1007 lines
33 KiB
C
1007 lines
33 KiB
C
/* $NetBSD: arm32_kvminit.c,v 1.38 2016/12/24 09:19:23 skrll Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
|
|
* Written by Hiroyuki Bessho for Genetec Corporation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of Genetec Corporation may not be used to endorse or
|
|
* promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Copyright (c) 2001 Wasabi Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project by
|
|
* Wasabi Systems, Inc.
|
|
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Copyright (c) 1997,1998 Mark Brinicombe.
|
|
* Copyright (c) 1997,1998 Causality Limited.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Mark Brinicombe
|
|
* for the NetBSD Project.
|
|
* 4. The name of the company nor the name of the author may be used to
|
|
* endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* Copyright (c) 2007 Microsoft
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Microsoft
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "opt_multiprocessor.h"
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.38 2016/12/24 09:19:23 skrll Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/device.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/bus.h>
|
|
|
|
#include <dev/cons.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <arm/locore.h>
|
|
#include <arm/db_machdep.h>
|
|
#include <arm/undefined.h>
|
|
#include <arm/bootconfig.h>
|
|
#include <arm/arm32/machdep.h>
|
|
|
|
struct bootmem_info bootmem_info;
|
|
|
|
extern void *msgbufaddr;
|
|
paddr_t msgbufphys;
|
|
paddr_t physical_start;
|
|
paddr_t physical_end;
|
|
|
|
extern char etext[];
|
|
extern char __data_start[], _edata[];
|
|
extern char __bss_start[], __bss_end__[];
|
|
extern char _end[];
|
|
|
|
/* Page tables for mapping kernel VM */
|
|
#define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
|
|
|
|
/*
|
|
* Macros to translate between physical and virtual for a subset of the
|
|
* kernel address space. *Not* for general use.
|
|
*/
|
|
#if defined(KERNEL_BASE_VOFFSET)
|
|
#define KERN_VTOPHYS(bmi, va) \
|
|
((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
|
|
#define KERN_PHYSTOV(bmi, pa) \
|
|
((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
|
|
#else
|
|
#define KERN_VTOPHYS(bmi, va) \
|
|
((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
|
|
#define KERN_PHYSTOV(bmi, pa) \
|
|
((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
|
|
#endif
|
|
|
|
void
|
|
arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
|
|
{
|
|
struct bootmem_info * const bmi = &bootmem_info;
|
|
pv_addr_t *pv = bmi->bmi_freeblocks;
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
|
|
__func__, memstart, memsize, kernelstart);
|
|
#endif
|
|
|
|
physical_start = bmi->bmi_start = memstart;
|
|
physical_end = bmi->bmi_end = memstart + memsize;
|
|
#ifndef ARM_HAS_LPAE
|
|
if (physical_end == 0) {
|
|
physical_end = -PAGE_SIZE;
|
|
memsize -= PAGE_SIZE;
|
|
bmi->bmi_end -= PAGE_SIZE;
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: memsize shrunk by a page to avoid ending at 4GB\n",
|
|
__func__);
|
|
#endif
|
|
}
|
|
#endif
|
|
physmem = memsize / PAGE_SIZE;
|
|
|
|
/*
|
|
* Let's record where the kernel lives.
|
|
*/
|
|
bmi->bmi_kernelstart = kernelstart;
|
|
bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
|
|
#endif
|
|
|
|
/*
|
|
* Now the rest of the free memory must be after the kernel.
|
|
*/
|
|
pv->pv_pa = bmi->bmi_kernelend;
|
|
pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
|
|
pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
|
|
bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
|
|
__func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
|
|
pv->pv_pa + pv->pv_size - 1, pv->pv_va);
|
|
#endif
|
|
pv++;
|
|
|
|
/*
|
|
* Add a free block for any memory before the kernel.
|
|
*/
|
|
if (bmi->bmi_start < bmi->bmi_kernelstart) {
|
|
pv->pv_pa = bmi->bmi_start;
|
|
pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
|
|
pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
|
|
bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
|
|
__func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
|
|
pv->pv_pa + pv->pv_size - 1, pv->pv_va);
|
|
#endif
|
|
pv++;
|
|
}
|
|
|
|
bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
|
|
|
|
SLIST_INIT(&bmi->bmi_freechunks);
|
|
SLIST_INIT(&bmi->bmi_chunks);
|
|
}
|
|
|
|
static bool
|
|
concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
|
|
{
|
|
if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
|
|
&& acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
|
|
&& acc_pv->pv_prot == pv->pv_prot
|
|
&& acc_pv->pv_cache == pv->pv_cache) {
|
|
#ifdef VERBOSE_INIT_ARMX
|
|
printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
|
|
__func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
|
|
acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
|
|
#endif
|
|
acc_pv->pv_size += pv->pv_size;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
|
|
{
|
|
pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
|
|
while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
|
|
pv_addr_t * const pv0 = (*pvp);
|
|
KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
|
|
if (concat_pvaddr(pv0, pv)) {
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
|
|
__func__, "appending", pv,
|
|
pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
|
|
pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
|
|
#endif
|
|
pv = SLIST_NEXT(pv0, pv_list);
|
|
if (pv != NULL && concat_pvaddr(pv0, pv)) {
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
|
|
__func__, "merging", pv,
|
|
pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
|
|
pv0->pv_pa,
|
|
pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
|
|
#endif
|
|
SLIST_REMOVE_AFTER(pv0, pv_list);
|
|
SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
|
|
}
|
|
return;
|
|
}
|
|
KASSERT(pv->pv_va != (*pvp)->pv_va);
|
|
pvp = &SLIST_NEXT(*pvp, pv_list);
|
|
}
|
|
KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
|
|
pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
|
|
KASSERT(new_pv != NULL);
|
|
SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
|
|
*new_pv = *pv;
|
|
SLIST_NEXT(new_pv, pv_list) = *pvp;
|
|
(*pvp) = new_pv;
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
|
|
__func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
|
|
new_pv->pv_size / PAGE_SIZE);
|
|
if (SLIST_NEXT(new_pv, pv_list))
|
|
printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
|
|
else
|
|
printf("at tail\n");
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
|
|
int prot, int cache, bool zero_p)
|
|
{
|
|
size_t nbytes = npages * PAGE_SIZE;
|
|
pv_addr_t *free_pv = bmi->bmi_freeblocks;
|
|
size_t free_idx = 0;
|
|
static bool l1pt_found;
|
|
|
|
KASSERT(npages > 0);
|
|
|
|
/*
|
|
* If we haven't allocated the kernel L1 page table and we are aligned
|
|
* at a L1 table boundary, alloc the memory for it.
|
|
*/
|
|
if (!l1pt_found
|
|
&& (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
|
|
&& free_pv->pv_size >= L1_TABLE_SIZE) {
|
|
l1pt_found = true;
|
|
valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
|
|
add_pages(bmi, &kernel_l1pt);
|
|
}
|
|
|
|
while (nbytes > free_pv->pv_size) {
|
|
free_pv++;
|
|
free_idx++;
|
|
if (free_idx == bmi->bmi_nfreeblocks) {
|
|
panic("%s: could not allocate %zu bytes",
|
|
__func__, nbytes);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* As we allocate the memory, make sure that we don't walk over
|
|
* our current first level translation table.
|
|
*/
|
|
KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
|
|
|
|
pv->pv_pa = free_pv->pv_pa;
|
|
pv->pv_va = free_pv->pv_va;
|
|
pv->pv_size = nbytes;
|
|
pv->pv_prot = prot;
|
|
pv->pv_cache = cache;
|
|
|
|
/*
|
|
* If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
|
|
* just use PTE_CACHE.
|
|
*/
|
|
if (cache == PTE_PAGETABLE
|
|
&& pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
|
|
&& pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
|
|
&& pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
|
|
pv->pv_cache = PTE_CACHE;
|
|
|
|
free_pv->pv_pa += nbytes;
|
|
free_pv->pv_va += nbytes;
|
|
free_pv->pv_size -= nbytes;
|
|
if (free_pv->pv_size == 0) {
|
|
--bmi->bmi_nfreeblocks;
|
|
for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
|
|
free_pv[0] = free_pv[1];
|
|
}
|
|
}
|
|
|
|
bmi->bmi_freepages -= npages;
|
|
|
|
if (zero_p)
|
|
memset((void *)pv->pv_va, 0, nbytes);
|
|
}
|
|
|
|
void
|
|
arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
|
|
const struct pmap_devmap *devmap, bool mapallmem_p)
|
|
{
|
|
struct bootmem_info * const bmi = &bootmem_info;
|
|
#ifdef MULTIPROCESSOR
|
|
const size_t cpu_num = arm_cpu_max;
|
|
#else
|
|
const size_t cpu_num = 1;
|
|
#endif
|
|
#ifdef ARM_HAS_VBAR
|
|
const bool map_vectors_p = false;
|
|
#elif defined(CPU_ARMV7) || defined(CPU_ARM11)
|
|
const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
|
|
|| (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
|
|
#else
|
|
const bool map_vectors_p = true;
|
|
#endif
|
|
|
|
#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
|
|
KASSERT(mapallmem_p);
|
|
#ifdef ARM_MMU_EXTENDED
|
|
/*
|
|
* The direct map VA space ends at the start of the kernel VM space.
|
|
*/
|
|
pmap_directlimit = kernel_vm_base;
|
|
#else
|
|
KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
|
|
#endif /* ARM_MMU_EXTENDED */
|
|
#endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
|
|
|
|
/*
|
|
* Calculate the number of L2 pages needed for mapping the
|
|
* kernel + data + stuff. Assume 2 L2 pages for kernel, 1 for vectors,
|
|
* and 1 for IO
|
|
*/
|
|
size_t kernel_size = bmi->bmi_kernelend;
|
|
kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
|
|
kernel_size += L1_TABLE_SIZE_REAL;
|
|
kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
|
|
if (map_vectors_p) {
|
|
kernel_size += PAGE_SIZE; /* L2PT for VECTORS */
|
|
}
|
|
if (iovbase) {
|
|
kernel_size += PAGE_SIZE; /* L2PT for IO */
|
|
}
|
|
kernel_size +=
|
|
cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
|
|
+ UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
|
|
kernel_size += round_page(MSGBUFSIZE);
|
|
kernel_size += 0x10000; /* slop */
|
|
if (!mapallmem_p) {
|
|
kernel_size += PAGE_SIZE
|
|
* ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
|
|
}
|
|
kernel_size = round_page(kernel_size);
|
|
|
|
/*
|
|
* Now we know how many L2 pages it will take.
|
|
*/
|
|
const size_t KERNEL_L2PT_KERNEL_NUM =
|
|
round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
|
|
__func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
|
|
#endif
|
|
|
|
KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
|
|
pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
|
|
pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
|
|
pv_addr_t msgbuf;
|
|
pv_addr_t text;
|
|
pv_addr_t data;
|
|
pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
|
|
#if ARM_MMU_XSCALE == 1
|
|
pv_addr_t minidataclean;
|
|
#endif
|
|
|
|
/*
|
|
* We need to allocate some fixed page tables to get the kernel going.
|
|
*
|
|
* We are going to allocate our bootstrap pages from the beginning of
|
|
* the free space that we just calculated. We allocate one page
|
|
* directory and a number of page tables and store the physical
|
|
* addresses in the bmi_l2pts array in bootmem_info.
|
|
*
|
|
* The kernel page directory must be on a 16K boundary. The page
|
|
* tables must be on 4K boundaries. What we do is allocate the
|
|
* page directory on the first 16K boundary that we encounter, and
|
|
* the page tables on 4K boundaries otherwise. Since we allocate
|
|
* at least 3 L2 page tables, we are guaranteed to encounter at
|
|
* least one 16K aligned region.
|
|
*/
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: allocating page tables for", __func__);
|
|
#endif
|
|
for (size_t i = 0; i < __arraycount(chunks); i++) {
|
|
SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
|
|
}
|
|
|
|
kernel_l1pt.pv_pa = 0;
|
|
kernel_l1pt.pv_va = 0;
|
|
|
|
/*
|
|
* Allocate the L2 pages, but if we get to a page that is aligned for
|
|
* an L1 page table, we will allocate the pages for it first and then
|
|
* allocate the L2 page.
|
|
*/
|
|
|
|
if (map_vectors_p) {
|
|
/*
|
|
* First allocate L2 page for the vectors.
|
|
*/
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf(" vector");
|
|
#endif
|
|
valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
|
|
add_pages(bmi, &bmi->bmi_vector_l2pt);
|
|
}
|
|
|
|
/*
|
|
* Now allocate L2 pages for the kernel
|
|
*/
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf(" kernel");
|
|
#endif
|
|
for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
|
|
valloc_pages(bmi, &kernel_l2pt[idx], 1,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
|
|
add_pages(bmi, &kernel_l2pt[idx]);
|
|
}
|
|
|
|
/*
|
|
* Now allocate L2 pages for the initial kernel VA space.
|
|
*/
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf(" vm");
|
|
#endif
|
|
for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
|
|
valloc_pages(bmi, &vmdata_l2pt[idx], 1,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
|
|
add_pages(bmi, &vmdata_l2pt[idx]);
|
|
}
|
|
|
|
/*
|
|
* If someone wanted a L2 page for I/O, allocate it now.
|
|
*/
|
|
if (iovbase) {
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf(" io");
|
|
#endif
|
|
valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
|
|
add_pages(bmi, &bmi->bmi_io_l2pt);
|
|
}
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: allocating stacks\n", __func__);
|
|
#endif
|
|
|
|
/* Allocate stacks for all modes and CPUs */
|
|
valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
|
|
add_pages(bmi, &abtstack);
|
|
valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
|
|
add_pages(bmi, &fiqstack);
|
|
valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
|
|
add_pages(bmi, &irqstack);
|
|
valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
|
|
add_pages(bmi, &undstack);
|
|
valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
|
|
add_pages(bmi, &idlestack);
|
|
valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
|
|
add_pages(bmi, &kernelstack);
|
|
|
|
/* Allocate the message buffer from the end of memory. */
|
|
const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
|
|
valloc_pages(bmi, &msgbuf, msgbuf_pgs,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
|
|
add_pages(bmi, &msgbuf);
|
|
msgbufphys = msgbuf.pv_pa;
|
|
msgbufaddr = (void *)msgbuf.pv_va;
|
|
|
|
if (map_vectors_p) {
|
|
/*
|
|
* Allocate a page for the system vector page.
|
|
* This page will just contain the system vectors and can be
|
|
* shared by all processes.
|
|
*/
|
|
valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
|
|
PTE_CACHE, true);
|
|
}
|
|
systempage.pv_va = vectors;
|
|
|
|
/*
|
|
* If the caller needed a few extra pages for some reason, allocate
|
|
* them now.
|
|
*/
|
|
#if ARM_MMU_XSCALE == 1
|
|
#if (ARM_NMMUS > 1)
|
|
if (xscale_use_minidata)
|
|
#endif
|
|
valloc_pages(bmi, &minidataclean, 1,
|
|
VM_PROT_READ|VM_PROT_WRITE, 0, true);
|
|
#endif
|
|
|
|
/*
|
|
* Ok we have allocated physical pages for the primary kernel
|
|
* page tables and stacks. Let's just confirm that.
|
|
*/
|
|
if (kernel_l1pt.pv_va == 0
|
|
&& (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
|
|
panic("%s: Failed to allocate or align the kernel "
|
|
"page directory", __func__);
|
|
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
|
|
#endif
|
|
|
|
/*
|
|
* Now we start construction of the L1 page table
|
|
* We start by mapping the L2 page tables into the L1.
|
|
* This means that we can replace L1 mappings later on if necessary
|
|
*/
|
|
vaddr_t l1pt_va = kernel_l1pt.pv_va;
|
|
paddr_t l1pt_pa = kernel_l1pt.pv_pa;
|
|
|
|
if (map_vectors_p) {
|
|
/* Map the L2 pages tables in the L1 page table */
|
|
pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
|
|
&bmi->bmi_vector_l2pt);
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
|
|
"for VA %#lx\n (vectors)",
|
|
__func__, bmi->bmi_vector_l2pt.pv_va,
|
|
bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
|
|
#endif
|
|
}
|
|
|
|
const vaddr_t kernel_base =
|
|
KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
|
|
for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
|
|
pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
|
|
&kernel_l2pt[idx]);
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
|
|
__func__, kernel_l2pt[idx].pv_va,
|
|
kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
|
|
#endif
|
|
}
|
|
|
|
for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
|
|
pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
|
|
&vmdata_l2pt[idx]);
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
|
|
__func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
|
|
kernel_vm_base + idx * L2_S_SEGSIZE);
|
|
#endif
|
|
}
|
|
if (iovbase) {
|
|
pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
|
|
__func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
|
|
iovbase & -L2_S_SEGSIZE);
|
|
#endif
|
|
}
|
|
|
|
/* update the top of the kernel VM */
|
|
pmap_curmaxkvaddr =
|
|
kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Mapping kernel\n");
|
|
#endif
|
|
|
|
extern char etext[], _end[];
|
|
size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
|
|
size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
|
|
|
|
textsize = (textsize + PGOFSET) & ~PGOFSET;
|
|
|
|
/* start at offset of kernel in RAM */
|
|
|
|
text.pv_pa = bmi->bmi_kernelstart;
|
|
text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
|
|
text.pv_size = textsize;
|
|
text.pv_prot = VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE;
|
|
text.pv_cache = PTE_CACHE;
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
|
|
__func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
|
|
#endif
|
|
|
|
add_pages(bmi, &text);
|
|
|
|
data.pv_pa = text.pv_pa + textsize;
|
|
data.pv_va = text.pv_va + textsize;
|
|
data.pv_size = totalsize - textsize;
|
|
data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
|
|
data.pv_cache = PTE_CACHE;
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
|
|
__func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
|
|
#endif
|
|
|
|
add_pages(bmi, &data);
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Listing Chunks\n");
|
|
|
|
pv_addr_t *lpv;
|
|
SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
|
|
printf("%s: pv %p: chunk VA %#lx..%#lx "
|
|
"(PA %#lx, prot %d, cache %d)\n",
|
|
__func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
|
|
lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
|
|
}
|
|
printf("\nMapping Chunks\n");
|
|
#endif
|
|
|
|
pv_addr_t cur_pv;
|
|
pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
|
|
if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
|
|
cur_pv = *pv;
|
|
KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
|
|
pv = SLIST_NEXT(pv, pv_list);
|
|
} else {
|
|
cur_pv.pv_va = KERNEL_BASE;
|
|
cur_pv.pv_pa = KERN_VTOPHYS(bmi, cur_pv.pv_va);
|
|
cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
|
|
cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
|
|
cur_pv.pv_cache = PTE_CACHE;
|
|
}
|
|
while (pv != NULL) {
|
|
if (mapallmem_p) {
|
|
if (concat_pvaddr(&cur_pv, pv)) {
|
|
pv = SLIST_NEXT(pv, pv_list);
|
|
continue;
|
|
}
|
|
if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
|
|
/*
|
|
* See if we can extend the current pv to emcompass the
|
|
* hole, and if so do it and retry the concatenation.
|
|
*/
|
|
if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
|
|
&& cur_pv.pv_cache == PTE_CACHE) {
|
|
cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We couldn't so emit the current chunk and then
|
|
*/
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: mapping chunk VA %#lx..%#lx "
|
|
"(PA %#lx, prot %d, cache %d)\n",
|
|
__func__,
|
|
cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
|
|
cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
|
|
#endif
|
|
pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
|
|
cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
|
|
|
|
/*
|
|
* set the current chunk to the hole and try again.
|
|
*/
|
|
cur_pv.pv_pa += cur_pv.pv_size;
|
|
cur_pv.pv_va += cur_pv.pv_size;
|
|
cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
|
|
cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
|
|
cur_pv.pv_cache = PTE_CACHE;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The new pv didn't concatenate so emit the current one
|
|
* and use the new pv as the current pv.
|
|
*/
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: mapping chunk VA %#lx..%#lx "
|
|
"(PA %#lx, prot %d, cache %d)\n",
|
|
__func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
|
|
cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
|
|
#endif
|
|
pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
|
|
cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
|
|
cur_pv = *pv;
|
|
pv = SLIST_NEXT(pv, pv_list);
|
|
}
|
|
|
|
/*
|
|
* If we are mapping all of memory, let's map the rest of memory.
|
|
*/
|
|
if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
|
|
if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
|
|
&& cur_pv.pv_cache == PTE_CACHE) {
|
|
cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
|
|
} else {
|
|
KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
|
|
"%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
|
|
kernel_vm_base);
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: mapping chunk VA %#lx..%#lx "
|
|
"(PA %#lx, prot %d, cache %d)\n",
|
|
__func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
|
|
cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
|
|
#endif
|
|
pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
|
|
cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
|
|
cur_pv.pv_pa += cur_pv.pv_size;
|
|
cur_pv.pv_va += cur_pv.pv_size;
|
|
cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
|
|
cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
|
|
cur_pv.pv_cache = PTE_CACHE;
|
|
}
|
|
}
|
|
|
|
// The amount we can direct is limited by the start of the
|
|
// virtual part of the kernel address space. Don't overrun
|
|
// into it.
|
|
if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
|
|
cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
|
|
}
|
|
|
|
/*
|
|
* Now we map the final chunk.
|
|
*/
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
|
|
__func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
|
|
cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
|
|
#endif
|
|
pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
|
|
cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
|
|
|
|
/*
|
|
* Now we map the stuff that isn't directly after the kernel
|
|
*/
|
|
if (map_vectors_p) {
|
|
/* Map the vector page. */
|
|
pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
|
|
VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
|
|
}
|
|
|
|
/* Map the Mini-Data cache clean area. */
|
|
#if ARM_MMU_XSCALE == 1
|
|
#if (ARM_NMMUS > 1)
|
|
if (xscale_use_minidata)
|
|
#endif
|
|
xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
|
|
minidataclean.pv_pa);
|
|
#endif
|
|
|
|
/*
|
|
* Map integrated peripherals at same address in first level page
|
|
* table so that we can continue to use console.
|
|
*/
|
|
if (devmap)
|
|
pmap_devmap_bootstrap(l1pt_va, devmap);
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
/* Tell the user about where all the bits and pieces live. */
|
|
printf("%22s Physical Virtual Num\n", " ");
|
|
printf("%22s Starting Ending Starting Ending Pages\n", " ");
|
|
|
|
static const char mem_fmt[] =
|
|
"%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
|
|
static const char mem_fmt_nov[] =
|
|
"%20s: 0x%08lx 0x%08lx %zu\n";
|
|
|
|
printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
|
|
KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
|
|
(int)physmem);
|
|
printf(mem_fmt, "text section",
|
|
text.pv_pa, text.pv_pa + text.pv_size - 1,
|
|
text.pv_va, text.pv_va + text.pv_size - 1,
|
|
(int)(text.pv_size / PAGE_SIZE));
|
|
printf(mem_fmt, "data section",
|
|
KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
|
|
(vaddr_t)__data_start, (vaddr_t)_edata,
|
|
(int)((round_page((vaddr_t)_edata)
|
|
- trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
|
|
printf(mem_fmt, "bss section",
|
|
KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
|
|
(vaddr_t)__bss_start, (vaddr_t)__bss_end__,
|
|
(int)((round_page((vaddr_t)__bss_end__)
|
|
- trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
|
|
printf(mem_fmt, "L1 page directory",
|
|
kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
|
|
kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
|
|
L1_TABLE_SIZE / PAGE_SIZE);
|
|
printf(mem_fmt, "ABT stack (CPU 0)",
|
|
abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
|
|
abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
|
|
ABT_STACK_SIZE);
|
|
printf(mem_fmt, "FIQ stack (CPU 0)",
|
|
fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
|
|
fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
|
|
FIQ_STACK_SIZE);
|
|
printf(mem_fmt, "IRQ stack (CPU 0)",
|
|
irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
|
|
irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
|
|
IRQ_STACK_SIZE);
|
|
printf(mem_fmt, "UND stack (CPU 0)",
|
|
undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
|
|
undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
|
|
UND_STACK_SIZE);
|
|
printf(mem_fmt, "IDLE stack (CPU 0)",
|
|
idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
|
|
idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
|
|
UPAGES);
|
|
printf(mem_fmt, "SVC stack",
|
|
kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
|
|
kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
|
|
UPAGES);
|
|
printf(mem_fmt, "Message Buffer",
|
|
msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
|
|
msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
|
|
(int)msgbuf_pgs);
|
|
if (map_vectors_p) {
|
|
printf(mem_fmt, "Exception Vectors",
|
|
systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
|
|
systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
|
|
1);
|
|
}
|
|
for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
|
|
pv = &bmi->bmi_freeblocks[i];
|
|
|
|
printf(mem_fmt_nov, "Free Memory",
|
|
pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
|
|
pv->pv_size / PAGE_SIZE);
|
|
}
|
|
#endif
|
|
/*
|
|
* Now we have the real page tables in place so we can switch to them.
|
|
* Once this is done we will be running with the REAL kernel page
|
|
* tables.
|
|
*/
|
|
|
|
#if defined(VERBOSE_INIT_ARM)
|
|
printf("TTBR0=%#x", armreg_ttbr_read());
|
|
#ifdef _ARM_ARCH_6
|
|
printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
|
|
armreg_ttbr1_read(), armreg_ttbcr_read(),
|
|
armreg_contextidr_read());
|
|
#endif
|
|
printf("\n");
|
|
#endif
|
|
|
|
/* Switch tables */
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("switching to new L1 page table @%#lx...", l1pt_pa);
|
|
#endif
|
|
|
|
#ifdef ARM_MMU_EXTENDED
|
|
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
|
|
| (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
|
|
#else
|
|
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
|
|
#endif
|
|
cpu_idcache_wbinv_all();
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf(" ttb");
|
|
#endif
|
|
#ifdef ARM_MMU_EXTENDED
|
|
/*
|
|
* TTBCR should have been initialized by the MD start code.
|
|
*/
|
|
KASSERT((armreg_contextidr_read() & 0xff) == 0);
|
|
KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
|
|
/*
|
|
* Disable lookups via TTBR0 until there is an activated pmap.
|
|
*/
|
|
armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
|
|
cpu_setttb(l1pt_pa, KERNEL_PID);
|
|
arm_isb();
|
|
#else
|
|
cpu_setttb(l1pt_pa, true);
|
|
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
|
|
#endif
|
|
cpu_tlb_flushID();
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
#ifdef ARM_MMU_EXTENDED
|
|
printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
|
|
armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
|
|
#else
|
|
printf(" (TTBR0=%#x)", armreg_ttbr_read());
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef MULTIPROCESSOR
|
|
/*
|
|
* Kick the secondaries to load the TTB. After which they'll go
|
|
* back to sleep to wait for the final kick so they will hatch.
|
|
*/
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf(" hatchlings");
|
|
#endif
|
|
cpu_boot_secondary_processors();
|
|
#endif
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf(" OK\n");
|
|
#endif
|
|
}
|