NetBSD/sys/arch/arm/allwinner/awin_ac.c
2014-10-20 21:18:00 +00:00

1300 lines
34 KiB
C

/* $NetBSD: awin_ac.c,v 1.16 2014/10/20 21:18:00 jmcneill Exp $ */
/*-
* Copyright (c) 2014 Jared D. McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "locators.h"
#include "opt_ddb.h"
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: awin_ac.c,v 1.16 2014/10/20 21:18:00 jmcneill Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/systm.h>
#include <sys/kmem.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/auconv.h>
#include <arm/allwinner/awin_reg.h>
#include <arm/allwinner/awin_var.h>
#define AWINAC_TX_TRIG_LEVEL 0xf
#define AWINAC_RX_TRIG_LEVEL 0x7
#define AWINAC_DRQ_CLR_CNT 0x3
#define AWINAC_INIT_VOL 0x3b
enum {
REGMAP_A10 = 0,
REGMAP_A31,
};
enum {
AC_DAC_DPC = 0,
AC_DAC_FIFOC,
AC_DAC_FIFOS,
AC_DAC_TXDATA,
AC_DAC_ACTL,
AC_ADC_FIFOC,
AC_ADC_FIFOS,
AC_ADC_RXDATA,
AC_ADC_ACTL,
AC_DAC_CNT,
AC_ADC_CNT,
AC_OM_DACA_CTRL,
AC_OM_ADCA_CTRL,
AC_OM_PA_CTRL,
AC_MIC_CTRL,
_AC_NREGS
};
static const uint8_t awinac_regmap[2][_AC_NREGS] = {
[REGMAP_A10] = {
[AC_DAC_DPC] = 0x00,
[AC_DAC_FIFOC] = 0x04,
[AC_DAC_FIFOS] = 0x08,
[AC_DAC_TXDATA] = 0x0c,
[AC_DAC_ACTL] = 0x10,
[AC_ADC_FIFOC] = 0x1c,
[AC_ADC_FIFOS] = 0x20,
[AC_ADC_RXDATA] = 0x24,
[AC_ADC_ACTL] = 0x28,
[AC_DAC_CNT] = 0x30,
[AC_ADC_CNT] = 0x34,
},
[REGMAP_A31] = {
[AC_DAC_DPC] = 0x00,
[AC_DAC_FIFOC] = 0x04,
[AC_DAC_FIFOS] = 0x08,
[AC_DAC_TXDATA] = 0x0c,
[AC_ADC_FIFOC] = 0x10,
[AC_ADC_FIFOS] = 0x14,
[AC_ADC_RXDATA] = 0x18,
[AC_DAC_CNT] = 0x40,
[AC_ADC_CNT] = 0x44,
[AC_OM_DACA_CTRL] = 0x20,
[AC_OM_ADCA_CTRL] = 0x2c,
[AC_OM_PA_CTRL] = 0x24,
[AC_MIC_CTRL] = 0x28,
},
};
/* DAC_DPC */
#define DAC_DPC_EN_DA __BIT(31)
#define DAC_DPC_MODQU __BITS(28,25)
#define DAC_DPC_DWA __BIT(24)
#define DAC_DPC_HPF_EN __BIT(18)
#define DAC_DPC_DVOL __BITS(17,12)
/* DAC_FIFOC */
#define DAC_FIFOC_FS __BITS(31,29)
#define DAC_FS_48KHZ 0
#define DAC_FS_32KHZ 1
#define DAC_FS_24KHZ 2
#define DAC_FS_16KHZ 3
#define DAC_FS_12KHZ 4
#define DAC_FS_8KHZ 5
#define DAC_FS_192KHZ 6
#define DAC_FS_96KHZ 7
#define DAC_FIFOC_FIR_VER __BIT(28)
#define DAC_FIFOC_SEND_LASAT __BIT(26)
#define DAC_FIFOC_FIFO_MODE __BITS(25,24)
#define FIFO_MODE_24_31_8 0
#define FIFO_MODE_16_31_16 0
#define FIFO_MODE_16_15_0 1
#define DAC_FIFOC_DRQ_CLR_CNT __BITS(22,21)
#define DAC_FIFOC_TX_TRIG_LEVEL __BITS(14,8)
#define DAC_FIFOC_ADDA_LOOP_EN __BIT(7)
#define DAC_FIFOC_MONO_EN __BIT(6)
#define DAC_FIFOC_TX_SAMPLE_BITS __BIT(5)
#define DAC_FIFOC_DRQ_EN __BIT(4)
#define DAC_FIFOC_IRQ_EN __BIT(3)
#define DAC_FIFOC_FIFO_UNDERRUN_IRQ_EN __BIT(2)
#define DAC_FIFOC_FIFO_OVERRUN_IRQ_EN __BIT(1)
#define DAC_FIFOC_FIFO_FLUSH __BIT(0)
/* DAC_FIFOS */
#define DAC_FIFOS_TX_EMPTY __BIT(23)
#define DAC_FIFOS_TXE_CNT __BITS(22,8)
#define DAC_FIFOS_TXE_INT __BIT(3)
#define DAC_FIFOS_TXU_INT __BIT(2)
#define DAC_FIFOS_TXO_INT __BIT(1)
#define DAC_FIFOS_INT_MASK __BITS(3,1)
/* DAC_ACTL */
#define DAC_ACTL_DACAREN __BIT(31)
#define DAC_ACTL_DACALEN __BIT(30)
#define DAC_ACTL_MIXEN __BIT(29)
#define DAC_ACTL_LNG __BIT(26)
#define DAC_ACTL_FMG __BITS(25,23)
#define DAC_ACTL_MICG __BITS(22,20)
#define DAC_ACTL_LLNS __BIT(19)
#define DAC_ACTL_RLNS __BIT(18)
#define DAC_ACTL_LFMS __BIT(17)
#define DAC_ACTL_RFMS __BIT(16)
#define DAC_ACTL_LDACLMIXS __BIT(15)
#define DAC_ACTL_RDACRMIXS __BIT(14)
#define DAC_ACTL_LDACRMIXS __BIT(13)
#define DAC_ACTL_MIC1LS __BIT(12)
#define DAC_ACTL_MIC1RS __BIT(11)
#define DAC_ACTL_MIC2LS __BIT(10)
#define DAC_ACTL_MIC2RS __BIT(9)
#define DAC_ACTL_DACPAS __BIT(8)
#define DAC_ACTL_MIXPAS __BIT(7)
#define DAC_ACTL_PAMUTE __BIT(6)
#define DAC_ACTL_PAVOL __BITS(5,0)
/* OM_DACA_CTRL */
#define OM_DACA_CTRL_DACAREN __BIT(31)
#define OM_DACA_CTRL_DACALEN __BIT(30)
#define OM_DACA_CTRL_RMIXEN __BIT(29)
#define OM_DACA_CTRL_LMIXEN __BIT(28)
#define OM_DACA_CTRL_RMIXMUTE __BITS(23,17)
#define OM_DACA_CTRL_RMIXMUTE_DACL __BIT(0)
#define OM_DACA_CTRL_RMIXMUTE_DACR __BIT(1)
#define OM_DACA_CTRL_RMIXMUTE_LINEINR __BIT(2)
#define OM_DACA_CTRL_RMIXMUTE_PHONEP __BIT(3)
#define OM_DACA_CTRL_RMIXMUTE_PHONEP_PHONEN __BIT(4)
#define OM_DACA_CTRL_RMIXMUTE_MIC2_BOOST __BIT(5)
#define OM_DACA_CTRL_RMIXMUTE_MIC1_BOOST __BIT(6)
#define OM_DACA_CTRL_LMIXMUTE __BITS(16,10)
#define OM_DACA_CTRL_LMIXMUTE_DACR __BIT(0)
#define OM_DACA_CTRL_LMIXMUTE_DACL __BIT(1)
#define OM_DACA_CTRL_LMIXMUTE_LINEINL __BIT(2)
#define OM_DACA_CTRL_LMIXMUTE_PHONEN __BIT(3)
#define OM_DACA_CTRL_LMIXMUTE_PHONEP_PHONEN __BIT(4)
#define OM_DACA_CTRL_LMIXMUTE_MIC2_BOOST __BIT(5)
#define OM_DACA_CTRL_LMIXMUTE_MIC1_BOOST __BIT(6)
#define OM_DACA_CTRL_RHPIS __BIT(9)
#define OM_DACA_CTRL_LHPIS __BIT(8)
#define OM_DACA_CTRL_RHPPAMUTE __BIT(7)
#define OM_DACA_CTRL_LHPPAMUTE __BIT(6)
#define OM_DACA_CTRL_HPVOL __BITS(5,0)
/* ADC_FIFOC */
#define ADC_FIFOC_FS __BITS(31,29)
#define ADC_FS_48KHZ 0
#define ADC_FS_32KHZ 1
#define ADC_FS_24KHZ 2
#define ADC_FS_16KHZ 3
#define ADC_FS_12KHZ 4
#define DAC_FS_8KHZ 5
#define ADC_FIFOC_EN_AD __BIT(28)
#define ADC_FIFOC_RX_FIFO_MODE __BIT(24)
#define ADC_FIFOC_RX_TRIG_LEVEL __BITS(12,8)
#define ADC_FIFOC_MONO_EN __BIT(7)
#define ADC_FIFOC_RX_SAMPLE_BITS __BIT(6)
#define ADC_FIFOC_DRQ_EN __BIT(4)
#define ADC_FIFOC_IRQ_EN __BIT(3)
#define ADC_FIFOC_OVERRUN_IRQ_EN __BIT(2)
#define ADC_FIFOC_FIFO_FLUSH __BIT(1)
/* ADC_FIFOS */
#define ADC_FIFOS_RXA __BIT(23)
#define ADC_FIFOS_RXA_CNT __BITS(13,8)
#define ADC_FIFOS_RXA_INT __BIT(3)
#define ADC_FIFOS_RXO_INT __BIT(1)
/* ADC_ACTL */
#define ADC_ACTL_ADCREN __BIT(31)
#define ADC_ACTL_ADCLEN __BIT(30)
#define ADC_ACTL_PREG1EN __BIT(29)
#define ADC_ACTL_PREG2EN __BIT(28)
#define ADC_ACTL_VMICEN __BIT(27)
#define ADC_ACTL_ADCG __BITS(22,20)
#define ADC_ACTL_ADCIS __BITS(19,17)
#define ADC_ACTL_LNRDF __BIT(16)
#define ADC_ACTL_LNPREG __BIT(15)
#define ADC_ACTL_LHPOUTN __BIT(11)
#define ADC_ACTL_RHPOUTN __BIT(10)
#define ADC_ACTL_DITHER __BIT(8)
#define ADC_ACTL_DITHER_CLK_SELECT __BITS(7,6)
#define ADC_ACTL_PA_EN __BIT(4)
#define ADC_ACTL_DDE __BIT(3)
#define ADC_ACTL_COMPTEN __BIT(2)
#define ADC_ACTL_PTDBS __BITS(1,0)
/* OM_ADCA_CTRL */
#define OM_ADCA_CTRL_ADCREN __BIT(31)
#define OM_ADCA_CTRL_ADCLEN __BIT(30)
#define OM_ADCA_CTRL_ADCRG __BITS(29,27)
#define OM_ADCA_CTRL_ADCLG __BITS(26,24)
#define OM_ADCA_CTRL_RADCMIXMUTE __BITS(13,7)
#define OM_ADCA_CTRL_LADCMIXMUTE __BITS(6,0)
/* OM_PA_CTRL */
#define OM_PA_CTRL_HPPAEN __BIT(31)
#define OM_PA_CTRL_HPCOM_CTL __BITS(30,29)
#define OM_PA_CTRL_COMTEN __BIT(28)
#define OM_PA_CTRL_PA_ANTI_POP_CTRL __BITS(27,26)
#define OM_PA_CTRL_MIC1G __BITS(17,15)
#define OM_PA_CTRL_MIC2G __BITS(14,12)
#define OM_PA_CTRL_LINEING __BITS(11,9)
#define OM_PA_CTRL_PHONEG __BITS(8,6)
#define OM_PA_CTRL_PHONEPG __BITS(5,3)
#define OM_PA_CTRL_PHONENG __BITS(2,0)
/* MIC_CTRL */
#define MIC_CTRL_HBIASEN __BIT(31)
#define MIC_CTRL_MBIASEN __BIT(30)
#define MIC_CTRL_HBIASADCEN __BIT(29)
#define MIC_CTRL_MIC1AMPEN __BIT(28)
#define MIC_CTRL_MIC1BOOST __BITS(27,25)
#define MIC_CTRL_MIC2AMPEN __BIT(24)
#define MIC_CTRL_MIC2BOOST __BITS(23,21)
#define MIC_CTRL_MIC2SLT __BIT(20)
#define MIC_CTRL_LINEOUTLEN __BIT(19)
#define MIC_CTRL_LINEOUTREN __BIT(18)
#define MIC_CTRL_LINEOUTLSRC __BIT(17)
#define MIC_CTRL_LINEOUTRSRC __BIT(16)
#define MIC_CTRL_LINEOUTVC __BITS(15,11)
#define MIC_CTRL_PHONEPREG __BITS(10,8)
#define MIC_CTRL_PHONEOUTG __BITS(7,5)
#define MIC_CTRL_PHONEOUTEN __BIT(4)
#define MIC_CTRL_PHONEOUTS0 __BIT(3)
#define MIC_CTRL_PHONEOUTS1 __BIT(2)
#define MIC_CTRL_PHONEOUTS2 __BIT(1)
#define MIC_CTRL_PHONEOUTS3 __BIT(0)
struct awinac_dma {
LIST_ENTRY(awinac_dma) dma_list;
bus_dmamap_t dma_map;
void *dma_addr;
size_t dma_size;
bus_dma_segment_t dma_segs[1];
int dma_nsegs;
};
struct awinac_softc {
device_t sc_dev;
device_t sc_audiodev;
bus_space_tag_t sc_bst;
bus_space_handle_t sc_bsh;
bus_dma_tag_t sc_dmat;
unsigned int sc_regmap;
LIST_HEAD(, awinac_dma) sc_dmalist;
uint8_t sc_drqtype_codec;
uint8_t sc_drqtype_sdram;
kmutex_t sc_lock;
kmutex_t sc_intr_lock;
struct audio_format sc_format;
struct audio_encoding_set *sc_encodings;
audio_params_t sc_pparam;
struct awin_dma_channel *sc_pdma;
void (*sc_pint)(void *);
void *sc_pintarg;
bus_addr_t sc_pstart;
bus_addr_t sc_pend;
bus_addr_t sc_pcur;
int sc_pblksize;
audio_params_t sc_rparam;
struct awin_dma_channel *sc_rdma;
void (*sc_rint)(void *);
void *sc_rintarg;
bus_addr_t sc_rstart;
bus_addr_t sc_rend;
bus_addr_t sc_rcur;
int sc_rblksize;
struct awin_gpio_pindata sc_pactrl_gpio;
bool sc_has_pactrl_gpio;
};
static int awinac_match(device_t, cfdata_t, void *);
static void awinac_attach(device_t, device_t, void *);
static int awinac_rescan(device_t, const char *, const int *);
static void awinac_childdet(device_t, device_t);
static void awinac_init(struct awinac_softc *);
static int awinac_allocdma(struct awinac_softc *, size_t, size_t,
struct awinac_dma *);
static void awinac_freedma(struct awinac_softc *, struct awinac_dma *);
static void awinac_pint(void *);
static int awinac_play(struct awinac_softc *);
static void awinac_rint(void *);
static int awinac_rec(struct awinac_softc *);
#if defined(DDB)
void awinac_dump_regs(void);
#endif
static int awinac_open(void *, int);
static void awinac_close(void *);
static int awinac_drain(void *);
static int awinac_query_encoding(void *, struct audio_encoding *);
static int awinac_set_params(void *, int, int,
audio_params_t *,
audio_params_t *,
stream_filter_list_t *,
stream_filter_list_t *);
static int awinac_commit_settings(void *);
static int awinac_halt_output(void *);
static int awinac_halt_input(void *);
static int awinac_set_port(void *, mixer_ctrl_t *);
static int awinac_get_port(void *, mixer_ctrl_t *);
static int awinac_query_devinfo(void *, mixer_devinfo_t *);
static void * awinac_allocm(void *, int, size_t);
static void awinac_freem(void *, void *, size_t);
static paddr_t awinac_mappage(void *, void *, off_t, int);
static int awinac_getdev(void *, struct audio_device *);
static int awinac_get_props(void *);
static int awinac_round_blocksize(void *, int, int,
const audio_params_t *);
static size_t awinac_round_buffersize(void *, int, size_t);
static int awinac_trigger_output(void *, void *, void *, int,
void (*)(void *), void *,
const audio_params_t *);
static int awinac_trigger_input(void *, void *, void *, int,
void (*)(void *), void *,
const audio_params_t *);
static void awinac_get_locks(void *, kmutex_t **, kmutex_t **);
static const struct audio_hw_if awinac_hw_if = {
.open = awinac_open,
.close = awinac_close,
.drain = awinac_drain,
.query_encoding = awinac_query_encoding,
.set_params = awinac_set_params,
.commit_settings = awinac_commit_settings,
.halt_output = awinac_halt_output,
.halt_input = awinac_halt_input,
.allocm = awinac_allocm,
.freem = awinac_freem,
.mappage = awinac_mappage,
.getdev = awinac_getdev,
.set_port = awinac_set_port,
.get_port = awinac_get_port,
.query_devinfo = awinac_query_devinfo,
.get_props = awinac_get_props,
.round_blocksize = awinac_round_blocksize,
.round_buffersize = awinac_round_buffersize,
.trigger_output = awinac_trigger_output,
.trigger_input = awinac_trigger_input,
.get_locks = awinac_get_locks,
};
enum {
AC_OUTPUT_CLASS,
AC_INPUT_CLASS,
AC_OUTPUT_MASTER_VOLUME,
AC_INPUT_DAC_VOLUME,
AC_ENUM_LAST
};
CFATTACH_DECL2_NEW(awin_ac, sizeof(struct awinac_softc),
awinac_match, awinac_attach, NULL, NULL,
awinac_rescan, awinac_childdet);
#define AC_REG(sc, reg) awinac_regmap[(sc)->sc_regmap][(reg)]
#define AC_WRITE(sc, reg, val) \
bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, AC_REG((sc), reg), (val))
#define AC_READ(sc, reg) \
bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, AC_REG((sc), reg))
static int
awinac_match(device_t parent, cfdata_t cf, void *aux)
{
struct awinio_attach_args * const aio = aux;
const struct awin_locators * const loc = &aio->aio_loc;
const int port = cf->cf_loc[AWINIOCF_PORT];
if (strcmp(cf->cf_name, loc->loc_name))
return 0;
if (port != AWINIOCF_PORT_DEFAULT && port != loc->loc_port)
return 0;
return 1;
}
static void
awinac_attach(device_t parent, device_t self, void *aux)
{
struct awinac_softc * const sc = device_private(self);
struct awinio_attach_args * const aio = aux;
const struct awin_locators * const loc = &aio->aio_loc;
prop_dictionary_t cfg = device_properties(self);
const char *pin_name;
int error;
sc->sc_dev = self;
sc->sc_bst = aio->aio_core_bst;
sc->sc_dmat = aio->aio_dmat;
LIST_INIT(&sc->sc_dmalist);
bus_space_subregion(sc->sc_bst, aio->aio_core_bsh,
loc->loc_offset, loc->loc_size, &sc->sc_bsh);
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SCHED);
aprint_naive("\n");
aprint_normal(": CODEC\n");
if (awin_chip_id() == AWIN_CHIP_ID_A31) {
sc->sc_regmap = REGMAP_A31;
} else {
sc->sc_regmap = REGMAP_A10;
}
if (prop_dictionary_get_cstring_nocopy(cfg, "pactrl-gpio", &pin_name)) {
if (!awin_gpio_pin_reserve(pin_name, &sc->sc_pactrl_gpio)) {
aprint_error_dev(self,
"failed to reserve GPIO \"%s\"\n", pin_name);
} else {
sc->sc_has_pactrl_gpio = true;
}
}
awin_pll2_enable();
awin_reg_set_clear(sc->sc_bst, aio->aio_ccm_bsh,
AWIN_APB0_GATING_REG, AWIN_APB0_GATING_ADDA, 0);
awin_reg_set_clear(sc->sc_bst, aio->aio_ccm_bsh,
AWIN_AUDIO_CODEC_CLK_REG, AWIN_CLK_ENABLE, 0);
if (sc->sc_has_pactrl_gpio)
awin_gpio_pindata_write(&sc->sc_pactrl_gpio, 0);
if (awin_chip_id() == AWIN_CHIP_ID_A31) {
awin_reg_set_clear(sc->sc_bst, aio->aio_ccm_bsh,
AWIN_A31_APB1_RESET_REG, AWIN_A31_APB1_RESET_CODEC_RST, 0);
}
awinac_init(sc);
sc->sc_drqtype_codec = awin_chip_id() == AWIN_CHIP_ID_A31 ?
AWIN_A31_DMA_DRQ_TYPE_AUDIOCODEC :
AWIN_NDMA_CTL_DRQ_CODEC;
sc->sc_drqtype_sdram = awin_chip_id() == AWIN_CHIP_ID_A31 ?
AWIN_A31_DMA_DRQ_TYPE_SDRAM :
AWIN_NDMA_CTL_DRQ_SDRAM;
sc->sc_pdma = awin_dma_alloc("codec-play", awinac_pint, sc);
if (sc->sc_pdma == NULL) {
aprint_error_dev(self, "couldn't allocate play DMA channel\n");
return;
}
sc->sc_rdma = awin_dma_alloc("codec-rec", awinac_rint, sc);
if (sc->sc_rdma == NULL) {
aprint_error_dev(self, "couldn't allocate rec DMA channel\n");
return;
}
sc->sc_format.mode = AUMODE_PLAY|AUMODE_RECORD;
sc->sc_format.encoding = AUDIO_ENCODING_SLINEAR_LE;
sc->sc_format.validbits = 16;
sc->sc_format.precision = 16;
sc->sc_format.channels = 2;
sc->sc_format.channel_mask = AUFMT_STEREO;
sc->sc_format.frequency_type = 0;
sc->sc_format.frequency[0] = sc->sc_format.frequency[1] = 48000;
error = auconv_create_encodings(&sc->sc_format, 1, &sc->sc_encodings);
if (error) {
aprint_error_dev(self, "couldn't create encodings (error=%d)\n",
error);
return;
}
awinac_rescan(self, NULL, NULL);
}
static int
awinac_rescan(device_t self, const char *ifattr, const int *locs)
{
struct awinac_softc *sc = device_private(self);
if (ifattr_match(ifattr, "audiobus") && sc->sc_audiodev == NULL) {
if (sc->sc_encodings == NULL)
return EIO;
sc->sc_audiodev = audio_attach_mi(&awinac_hw_if,
sc, sc->sc_dev);
}
return 0;
}
static void
awinac_childdet(device_t self, device_t child)
{
struct awinac_softc *sc = device_private(self);
if (sc->sc_audiodev == child)
sc->sc_audiodev = NULL;
}
static void
awinac_init(struct awinac_softc *sc)
{
uint32_t val;
val = AC_READ(sc, AC_DAC_DPC);
val |= DAC_DPC_EN_DA;
AC_WRITE(sc, AC_DAC_DPC, val);
if (awin_chip_id() == AWIN_CHIP_ID_A31) {
val = AC_READ(sc, AC_OM_PA_CTRL);
val &= ~OM_PA_CTRL_HPCOM_CTL;
val &= ~OM_PA_CTRL_COMTEN;
val |= OM_PA_CTRL_HPPAEN;
AC_WRITE(sc, AC_OM_PA_CTRL, val);
val = AC_READ(sc, AC_OM_DACA_CTRL);
val &= ~OM_DACA_CTRL_LHPIS;
val &= ~OM_DACA_CTRL_RHPIS;
val &= ~OM_DACA_CTRL_LHPPAMUTE;
val &= ~OM_DACA_CTRL_RHPPAMUTE;
val &= ~OM_DACA_CTRL_HPVOL;
val |= __SHIFTIN(AWINAC_INIT_VOL, OM_DACA_CTRL_HPVOL);
AC_WRITE(sc, AC_OM_DACA_CTRL, val);
val = AC_READ(sc, AC_MIC_CTRL);
val &= ~MIC_CTRL_LINEOUTLEN;
val &= ~MIC_CTRL_LINEOUTREN;
val &= ~MIC_CTRL_LINEOUTVC;
val |= MIC_CTRL_HBIASEN;
val |= MIC_CTRL_HBIASADCEN;
AC_WRITE(sc, AC_MIC_CTRL, val);
} else {
val = AC_READ(sc, AC_DAC_ACTL);
val |= DAC_ACTL_PAMUTE;
val &= ~DAC_ACTL_PAVOL;
val |= __SHIFTIN(AWINAC_INIT_VOL, DAC_ACTL_PAVOL);
AC_WRITE(sc, AC_DAC_ACTL, val);
val = AC_READ(sc, AC_ADC_ACTL);
val |= ADC_ACTL_PA_EN;
AC_WRITE(sc, AC_ADC_ACTL, val);
}
val = AC_READ(sc, AC_DAC_FIFOC);
val &= ~DAC_FIFOC_IRQ_EN;
val &= ~DAC_FIFOC_DRQ_EN;
val &= ~DAC_FIFOC_FIFO_UNDERRUN_IRQ_EN;
val &= ~DAC_FIFOC_FIFO_OVERRUN_IRQ_EN;
AC_WRITE(sc, AC_DAC_FIFOC, val);
val = AC_READ(sc, AC_ADC_FIFOC);
val &= ~ADC_FIFOC_DRQ_EN;
val &= ~ADC_FIFOC_IRQ_EN;
val &= ~ADC_FIFOC_OVERRUN_IRQ_EN;
AC_WRITE(sc, AC_ADC_FIFOC, val);
AC_WRITE(sc, AC_DAC_FIFOS, AC_READ(sc, AC_DAC_FIFOS));
AC_WRITE(sc, AC_ADC_FIFOS, AC_READ(sc, AC_ADC_FIFOS));
}
static int
awinac_allocdma(struct awinac_softc *sc, size_t size, size_t align,
struct awinac_dma *dma)
{
int error;
dma->dma_size = size;
error = bus_dmamem_alloc(sc->sc_dmat, dma->dma_size, align, 0,
dma->dma_segs, 1, &dma->dma_nsegs, BUS_DMA_WAITOK);
if (error)
return error;
error = bus_dmamem_map(sc->sc_dmat, dma->dma_segs, dma->dma_nsegs,
dma->dma_size, &dma->dma_addr, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
if (error)
goto free;
error = bus_dmamap_create(sc->sc_dmat, dma->dma_size, dma->dma_nsegs,
dma->dma_size, 0, BUS_DMA_WAITOK, &dma->dma_map);
if (error)
goto unmap;
error = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_addr,
dma->dma_size, NULL, BUS_DMA_WAITOK);
if (error)
goto destroy;
return 0;
destroy:
bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
unmap:
bus_dmamem_unmap(sc->sc_dmat, dma->dma_addr, dma->dma_size);
free:
bus_dmamem_free(sc->sc_dmat, dma->dma_segs, dma->dma_nsegs);
return error;
}
static void
awinac_freedma(struct awinac_softc *sc, struct awinac_dma *dma)
{
bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
bus_dmamem_unmap(sc->sc_dmat, dma->dma_addr, dma->dma_size);
bus_dmamem_free(sc->sc_dmat, dma->dma_segs, dma->dma_nsegs);
}
static void
awinac_pint(void *priv)
{
struct awinac_softc *sc = priv;
mutex_enter(&sc->sc_intr_lock);
if (sc->sc_pint == NULL) {
mutex_exit(&sc->sc_intr_lock);
return;
}
sc->sc_pint(sc->sc_pintarg);
mutex_exit(&sc->sc_intr_lock);
awinac_play(sc);
}
static int
awinac_play(struct awinac_softc *sc)
{
int error;
error = awin_dma_transfer(sc->sc_pdma,
sc->sc_pcur, AWIN_CORE_PBASE + AWIN_AC_OFFSET +
AC_REG(sc, AC_DAC_TXDATA),
sc->sc_pblksize);
if (error) {
device_printf(sc->sc_dev, "failed to transfer DMA; error %d\n",
error);
return error;
}
sc->sc_pcur += sc->sc_pblksize;
if (sc->sc_pcur >= sc->sc_pend)
sc->sc_pcur = sc->sc_pstart;
return 0;
}
static void
awinac_rint(void *priv)
{
struct awinac_softc *sc = priv;
mutex_enter(&sc->sc_intr_lock);
if (sc->sc_rint == NULL) {
mutex_exit(&sc->sc_intr_lock);
return;
}
sc->sc_rint(sc->sc_rintarg);
mutex_exit(&sc->sc_intr_lock);
awinac_rec(sc);
}
static int
awinac_rec(struct awinac_softc *sc)
{
int error;
error = awin_dma_transfer(sc->sc_rdma,
AWIN_CORE_PBASE + AWIN_AC_OFFSET + AC_REG(sc, AC_ADC_RXDATA),
sc->sc_rcur, sc->sc_rblksize);
if (error) {
device_printf(sc->sc_dev, "failed to transfer DMA; error %d\n",
error);
return error;
}
sc->sc_rcur += sc->sc_rblksize;
if (sc->sc_rcur >= sc->sc_rend)
sc->sc_rcur = sc->sc_rstart;
return 0;
}
static int
awinac_open(void *priv, int flags)
{
struct awinac_softc *sc = priv;
if (sc->sc_has_pactrl_gpio)
awin_gpio_pindata_write(&sc->sc_pactrl_gpio, 1);
return 0;
}
static void
awinac_close(void *priv)
{
struct awinac_softc *sc = priv;
if (sc->sc_has_pactrl_gpio)
awin_gpio_pindata_write(&sc->sc_pactrl_gpio, 0);
}
static int
awinac_drain(void *priv)
{
struct awinac_softc *sc = priv;
uint32_t val;
val = AC_READ(sc, AC_DAC_FIFOC);
val |= DAC_FIFOC_FIFO_FLUSH;
AC_WRITE(sc, AC_DAC_FIFOC, val);
val = AC_READ(sc, AC_ADC_FIFOC);
val |= ADC_FIFOC_FIFO_FLUSH;
AC_WRITE(sc, AC_ADC_FIFOC, val);
return 0;
}
static int
awinac_query_encoding(void *priv, struct audio_encoding *ae)
{
struct awinac_softc *sc = priv;
return auconv_query_encoding(sc->sc_encodings, ae);
}
static int
awinac_set_params(void *priv, int setmode, int usemode,
audio_params_t *play, audio_params_t *rec,
stream_filter_list_t *pfil, stream_filter_list_t *rfil)
{
struct awinac_softc *sc = priv;
int index;
if (play && (setmode & AUMODE_PLAY)) {
index = auconv_set_converter(&sc->sc_format, 1,
AUMODE_PLAY, play, true, pfil);
if (index < 0)
return EINVAL;
sc->sc_pparam = pfil->req_size > 0 ?
pfil->filters[0].param :
*play;
}
if (rec && (setmode & AUMODE_RECORD)) {
index = auconv_set_converter(&sc->sc_format, 1,
AUMODE_RECORD, rec, true, rfil);
if (index < 0)
return EINVAL;
sc->sc_rparam = rfil->req_size > 0 ?
rfil->filters[0].param :
*rec;
}
return 0;
}
static int
awinac_commit_settings(void *priv)
{
struct awinac_softc *sc = priv;
uint32_t val;
if (sc->sc_pparam.sample_rate != 48000)
return EINVAL;
if (sc->sc_pparam.validbits != 16 && sc->sc_pparam.validbits != 24)
return EINVAL;
if (sc->sc_rparam.sample_rate != 48000)
return EINVAL;
if (sc->sc_rparam.validbits != 16 && sc->sc_rparam.validbits != 24)
return EINVAL;
val = AC_READ(sc, AC_DAC_FIFOC);
val &= ~DAC_FIFOC_FIR_VER;
val &= ~DAC_FIFOC_FS;
val |= __SHIFTIN(DAC_FS_48KHZ, DAC_FIFOC_FS);
val &= ~DAC_FIFOC_SEND_LASAT;
val &= ~DAC_FIFOC_FIFO_MODE;
val |= __SHIFTIN(FIFO_MODE_16_15_0, DAC_FIFOC_FIFO_MODE);
val &= ~DAC_FIFOC_DRQ_CLR_CNT;
val |= __SHIFTIN(AWINAC_DRQ_CLR_CNT, DAC_FIFOC_DRQ_CLR_CNT);
val &= ~DAC_FIFOC_TX_TRIG_LEVEL;
val |= __SHIFTIN(AWINAC_TX_TRIG_LEVEL, DAC_FIFOC_TX_TRIG_LEVEL);
val &= ~DAC_FIFOC_ADDA_LOOP_EN;
val &= ~DAC_FIFOC_MONO_EN;
if (sc->sc_pparam.validbits == 16) {
val &= ~DAC_FIFOC_TX_SAMPLE_BITS;
} else if (sc->sc_pparam.validbits == 24) {
val |= DAC_FIFOC_TX_SAMPLE_BITS;
}
AC_WRITE(sc, AC_DAC_FIFOC, val);
val = AC_READ(sc, AC_ADC_FIFOC);
val |= ADC_FIFOC_EN_AD;
val |= ADC_FIFOC_RX_FIFO_MODE;
val &= ~ADC_FIFOC_FS;
val |= __SHIFTIN(ADC_FS_48KHZ, ADC_FIFOC_FS);
val &= ~ADC_FIFOC_RX_TRIG_LEVEL;
val |= __SHIFTIN(AWINAC_RX_TRIG_LEVEL, ADC_FIFOC_RX_TRIG_LEVEL);
val &= ~ADC_FIFOC_MONO_EN;
if (sc->sc_rparam.validbits == 16) {
val &= ~ADC_FIFOC_RX_SAMPLE_BITS;
} else {
val |= ADC_FIFOC_RX_SAMPLE_BITS;
}
AC_WRITE(sc, AC_ADC_FIFOC, val);
return 0;
}
static int
awinac_halt_output(void *priv)
{
struct awinac_softc *sc = priv;
uint32_t val;
awin_dma_halt(sc->sc_pdma);
if (awin_chip_id() == AWIN_CHIP_ID_A31) {
val = AC_READ(sc, AC_OM_DACA_CTRL);
val &= ~OM_DACA_CTRL_DACAREN;
val &= ~OM_DACA_CTRL_DACALEN;
AC_WRITE(sc, AC_OM_DACA_CTRL, val);
} else {
val = AC_READ(sc, AC_DAC_ACTL);
val &= ~DAC_ACTL_DACAREN;
val &= ~DAC_ACTL_DACALEN;
val &= ~DAC_ACTL_DACPAS;
AC_WRITE(sc, AC_DAC_ACTL, val);
}
val = AC_READ(sc, AC_DAC_FIFOC);
val &= ~DAC_FIFOC_DRQ_EN;
AC_WRITE(sc, AC_DAC_FIFOC, val);
sc->sc_pint = NULL;
sc->sc_pintarg = NULL;
return 0;
}
static int
awinac_halt_input(void *priv)
{
struct awinac_softc *sc = priv;
uint32_t val;
awin_dma_halt(sc->sc_rdma);
if (awin_chip_id() == AWIN_CHIP_ID_A31) {
val = AC_READ(sc, AC_OM_ADCA_CTRL);
val &= ~OM_ADCA_CTRL_ADCREN;
val &= ~OM_ADCA_CTRL_ADCLEN;
AC_WRITE(sc, AC_OM_ADCA_CTRL, val);
} else {
val = AC_READ(sc, AC_ADC_ACTL);
val &= ~ADC_ACTL_ADCREN;
val &= ~ADC_ACTL_ADCLEN;
AC_WRITE(sc, AC_ADC_ACTL, val);
}
val = AC_READ(sc, AC_ADC_FIFOC);
val &= ~ADC_FIFOC_DRQ_EN;
AC_WRITE(sc, AC_ADC_FIFOC, val);
sc->sc_rint = NULL;
sc->sc_rintarg = NULL;
return 0;
}
static int
awinac_set_port(void *priv, mixer_ctrl_t *mc)
{
struct awinac_softc *sc = priv;
uint32_t val;
int nvol;
switch (mc->dev) {
case AC_OUTPUT_MASTER_VOLUME:
case AC_INPUT_DAC_VOLUME:
nvol = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] >> 2;
if (awin_chip_id() == AWIN_CHIP_ID_A31) {
val = AC_READ(sc, AC_OM_DACA_CTRL);
val &= ~OM_DACA_CTRL_HPVOL;
val |= __SHIFTIN(nvol, OM_DACA_CTRL_HPVOL);
AC_WRITE(sc, AC_OM_DACA_CTRL, val);
} else {
val = AC_READ(sc, AC_DAC_ACTL);
val &= ~DAC_ACTL_PAVOL;
val |= __SHIFTIN(nvol, DAC_ACTL_PAVOL);
AC_WRITE(sc, AC_DAC_ACTL, val);
}
return 0;
}
return ENXIO;
}
static int
awinac_get_port(void *priv, mixer_ctrl_t *mc)
{
struct awinac_softc *sc = priv;
uint32_t val;
int nvol;
switch (mc->dev) {
case AC_OUTPUT_MASTER_VOLUME:
case AC_INPUT_DAC_VOLUME:
if (awin_chip_id() == AWIN_CHIP_ID_A31) {
val = AC_READ(sc, AC_OM_DACA_CTRL);
nvol = __SHIFTOUT(val, OM_DACA_CTRL_HPVOL) << 2;
} else {
val = AC_READ(sc, AC_DAC_ACTL);
nvol = __SHIFTOUT(val, DAC_ACTL_PAVOL) << 2;
}
mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = nvol;
mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = nvol;
return 0;
}
return ENXIO;
}
static int
awinac_query_devinfo(void *priv, mixer_devinfo_t *di)
{
switch (di->index) {
case AC_OUTPUT_CLASS:
di->mixer_class = AC_OUTPUT_CLASS;
strcpy(di->label.name, AudioCoutputs);
di->type = AUDIO_MIXER_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
return 0;
case AC_INPUT_CLASS:
di->mixer_class = AC_INPUT_CLASS;
strcpy(di->label.name, AudioCinputs);
di->type = AUDIO_MIXER_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
return 0;
case AC_OUTPUT_MASTER_VOLUME:
di->mixer_class = AC_OUTPUT_CLASS;
strcpy(di->label.name, AudioNmaster);
di->type = AUDIO_MIXER_VALUE;
di->next = di->prev = AUDIO_MIXER_LAST;
di->un.v.num_channels = 2;
strcpy(di->un.v.units.name, AudioNvolume);
return 0;
case AC_INPUT_DAC_VOLUME:
di->mixer_class = AC_INPUT_CLASS;
strcpy(di->label.name, AudioNdac);
di->type = AUDIO_MIXER_VALUE;
di->next = di->prev = AUDIO_MIXER_LAST;
di->un.v.num_channels = 2;
strcpy(di->un.v.units.name, AudioNvolume);
return 0;
}
return ENXIO;
}
static void *
awinac_allocm(void *priv, int dir, size_t size)
{
struct awinac_softc *sc = priv;
struct awinac_dma *dma;
int error;
dma = kmem_alloc(sizeof(*dma), KM_SLEEP);
if (dma == NULL)
return NULL;
error = awinac_allocdma(sc, size, 16, dma);
if (error) {
kmem_free(dma, sizeof(*dma));
device_printf(sc->sc_dev, "couldn't allocate DMA memory (%d)\n",
error);
return NULL;
}
LIST_INSERT_HEAD(&sc->sc_dmalist, dma, dma_list);
return dma->dma_addr;
}
static void
awinac_freem(void *priv, void *addr, size_t size)
{
struct awinac_softc *sc = priv;
struct awinac_dma *dma;
LIST_FOREACH(dma, &sc->sc_dmalist, dma_list) {
if (dma->dma_addr == addr) {
awinac_freedma(sc, dma);
LIST_REMOVE(dma, dma_list);
kmem_free(dma, sizeof(*dma));
break;
}
}
}
static paddr_t
awinac_mappage(void *priv, void *addr, off_t off, int prot)
{
struct awinac_softc *sc = priv;
struct awinac_dma *dma;
if (off < 0)
return -1;
LIST_FOREACH(dma, &sc->sc_dmalist, dma_list) {
if (dma->dma_addr == addr) {
return bus_dmamem_mmap(sc->sc_dmat, dma->dma_segs,
dma->dma_nsegs, off, prot, BUS_DMA_WAITOK);
}
}
return -1;
}
static int
awinac_getdev(void *priv, struct audio_device *audiodev)
{
snprintf(audiodev->name, sizeof(audiodev->name), "Allwinner");
snprintf(audiodev->version, sizeof(audiodev->version),
awin_chip_id() == AWIN_CHIP_ID_A31 ? "CODEC A31" : "CODEC A10/A20");
snprintf(audiodev->config, sizeof(audiodev->config), "awinac");
return 0;
}
static int
awinac_get_props(void *priv)
{
return AUDIO_PROP_PLAYBACK|AUDIO_PROP_CAPTURE|
AUDIO_PROP_INDEPENDENT|AUDIO_PROP_MMAP|
AUDIO_PROP_FULLDUPLEX;
}
static int
awinac_round_blocksize(void *priv, int bs, int mode,
const audio_params_t *params)
{
return bs & ~3;
}
static size_t
awinac_round_buffersize(void *priv, int direction, size_t bufsize)
{
return bufsize;
}
static int
awinac_trigger_output(void *priv, void *start, void *end, int blksize,
void (*intr)(void *), void *intrarg, const audio_params_t *params)
{
struct awinac_softc *sc = priv;
struct awinac_dma *dma;
bus_addr_t pstart;
bus_size_t psize;
uint32_t val, dmacfg;
int error;
pstart = 0;
psize = (uintptr_t)end - (uintptr_t)start;
LIST_FOREACH(dma, &sc->sc_dmalist, dma_list) {
if (dma->dma_addr == start) {
pstart = dma->dma_map->dm_segs[0].ds_addr;
break;
}
}
if (pstart == 0) {
device_printf(sc->sc_dev, "bad addr %p\n", start);
return EINVAL;
}
val = AC_READ(sc, AC_DAC_FIFOC);
val |= DAC_FIFOC_FIFO_FLUSH;
AC_WRITE(sc, AC_DAC_FIFOC, val);
if (awin_chip_id() == AWIN_CHIP_ID_A31) {
val = AC_READ(sc, AC_OM_DACA_CTRL);
val |= OM_DACA_CTRL_LHPIS;
val |= OM_DACA_CTRL_RHPIS;
val |= OM_DACA_CTRL_LHPPAMUTE;
val |= OM_DACA_CTRL_RHPPAMUTE;
val |= OM_DACA_CTRL_DACAREN;
val |= OM_DACA_CTRL_DACALEN;
val |= OM_DACA_CTRL_RMIXEN;
val |= OM_DACA_CTRL_LMIXEN;
val &= ~OM_DACA_CTRL_RMIXMUTE;
val |= __SHIFTIN(OM_DACA_CTRL_RMIXMUTE_DACR,
OM_DACA_CTRL_RMIXMUTE);
val &= ~OM_DACA_CTRL_LMIXMUTE;
val |= __SHIFTIN(OM_DACA_CTRL_LMIXMUTE_DACL,
OM_DACA_CTRL_LMIXMUTE);
AC_WRITE(sc, AC_OM_DACA_CTRL, val);
} else {
val = AC_READ(sc, AC_DAC_ACTL);
val |= DAC_ACTL_DACAREN;
val |= DAC_ACTL_DACALEN;
val |= DAC_ACTL_DACPAS;
AC_WRITE(sc, AC_DAC_ACTL, val);
}
sc->sc_pint = intr;
sc->sc_pintarg = intrarg;
sc->sc_pstart = sc->sc_pcur = pstart;
sc->sc_pend = sc->sc_pstart + psize;
sc->sc_pblksize = blksize;
dmacfg = 0;
dmacfg |= __SHIFTIN(AWIN_DMA_CTL_DATA_WIDTH_16,
AWIN_DMA_CTL_DST_DATA_WIDTH);
dmacfg |= __SHIFTIN(AWIN_DMA_CTL_BURST_LEN_4,
AWIN_DMA_CTL_DST_BURST_LEN);
dmacfg |= __SHIFTIN(AWIN_DMA_CTL_DATA_WIDTH_16,
AWIN_DMA_CTL_SRC_DATA_WIDTH);
dmacfg |= __SHIFTIN(AWIN_DMA_CTL_BURST_LEN_4,
AWIN_DMA_CTL_SRC_BURST_LEN);
dmacfg |= AWIN_DMA_CTL_BC_REMAINING;
dmacfg |= AWIN_NDMA_CTL_DST_ADDR_NOINCR;
dmacfg |= __SHIFTIN(sc->sc_drqtype_codec,
AWIN_DMA_CTL_DST_DRQ_TYPE);
dmacfg |= __SHIFTIN(sc->sc_drqtype_sdram,
AWIN_DMA_CTL_SRC_DRQ_TYPE);
awin_dma_set_config(sc->sc_pdma, dmacfg);
val = AC_READ(sc, AC_DAC_FIFOC);
val |= DAC_FIFOC_DRQ_EN;
AC_WRITE(sc, AC_DAC_FIFOC, val);
error = awinac_play(sc);
if (error)
awinac_halt_output(sc);
return error;
}
static int
awinac_trigger_input(void *priv, void *start, void *end, int blksize,
void (*intr)(void *), void *intrarg, const audio_params_t *params)
{
struct awinac_softc *sc = priv;
struct awinac_dma *dma;
bus_addr_t rstart;
bus_size_t rsize;
uint32_t val, dmacfg;
int error;
rstart = 0;
rsize = (uintptr_t)end - (uintptr_t)start;
LIST_FOREACH(dma, &sc->sc_dmalist, dma_list) {
if (dma->dma_addr == start) {
rstart = dma->dma_map->dm_segs[0].ds_addr;
break;
}
}
if (rstart == 0) {
device_printf(sc->sc_dev, "bad addr %p\n", start);
return EINVAL;
}
val = AC_READ(sc, AC_ADC_FIFOC);
val |= ADC_FIFOC_FIFO_FLUSH;
AC_WRITE(sc, AC_ADC_FIFOC, val);
if (awin_chip_id() == AWIN_CHIP_ID_A31) {
val = AC_READ(sc, AC_OM_ADCA_CTRL);
val |= OM_ADCA_CTRL_ADCREN;
val |= OM_ADCA_CTRL_ADCLEN;
AC_WRITE(sc, AC_OM_ADCA_CTRL, val);
} else {
val = AC_READ(sc, AC_ADC_ACTL);
val |= ADC_ACTL_ADCREN;
val |= ADC_ACTL_ADCLEN;
AC_WRITE(sc, AC_ADC_ACTL, val);
}
sc->sc_rint = intr;
sc->sc_rintarg = intrarg;
sc->sc_rstart = sc->sc_rcur = rstart;
sc->sc_rend = sc->sc_rstart + rsize;
sc->sc_rblksize = blksize;
dmacfg = 0;
dmacfg |= __SHIFTIN(AWIN_DMA_CTL_DATA_WIDTH_16,
AWIN_DMA_CTL_DST_DATA_WIDTH);
dmacfg |= __SHIFTIN(AWIN_DMA_CTL_BURST_LEN_4,
AWIN_DMA_CTL_DST_BURST_LEN);
dmacfg |= __SHIFTIN(AWIN_DMA_CTL_DATA_WIDTH_16,
AWIN_DMA_CTL_SRC_DATA_WIDTH);
dmacfg |= __SHIFTIN(AWIN_DMA_CTL_BURST_LEN_4,
AWIN_DMA_CTL_SRC_BURST_LEN);
dmacfg |= AWIN_DMA_CTL_BC_REMAINING;
dmacfg |= AWIN_NDMA_CTL_SRC_ADDR_NOINCR;
dmacfg |= __SHIFTIN(sc->sc_drqtype_sdram,
AWIN_DMA_CTL_DST_DRQ_TYPE);
dmacfg |= __SHIFTIN(sc->sc_drqtype_codec,
AWIN_DMA_CTL_SRC_DRQ_TYPE);
awin_dma_set_config(sc->sc_rdma, dmacfg);
val = AC_READ(sc, AC_ADC_FIFOC);
val |= ADC_FIFOC_DRQ_EN;
AC_WRITE(sc, AC_ADC_FIFOC, val);
error = awinac_rec(sc);
if (error)
awinac_halt_input(sc);
return error;
}
static void
awinac_get_locks(void *priv, kmutex_t **intr, kmutex_t **thread)
{
struct awinac_softc *sc = priv;
*intr = &sc->sc_intr_lock;
*thread = &sc->sc_lock;
}
#if defined(DDB)
void
awinac_dump_regs(void)
{
struct awinac_softc *sc;
device_t dev;
dev = device_find_by_driver_unit("awinac", 0);
if (dev == NULL)
return;
sc = device_private(dev);
printf("DAC_DPC: %08X\n", AC_READ(sc, AC_DAC_DPC));
printf("DAC_FIFOC: %08X\n", AC_READ(sc, AC_DAC_FIFOC));
printf("DAC_FIFOS: %08X\n", AC_READ(sc, AC_DAC_FIFOS));
printf("DAC_TXDATA: ...\n");
printf("DAC_ACTL: %08X\n", AC_READ(sc, AC_DAC_ACTL));
printf("ADC_FIFOC: %08X\n", AC_READ(sc, AC_ADC_FIFOC));
printf("ADC_FIFOS: %08X\n", AC_READ(sc, AC_ADC_FIFOS));
printf("ADC_RXDATA: ...\n");
printf("ADC_ACTL: %08X\n", AC_READ(sc, AC_ADC_ACTL));
printf("DAC_CNT: %08X\n", AC_READ(sc, AC_DAC_CNT));
printf("ADC_CNT: %08X\n", AC_READ(sc, AC_ADC_CNT));
}
#endif