NetBSD/sys/arch/arm/arm32/arm32_kvminit.c
2016-12-24 09:19:23 +00:00

1007 lines
33 KiB
C

/* $NetBSD: arm32_kvminit.c,v 1.38 2016/12/24 09:19:23 skrll Exp $ */
/*
* Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
* Written by Hiroyuki Bessho for Genetec Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of Genetec Corporation may not be used to endorse or
* promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Copyright (c) 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Copyright (c) 2007 Microsoft
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Microsoft
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_multiprocessor.h"
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.38 2016/12/24 09:19:23 skrll Exp $");
#include <sys/param.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/reboot.h>
#include <sys/bus.h>
#include <dev/cons.h>
#include <uvm/uvm_extern.h>
#include <arm/locore.h>
#include <arm/db_machdep.h>
#include <arm/undefined.h>
#include <arm/bootconfig.h>
#include <arm/arm32/machdep.h>
struct bootmem_info bootmem_info;
extern void *msgbufaddr;
paddr_t msgbufphys;
paddr_t physical_start;
paddr_t physical_end;
extern char etext[];
extern char __data_start[], _edata[];
extern char __bss_start[], __bss_end__[];
extern char _end[];
/* Page tables for mapping kernel VM */
#define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
/*
* Macros to translate between physical and virtual for a subset of the
* kernel address space. *Not* for general use.
*/
#if defined(KERNEL_BASE_VOFFSET)
#define KERN_VTOPHYS(bmi, va) \
((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
#define KERN_PHYSTOV(bmi, pa) \
((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
#else
#define KERN_VTOPHYS(bmi, va) \
((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
#define KERN_PHYSTOV(bmi, pa) \
((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
#endif
void
arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
{
struct bootmem_info * const bmi = &bootmem_info;
pv_addr_t *pv = bmi->bmi_freeblocks;
#ifdef VERBOSE_INIT_ARM
printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
__func__, memstart, memsize, kernelstart);
#endif
physical_start = bmi->bmi_start = memstart;
physical_end = bmi->bmi_end = memstart + memsize;
#ifndef ARM_HAS_LPAE
if (physical_end == 0) {
physical_end = -PAGE_SIZE;
memsize -= PAGE_SIZE;
bmi->bmi_end -= PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
printf("%s: memsize shrunk by a page to avoid ending at 4GB\n",
__func__);
#endif
}
#endif
physmem = memsize / PAGE_SIZE;
/*
* Let's record where the kernel lives.
*/
bmi->bmi_kernelstart = kernelstart;
bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
#ifdef VERBOSE_INIT_ARM
printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
#endif
/*
* Now the rest of the free memory must be after the kernel.
*/
pv->pv_pa = bmi->bmi_kernelend;
pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
__func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
pv->pv_pa + pv->pv_size - 1, pv->pv_va);
#endif
pv++;
/*
* Add a free block for any memory before the kernel.
*/
if (bmi->bmi_start < bmi->bmi_kernelstart) {
pv->pv_pa = bmi->bmi_start;
pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
__func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
pv->pv_pa + pv->pv_size - 1, pv->pv_va);
#endif
pv++;
}
bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
SLIST_INIT(&bmi->bmi_freechunks);
SLIST_INIT(&bmi->bmi_chunks);
}
static bool
concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
{
if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
&& acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
&& acc_pv->pv_prot == pv->pv_prot
&& acc_pv->pv_cache == pv->pv_cache) {
#ifdef VERBOSE_INIT_ARMX
printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
__func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
#endif
acc_pv->pv_size += pv->pv_size;
return true;
}
return false;
}
static void
add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
{
pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
pv_addr_t * const pv0 = (*pvp);
KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
if (concat_pvaddr(pv0, pv)) {
#ifdef VERBOSE_INIT_ARM
printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
__func__, "appending", pv,
pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
#endif
pv = SLIST_NEXT(pv0, pv_list);
if (pv != NULL && concat_pvaddr(pv0, pv)) {
#ifdef VERBOSE_INIT_ARM
printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
__func__, "merging", pv,
pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
pv0->pv_pa,
pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
#endif
SLIST_REMOVE_AFTER(pv0, pv_list);
SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
}
return;
}
KASSERT(pv->pv_va != (*pvp)->pv_va);
pvp = &SLIST_NEXT(*pvp, pv_list);
}
KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
KASSERT(new_pv != NULL);
SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
*new_pv = *pv;
SLIST_NEXT(new_pv, pv_list) = *pvp;
(*pvp) = new_pv;
#ifdef VERBOSE_INIT_ARM
printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
__func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
new_pv->pv_size / PAGE_SIZE);
if (SLIST_NEXT(new_pv, pv_list))
printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
else
printf("at tail\n");
#endif
}
static void
valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
int prot, int cache, bool zero_p)
{
size_t nbytes = npages * PAGE_SIZE;
pv_addr_t *free_pv = bmi->bmi_freeblocks;
size_t free_idx = 0;
static bool l1pt_found;
KASSERT(npages > 0);
/*
* If we haven't allocated the kernel L1 page table and we are aligned
* at a L1 table boundary, alloc the memory for it.
*/
if (!l1pt_found
&& (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
&& free_pv->pv_size >= L1_TABLE_SIZE) {
l1pt_found = true;
valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
add_pages(bmi, &kernel_l1pt);
}
while (nbytes > free_pv->pv_size) {
free_pv++;
free_idx++;
if (free_idx == bmi->bmi_nfreeblocks) {
panic("%s: could not allocate %zu bytes",
__func__, nbytes);
}
}
/*
* As we allocate the memory, make sure that we don't walk over
* our current first level translation table.
*/
KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
pv->pv_pa = free_pv->pv_pa;
pv->pv_va = free_pv->pv_va;
pv->pv_size = nbytes;
pv->pv_prot = prot;
pv->pv_cache = cache;
/*
* If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
* just use PTE_CACHE.
*/
if (cache == PTE_PAGETABLE
&& pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
&& pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
&& pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
pv->pv_cache = PTE_CACHE;
free_pv->pv_pa += nbytes;
free_pv->pv_va += nbytes;
free_pv->pv_size -= nbytes;
if (free_pv->pv_size == 0) {
--bmi->bmi_nfreeblocks;
for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
free_pv[0] = free_pv[1];
}
}
bmi->bmi_freepages -= npages;
if (zero_p)
memset((void *)pv->pv_va, 0, nbytes);
}
void
arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
const struct pmap_devmap *devmap, bool mapallmem_p)
{
struct bootmem_info * const bmi = &bootmem_info;
#ifdef MULTIPROCESSOR
const size_t cpu_num = arm_cpu_max;
#else
const size_t cpu_num = 1;
#endif
#ifdef ARM_HAS_VBAR
const bool map_vectors_p = false;
#elif defined(CPU_ARMV7) || defined(CPU_ARM11)
const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
|| (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
#else
const bool map_vectors_p = true;
#endif
#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
KASSERT(mapallmem_p);
#ifdef ARM_MMU_EXTENDED
/*
* The direct map VA space ends at the start of the kernel VM space.
*/
pmap_directlimit = kernel_vm_base;
#else
KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
#endif /* ARM_MMU_EXTENDED */
#endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
/*
* Calculate the number of L2 pages needed for mapping the
* kernel + data + stuff. Assume 2 L2 pages for kernel, 1 for vectors,
* and 1 for IO
*/
size_t kernel_size = bmi->bmi_kernelend;
kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
kernel_size += L1_TABLE_SIZE_REAL;
kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
if (map_vectors_p) {
kernel_size += PAGE_SIZE; /* L2PT for VECTORS */
}
if (iovbase) {
kernel_size += PAGE_SIZE; /* L2PT for IO */
}
kernel_size +=
cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
+ UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
kernel_size += round_page(MSGBUFSIZE);
kernel_size += 0x10000; /* slop */
if (!mapallmem_p) {
kernel_size += PAGE_SIZE
* ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
}
kernel_size = round_page(kernel_size);
/*
* Now we know how many L2 pages it will take.
*/
const size_t KERNEL_L2PT_KERNEL_NUM =
round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
#ifdef VERBOSE_INIT_ARM
printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
__func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
#endif
KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
pv_addr_t msgbuf;
pv_addr_t text;
pv_addr_t data;
pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
#if ARM_MMU_XSCALE == 1
pv_addr_t minidataclean;
#endif
/*
* We need to allocate some fixed page tables to get the kernel going.
*
* We are going to allocate our bootstrap pages from the beginning of
* the free space that we just calculated. We allocate one page
* directory and a number of page tables and store the physical
* addresses in the bmi_l2pts array in bootmem_info.
*
* The kernel page directory must be on a 16K boundary. The page
* tables must be on 4K boundaries. What we do is allocate the
* page directory on the first 16K boundary that we encounter, and
* the page tables on 4K boundaries otherwise. Since we allocate
* at least 3 L2 page tables, we are guaranteed to encounter at
* least one 16K aligned region.
*/
#ifdef VERBOSE_INIT_ARM
printf("%s: allocating page tables for", __func__);
#endif
for (size_t i = 0; i < __arraycount(chunks); i++) {
SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
}
kernel_l1pt.pv_pa = 0;
kernel_l1pt.pv_va = 0;
/*
* Allocate the L2 pages, but if we get to a page that is aligned for
* an L1 page table, we will allocate the pages for it first and then
* allocate the L2 page.
*/
if (map_vectors_p) {
/*
* First allocate L2 page for the vectors.
*/
#ifdef VERBOSE_INIT_ARM
printf(" vector");
#endif
valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
add_pages(bmi, &bmi->bmi_vector_l2pt);
}
/*
* Now allocate L2 pages for the kernel
*/
#ifdef VERBOSE_INIT_ARM
printf(" kernel");
#endif
for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
valloc_pages(bmi, &kernel_l2pt[idx], 1,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
add_pages(bmi, &kernel_l2pt[idx]);
}
/*
* Now allocate L2 pages for the initial kernel VA space.
*/
#ifdef VERBOSE_INIT_ARM
printf(" vm");
#endif
for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
valloc_pages(bmi, &vmdata_l2pt[idx], 1,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
add_pages(bmi, &vmdata_l2pt[idx]);
}
/*
* If someone wanted a L2 page for I/O, allocate it now.
*/
if (iovbase) {
#ifdef VERBOSE_INIT_ARM
printf(" io");
#endif
valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
add_pages(bmi, &bmi->bmi_io_l2pt);
}
#ifdef VERBOSE_INIT_ARM
printf("%s: allocating stacks\n", __func__);
#endif
/* Allocate stacks for all modes and CPUs */
valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
add_pages(bmi, &abtstack);
valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
add_pages(bmi, &fiqstack);
valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
add_pages(bmi, &irqstack);
valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
add_pages(bmi, &undstack);
valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
add_pages(bmi, &idlestack);
valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
add_pages(bmi, &kernelstack);
/* Allocate the message buffer from the end of memory. */
const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
valloc_pages(bmi, &msgbuf, msgbuf_pgs,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
add_pages(bmi, &msgbuf);
msgbufphys = msgbuf.pv_pa;
msgbufaddr = (void *)msgbuf.pv_va;
if (map_vectors_p) {
/*
* Allocate a page for the system vector page.
* This page will just contain the system vectors and can be
* shared by all processes.
*/
valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
PTE_CACHE, true);
}
systempage.pv_va = vectors;
/*
* If the caller needed a few extra pages for some reason, allocate
* them now.
*/
#if ARM_MMU_XSCALE == 1
#if (ARM_NMMUS > 1)
if (xscale_use_minidata)
#endif
valloc_pages(bmi, &minidataclean, 1,
VM_PROT_READ|VM_PROT_WRITE, 0, true);
#endif
/*
* Ok we have allocated physical pages for the primary kernel
* page tables and stacks. Let's just confirm that.
*/
if (kernel_l1pt.pv_va == 0
&& (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
panic("%s: Failed to allocate or align the kernel "
"page directory", __func__);
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
vaddr_t l1pt_va = kernel_l1pt.pv_va;
paddr_t l1pt_pa = kernel_l1pt.pv_pa;
if (map_vectors_p) {
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
&bmi->bmi_vector_l2pt);
#ifdef VERBOSE_INIT_ARM
printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
"for VA %#lx\n (vectors)",
__func__, bmi->bmi_vector_l2pt.pv_va,
bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
#endif
}
const vaddr_t kernel_base =
KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
&kernel_l2pt[idx]);
#ifdef VERBOSE_INIT_ARM
printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
__func__, kernel_l2pt[idx].pv_va,
kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
#endif
}
for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
&vmdata_l2pt[idx]);
#ifdef VERBOSE_INIT_ARM
printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
__func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
kernel_vm_base + idx * L2_S_SEGSIZE);
#endif
}
if (iovbase) {
pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
#ifdef VERBOSE_INIT_ARM
printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
__func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
iovbase & -L2_S_SEGSIZE);
#endif
}
/* update the top of the kernel VM */
pmap_curmaxkvaddr =
kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
#ifdef VERBOSE_INIT_ARM
printf("Mapping kernel\n");
#endif
extern char etext[], _end[];
size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
textsize = (textsize + PGOFSET) & ~PGOFSET;
/* start at offset of kernel in RAM */
text.pv_pa = bmi->bmi_kernelstart;
text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
text.pv_size = textsize;
text.pv_prot = VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE;
text.pv_cache = PTE_CACHE;
#ifdef VERBOSE_INIT_ARM
printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
__func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
#endif
add_pages(bmi, &text);
data.pv_pa = text.pv_pa + textsize;
data.pv_va = text.pv_va + textsize;
data.pv_size = totalsize - textsize;
data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
data.pv_cache = PTE_CACHE;
#ifdef VERBOSE_INIT_ARM
printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
__func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
#endif
add_pages(bmi, &data);
#ifdef VERBOSE_INIT_ARM
printf("Listing Chunks\n");
pv_addr_t *lpv;
SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
printf("%s: pv %p: chunk VA %#lx..%#lx "
"(PA %#lx, prot %d, cache %d)\n",
__func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
}
printf("\nMapping Chunks\n");
#endif
pv_addr_t cur_pv;
pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
cur_pv = *pv;
KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
pv = SLIST_NEXT(pv, pv_list);
} else {
cur_pv.pv_va = KERNEL_BASE;
cur_pv.pv_pa = KERN_VTOPHYS(bmi, cur_pv.pv_va);
cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
cur_pv.pv_cache = PTE_CACHE;
}
while (pv != NULL) {
if (mapallmem_p) {
if (concat_pvaddr(&cur_pv, pv)) {
pv = SLIST_NEXT(pv, pv_list);
continue;
}
if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
/*
* See if we can extend the current pv to emcompass the
* hole, and if so do it and retry the concatenation.
*/
if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
&& cur_pv.pv_cache == PTE_CACHE) {
cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
continue;
}
/*
* We couldn't so emit the current chunk and then
*/
#ifdef VERBOSE_INIT_ARM
printf("%s: mapping chunk VA %#lx..%#lx "
"(PA %#lx, prot %d, cache %d)\n",
__func__,
cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
#endif
pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
/*
* set the current chunk to the hole and try again.
*/
cur_pv.pv_pa += cur_pv.pv_size;
cur_pv.pv_va += cur_pv.pv_size;
cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
cur_pv.pv_cache = PTE_CACHE;
continue;
}
}
/*
* The new pv didn't concatenate so emit the current one
* and use the new pv as the current pv.
*/
#ifdef VERBOSE_INIT_ARM
printf("%s: mapping chunk VA %#lx..%#lx "
"(PA %#lx, prot %d, cache %d)\n",
__func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
#endif
pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
cur_pv = *pv;
pv = SLIST_NEXT(pv, pv_list);
}
/*
* If we are mapping all of memory, let's map the rest of memory.
*/
if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
&& cur_pv.pv_cache == PTE_CACHE) {
cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
} else {
KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
"%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
kernel_vm_base);
#ifdef VERBOSE_INIT_ARM
printf("%s: mapping chunk VA %#lx..%#lx "
"(PA %#lx, prot %d, cache %d)\n",
__func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
#endif
pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
cur_pv.pv_pa += cur_pv.pv_size;
cur_pv.pv_va += cur_pv.pv_size;
cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
cur_pv.pv_cache = PTE_CACHE;
}
}
// The amount we can direct is limited by the start of the
// virtual part of the kernel address space. Don't overrun
// into it.
if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
}
/*
* Now we map the final chunk.
*/
#ifdef VERBOSE_INIT_ARM
printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
__func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
#endif
pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
/*
* Now we map the stuff that isn't directly after the kernel
*/
if (map_vectors_p) {
/* Map the vector page. */
pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
}
/* Map the Mini-Data cache clean area. */
#if ARM_MMU_XSCALE == 1
#if (ARM_NMMUS > 1)
if (xscale_use_minidata)
#endif
xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
minidataclean.pv_pa);
#endif
/*
* Map integrated peripherals at same address in first level page
* table so that we can continue to use console.
*/
if (devmap)
pmap_devmap_bootstrap(l1pt_va, devmap);
#ifdef VERBOSE_INIT_ARM
/* Tell the user about where all the bits and pieces live. */
printf("%22s Physical Virtual Num\n", " ");
printf("%22s Starting Ending Starting Ending Pages\n", " ");
static const char mem_fmt[] =
"%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
static const char mem_fmt_nov[] =
"%20s: 0x%08lx 0x%08lx %zu\n";
printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
(int)physmem);
printf(mem_fmt, "text section",
text.pv_pa, text.pv_pa + text.pv_size - 1,
text.pv_va, text.pv_va + text.pv_size - 1,
(int)(text.pv_size / PAGE_SIZE));
printf(mem_fmt, "data section",
KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
(vaddr_t)__data_start, (vaddr_t)_edata,
(int)((round_page((vaddr_t)_edata)
- trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
printf(mem_fmt, "bss section",
KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
(vaddr_t)__bss_start, (vaddr_t)__bss_end__,
(int)((round_page((vaddr_t)__bss_end__)
- trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
printf(mem_fmt, "L1 page directory",
kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
L1_TABLE_SIZE / PAGE_SIZE);
printf(mem_fmt, "ABT stack (CPU 0)",
abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
ABT_STACK_SIZE);
printf(mem_fmt, "FIQ stack (CPU 0)",
fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
FIQ_STACK_SIZE);
printf(mem_fmt, "IRQ stack (CPU 0)",
irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
IRQ_STACK_SIZE);
printf(mem_fmt, "UND stack (CPU 0)",
undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
UND_STACK_SIZE);
printf(mem_fmt, "IDLE stack (CPU 0)",
idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
UPAGES);
printf(mem_fmt, "SVC stack",
kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
UPAGES);
printf(mem_fmt, "Message Buffer",
msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
(int)msgbuf_pgs);
if (map_vectors_p) {
printf(mem_fmt, "Exception Vectors",
systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
1);
}
for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
pv = &bmi->bmi_freeblocks[i];
printf(mem_fmt_nov, "Free Memory",
pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
pv->pv_size / PAGE_SIZE);
}
#endif
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page
* tables.
*/
#if defined(VERBOSE_INIT_ARM)
printf("TTBR0=%#x", armreg_ttbr_read());
#ifdef _ARM_ARCH_6
printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
armreg_ttbr1_read(), armreg_ttbcr_read(),
armreg_contextidr_read());
#endif
printf("\n");
#endif
/* Switch tables */
#ifdef VERBOSE_INIT_ARM
printf("switching to new L1 page table @%#lx...", l1pt_pa);
#endif
#ifdef ARM_MMU_EXTENDED
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
| (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
#else
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
#endif
cpu_idcache_wbinv_all();
#ifdef VERBOSE_INIT_ARM
printf(" ttb");
#endif
#ifdef ARM_MMU_EXTENDED
/*
* TTBCR should have been initialized by the MD start code.
*/
KASSERT((armreg_contextidr_read() & 0xff) == 0);
KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
/*
* Disable lookups via TTBR0 until there is an activated pmap.
*/
armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
cpu_setttb(l1pt_pa, KERNEL_PID);
arm_isb();
#else
cpu_setttb(l1pt_pa, true);
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
#endif
cpu_tlb_flushID();
#ifdef VERBOSE_INIT_ARM
#ifdef ARM_MMU_EXTENDED
printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
#else
printf(" (TTBR0=%#x)", armreg_ttbr_read());
#endif
#endif
#ifdef MULTIPROCESSOR
/*
* Kick the secondaries to load the TTB. After which they'll go
* back to sleep to wait for the final kick so they will hatch.
*/
#ifdef VERBOSE_INIT_ARM
printf(" hatchlings");
#endif
cpu_boot_secondary_processors();
#endif
#ifdef VERBOSE_INIT_ARM
printf(" OK\n");
#endif
}