NetBSD/sys/arch/arm/ti/ti_sdhc.c

683 lines
20 KiB
C

/* $NetBSD: ti_sdhc.c,v 1.5 2019/11/28 23:57:09 jmcneill Exp $ */
/*-
* Copyright (c) 2011 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas of 3am Software Foundry.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ti_sdhc.c,v 1.5 2019/11/28 23:57:09 jmcneill Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/bus.h>
#include <arm/ti/ti_prcm.h>
#include <arm/ti/ti_edma.h>
#include <arm/ti/ti_sdhcreg.h>
#include <dev/sdmmc/sdhcreg.h>
#include <dev/sdmmc/sdhcvar.h>
#include <dev/sdmmc/sdmmcvar.h>
#include <dev/fdt/fdtvar.h>
#define EDMA_MAX_PARAMS 32
#ifdef TISDHC_DEBUG
int tisdhcdebug = 1;
#define DPRINTF(n,s) do { if ((n) <= tisdhcdebug) device_printf s; } while (0)
#else
#define DPRINTF(n,s) do {} while (0)
#endif
#define CLKD(kz) (sc->sc.sc_clkbase / (kz))
#define SDHC_READ(sc, reg) \
bus_space_read_4((sc)->sc_bst, (sc)->sc_sdhc_bsh, (reg))
#define SDHC_WRITE(sc, reg, val) \
bus_space_write_4((sc)->sc_bst, (sc)->sc_sdhc_bsh, (reg), (val))
struct ti_sdhc_config {
bus_size_t regoff;
uint32_t flags;
};
static const struct ti_sdhc_config omap2_hsmmc_config = {
};
static const struct ti_sdhc_config omap3_pre_es3_hsmmc_config = {
.flags = SDHC_FLAG_SINGLE_ONLY
};
static const struct ti_sdhc_config omap4_hsmmc_config = {
.regoff = 0x100
};
static const struct of_compat_data compat_data[] = {
{ "ti,omap2-hsmmc", (uintptr_t)&omap2_hsmmc_config },
{ "ti,omap3-hsmmc", (uintptr_t)&omap2_hsmmc_config },
{ "ti,omap3-pre-es3-hsmmc", (uintptr_t)&omap3_pre_es3_hsmmc_config },
{ "ti,omap4-hsmmc", (uintptr_t)&omap4_hsmmc_config },
{ NULL }
};
enum {
EDMA_CHAN_TX,
EDMA_CHAN_RX,
EDMA_NCHAN
};
struct ti_sdhc_softc {
struct sdhc_softc sc;
int sc_phandle;
bus_addr_t sc_addr;
bus_space_tag_t sc_bst;
bus_space_handle_t sc_bsh;
bus_space_handle_t sc_hl_bsh;
bus_space_handle_t sc_sdhc_bsh;
struct sdhc_host *sc_hosts[1];
void *sc_ih; /* interrupt vectoring */
int sc_edma_chan[EDMA_NCHAN];
struct edma_channel *sc_edma_tx;
struct edma_channel *sc_edma_rx;
uint16_t sc_edma_param_tx[EDMA_MAX_PARAMS];
uint16_t sc_edma_param_rx[EDMA_MAX_PARAMS];
kcondvar_t sc_edma_cv;
bus_addr_t sc_edma_fifo;
bool sc_edma_pending;
bus_dmamap_t sc_edma_dmamap;
bus_dma_segment_t sc_edma_segs[1];
void *sc_edma_bbuf;
};
static int ti_sdhc_match(device_t, cfdata_t, void *);
static void ti_sdhc_attach(device_t, device_t, void *);
static void ti_sdhc_init(struct ti_sdhc_softc *, const struct ti_sdhc_config *);
static int ti_sdhc_bus_width(struct sdhc_softc *, int);
static int ti_sdhc_rod(struct sdhc_softc *, int);
static int ti_sdhc_write_protect(struct sdhc_softc *);
static int ti_sdhc_card_detect(struct sdhc_softc *);
static int ti_sdhc_edma_init(struct ti_sdhc_softc *, u_int, u_int);
static int ti_sdhc_edma_xfer_data(struct sdhc_softc *, struct sdmmc_command *);
static void ti_sdhc_edma_done(void *);
static int ti_sdhc_edma_transfer(struct sdhc_softc *, struct sdmmc_command *);
CFATTACH_DECL_NEW(ti_sdhc, sizeof(struct ti_sdhc_softc),
ti_sdhc_match, ti_sdhc_attach, NULL, NULL);
static int
ti_sdhc_match(device_t parent, cfdata_t cf, void *aux)
{
struct fdt_attach_args * const faa = aux;
return of_match_compat_data(faa->faa_phandle, compat_data);
}
static void
ti_sdhc_attach(device_t parent, device_t self, void *aux)
{
struct ti_sdhc_softc * const sc = device_private(self);
struct fdt_attach_args * const faa = aux;
const int phandle = faa->faa_phandle;
const struct ti_sdhc_config *conf;
bus_addr_t addr;
bus_size_t size;
u_int bus_width;
conf = (const void *)of_search_compatible(phandle, compat_data)->data;
if (ti_prcm_enable_hwmod(phandle, 0) != 0) {
aprint_error(": couldn't enable module\n");
return;
}
if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0 || size <= conf->regoff) {
aprint_error(": couldn't get registers\n");
return;
}
addr += conf->regoff;
size -= conf->regoff;
sc->sc.sc_dmat = faa->faa_dmat;
sc->sc.sc_dev = self;
sc->sc_phandle = phandle;
sc->sc_addr = addr;
sc->sc_bst = faa->faa_bst;
/* XXX use fdtbus_dma API */
int len;
const u_int *dmas = fdtbus_get_prop(phandle, "dmas", &len);
switch (len) {
case 24:
sc->sc_edma_chan[EDMA_CHAN_TX] = be32toh(dmas[1]);
sc->sc_edma_chan[EDMA_CHAN_RX] = be32toh(dmas[4]);
break;
case 32:
sc->sc_edma_chan[EDMA_CHAN_TX] = be32toh(dmas[1]);
sc->sc_edma_chan[EDMA_CHAN_RX] = be32toh(dmas[5]);
break;
default:
sc->sc_edma_chan[EDMA_CHAN_TX] = -1;
sc->sc_edma_chan[EDMA_CHAN_RX] = -1;
break;
}
if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
aprint_error(": couldn't map registers\n");
return;
}
if (of_getprop_uint32(phandle, "bus-width", &bus_width) != 0)
bus_width = 4;
sc->sc.sc_flags |= conf->flags;
sc->sc.sc_flags |= SDHC_FLAG_32BIT_ACCESS;
sc->sc.sc_flags |= SDHC_FLAG_NO_LED_ON;
sc->sc.sc_flags |= SDHC_FLAG_RSP136_CRC;
if (bus_width == 8)
sc->sc.sc_flags |= SDHC_FLAG_8BIT_MODE;
if (of_hasprop(phandle, "ti,needs-special-reset"))
sc->sc.sc_flags |= SDHC_FLAG_WAIT_RESET;
if (!of_hasprop(phandle, "ti,needs-special-hs-handling"))
sc->sc.sc_flags |= SDHC_FLAG_NO_HS_BIT;
if (of_hasprop(phandle, "ti,dual-volt"))
sc->sc.sc_caps = SDHC_VOLTAGE_SUPP_3_0V;
sc->sc.sc_host = sc->sc_hosts;
sc->sc.sc_clkbase = 96000; /* 96MHZ */
sc->sc.sc_clkmsk = 0x0000ffc0;
sc->sc.sc_vendor_rod = ti_sdhc_rod;
sc->sc.sc_vendor_write_protect = ti_sdhc_write_protect;
sc->sc.sc_vendor_card_detect = ti_sdhc_card_detect;
sc->sc.sc_vendor_bus_width = ti_sdhc_bus_width;
if (bus_space_subregion(sc->sc_bst, sc->sc_bsh, 0x100, 0x100,
&sc->sc_sdhc_bsh) != 0) {
aprint_error(": couldn't map subregion\n");
return;
}
aprint_naive("\n");
aprint_normal(": MMCHS\n");
ti_sdhc_init(sc, conf);
}
static void
ti_sdhc_init(struct ti_sdhc_softc *sc, const struct ti_sdhc_config *conf)
{
device_t dev = sc->sc.sc_dev;
uint32_t clkd, stat;
int error, timo, clksft, n;
char intrstr[128];
const int tx_chan = sc->sc_edma_chan[EDMA_CHAN_TX];
const int rx_chan = sc->sc_edma_chan[EDMA_CHAN_RX];
if (tx_chan != -1 && rx_chan != -1) {
aprint_normal_dev(dev,
"EDMA tx channel %d, rx channel %d\n",
tx_chan, rx_chan);
if (ti_sdhc_edma_init(sc, tx_chan, rx_chan) != 0) {
aprint_error_dev(dev, "EDMA disabled\n");
goto no_dma;
}
cv_init(&sc->sc_edma_cv, "sdhcedma");
sc->sc_edma_fifo = sc->sc_addr + 0x100 + SDHC_DATA;
sc->sc.sc_flags |= SDHC_FLAG_USE_DMA;
sc->sc.sc_flags |= SDHC_FLAG_EXTERNAL_DMA;
sc->sc.sc_flags |= SDHC_FLAG_EXTDMA_DMAEN;
sc->sc.sc_vendor_transfer_data_dma = ti_sdhc_edma_xfer_data;
}
no_dma:
/* XXXXXX: Turn-on regulator via I2C. */
/* XXXXXX: And enable ICLOCK/FCLOCK. */
SDHC_WRITE(sc, SDHC_CAPABILITIES,
SDHC_READ(sc, SDHC_CAPABILITIES) | SDHC_VOLTAGE_SUPP_1_8V);
if (sc->sc.sc_caps & SDHC_VOLTAGE_SUPP_3_0V)
SDHC_WRITE(sc, SDHC_CAPABILITIES,
SDHC_READ(sc, SDHC_CAPABILITIES) | SDHC_VOLTAGE_SUPP_3_0V);
/* MMCHS Soft reset */
bus_space_write_4(sc->sc_bst, sc->sc_bsh, MMCHS_SYSCONFIG,
SYSCONFIG_SOFTRESET);
timo = 3000000; /* XXXX 3 sec. */
while (timo--) {
if (bus_space_read_4(sc->sc_bst, sc->sc_bsh, MMCHS_SYSSTATUS) &
SYSSTATUS_RESETDONE)
break;
delay(1);
}
if (timo == 0)
aprint_error_dev(dev, "Soft reset timeout\n");
bus_space_write_4(sc->sc_bst, sc->sc_bsh, MMCHS_SYSCONFIG,
SYSCONFIG_ENAWAKEUP |
#if notyet
SYSCONFIG_AUTOIDLE |
SYSCONFIG_SIDLEMODE_AUTO |
#else
SYSCONFIG_SIDLEMODE_IGNORE |
#endif
SYSCONFIG_CLOCKACTIVITY_FCLK |
SYSCONFIG_CLOCKACTIVITY_ICLK);
if (!fdtbus_intr_str(sc->sc_phandle, 0, intrstr, sizeof(intrstr))) {
aprint_error_dev(dev, "couldn't decode interrupt\n");
return;
}
sc->sc_ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM,
0, sdhc_intr, &sc->sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(dev, "couldn't establish interrupt\n");
return;
}
aprint_normal_dev(dev, "interrupting on %s\n", intrstr);
error = sdhc_host_found(&sc->sc, sc->sc_bst, sc->sc_sdhc_bsh, 0x100);
if (error != 0) {
aprint_error_dev(dev, "couldn't initialize host, error=%d\n",
error);
fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
return;
}
clksft = ffs(sc->sc.sc_clkmsk) - 1;
/* Set SDVS 1.8v and DTW 1bit mode */
SDHC_WRITE(sc, SDHC_HOST_CTL,
SDHC_VOLTAGE_1_8V << (SDHC_VOLTAGE_SHIFT + 8));
SDHC_WRITE(sc, SDHC_CLOCK_CTL,
SDHC_READ(sc, SDHC_CLOCK_CTL) | SDHC_INTCLK_ENABLE |
SDHC_SDCLK_ENABLE);
SDHC_WRITE(sc, SDHC_HOST_CTL,
SDHC_READ(sc, SDHC_HOST_CTL) | SDHC_BUS_POWER << 8);
SDHC_WRITE(sc, SDHC_CLOCK_CTL,
SDHC_READ(sc, SDHC_CLOCK_CTL) | CLKD(150) << clksft);
/*
* 22.6.1.3.1.5 MMCHS Controller INIT Procedure Start
* from 'OMAP35x Applications Processor Technical Reference Manual'.
*
* During the INIT procedure, the MMCHS controller generates 80 clock
* periods. In order to keep the 1ms gap, the MMCHS controller should
* be configured to generate a clock whose frequency is smaller or
* equal to 80 KHz.
*/
SDHC_WRITE(sc, SDHC_CLOCK_CTL,
SDHC_READ(sc, SDHC_CLOCK_CTL) & ~SDHC_SDCLK_ENABLE);
SDHC_WRITE(sc, SDHC_CLOCK_CTL,
SDHC_READ(sc, SDHC_CLOCK_CTL) & ~sc->sc.sc_clkmsk);
clkd = CLKD(80);
n = 1;
while (clkd & ~(sc->sc.sc_clkmsk >> clksft)) {
clkd >>= 1;
n <<= 1;
}
SDHC_WRITE(sc, SDHC_CLOCK_CTL,
SDHC_READ(sc, SDHC_CLOCK_CTL) | (clkd << clksft));
SDHC_WRITE(sc, SDHC_CLOCK_CTL,
SDHC_READ(sc, SDHC_CLOCK_CTL) | SDHC_SDCLK_ENABLE);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, MMCHS_CON,
bus_space_read_4(sc->sc_bst, sc->sc_bsh, MMCHS_CON) | CON_INIT);
SDHC_WRITE(sc, SDHC_TRANSFER_MODE, 0x00000000);
delay(1000);
stat = SDHC_READ(sc, SDHC_NINTR_STATUS);
SDHC_WRITE(sc, SDHC_NINTR_STATUS, stat | SDHC_COMMAND_COMPLETE);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, MMCHS_CON,
bus_space_read_4(sc->sc_bst, sc->sc_bsh, MMCHS_CON) & ~CON_INIT);
SDHC_WRITE(sc, SDHC_NINTR_STATUS, 0xffffffff);
SDHC_WRITE(sc, SDHC_CLOCK_CTL,
SDHC_READ(sc, SDHC_CLOCK_CTL) & ~SDHC_SDCLK_ENABLE);
SDHC_WRITE(sc, SDHC_CLOCK_CTL,
SDHC_READ(sc, SDHC_CLOCK_CTL) & ~sc->sc.sc_clkmsk);
SDHC_WRITE(sc, SDHC_CLOCK_CTL,
SDHC_READ(sc, SDHC_CLOCK_CTL) | CLKD(150) << clksft);
timo = 3000000; /* XXXX 3 sec. */
while (--timo) {
if (SDHC_READ(sc, SDHC_CLOCK_CTL) & SDHC_INTCLK_STABLE)
break;
delay(1);
}
if (timo == 0)
aprint_error_dev(dev, "ICS timeout\n");
SDHC_WRITE(sc, SDHC_CLOCK_CTL,
SDHC_READ(sc, SDHC_CLOCK_CTL) | SDHC_SDCLK_ENABLE);
if (sc->sc.sc_flags & SDHC_FLAG_USE_ADMA2)
bus_space_write_4(sc->sc_bst, sc->sc_bsh, MMCHS_CON,
bus_space_read_4(sc->sc_bst, sc->sc_bsh, MMCHS_CON) |
CON_MNS);
}
static int
ti_sdhc_rod(struct sdhc_softc *sc, int on)
{
struct ti_sdhc_softc *hmsc = (struct ti_sdhc_softc *)sc;
uint32_t con;
con = bus_space_read_4(hmsc->sc_bst, hmsc->sc_bsh, MMCHS_CON);
if (on)
con |= CON_OD;
else
con &= ~CON_OD;
bus_space_write_4(hmsc->sc_bst, hmsc->sc_bsh, MMCHS_CON, con);
return 0;
}
static int
ti_sdhc_write_protect(struct sdhc_softc *sc)
{
/* Maybe board dependent, using GPIO. Get GPIO-pin from prop? */
return 0; /* XXXXXXX */
}
static int
ti_sdhc_card_detect(struct sdhc_softc *sc)
{
/* Maybe board dependent, using GPIO. Get GPIO-pin from prop? */
return 1; /* XXXXXXXX */
}
static int
ti_sdhc_bus_width(struct sdhc_softc *sc, int width)
{
struct ti_sdhc_softc *hmsc = (struct ti_sdhc_softc *)sc;
uint32_t con, hctl;
con = bus_space_read_4(hmsc->sc_bst, hmsc->sc_bsh, MMCHS_CON);
hctl = SDHC_READ(hmsc, SDHC_HOST_CTL);
if (width == 8) {
con |= CON_DW8;
} else if (width == 4) {
con &= ~CON_DW8;
hctl |= SDHC_4BIT_MODE;
} else {
con &= ~CON_DW8;
hctl &= ~SDHC_4BIT_MODE;
}
bus_space_write_4(hmsc->sc_bst, hmsc->sc_bsh, MMCHS_CON, con);
SDHC_WRITE(hmsc, SDHC_HOST_CTL, hctl);
return 0;
}
static int
ti_sdhc_edma_init(struct ti_sdhc_softc *sc, u_int tx_chan, u_int rx_chan)
{
int i, error, rseg;
/* Request tx and rx DMA channels */
sc->sc_edma_tx = edma_channel_alloc(EDMA_TYPE_DMA, tx_chan,
ti_sdhc_edma_done, sc);
KASSERT(sc->sc_edma_tx != NULL);
sc->sc_edma_rx = edma_channel_alloc(EDMA_TYPE_DMA, rx_chan,
ti_sdhc_edma_done, sc);
KASSERT(sc->sc_edma_rx != NULL);
/* Allocate some PaRAM pages */
for (i = 0; i < __arraycount(sc->sc_edma_param_tx); i++) {
sc->sc_edma_param_tx[i] = edma_param_alloc(sc->sc_edma_tx);
KASSERT(sc->sc_edma_param_tx[i] != 0xffff);
}
for (i = 0; i < __arraycount(sc->sc_edma_param_rx); i++) {
sc->sc_edma_param_rx[i] = edma_param_alloc(sc->sc_edma_rx);
KASSERT(sc->sc_edma_param_rx[i] != 0xffff);
}
/* Setup bounce buffer */
error = bus_dmamem_alloc(sc->sc.sc_dmat, MAXPHYS, 32, MAXPHYS,
sc->sc_edma_segs, 1, &rseg, BUS_DMA_WAITOK);
if (error) {
aprint_error_dev(sc->sc.sc_dev,
"couldn't allocate dmamem: %d\n", error);
return error;
}
KASSERT(rseg == 1);
error = bus_dmamem_map(sc->sc.sc_dmat, sc->sc_edma_segs, rseg, MAXPHYS,
&sc->sc_edma_bbuf, BUS_DMA_WAITOK);
if (error) {
aprint_error_dev(sc->sc.sc_dev, "couldn't map dmamem: %d\n",
error);
return error;
}
error = bus_dmamap_create(sc->sc.sc_dmat, MAXPHYS, 1, MAXPHYS, 0,
BUS_DMA_WAITOK, &sc->sc_edma_dmamap);
if (error) {
aprint_error_dev(sc->sc.sc_dev, "couldn't create dmamap: %d\n",
error);
return error;
}
error = bus_dmamap_load(sc->sc.sc_dmat, sc->sc_edma_dmamap,
sc->sc_edma_bbuf, MAXPHYS, NULL, BUS_DMA_WAITOK);
if (error) {
device_printf(sc->sc.sc_dev, "couldn't load dmamap: %d\n",
error);
return error;
}
return error;
}
static int
ti_sdhc_edma_xfer_data(struct sdhc_softc *sdhc_sc, struct sdmmc_command *cmd)
{
struct ti_sdhc_softc *sc = device_private(sdhc_sc->sc_dev);
const bus_dmamap_t map = cmd->c_dmamap;
bool bounce;
int error;
#if notyet
bounce = false;
for (int seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
if ((cmd->c_dmamap->dm_segs[seg].ds_addr & 0x1f) != 0 ||
(cmd->c_dmamap->dm_segs[seg].ds_len & 3) != 0) {
bounce = true;
break;
}
}
#else
bounce = true;
#endif
if (bounce) {
if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
bus_dmamap_sync(sc->sc.sc_dmat, sc->sc_edma_dmamap, 0,
MAXPHYS, BUS_DMASYNC_PREREAD);
} else {
memcpy(sc->sc_edma_bbuf, cmd->c_data, cmd->c_datalen);
bus_dmamap_sync(sc->sc.sc_dmat, sc->sc_edma_dmamap, 0,
MAXPHYS, BUS_DMASYNC_PREWRITE);
}
cmd->c_dmamap = sc->sc_edma_dmamap;
}
error = ti_sdhc_edma_transfer(sdhc_sc, cmd);
if (bounce) {
if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
bus_dmamap_sync(sc->sc.sc_dmat, sc->sc_edma_dmamap, 0,
MAXPHYS, BUS_DMASYNC_POSTREAD);
} else {
bus_dmamap_sync(sc->sc.sc_dmat, sc->sc_edma_dmamap, 0,
MAXPHYS, BUS_DMASYNC_POSTWRITE);
}
if (ISSET(cmd->c_flags, SCF_CMD_READ) && error == 0) {
memcpy(cmd->c_data, sc->sc_edma_bbuf, cmd->c_datalen);
}
cmd->c_dmamap = map;
}
return error;
}
static int
ti_sdhc_edma_transfer(struct sdhc_softc *sdhc_sc, struct sdmmc_command *cmd)
{
struct ti_sdhc_softc *sc = device_private(sdhc_sc->sc_dev);
kmutex_t *plock = sdhc_host_lock(sc->sc_hosts[0]);
struct edma_channel *edma;
uint16_t *edma_param;
struct edma_param ep;
size_t seg;
int error, resid = cmd->c_datalen;
int blksize = MIN(cmd->c_datalen, cmd->c_blklen);
KASSERT(mutex_owned(plock));
edma = ISSET(cmd->c_flags, SCF_CMD_READ) ?
sc->sc_edma_rx : sc->sc_edma_tx;
edma_param = ISSET(cmd->c_flags, SCF_CMD_READ) ?
sc->sc_edma_param_rx : sc->sc_edma_param_tx;
DPRINTF(1, (sc->sc.sc_dev, "edma xfer: nsegs=%d ch# %d\n",
cmd->c_dmamap->dm_nsegs, edma_channel_index(edma)));
if (cmd->c_dmamap->dm_nsegs > EDMA_MAX_PARAMS) {
return ENOMEM;
}
for (seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
KASSERT(resid > 0);
const int xferlen = uimin(resid,
cmd->c_dmamap->dm_segs[seg].ds_len);
KASSERT(xferlen == cmd->c_dmamap->dm_segs[seg].ds_len ||
seg == cmd->c_dmamap->dm_nsegs - 1);
resid -= xferlen;
KASSERT((xferlen & 0x3) == 0);
ep.ep_opt = __SHIFTIN(2, EDMA_PARAM_OPT_FWID) /* 32-bit */;
ep.ep_opt |= __SHIFTIN(edma_channel_index(edma),
EDMA_PARAM_OPT_TCC);
if (seg == cmd->c_dmamap->dm_nsegs - 1) {
ep.ep_opt |= EDMA_PARAM_OPT_TCINTEN;
ep.ep_link = 0xffff;
} else {
ep.ep_link = EDMA_PARAM_BASE(edma_param[seg+1]);
}
if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
ep.ep_opt |= EDMA_PARAM_OPT_SAM;
ep.ep_src = sc->sc_edma_fifo;
ep.ep_dst = cmd->c_dmamap->dm_segs[seg].ds_addr;
} else {
ep.ep_opt |= EDMA_PARAM_OPT_DAM;
ep.ep_src = cmd->c_dmamap->dm_segs[seg].ds_addr;
ep.ep_dst = sc->sc_edma_fifo;
}
KASSERT(xferlen <= 65536 * 4);
/*
* In constant addressing mode, the address must be aligned
* to 256-bits.
*/
KASSERT((cmd->c_dmamap->dm_segs[seg].ds_addr & 0x1f) == 0);
/*
* For unknown reason, the A-DMA transfers never completes for
* transfers larger than 64 butes. So use a AB transfer,
* with a 64 bytes A len
*/
ep.ep_bcntrld = 0; /* not used for AB-synchronous mode */
ep.ep_opt |= EDMA_PARAM_OPT_SYNCDIM;
ep.ep_acnt = uimin(xferlen, 64);
ep.ep_bcnt = uimin(xferlen, blksize) / ep.ep_acnt;
ep.ep_ccnt = xferlen / (ep.ep_acnt * ep.ep_bcnt);
ep.ep_srcbidx = ep.ep_dstbidx = 0;
ep.ep_srccidx = ep.ep_dstcidx = 0;
if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
ep.ep_dstbidx = ep.ep_acnt;
ep.ep_dstcidx = ep.ep_acnt * ep.ep_bcnt;
} else {
ep.ep_srcbidx = ep.ep_acnt;
ep.ep_srccidx = ep.ep_acnt * ep.ep_bcnt;
}
edma_set_param(edma, edma_param[seg], &ep);
#ifdef TISDHC_DEBUG
if (tisdhcdebug >= 1) {
printf("target OPT: %08x\n", ep.ep_opt);
edma_dump_param(edma, edma_param[seg]);
}
#endif
}
error = 0;
sc->sc_edma_pending = true;
edma_transfer_enable(edma, edma_param[0]);
while (sc->sc_edma_pending) {
error = cv_timedwait(&sc->sc_edma_cv, plock, hz*10);
if (error == EWOULDBLOCK) {
device_printf(sc->sc.sc_dev, "transfer timeout!\n");
edma_dump(edma);
edma_dump_param(edma, edma_param[0]);
edma_halt(edma);
sc->sc_edma_pending = false;
error = ETIMEDOUT;
break;
}
}
edma_halt(edma);
return error;
}
static void
ti_sdhc_edma_done(void *priv)
{
struct ti_sdhc_softc *sc = priv;
kmutex_t *plock = sdhc_host_lock(sc->sc_hosts[0]);
mutex_enter(plock);
KASSERT(sc->sc_edma_pending == true);
sc->sc_edma_pending = false;
cv_broadcast(&sc->sc_edma_cv);
mutex_exit(plock);
}