exit)(p);
|
|
|
|
/*
|
|
* NOTE: WE ARE NO LONGER ALLOWED TO SLEEP!
|
|
*/
|
|
p->p_stat = SDEAD;
|
|
p->p_nrlwps--;
|
|
l->l_stat = SDEAD;
|
|
|
|
/*
|
|
* Remove proc from pidhash chain so looking it up won't
|
|
* work. Move it from allproc to zombproc, but do not yet
|
|
* wake up the reaper. We will put the proc on the
|
|
* deadproc list later (using the p_hash member), and
|
|
* wake up the reaper when we do.
|
|
*/
|
|
s = proclist_lock_write();
|
|
LIST_REMOVE(p, p_hash);
|
|
LIST_REMOVE(p, p_list);
|
|
LIST_INSERT_HEAD(&zombproc, p, p_list);
|
|
LIST_REMOVE(l, l_list);
|
|
l->l_flag |= L_DETACHED;
|
|
proclist_unlock_write(s);
|
|
|
|
/*
|
|
* Give orphaned children to init(8).
|
|
*/
|
|
q = LIST_FIRST(&p->p_children);
|
|
if (q) /* only need this if any child is S_ZOMB */
|
|
wakeup((caddr_t)initproc);
|
|
for (; q != 0; q = nq) {
|
|
nq = LIST_NEXT(q, p_sibling);
|
|
|
|
/*
|
|
* Traced processes are killed since their existence
|
|
* means someone is screwing up. Since we reset the
|
|
* trace flags, the logic in sys_wait4() would not be
|
|
* triggered to reparent the process to its
|
|
* original parent, so we must do this here.
|
|
*/
|
|
if (q->p_flag & P_TRACED) {
|
|
if (q->p_opptr != q->p_pptr) {
|
|
struct proc *t = q->p_opptr;
|
|
proc_reparent(q, t ? t : initproc);
|
|
q->p_opptr = NULL;
|
|
} else
|
|
proc_reparent(q, initproc);
|
|
q->p_flag &= ~(P_TRACED|P_WAITED|P_FSTRACE);
|
|
psignal(q, SIGKILL);
|
|
} else {
|
|
proc_reparent(q, initproc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset p_opptr pointer of all former children which got
|
|
* traced by another process and were reparented. We reset
|
|
* it to NULL here; the trace detach code then reparents
|
|
* the child to initproc. We only check allproc list, since
|
|
* eventual former children on zombproc list won't reference
|
|
* p_opptr anymore.
|
|
*/
|
|
if (p->p_flag & P_CHTRACED) {
|
|
struct proc *t;
|
|
|
|
proclist_lock_read();
|
|
|
|
LIST_FOREACH(t, &allproc, p_list) {
|
|
if (t->p_opptr == p)
|
|
t->p_opptr = NULL;
|
|
}
|
|
|
|
proclist_unlock_read();
|
|
}
|
|
|
|
/*
|
|
* Save exit status and final rusage info, adding in child rusage
|
|
* info and self times.
|
|
*/
|
|
p->p_xstat = rv;
|
|
*p->p_ru = p->p_stats->p_ru;
|
|
calcru(p, &p->p_ru->ru_utime, &p->p_ru->ru_stime, NULL);
|
|
ruadd(p->p_ru, &p->p_stats->p_cru);
|
|
|
|
/*
|
|
* Notify interested parties of our demise.
|
|
*/
|
|
KNOTE(&p->p_klist, NOTE_EXIT);
|
|
|
|
#if PERFCTRS
|
|
/*
|
|
* Save final PMC information in parent process & clean up.
|
|
*/
|
|
if (PMC_ENABLED(p)) {
|
|
pmc_save_context(p);
|
|
pmc_accumulate(p->p_pptr, p);
|
|
pmc_process_exit(p);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Notify parent that we're gone. If parent has the P_NOCLDWAIT
|
|
* flag set, notify init instead (and hope it will handle
|
|
* this situation).
|
|
*/
|
|
if (p->p_pptr->p_flag & P_NOCLDWAIT) {
|
|
struct proc *pp = p->p_pptr;
|
|
proc_reparent(p, initproc);
|
|
/*
|
|
* If this was the last child of our parent, notify
|
|
* parent, so in case he was wait(2)ing, he will
|
|
* continue.
|
|
*/
|
|
if (LIST_FIRST(&pp->p_children) == NULL)
|
|
wakeup((caddr_t)pp);
|
|
}
|
|
|
|
/*
|
|
* Release the process's signal state.
|
|
*/
|
|
sigactsfree(p);
|
|
|
|
/*
|
|
* Clear curlwp after we've done all operations
|
|
* that could block, and before tearing down the rest
|
|
* of the process state that might be used from clock, etc.
|
|
* Also, can't clear curlwp while we're still runnable,
|
|
* as we're not on a run queue (we are current, just not
|
|
* a proper proc any longer!).
|
|
*
|
|
* Other substructures are freed from wait().
|
|
*/
|
|
curlwp = NULL;
|
|
limfree(p->p_limit);
|
|
pstatsfree(p->p_stats);
|
|
p->p_limit = NULL;
|
|
|
|
/* This process no longer needs to hold the kernel lock. */
|
|
KERNEL_PROC_UNLOCK(l);
|
|
|
|
/*
|
|
* Finally, call machine-dependent code to switch to a new
|
|
* context (possibly the idle context). Once we are no longer
|
|
* using the dead process's vmspace and stack, exit2() will be
|
|
* called to schedule those resources to be released by the
|
|
* reaper thread.
|
|
*
|
|
* Note that cpu_exit() will end with a call equivalent to
|
|
* cpu_switch(), finishing our execution (pun intended).
|
|
*/
|
|
|
|
cpu_exit(l, 1);
|
|
}
|
|
|
|
void
|
|
exit_lwps(struct lwp *l)
|
|
{
|
|
struct proc *p;
|
|
struct lwp *l2;
|
|
int s, error;
|
|
lwpid_t waited;
|
|
|
|
p = l->l_proc;
|
|
|
|
/* XXX SMP
|
|
* This would be the right place to IPI any LWPs running on
|
|
* other processors so that they can notice the userret exit hook.
|
|
*/
|
|
p->p_userret = lwp_exit_hook;
|
|
p->p_userret_arg = NULL;
|
|
|
|
/*
|
|
* Make SA-cached LWPs normal process runnable LWPs so that
|
|
* they'll also self-destruct.
|
|
*/
|
|
if (p->p_sa && p->p_sa->sa_ncached > 0) {
|
|
DPRINTF(("exit_lwps: Making cached LWPs of %d runnable: ",
|
|
p->p_pid));
|
|
SCHED_LOCK(s);
|
|
while ((l2 = sa_getcachelwp(p)) != 0) {
|
|
l2->l_priority = l2->l_usrpri;
|
|
setrunnable(l2);
|
|
DPRINTF(("%d ", l2->l_lid));
|
|
}
|
|
DPRINTF(("\n"));
|
|
SCHED_UNLOCK(s);
|
|
}
|
|
|
|
/*
|
|
* Interrupt LWPs in interruptable sleep, unsuspend suspended
|
|
* LWPs, make detached LWPs undeached (so we can wait for
|
|
* them) and then wait for everyone else to finish.
|
|
*/
|
|
LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
|
|
l2->l_flag &= ~(L_DETACHED|L_SA);
|
|
if ((l2->l_stat == LSSLEEP && (l2->l_flag & L_SINTR)) ||
|
|
l2->l_stat == LSSUSPENDED) {
|
|
SCHED_LOCK(s);
|
|
setrunnable(l2);
|
|
SCHED_UNLOCK(s);
|
|
DPRINTF(("exit_lwps: Made %d.%d runnable\n",
|
|
p->p_pid, l2->l_lid));
|
|
}
|
|
}
|
|
|
|
|
|
while (p->p_nlwps > 1) {
|
|
DPRINTF(("exit_lwps: waiting for %d LWPs (%d runnable, %d zombies)\n",
|
|
p->p_nlwps, p->p_nrlwps, p->p_nzlwps));
|
|
error = lwp_wait1(l, 0, &waited, LWPWAIT_EXITCONTROL);
|
|
if (error)
|
|
panic("exit_lwps: lwp_wait1 failed with error %d\n",
|
|
error);
|
|
DPRINTF(("exit_lwps: Got LWP %d from lwp_wait1()\n", waited));
|
|
}
|
|
|
|
p->p_userret = NULL;
|
|
}
|
|
|
|
/* Wrapper function for use in p_userret */
|
|
static void
|
|
lwp_exit_hook(struct lwp *l, void *arg)
|
|
{
|
|
KERNEL_PROC_LOCK(l);
|
|
lwp_exit(l);
|
|
}
|
|
|
|
/*
|
|
* We are called from cpu_exit() once it is safe to schedule the
|
|
* dead process's resources to be freed (i.e., once we've switched to
|
|
* the idle PCB for the current CPU).
|
|
*
|
|
* NOTE: One must be careful with locking in this routine. It's
|
|
* called from a critical section in machine-dependent code, so
|
|
* we should refrain from changing any interrupt state.
|
|
*
|
|
* We lock the deadproc list (a spin lock), place the proc on that
|
|
* list (using the p_hash member), and wake up the reaper.
|
|
*/
|
|
void
|
|
exit2(struct lwp *l)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
|
|
simple_lock(&deadproc_slock);
|
|
LIST_INSERT_HEAD(&deadproc, p, p_hash);
|
|
simple_unlock(&deadproc_slock);
|
|
|
|
/* lwp_exit2() will wake up deadproc for us. */
|
|
lwp_exit2(l);
|
|
}
|
|
|
|
/*
|
|
* Process reaper. This is run by a kernel thread to free the resources
|
|
* of a dead process. Once the resources are free, the process becomes
|
|
* a zombie, and the parent is allowed to read the undead's status.
|
|
*/
|
|
void
|
|
reaper(void *arg)
|
|
{
|
|
struct proc *p;
|
|
struct lwp *l;
|
|
|
|
KERNEL_PROC_UNLOCK(curlwp);
|
|
|
|
for (;;) {
|
|
simple_lock(&deadproc_slock);
|
|
p = LIST_FIRST(&deadproc);
|
|
l = LIST_FIRST(&deadlwp);
|
|
if (p == NULL && l == NULL) {
|
|
/* No work for us; go to sleep until someone exits. */
|
|
(void) ltsleep(&deadproc, PVM|PNORELOCK,
|
|
"reaper", 0, &deadproc_slock);
|
|
continue;
|
|
}
|
|
|
|
if (l != NULL ) {
|
|
p = l->l_proc;
|
|
|
|
/* Remove us from the deadlwp list. */
|
|
LIST_REMOVE(l, l_list);
|
|
simple_unlock(&deadproc_slock);
|
|
KERNEL_PROC_LOCK(curlwp);
|
|
|
|
/*
|
|
* Give machine-dependent code a chance to free any
|
|
* resources it couldn't free while still running on
|
|
* that process's context. This must be done before
|
|
* uvm_lwp_exit(), in case these resources are in the
|
|
* PCB.
|
|
*/
|
|
cpu_wait(l);
|
|
|
|
/*
|
|
* Free the VM resources we're still holding on to.
|
|
*/
|
|
uvm_lwp_exit(l);
|
|
|
|
l->l_stat = LSZOMB;
|
|
if (l->l_flag & L_DETACHED) {
|
|
/* Nobody waits for detached LWPs. */
|
|
LIST_REMOVE(l, l_sibling);
|
|
p->p_nlwps--;
|
|
pool_put(&lwp_pool, l);
|
|
} else {
|
|
p->p_nzlwps++;
|
|
wakeup((caddr_t)&p->p_nlwps);
|
|
}
|
|
/* XXXNJW where should this be with respect to
|
|
* the wakeup() above? */
|
|
KERNEL_PROC_UNLOCK(curlwp);
|
|
} else {
|
|
/* Remove us from the deadproc list. */
|
|
LIST_REMOVE(p, p_hash);
|
|
simple_unlock(&deadproc_slock);
|
|
KERNEL_PROC_LOCK(curlwp);
|
|
|
|
/*
|
|
* Free the VM resources we're still holding on to.
|
|
* We must do this from a valid thread because doing
|
|
* so may block.
|
|
*/
|
|
uvm_proc_exit(p);
|
|
|
|
/* Process is now a true zombie. */
|
|
p->p_stat = SZOMB;
|
|
|
|
/* Wake up the parent so it can get exit status. */
|
|
if ((p->p_flag & P_FSTRACE) == 0 && p->p_exitsig != 0)
|
|
psignal(p->p_pptr, P_EXITSIG(p));
|
|
KERNEL_PROC_UNLOCK(curlwp);
|
|
wakeup((caddr_t)p->p_pptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
sys_wait4(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys_wait4_args /* {
|
|
syscallarg(int) pid;
|
|
syscallarg(int *) status;
|
|
syscallarg(int) options;
|
|
syscallarg(struct rusage *) rusage;
|
|
} */ *uap = v;
|
|
struct proc *p, *q, *t;
|
|
int nfound, status, error, s;
|
|
|
|
q = l->l_proc;
|
|
|
|
if (SCARG(uap, pid) == 0)
|
|
SCARG(uap, pid) = -q->p_pgid;
|
|
if (SCARG(uap, options) &~ (WUNTRACED|WNOHANG|WALTSIG))
|
|
return (EINVAL);
|
|
|
|
loop:
|
|
nfound = 0;
|
|
LIST_FOREACH(p, &q->p_children, p_sibling) {
|
|
if (SCARG(uap, pid) != WAIT_ANY &&
|
|
p->p_pid != SCARG(uap, pid) &&
|
|
p->p_pgid != -SCARG(uap, pid))
|
|
continue;
|
|
/*
|
|
* Wait for processes with p_exitsig != SIGCHLD processes only
|
|
* if WALTSIG is set; wait for processes with p_exitsig ==
|
|
* SIGCHLD only if WALTSIG is clear.
|
|
*/
|
|
if (((SCARG(uap, options) & WALLSIG) == 0) &&
|
|
((SCARG(uap, options) & WALTSIG) ?
|
|
(p->p_exitsig == SIGCHLD) : (P_EXITSIG(p) != SIGCHLD)))
|
|
continue;
|
|
|
|
nfound++;
|
|
if (p->p_stat == SZOMB) {
|
|
retval[0] = p->p_pid;
|
|
|
|
if (SCARG(uap, status)) {
|
|
status = p->p_xstat; /* convert to int */
|
|
error = copyout((caddr_t)&status,
|
|
(caddr_t)SCARG(uap, status),
|
|
sizeof(status));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
if (SCARG(uap, rusage) &&
|
|
(error = copyout((caddr_t)p->p_ru,
|
|
(caddr_t)SCARG(uap, rusage),
|
|
sizeof(struct rusage))))
|
|
return (error);
|
|
/*
|
|
* If we got the child via ptrace(2) or procfs, and
|
|
* the parent is different (meaning the process was
|
|
* attached, rather than run as a child), then we need
|
|
* to give it back to the old parent, and send the
|
|
* parent the exit signal. The rest of the cleanup
|
|
* will be done when the old parent waits on the child.
|
|
*/
|
|
if ((p->p_flag & P_TRACED) && p->p_opptr != p->p_pptr){
|
|
t = p->p_opptr;
|
|
proc_reparent(p, t ? t : initproc);
|
|
p->p_opptr = NULL;
|
|
p->p_flag &= ~(P_TRACED|P_WAITED|P_FSTRACE);
|
|
if (p->p_exitsig != 0)
|
|
psignal(p->p_pptr, P_EXITSIG(p));
|
|
wakeup((caddr_t)p->p_pptr);
|
|
return (0);
|
|
}
|
|
scheduler_wait_hook(q, p);
|
|
p->p_xstat = 0;
|
|
ruadd(&q->p_stats->p_cru, p->p_ru);
|
|
pool_put(&rusage_pool, p->p_ru);
|
|
|
|
/*
|
|
* Finally finished with old proc entry.
|
|
* Unlink it from its process group and free it.
|
|
*/
|
|
leavepgrp(p);
|
|
|
|
s = proclist_lock_write();
|
|
LIST_REMOVE(p, p_list); /* off zombproc */
|
|
proclist_unlock_write(s);
|
|
|
|
LIST_REMOVE(p, p_sibling);
|
|
|
|
/*
|
|
* Decrement the count of procs running with this uid.
|
|
*/
|
|
(void)chgproccnt(p->p_cred->p_ruid, -1);
|
|
|
|
/*
|
|
* Free up credentials.
|
|
*/
|
|
if (--p->p_cred->p_refcnt == 0) {
|
|
crfree(p->p_cred->pc_ucred);
|
|
pool_put(&pcred_pool, p->p_cred);
|
|
}
|
|
|
|
/*
|
|
* Release reference to text vnode
|
|
*/
|
|
if (p->p_textvp)
|
|
vrele(p->p_textvp);
|
|
|
|
/*
|
|
* Release any SA state
|
|
*/
|
|
if (p->p_sa) {
|
|
free(p->p_sa->sa_stacks, M_SA);
|
|
pool_put(&sadata_pool, p->p_sa);
|
|
}
|
|
|
|
pool_put(&proc_pool, p);
|
|
nprocs--;
|
|
return (0);
|
|
}
|
|
if (p->p_stat == SSTOP && (p->p_flag & P_WAITED) == 0 &&
|
|
(p->p_flag & P_TRACED || SCARG(uap, options) & WUNTRACED)) {
|
|
p->p_flag |= P_WAITED;
|
|
retval[0] = p->p_pid;
|
|
|
|
if (SCARG(uap, status)) {
|
|
status = W_STOPCODE(p->p_xstat);
|
|
error = copyout((caddr_t)&status,
|
|
(caddr_t)SCARG(uap, status),
|
|
sizeof(status));
|
|
} else
|
|
error = 0;
|
|
return (error);
|
|
}
|
|
}
|
|
if (nfound == 0)
|
|
return (ECHILD);
|
|
if (SCARG(uap, options) & WNOHANG) {
|
|
retval[0] = 0;
|
|
return (0);
|
|
}
|
|
if ((error = tsleep((caddr_t)q, PWAIT | PCATCH, "wait", 0)) != 0)
|
|
return (error);
|
|
goto loop;
|
|
}
|
|
|
|
/*
|
|
* make process 'parent' the new parent of process 'child'.
|
|
*/
|
|
void
|
|
proc_reparent(struct proc *child, struct proc *parent)
|
|
{
|
|
|
|
if (child->p_pptr == parent)
|
|
return;
|
|
|
|
if (parent == initproc)
|
|
child->p_exitsig = SIGCHLD;
|
|
|
|
LIST_REMOVE(child, p_sibling);
|
|
LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
|
|
child->p_pptr = parent;
|
|
}
|