NetBSD/sys/arch/evbarm/integrator/int_bus_dma.c
thorpej 991426d348 * Rewrite the 32-bit ARM pte.h based on the ARM architecture manual.
Significant cleanup, here, including better PTE bit names.
* Add XScale PTE extensions (ECC enable, write-allocate cache mode).
* Mechanical changes everywhere else to update for new pte.h.  While
  doing this, two bugs (as a result of typos) were fixed in

	arm/arm32/bus_dma.c
	evbarm/integrator/int_bus_dma.c
2002-04-05 16:58:01 +00:00

617 lines
16 KiB
C

/* $NetBSD: int_bus_dma.c,v 1.7 2002/04/05 16:58:08 thorpej Exp $ */
/*-
* Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* The integrator board has memory steering hardware that means that
* the normal physical addresses used by the processor cannot be used
* for DMA. Instead we have to use the "core module alias mapping
* addresses". We don't use these for normal processor accesses since
* they are much slower than the direct addresses when accessing
* memory on the local board.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/map.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/reboot.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/vnode.h>
#include <sys/device.h>
#include <uvm/uvm_extern.h>
#define _ARM32_BUS_DMA_PRIVATE
#include <evbarm/integrator/int_bus_dma.h>
#include <machine/cpu.h>
#include <arm/cpufunc.h>
static int integrator_bus_dmamap_load_buffer __P((bus_dma_tag_t,
bus_dmamap_t, void *, bus_size_t, struct proc *, int,
vm_offset_t *, int *, int));
static int integrator_bus_dma_inrange __P((bus_dma_segment_t *, int,
bus_addr_t));
/*
* Common function for loading a DMA map with a linear buffer. May
* be called by bus-specific DMA map load functions.
*/
int
integrator_bus_dmamap_load(t, map, buf, buflen, p, flags)
bus_dma_tag_t t;
bus_dmamap_t map;
void *buf;
bus_size_t buflen;
struct proc *p;
int flags;
{
vm_offset_t lastaddr;
int seg, error;
#ifdef DEBUG_DMA
printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
t, map, buf, buflen, p, flags);
#endif /* DEBUG_DMA */
/*
* Make sure that on error condition we return "no valid mappings".
*/
map->dm_mapsize = 0;
map->dm_nsegs = 0;
if (buflen > map->_dm_size)
return (EINVAL);
seg = 0;
error = integrator_bus_dmamap_load_buffer(t, map, buf, buflen, p, flags,
&lastaddr, &seg, 1);
if (error == 0) {
map->dm_mapsize = buflen;
map->dm_nsegs = seg + 1;
map->_dm_proc = p;
}
#ifdef DEBUG_DMA
printf("dmamap_load: error=%d\n", error);
#endif /* DEBUG_DMA */
return (error);
}
/*
* Like _bus_dmamap_load(), but for mbufs.
*/
int
integrator_bus_dmamap_load_mbuf(t, map, m0, flags)
bus_dma_tag_t t;
bus_dmamap_t map;
struct mbuf *m0;
int flags;
{
vm_offset_t lastaddr;
int seg, error, first;
struct mbuf *m;
#ifdef DEBUG_DMA
printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
t, map, m0, flags);
#endif /* DEBUG_DMA */
/*
* Make sure that on error condition we return "no valid mappings."
*/
map->dm_mapsize = 0;
map->dm_nsegs = 0;
#ifdef DIAGNOSTIC
if ((m0->m_flags & M_PKTHDR) == 0)
panic("integrator_bus_dmamap_load_mbuf: no packet header");
#endif /* DIAGNOSTIC */
if (m0->m_pkthdr.len > map->_dm_size)
return (EINVAL);
first = 1;
seg = 0;
error = 0;
for (m = m0; m != NULL && error == 0; m = m->m_next) {
error = integrator_bus_dmamap_load_buffer(t, map, m->m_data,
m->m_len, NULL, flags, &lastaddr, &seg, first);
first = 0;
}
if (error == 0) {
map->dm_mapsize = m0->m_pkthdr.len;
map->dm_nsegs = seg + 1;
map->_dm_proc = NULL; /* always kernel */
}
#ifdef DEBUG_DMA
printf("dmamap_load_mbuf: error=%d\n", error);
#endif /* DEBUG_DMA */
return (error);
}
/*
* Like _bus_dmamap_load(), but for uios.
*/
int
integrator_bus_dmamap_load_uio(t, map, uio, flags)
bus_dma_tag_t t;
bus_dmamap_t map;
struct uio *uio;
int flags;
{
vm_offset_t lastaddr;
int seg, i, error, first;
bus_size_t minlen, resid;
struct proc *p = NULL;
struct iovec *iov;
caddr_t addr;
/*
* Make sure that on error condition we return "no valid mappings."
*/
map->dm_mapsize = 0;
map->dm_nsegs = 0;
resid = uio->uio_resid;
iov = uio->uio_iov;
if (uio->uio_segflg == UIO_USERSPACE) {
p = uio->uio_procp;
#ifdef DIAGNOSTIC
if (p == NULL)
panic("integrator_bus_dmamap_load_uio: USERSPACE but no proc");
#endif
}
first = 1;
seg = 0;
error = 0;
for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
/*
* Now at the first iovec to load. Load each iovec
* until we have exhausted the residual count.
*/
minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
addr = (caddr_t)iov[i].iov_base;
error = integrator_bus_dmamap_load_buffer(t, map, addr, minlen,
p, flags, &lastaddr, &seg, first);
first = 0;
resid -= minlen;
}
if (error == 0) {
map->dm_mapsize = uio->uio_resid;
map->dm_nsegs = seg + 1;
map->_dm_proc = p;
}
return (error);
}
/*
* Common function for DMA-safe memory allocation. May be called
* by bus-specific DMA memory allocation functions.
*/
extern vm_offset_t physical_start;
extern vm_offset_t physical_freestart;
extern vm_offset_t physical_freeend;
extern vm_offset_t physical_end;
int
integrator_bus_dmamem_alloc(t, size, alignment, boundary, segs, nsegs, rsegs, flags)
bus_dma_tag_t t;
bus_size_t size, alignment, boundary;
bus_dma_segment_t *segs;
int nsegs;
int *rsegs;
int flags;
{
int error;
#ifdef DEBUG_DMA
printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x\n",
t, size, alignment, boundary, segs, nsegs, rsegs, flags);
#endif /* DEBUG_DMA */
error = (integrator_bus_dmamem_alloc_range(t, size, alignment, boundary,
segs, nsegs, rsegs, flags, trunc_page(physical_start), trunc_page(physical_end)));
#ifdef DEBUG_DMA
printf("dmamem_alloc: =%d\n", error);
#endif /* DEBUG_DMA */
return(error);
}
/*
* Common function for freeing DMA-safe memory. May be called by
* bus-specific DMA memory free functions.
*/
void
integrator_bus_dmamem_free(t, segs, nsegs)
bus_dma_tag_t t;
bus_dma_segment_t *segs;
int nsegs;
{
struct vm_page *m;
bus_addr_t addr;
struct pglist mlist;
int curseg;
#ifdef DEBUG_DMA
printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
#endif /* DEBUG_DMA */
/*
* Build a list of pages to free back to the VM system.
*/
TAILQ_INIT(&mlist);
for (curseg = 0; curseg < nsegs; curseg++) {
for (addr = segs[curseg].ds_addr;
addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
addr += PAGE_SIZE) {
m = PHYS_TO_VM_PAGE(CM_ALIAS_TO_LOCAL(addr));
TAILQ_INSERT_TAIL(&mlist, m, pageq);
}
}
uvm_pglistfree(&mlist);
}
/*
* Common function for mapping DMA-safe memory. May be called by
* bus-specific DMA memory map functions.
*/
int
integrator_bus_dmamem_map(t, segs, nsegs, size, kvap, flags)
bus_dma_tag_t t;
bus_dma_segment_t *segs;
int nsegs;
size_t size;
caddr_t *kvap;
int flags;
{
vm_offset_t va;
bus_addr_t addr;
int curseg;
pt_entry_t *ptep/*, pte*/;
#ifdef DEBUG_DMA
printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
segs, nsegs, (unsigned long)size, flags);
#endif /* DEBUG_DMA */
size = round_page(size);
va = uvm_km_valloc(kernel_map, size);
if (va == 0)
return (ENOMEM);
*kvap = (caddr_t)va;
for (curseg = 0; curseg < nsegs; curseg++) {
for (addr = segs[curseg].ds_addr;
addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
addr += NBPG, va += NBPG, size -= NBPG) {
#ifdef DEBUG_DMA
printf("wiring p%lx to v%lx", CM_ALIAS_TO_LOCAL(addr),
va);
#endif /* DEBUG_DMA */
if (size == 0)
panic("integrator_bus_dmamem_map: size botch");
pmap_enter(pmap_kernel(), va, CM_ALIAS_TO_LOCAL(addr),
VM_PROT_READ | VM_PROT_WRITE,
VM_PROT_READ | VM_PROT_WRITE | PMAP_WIRED);
/*
* If the memory must remain coherent with the
* cache then we must make the memory uncacheable
* in order to maintain virtual cache coherency.
* We must also guarentee the cache does not already
* contain the virtal addresses we are making
* uncacheable.
*/
if (flags & BUS_DMA_COHERENT) {
cpu_dcache_wbinv_range(va, NBPG);
cpu_drain_writebuf();
ptep = vtopte(va);
*ptep &= ~(L2_C | L2_B);
tlb_flush();
}
#ifdef DEBUG_DMA
ptep = vtopte(va);
printf(" pte=v%p *pte=%x\n", ptep, *ptep);
#endif /* DEBUG_DMA */
}
}
pmap_update(pmap_kernel());
#ifdef DEBUG_DMA
printf("dmamem_map: =%p\n", *kvap);
#endif /* DEBUG_DMA */
return (0);
}
/*
* Common functin for mmap(2)'ing DMA-safe memory. May be called by
* bus-specific DMA mmap(2)'ing functions.
*/
paddr_t
integrator_bus_dmamem_mmap(t, segs, nsegs, off, prot, flags)
bus_dma_tag_t t;
bus_dma_segment_t *segs;
int nsegs;
off_t off;
int prot, flags;
{
int i;
for (i = 0; i < nsegs; i++) {
#ifdef DIAGNOSTIC
if (off & PGOFSET)
panic("integrator_bus_dmamem_mmap: offset unaligned");
if (segs[i].ds_addr & PGOFSET)
panic("integrator_bus_dmamem_mmap: segment unaligned");
if (segs[i].ds_len & PGOFSET)
panic("integrator_bus_dmamem_mmap: segment size not multiple"
" of page size");
#endif /* DIAGNOSTIC */
if (off >= segs[i].ds_len) {
off -= segs[i].ds_len;
continue;
}
return arm_btop((u_long)CM_ALIAS_TO_LOCAL(segs[i].ds_addr) + off);
}
/* Page not found. */
return -1;
}
/**********************************************************************
* DMA utility functions
**********************************************************************/
/*
* Utility function to load a linear buffer. lastaddrp holds state
* between invocations (for multiple-buffer loads). segp contains
* the starting segment on entrace, and the ending segment on exit.
* first indicates if this is the first invocation of this function.
*/
static int
integrator_bus_dmamap_load_buffer(t, map, buf, buflen, p, flags, lastaddrp,
segp, first)
bus_dma_tag_t t;
bus_dmamap_t map;
void *buf;
bus_size_t buflen;
struct proc *p;
int flags;
vm_offset_t *lastaddrp;
int *segp;
int first;
{
bus_size_t sgsize;
bus_addr_t curaddr, lastaddr, baddr, bmask;
vm_offset_t vaddr = (vm_offset_t)buf;
int seg;
pmap_t pmap;
#ifdef DEBUG_DMA
printf("integrator_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d, 1st=%d)\n",
buf, buflen, flags, first);
#endif /* DEBUG_DMA */
if (p != NULL)
pmap = p->p_vmspace->vm_map.pmap;
else
pmap = pmap_kernel();
lastaddr = *lastaddrp;
bmask = ~(map->_dm_boundary - 1);
for (seg = *segp; buflen > 0; ) {
/*
* Get the physical address for this segment.
*/
(void) pmap_extract(pmap, (vaddr_t)vaddr, &curaddr);
/*
* Make sure we're in an allowed DMA range.
*/
if (t->_ranges != NULL &&
integrator_bus_dma_inrange(t->_ranges, t->_nranges, curaddr) == 0)
return (EINVAL);
/*
* Compute the segment size, and adjust counts.
*/
sgsize = NBPG - ((u_long)vaddr & PGOFSET);
if (buflen < sgsize)
sgsize = buflen;
/*
* Make sure we don't cross any boundaries.
*/
if (map->_dm_boundary > 0) {
baddr = (curaddr + map->_dm_boundary) & bmask;
if (sgsize > (baddr - curaddr))
sgsize = (baddr - curaddr);
}
/*
* Insert chunk into a segment, coalescing with
* previous segment if possible.
*/
if (first) {
map->dm_segs[seg].ds_addr = LOCAL_TO_CM_ALIAS(curaddr);
map->dm_segs[seg].ds_len = sgsize;
map->dm_segs[seg]._ds_vaddr = vaddr;
first = 0;
} else {
if (curaddr == lastaddr &&
(map->dm_segs[seg].ds_len + sgsize) <=
map->_dm_maxsegsz &&
(map->_dm_boundary == 0 ||
(map->dm_segs[seg].ds_addr & bmask) ==
(LOCAL_TO_CM_ALIAS(curaddr) & bmask)))
map->dm_segs[seg].ds_len += sgsize;
else {
if (++seg >= map->_dm_segcnt)
break;
map->dm_segs[seg].ds_addr = LOCAL_TO_CM_ALIAS(curaddr);
map->dm_segs[seg].ds_len = sgsize;
map->dm_segs[seg]._ds_vaddr = vaddr;
}
}
lastaddr = curaddr + sgsize;
vaddr += sgsize;
buflen -= sgsize;
}
*segp = seg;
*lastaddrp = lastaddr;
/*
* Did we fit?
*/
if (buflen != 0)
return (EFBIG); /* XXX better return value here? */
return (0);
}
/*
* Check to see if the specified page is in an allowed DMA range.
*/
static int
integrator_bus_dma_inrange(ranges, nranges, curaddr)
bus_dma_segment_t *ranges;
int nranges;
bus_addr_t curaddr;
{
bus_dma_segment_t *ds;
int i;
for (i = 0, ds = ranges; i < nranges; i++, ds++) {
if (curaddr >= CM_ALIAS_TO_LOCAL(ds->ds_addr) &&
round_page(curaddr) <= (CM_ALIAS_TO_LOCAL(ds->ds_addr) + ds->ds_len))
return (1);
}
return (0);
}
/*
* Allocate physical memory from the given physical address range.
* Called by DMA-safe memory allocation methods.
*/
int
integrator_bus_dmamem_alloc_range(t, size, alignment, boundary, segs, nsegs, rsegs,
flags, low, high)
bus_dma_tag_t t;
bus_size_t size, alignment, boundary;
bus_dma_segment_t *segs;
int nsegs;
int *rsegs;
int flags;
vm_offset_t low;
vm_offset_t high;
{
vm_offset_t curaddr, lastaddr;
struct vm_page *m;
struct pglist mlist;
int curseg, error;
#ifdef DEBUG_DMA
printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
#endif /* DEBUG_DMA */
/* Always round the size. */
size = round_page(size);
/*
* Allocate pages from the VM system.
*/
TAILQ_INIT(&mlist);
error = uvm_pglistalloc(size, low, high, alignment, boundary,
&mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
if (error)
return (error);
/*
* Compute the location, size, and number of segments actually
* returned by the VM code.
*/
m = mlist.tqh_first;
curseg = 0;
lastaddr = VM_PAGE_TO_PHYS(m);
segs[curseg].ds_addr = LOCAL_TO_CM_ALIAS(lastaddr);
segs[curseg].ds_len = PAGE_SIZE;
#ifdef DEBUG_DMA
printf("alloc: page %lx\n", lastaddr);
#endif /* DEBUG_DMA */
m = m->pageq.tqe_next;
for (; m != NULL; m = m->pageq.tqe_next) {
curaddr = VM_PAGE_TO_PHYS(m);
#ifdef DIAGNOSTIC
if (curaddr < low || curaddr >= high) {
printf("uvm_pglistalloc returned non-sensical"
" address 0x%lx\n", curaddr);
panic("integrator_bus_dmamem_alloc_range");
}
#endif /* DIAGNOSTIC */
#ifdef DEBUG_DMA
printf("alloc: page %lx\n", curaddr);
#endif /* DEBUG_DMA */
if (curaddr == (lastaddr + PAGE_SIZE))
segs[curseg].ds_len += PAGE_SIZE;
else {
curseg++;
segs[curseg].ds_addr = LOCAL_TO_CM_ALIAS(curaddr);
segs[curseg].ds_len = PAGE_SIZE;
}
lastaddr = curaddr;
}
*rsegs = curseg + 1;
return (0);
}