NetBSD/sys/arch/xen/i386/machdep.c

2467 lines
62 KiB
C

/* $NetBSD: machdep.c,v 1.41 2007/07/08 10:19:24 pooka Exp $ */
/* NetBSD: machdep.c,v 1.559 2004/07/22 15:12:46 mycroft Exp */
/*-
* Copyright (c) 1996, 1997, 1998, 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum and by Jason R. Thorpe of the Numerical Aerospace
* Simulation Facility, NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)machdep.c 7.4 (Berkeley) 6/3/91
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.41 2007/07/08 10:19:24 pooka Exp $");
#include "opt_beep.h"
#include "opt_compat_ibcs2.h"
#include "opt_compat_mach.h" /* need to get the right segment def */
#include "opt_compat_netbsd.h"
#include "opt_compat_svr4.h"
#include "opt_cpureset_delay.h"
#include "opt_cputype.h"
#include "opt_ddb.h"
#include "opt_ipkdb.h"
#include "opt_kgdb.h"
#include "opt_mtrr.h"
#include "opt_multiprocessor.h"
#include "opt_realmem.h"
#include "opt_user_ldt.h"
#include "opt_vm86.h"
#include "opt_xen.h"
#include "isa.h"
#include "pci.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/signal.h>
#include <sys/signalvar.h>
#include <sys/kernel.h>
#include <sys/cpu.h>
#include <sys/user.h>
#include <sys/exec.h>
#include <sys/reboot.h>
#include <sys/conf.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/msgbuf.h>
#include <sys/mount.h>
#include <sys/extent.h>
#include <sys/syscallargs.h>
#include <sys/core.h>
#include <sys/kcore.h>
#include <sys/ucontext.h>
#include <machine/kcore.h>
#include <sys/ras.h>
#include <sys/ksyms.h>
#ifdef IPKDB
#include <ipkdb/ipkdb.h>
#endif
#ifdef KGDB
#include <sys/kgdb.h>
#endif
#include <dev/cons.h>
#include <uvm/uvm_extern.h>
#include <uvm/uvm_page.h>
#include <sys/sysctl.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/cpuvar.h>
#include <machine/gdt.h>
#include <machine/intr.h>
#include <machine/pio.h>
#include <machine/psl.h>
#include <machine/reg.h>
#include <machine/specialreg.h>
#include <machine/bootinfo.h>
#include <machine/mtrr.h>
#include <machine/evtchn.h>
#include <dev/isa/isareg.h>
#include <machine/isa_machdep.h>
#include <dev/ic/i8042reg.h>
#ifdef DDB
#include <machine/db_machdep.h>
#include <ddb/db_extern.h>
#endif
#ifdef VM86
#include <machine/vm86.h>
#endif
#include "bioscall.h"
#if NBIOSCALL > 0
#include <machine/bioscall.h>
#endif
#if NAPM > 0
#include <machine/apmvar.h>
#endif
#include "isadma.h"
#include "npx.h"
#include "ksyms.h"
#include "mca.h"
#if NMCA > 0
#include <machine/mca_machdep.h> /* for mca_busprobe() */
#endif
#ifdef MULTIPROCESSOR /* XXX */
#include <machine/mpbiosvar.h> /* XXX */
#endif /* XXX */
#include <machine/xen.h>
#include <machine/hypervisor.h>
#if defined(DDB) || defined(KGDB)
#include <ddb/db_interface.h>
#include <ddb/db_output.h>
void ddb_trap_hook(int);
#endif
#undef XENDEBUG
/* #define XENDEBUG_LOW */
#ifdef XENDEBUG
#define XENPRINTF(x) printf x
#define XENPRINTK(x) printk x
#else
#define XENPRINTF(x)
#define XENPRINTK(x)
#endif
#define PRINTK(x) printf x
#ifdef XENDEBUG_LOW
void xen_dbglow_init(void);
#endif
/* the following is used externally (sysctl_hw) */
char machine[] = "i386"; /* CPU "architecture" */
char machine_arch[] = "i386"; /* machine == machine_arch */
extern struct bi_devmatch *x86_alldisks;
extern int x86_ndisks;
#ifdef CPURESET_DELAY
int cpureset_delay = CPURESET_DELAY;
#else
int cpureset_delay = 2000; /* default to 2s */
#endif
#ifdef MTRR
struct mtrr_funcs *mtrr_funcs;
#endif
#ifdef COMPAT_NOMID
static int exec_nomid(struct lwp *, struct exec_package *);
#endif
int physmem;
int dumpmem_low;
int dumpmem_high;
unsigned int cpu_feature;
int cpu_class;
int i386_fpu_present;
int i386_fpu_exception;
int i386_fpu_fdivbug;
int i386_use_fxsave;
int i386_has_sse;
int i386_has_sse2;
int tmx86_has_longrun;
vaddr_t msgbuf_vaddr;
paddr_t msgbuf_paddr;
vaddr_t idt_vaddr;
paddr_t idt_paddr;
#ifdef I586_CPU
vaddr_t pentium_idt_vaddr;
#endif
struct vm_map *exec_map = NULL;
struct vm_map *mb_map = NULL;
struct vm_map *phys_map = NULL;
extern paddr_t avail_start, avail_end;
extern paddr_t pmap_pa_start, pmap_pa_end;
#ifdef ISA_CLOCK
void (*delay_func)(int) = i8254_delay;
void (*microtime_func)(struct timeval *) = i8254_microtime;
void (*initclock_func)(void) = i8254_initclocks;
#else
void (*delay_func)(int) = xen_delay;
void (*initclock_func)(void) = xen_initclocks;
#endif
void hypervisor_callback(void);
void failsafe_callback(void);
/*
* Size of memory segments, before any memory is stolen.
*/
phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];
int mem_cluster_cnt;
int cpu_dump(void);
int cpu_dumpsize(void);
u_long cpu_dump_mempagecnt(void);
void dumpsys(void);
void init386(paddr_t);
void initgdt(void);
#if !defined(REALBASEMEM) && !defined(REALEXTMEM)
void add_mem_cluster(u_int64_t, u_int64_t, u_int32_t);
#endif /* !defnied(REALBASEMEM) && !defined(REALEXTMEM) */
extern int time_adjusted;
/*
* Machine-dependent startup code
*/
void
cpu_startup()
{
int x;
vaddr_t minaddr, maxaddr;
char pbuf[9];
/*
* Initialize error message buffer (et end of core).
*/
msgbuf_vaddr = uvm_km_alloc(kernel_map, x86_round_page(MSGBUFSIZE), 0,
UVM_KMF_VAONLY);
if (msgbuf_vaddr == 0)
panic("failed to valloc msgbuf_vaddr");
/* msgbuf_paddr was init'd in pmap */
for (x = 0; x < btoc(MSGBUFSIZE); x++)
pmap_kenter_pa((vaddr_t)msgbuf_vaddr + x * PAGE_SIZE,
msgbuf_paddr + x * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE);
pmap_update(pmap_kernel());
initmsgbuf((void *)msgbuf_vaddr, round_page(MSGBUFSIZE));
printf("%s%s", copyright, version);
#ifdef TRAPLOG
/*
* Enable recording of branch from/to in MSR's
*/
wrmsr(MSR_DEBUGCTLMSR, 0x1);
#endif
format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
printf("total memory = %s\n", pbuf);
minaddr = 0;
/*
* Allocate a submap for exec arguments. This map effectively
* limits the number of processes exec'ing at any time.
*/
exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
16*NCARGS, VM_MAP_PAGEABLE, false, NULL);
/*
* Allocate a submap for physio
*/
phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
VM_PHYS_SIZE, 0, false, NULL);
/*
* Finally, allocate mbuf cluster submap.
*/
mb_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
nmbclusters * mclbytes, VM_MAP_INTRSAFE, false, NULL);
format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
printf("avail memory = %s\n", pbuf);
#if defined(XEN) && defined(DOM0OPS)
/* Safe for i/o port / memory space allocation to use malloc now. */
x86_bus_space_mallocok();
#endif /* defined(XEN) && defined(DOM0OPS) */
gdt_init();
i386_proc0_tss_ldt_init();
}
/*
* Set up proc0's TSS and LDT.
*/
void
i386_proc0_tss_ldt_init()
{
struct lwp *l;
struct pcb *pcb;
int x;
l = &lwp0;
pcb = &l->l_addr->u_pcb;
pcb->pcb_tss.tss_ioopt =
((char *)pcb->pcb_iomap - (char *)&pcb->pcb_tss) << 16
| SEL_KPL; /* i/o pl */
for (x = 0; x < sizeof(pcb->pcb_iomap) / 4; x++)
pcb->pcb_iomap[x] = 0xffffffff;
pcb->pcb_ldt_sel = pmap_kernel()->pm_ldt_sel = GSEL(GLDT_SEL, SEL_KPL);
pcb->pcb_cr0 = rcr0();
pcb->pcb_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
pcb->pcb_tss.tss_esp0 = USER_TO_UAREA(l->l_addr) + KSTACK_SIZE - 16;
l->l_md.md_regs = (struct trapframe *)pcb->pcb_tss.tss_esp0 - 1;
l->l_md.md_tss_sel = tss_alloc(pcb);
#ifndef XEN
ltr(l->l_md.md_tss_sel);
lldt(pcb->pcb_ldt_sel);
#else
HYPERVISOR_fpu_taskswitch();
XENPRINTF(("lwp tss sp %p ss %04x/%04x\n",
(void *)pcb->pcb_tss.tss_esp0,
pcb->pcb_tss.tss_ss0, IDXSEL(pcb->pcb_tss.tss_ss0)));
HYPERVISOR_stack_switch(pcb->pcb_tss.tss_ss0, pcb->pcb_tss.tss_esp0);
#endif
}
/*
* Switch context:
* - honor CR0_TS in saved CR0 and request DNA exception on FPU use
* - switch stack pointer for user->kernel transition
*/
void
i386_switch_context(struct pcb *new)
{
struct cpu_info *ci;
ci = curcpu();
if (ci->ci_fpused) {
HYPERVISOR_fpu_taskswitch();
ci->ci_fpused = 0;
}
HYPERVISOR_stack_switch(new->pcb_tss.tss_ss0, new->pcb_tss.tss_esp0);
if (xen_start_info.flags & SIF_PRIVILEGED) {
#ifdef XEN3
struct physdev_op physop;
physop.cmd = PHYSDEVOP_SET_IOPL;
physop.u.set_iopl.iopl = new->pcb_tss.tss_ioopt & SEL_RPL;
HYPERVISOR_physdev_op(&physop);
#else
dom0_op_t op;
op.cmd = DOM0_IOPL;
op.u.iopl.domain = DOMID_SELF;
op.u.iopl.iopl = new->pcb_tss.tss_ioopt & SEL_RPL; /* i/o pl */
HYPERVISOR_dom0_op(&op);
#endif
}
}
/*
* sysctl helper routine for machdep.tm* nodes.
*/
static int
sysctl_machdep_tm_longrun(SYSCTLFN_ARGS)
{
struct sysctlnode node;
int io, error;
if (!tmx86_has_longrun)
return (EOPNOTSUPP);
node = *rnode;
node.sysctl_data = &io;
switch (rnode->sysctl_num) {
case CPU_TMLR_MODE:
io = (int)(crusoe_longrun = tmx86_get_longrun_mode());
break;
case CPU_TMLR_FREQUENCY:
tmx86_get_longrun_status_all();
io = crusoe_frequency;
break;
case CPU_TMLR_VOLTAGE:
tmx86_get_longrun_status_all();
io = crusoe_voltage;
break;
case CPU_TMLR_PERCENTAGE:
tmx86_get_longrun_status_all();
io = crusoe_percentage;
break;
default:
return (EOPNOTSUPP);
}
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
if (rnode->sysctl_num == CPU_TMLR_MODE) {
if (tmx86_set_longrun_mode(io))
crusoe_longrun = (u_int)io;
else
return (EINVAL);
}
return (0);
}
/*
* sysctl helper routine for machdep.booted_kernel
*/
static int
sysctl_machdep_booted_kernel(SYSCTLFN_ARGS)
{
struct btinfo_bootpath *bibp;
struct sysctlnode node;
bibp = lookup_bootinfo(BTINFO_BOOTPATH);
if(!bibp)
return(ENOENT); /* ??? */
node = *rnode;
node.sysctl_data = bibp->bootpath;
node.sysctl_size = sizeof(bibp->bootpath);
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
/*
* sysctl helper routine for machdep.diskinfo
*/
static int
sysctl_machdep_diskinfo(SYSCTLFN_ARGS)
{
struct sysctlnode node;
node = *rnode;
if (!x86_alldisks)
return(EOPNOTSUPP);
node.sysctl_data = x86_alldisks;
node.sysctl_size = sizeof(struct disklist) +
(x86_ndisks - 1) * sizeof(struct nativedisk_info);
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
/*
* machine dependent system variables.
*/
SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "machdep", NULL,
NULL, 0, NULL, 0,
CTL_MACHDEP, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "console_device", NULL,
sysctl_consdev, 0, NULL, sizeof(dev_t),
CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "biosbasemem", NULL,
NULL, 0, &biosbasemem, 0,
CTL_MACHDEP, CPU_BIOSBASEMEM, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "biosextmem", NULL,
NULL, 0, &biosextmem, 0,
CTL_MACHDEP, CPU_BIOSEXTMEM, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "nkpde", NULL,
NULL, 0, &nkpde, 0,
CTL_MACHDEP, CPU_NKPDE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "booted_kernel", NULL,
sysctl_machdep_booted_kernel, 0, NULL, 0,
CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "diskinfo", NULL,
sysctl_machdep_diskinfo, 0, NULL, 0,
CTL_MACHDEP, CPU_DISKINFO, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "fpu_present", NULL,
NULL, 0, &i386_fpu_present, 0,
CTL_MACHDEP, CPU_FPU_PRESENT, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "osfxsr", NULL,
NULL, 0, &i386_use_fxsave, 0,
CTL_MACHDEP, CPU_OSFXSR, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "sse", NULL,
NULL, 0, &i386_has_sse, 0,
CTL_MACHDEP, CPU_SSE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "sse2", NULL,
NULL, 0, &i386_has_sse2, 0,
CTL_MACHDEP, CPU_SSE2, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "tm_longrun_mode", NULL,
sysctl_machdep_tm_longrun, 0, NULL, 0,
CTL_MACHDEP, CPU_TMLR_MODE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "tm_longrun_frequency", NULL,
sysctl_machdep_tm_longrun, 0, NULL, 0,
CTL_MACHDEP, CPU_TMLR_FREQUENCY, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "tm_longrun_voltage", NULL,
sysctl_machdep_tm_longrun, 0, NULL, 0,
CTL_MACHDEP, CPU_TMLR_VOLTAGE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_INT, "tm_longrun_percentage", NULL,
sysctl_machdep_tm_longrun, 0, NULL, 0,
CTL_MACHDEP, CPU_TMLR_PERCENTAGE, CTL_EOL);
}
void *
getframe(struct lwp *l, int sig, int *onstack)
{
struct proc *p = l->l_proc;
struct trapframe *tf = l->l_md.md_regs;
/* Do we need to jump onto the signal stack? */
*onstack = (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0
&& (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
if (*onstack)
return (char *)l->l_sigstk.ss_sp + l->l_sigstk.ss_size;
#ifdef VM86
if (tf->tf_eflags & PSL_VM)
return (void *)(tf->tf_esp + (tf->tf_ss << 4));
else
#endif
return (void *)tf->tf_esp;
}
/*
* Build context to run handler in. We invoke the handler
* directly, only returning via the trampoline. Note the
* trampoline version numbers are coordinated with machine-
* dependent code in libc.
*/
void
buildcontext(struct lwp *l, int sel, void *catcher, void *fp)
{
struct trapframe *tf = l->l_md.md_regs;
tf->tf_gs = GSEL(GUDATA_SEL, SEL_UPL);
tf->tf_fs = GSEL(GUDATA_SEL, SEL_UPL);
tf->tf_es = GSEL(GUDATA_SEL, SEL_UPL);
tf->tf_ds = GSEL(GUDATA_SEL, SEL_UPL);
tf->tf_eip = (int)catcher;
tf->tf_cs = GSEL(sel, SEL_UPL);
tf->tf_eflags &= ~(PSL_T|PSL_VM|PSL_AC);
tf->tf_esp = (int)fp;
tf->tf_ss = GSEL(GUDATA_SEL, SEL_UPL);
}
static void
sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
{
struct lwp *l = curlwp;
struct proc *p = l->l_proc;
struct pmap *pmap = vm_map_pmap(&p->p_vmspace->vm_map);
int sel = pmap->pm_hiexec > I386_MAX_EXE_ADDR ?
GUCODEBIG_SEL : GUCODE_SEL;
struct sigacts *ps = p->p_sigacts;
int onstack, error;
int sig = ksi->ksi_signo;
struct sigframe_siginfo *fp = getframe(l, sig, &onstack), frame;
sig_t catcher = SIGACTION(p, sig).sa_handler;
struct trapframe *tf = l->l_md.md_regs;
fp--;
/* Build stack frame for signal trampoline. */
switch (ps->sa_sigdesc[sig].sd_vers) {
case 0: /* handled by sendsig_sigcontext */
case 1: /* handled by sendsig_sigcontext */
default: /* unknown version */
printf("nsendsig: bad version %d\n",
ps->sa_sigdesc[sig].sd_vers);
sigexit(l, SIGILL);
case 2:
break;
}
frame.sf_ra = (int)ps->sa_sigdesc[sig].sd_tramp;
frame.sf_signum = sig;
frame.sf_sip = &fp->sf_si;
frame.sf_ucp = &fp->sf_uc;
frame.sf_si._info = ksi->ksi_info;
frame.sf_uc.uc_flags = _UC_SIGMASK|_UC_VM;
frame.sf_uc.uc_sigmask = *mask;
frame.sf_uc.uc_link = l->l_ctxlink;
frame.sf_uc.uc_flags |= (l->l_sigstk.ss_flags & SS_ONSTACK)
? _UC_SETSTACK : _UC_CLRSTACK;
memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
if (tf->tf_eflags & PSL_VM)
(*p->p_emul->e_syscall_intern)(p);
sendsig_reset(l, sig);
mutex_exit(&p->p_smutex);
cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
error = copyout(&frame, fp, sizeof(frame));
mutex_enter(&p->p_smutex);
if (error != 0) {
/*
* Process has trashed its stack; give it an illegal
* instruction to halt it in its tracks.
*/
sigexit(l, SIGILL);
/* NOTREACHED */
}
buildcontext(l, sel, catcher, fp);
/* Remember that we're now on the signal stack. */
if (onstack)
l->l_sigstk.ss_flags |= SS_ONSTACK;
}
void
sendsig(const ksiginfo_t *ksi, const sigset_t *mask)
{
#ifdef COMPAT_16
if (curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers < 2)
sendsig_sigcontext(ksi, mask);
else
#endif
sendsig_siginfo(ksi, mask);
}
int waittime = -1;
struct pcb dumppcb;
void
cpu_reboot(int howto, char *bootstr)
{
if (cold) {
howto |= RB_HALT;
goto haltsys;
}
boothowto = howto;
if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
waittime = 0;
vfs_shutdown();
/*
* If we've been adjusting the clock, the todr
* will be out of synch; adjust it now.
*/
if (time_adjusted != 0)
resettodr();
}
/* Disable interrupts. */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
haltsys:
doshutdownhooks();
#ifdef MULTIPROCESSOR
x86_broadcast_ipi(X86_IPI_HALT);
#endif
if ((howto & RB_POWERDOWN) == RB_POWERDOWN) {
#if NAPM > 0 && !defined(APM_NO_POWEROFF)
/* turn off, if we can. But try to turn disk off and
* wait a bit first--some disk drives are slow to clean up
* and users have reported disk corruption.
*/
delay(500000);
apm_set_powstate(APM_DEV_DISK(0xff), APM_SYS_OFF);
delay(500000);
apm_set_powstate(APM_DEV_ALLDEVS, APM_SYS_OFF);
printf("WARNING: APM powerdown failed!\n");
/*
* RB_POWERDOWN implies RB_HALT... fall into it...
*/
#endif
HYPERVISOR_shutdown();
}
if (howto & RB_HALT) {
printf("\n");
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
#ifdef BEEP_ONHALT
{
int c;
for (c = BEEP_ONHALT_COUNT; c > 0; c--) {
sysbeep(BEEP_ONHALT_PITCH,
BEEP_ONHALT_PERIOD * hz / 1000);
delay(BEEP_ONHALT_PERIOD * 1000);
sysbeep(0, BEEP_ONHALT_PERIOD * hz / 1000);
delay(BEEP_ONHALT_PERIOD * 1000);
}
}
#endif
cnpollc(1); /* for proper keyboard command handling */
if (cngetc() == 0) {
/* no console attached, so just hlt */
for(;;) {
__asm volatile("hlt");
}
}
cnpollc(0);
}
printf("rebooting...\n");
if (cpureset_delay > 0)
delay(cpureset_delay * 1000);
cpu_reset();
for(;;) ;
/*NOTREACHED*/
}
/*
* These variables are needed by /sbin/savecore
*/
u_int32_t dumpmag = 0x8fca0101; /* magic number */
int dumpsize = 0; /* pages */
long dumplo = 0; /* blocks */
/*
* cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
*/
int
cpu_dumpsize()
{
int size;
size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
if (roundup(size, dbtob(1)) != dbtob(1))
return (-1);
return (1);
}
/*
* cpu_dump_mempagecnt: calculate the size of RAM (in pages) to be dumped.
*/
u_long
cpu_dump_mempagecnt()
{
u_long i, n;
n = 0;
for (i = 0; i < mem_cluster_cnt; i++)
n += atop(mem_clusters[i].size);
return (n);
}
/*
* cpu_dump: dump the machine-dependent kernel core dump headers.
*/
int
cpu_dump()
{
int (*dump)(dev_t, daddr_t, void *, size_t);
char buf[dbtob(1)];
kcore_seg_t *segp;
cpu_kcore_hdr_t *cpuhdrp;
phys_ram_seg_t *memsegp;
const struct bdevsw *bdev;
int i;
bdev = bdevsw_lookup(dumpdev);
if (bdev == NULL)
return (ENXIO);
dump = bdev->d_dump;
memset(buf, 0, sizeof buf);
segp = (kcore_seg_t *)buf;
cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
ALIGN(sizeof(*cpuhdrp))];
/*
* Generate a segment header.
*/
CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
/*
* Add the machine-dependent header info.
*/
cpuhdrp->pdppaddr = PDPpaddr;
cpuhdrp->nmemsegs = mem_cluster_cnt;
/*
* Fill in the memory segment descriptors.
*/
for (i = 0; i < mem_cluster_cnt; i++) {
memsegp[i].start = mem_clusters[i].start;
memsegp[i].size = mem_clusters[i].size;
}
return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
}
/*
* This is called by main to set dumplo and dumpsize.
* Dumps always skip the first PAGE_SIZE of disk space
* in case there might be a disk label stored there.
* If there is extra space, put dump at the end to
* reduce the chance that swapping trashes it.
*/
void
cpu_dumpconf()
{
const struct bdevsw *bdev;
int nblks, dumpblks; /* size of dump area */
if (dumpdev == NODEV)
goto bad;
bdev = bdevsw_lookup(dumpdev);
if (bdev == NULL) {
dumpdev = NODEV;
goto bad;
}
if (bdev->d_psize == NULL)
goto bad;
nblks = (*bdev->d_psize)(dumpdev);
if (nblks <= ctod(1))
goto bad;
dumpblks = cpu_dumpsize();
if (dumpblks < 0)
goto bad;
dumpblks += ctod(cpu_dump_mempagecnt());
/* If dump won't fit (incl. room for possible label), punt. */
if (dumpblks > (nblks - ctod(1)))
goto bad;
/* Put dump at end of partition */
dumplo = nblks - dumpblks;
/* dumpsize is in page units, and doesn't include headers. */
dumpsize = cpu_dump_mempagecnt();
return;
bad:
dumpsize = 0;
}
/*
* Doadump comes here after turning off memory management and
* getting on the dump stack, either when called above, or by
* the auto-restart code.
*/
#define BYTES_PER_DUMP PAGE_SIZE /* must be a multiple of pagesize XXX small */
static vaddr_t dumpspace;
vaddr_t
reserve_dumppages(vaddr_t p)
{
dumpspace = p;
return (p + BYTES_PER_DUMP);
}
void
dumpsys()
{
u_long totalbytesleft, bytes, i, n, m, memseg;
u_long maddr;
int psize;
daddr_t blkno;
const struct bdevsw *bdev;
int (*dump)(dev_t, daddr_t, void *, size_t);
int error;
/* Save registers. */
savectx(&dumppcb);
if (dumpdev == NODEV)
return;
bdev = bdevsw_lookup(dumpdev);
if (bdev == NULL || bdev->d_psize == NULL)
return;
/*
* For dumps during autoconfiguration,
* if dump device has already configured...
*/
if (dumpsize == 0)
cpu_dumpconf();
if (dumplo <= 0 || dumpsize == 0) {
printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
minor(dumpdev));
return;
}
printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
minor(dumpdev), dumplo);
psize = (*bdev->d_psize)(dumpdev);
printf("dump ");
if (psize == -1) {
printf("area unavailable\n");
return;
}
#if 0 /* XXX this doesn't work. grr. */
/* toss any characters present prior to dump */
while (sget() != NULL); /*syscons and pccons differ */
#endif
if ((error = cpu_dump()) != 0)
goto err;
totalbytesleft = ptoa(cpu_dump_mempagecnt());
blkno = dumplo + cpu_dumpsize();
dump = bdev->d_dump;
error = 0;
for (memseg = 0; memseg < mem_cluster_cnt; memseg++) {
maddr = mem_clusters[memseg].start;
bytes = mem_clusters[memseg].size;
for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
/* Print out how many MBs we have left to go. */
if ((totalbytesleft % (1024*1024)) == 0)
printf("%ld ", totalbytesleft / (1024 * 1024));
/* Limit size for next transfer. */
n = bytes - i;
if (n > BYTES_PER_DUMP)
n = BYTES_PER_DUMP;
for (m = 0; m < n; m += NBPG)
pmap_kenter_pa(dumpspace + m, maddr + m,
VM_PROT_READ);
error = (*dump)(dumpdev, blkno, (void *)dumpspace, n);
if (error)
goto err;
maddr += n;
blkno += btodb(n); /* XXX? */
#if 0 /* XXX this doesn't work. grr. */
/* operator aborting dump? */
if (sget() != NULL) {
error = EINTR;
break;
}
#endif
}
}
err:
switch (error) {
case ENXIO:
printf("device bad\n");
break;
case EFAULT:
printf("device not ready\n");
break;
case EINVAL:
printf("area improper\n");
break;
case EIO:
printf("i/o error\n");
break;
case EINTR:
printf("aborted from console\n");
break;
case 0:
printf("succeeded\n");
break;
default:
printf("error %d\n", error);
break;
}
printf("\n\n");
delay(5000000); /* 5 seconds */
}
/*
* Clear registers on exec
*/
void
setregs(struct lwp *l, struct exec_package *pack, u_long stack)
{
struct pmap *pmap = vm_map_pmap(&l->l_proc->p_vmspace->vm_map);
struct pcb *pcb = &l->l_addr->u_pcb;
struct trapframe *tf;
#if NNPX > 0
/* If we were using the FPU, forget about it. */
if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
npxsave_lwp(l, 0);
#endif
#ifdef USER_LDT
pmap_ldt_cleanup(l);
#endif
l->l_md.md_flags &= ~MDL_USEDFPU;
if (i386_use_fxsave) {
pcb->pcb_savefpu.sv_xmm.sv_env.en_cw = __NetBSD_NPXCW__;
pcb->pcb_savefpu.sv_xmm.sv_env.en_mxcsr = __INITIAL_MXCSR__;
} else
pcb->pcb_savefpu.sv_87.sv_env.en_cw = __NetBSD_NPXCW__;
tf = l->l_md.md_regs;
tf->tf_gs = LSEL(LUDATA_SEL, SEL_UPL);
tf->tf_fs = LSEL(LUDATA_SEL, SEL_UPL);
tf->tf_es = LSEL(LUDATA_SEL, SEL_UPL);
tf->tf_ds = LSEL(LUDATA_SEL, SEL_UPL);
tf->tf_edi = 0;
tf->tf_esi = 0;
tf->tf_ebp = 0;
tf->tf_ebx = (int)l->l_proc->p_psstr;
tf->tf_edx = 0;
tf->tf_ecx = 0;
tf->tf_eax = 0;
tf->tf_eip = pack->ep_entry;
tf->tf_cs = pmap->pm_hiexec > I386_MAX_EXE_ADDR ?
LSEL(LUCODEBIG_SEL, SEL_UPL) : LSEL(LUCODE_SEL, SEL_UPL);
tf->tf_eflags = PSL_USERSET;
tf->tf_esp = stack;
tf->tf_ss = LSEL(LUDATA_SEL, SEL_UPL);
}
/*
* Initialize segments and descriptor tables
*/
union descriptor *gdt, *ldt;
struct gate_descriptor *idt;
char idt_allocmap[NIDT];
struct simplelock idt_lock = SIMPLELOCK_INITIALIZER;
#ifdef I586_CPU
union descriptor *pentium_idt;
#endif
struct user *proc0paddr;
extern vaddr_t proc0uarea;
void
setgate(struct gate_descriptor *gd, void *func, int args, int type, int dpl,
int sel)
{
gd->gd_looffset = (int)func;
gd->gd_selector = sel;
gd->gd_stkcpy = args;
gd->gd_xx = 0;
gd->gd_type = type;
gd->gd_dpl = dpl;
gd->gd_p = 1;
gd->gd_hioffset = (int)func >> 16;
}
void
unsetgate(struct gate_descriptor *gd)
{
gd->gd_p = 0;
gd->gd_hioffset = 0;
gd->gd_looffset = 0;
gd->gd_selector = 0;
gd->gd_xx = 0;
gd->gd_stkcpy = 0;
gd->gd_type = 0;
gd->gd_dpl = 0;
}
void
setregion(struct region_descriptor *rd, void *base, size_t limit)
{
rd->rd_limit = (int)limit;
rd->rd_base = (int)base;
}
void
setsegment(struct segment_descriptor *sd, void *base, size_t limit, int type,
int dpl, int def32, int gran)
{
sd->sd_lolimit = (int)limit;
sd->sd_lobase = (int)base;
sd->sd_type = type;
sd->sd_dpl = dpl;
sd->sd_p = 1;
sd->sd_hilimit = (int)limit >> 16;
sd->sd_xx = 0;
sd->sd_def32 = def32;
sd->sd_gran = gran;
sd->sd_hibase = (int)base >> 24;
}
#define IDTVEC(name) __CONCAT(X, name)
typedef void (vector)(void);
extern vector IDTVEC(syscall);
extern vector IDTVEC(osyscall);
extern vector *IDTVEC(exceptions)[];
#ifdef COMPAT_SVR4
extern vector IDTVEC(svr4_fasttrap);
#endif /* COMPAT_SVR4 */
#ifdef COMPAT_MACH
extern vector IDTVEC(mach_trap);
#endif
#define MAX_XEN_IDT 128
trap_info_t xen_idt[MAX_XEN_IDT];
int xen_idt_idx;
#define KBTOB(x) ((size_t)(x) * 1024UL)
void cpu_init_idt()
{
struct region_descriptor region;
panic("cpu_init_idt");
#ifdef I586_CPU
setregion(&region, pentium_idt, NIDT * sizeof(idt[0]) - 1);
#else
setregion(&region, idt, NIDT * sizeof(idt[0]) - 1);
#endif
lidt(&region);
}
#if !defined(XEN) && !defined(REALBASEMEM) && !defined(REALEXTMEM)
void
add_mem_cluster(u_int64_t seg_start, u_int64_t seg_end, u_int32_t type)
{
extern struct extent *iomem_ex;
int i;
if (seg_end > 0x100000000ULL) {
printf("WARNING: skipping large "
"memory map entry: "
"0x%qx/0x%qx/0x%x\n",
seg_start,
(seg_end - seg_start),
type);
return;
}
/*
* XXX Chop the last page off the size so that
* XXX it can fit in avail_end.
*/
if (seg_end == 0x100000000ULL)
seg_end -= PAGE_SIZE;
if (seg_end <= seg_start)
return;
for (i = 0; i < mem_cluster_cnt; i++) {
if ((mem_clusters[i].start == round_page(seg_start))
&& (mem_clusters[i].size
== trunc_page(seg_end) - mem_clusters[i].start)) {
#ifdef DEBUG_MEMLOAD
printf("WARNING: skipping duplicate segment entry\n");
#endif
return;
}
}
/*
* Allocate the physical addresses used by RAM
* from the iomem extent map. This is done before
* the addresses are page rounded just to make
* sure we get them all.
*/
if (extent_alloc_region(iomem_ex, seg_start,
seg_end - seg_start, EX_NOWAIT)) {
/* XXX What should we do? */
printf("WARNING: CAN'T ALLOCATE "
"MEMORY SEGMENT "
"(0x%qx/0x%qx/0x%x) FROM "
"IOMEM EXTENT MAP!\n",
seg_start, seg_end - seg_start, type);
return;
}
/*
* If it's not free memory, skip it.
*/
if (type != BIM_Memory)
return;
/* XXX XXX XXX */
if (mem_cluster_cnt >= VM_PHYSSEG_MAX)
panic("init386: too many memory segments");
seg_start = round_page(seg_start);
seg_end = trunc_page(seg_end);
if (seg_start == seg_end)
return;
mem_clusters[mem_cluster_cnt].start = seg_start;
mem_clusters[mem_cluster_cnt].size =
seg_end - seg_start;
if (avail_end < seg_end)
avail_end = seg_end;
physmem += atop(mem_clusters[mem_cluster_cnt].size);
mem_cluster_cnt++;
}
#endif /* !defined(XEN) && !defined(REALBASEMEM) && !defined(REALEXTMEM) */
void
initgdt()
{
#if !defined(XEN)
struct region_descriptor region;
#else
paddr_t frames[16];
#endif
#if !defined(XEN)
gdt = tgdt;
memset(gdt, 0, NGDT*sizeof(*gdt));
#endif
/* make gdt gates and memory segments */
setsegment(&gdt[GCODE_SEL].sd, 0, 0xfc3ff, SDT_MEMERA, SEL_KPL, 1, 1);
setsegment(&gdt[GDATA_SEL].sd, 0, 0xfc3ff, SDT_MEMRWA, SEL_KPL, 1, 1);
setsegment(&gdt[GUCODE_SEL].sd, 0, x86_btop(I386_MAX_EXE_ADDR) - 1,
SDT_MEMERA, SEL_UPL, 1, 1);
setsegment(&gdt[GUCODEBIG_SEL].sd, 0, x86_btop(VM_MAXUSER_ADDRESS) - 1,
SDT_MEMERA, SEL_UPL, 1, 1);
setsegment(&gdt[GUDATA_SEL].sd, 0, x86_btop(VM_MAXUSER_ADDRESS) - 1,
SDT_MEMRWA, SEL_UPL, 1, 1);
#ifdef COMPAT_MACH
setgate(&gdt[GMACHCALLS_SEL].gd, &IDTVEC(mach_trap), 1,
SDT_SYS386CGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
#endif
#if NBIOSCALL > 0
/* bios trampoline GDT entries */
setsegment(&gdt[GBIOSCODE_SEL].sd, 0, 0xfc3ff, SDT_MEMERA, SEL_KPL, 0,
0);
setsegment(&gdt[GBIOSDATA_SEL].sd, 0, 0xfc3ff, SDT_MEMRWA, SEL_KPL, 0,
0);
#endif
setsegment(&gdt[GCPU_SEL].sd, &cpu_info_primary,
sizeof(struct cpu_info)-1, SDT_MEMRWA, SEL_KPL, 1, 1);
#if !defined(XEN)
setregion(&region, gdt, NGDT * sizeof(gdt[0]) - 1);
lgdt(&region);
#else
frames[0] = xpmap_ptom((uint32_t)gdt - KERNBASE) >> PAGE_SHIFT;
/* pmap_kremove((vaddr_t)gdt, PAGE_SIZE); */
pmap_kenter_pa((vaddr_t)gdt, (uint32_t)gdt - KERNBASE,
VM_PROT_READ);
#ifdef XEN3
XENPRINTK(("loading gdt %lx, %d entries\n", frames[0] << PAGE_SHIFT,
NGDT));
#else
XENPRINTK(("loading gdt %lx, %d entries\n", frames[0] << PAGE_SHIFT,
LAST_RESERVED_GDT_ENTRY + 1));
#endif
#ifdef XEN3
if (HYPERVISOR_set_gdt(frames, NGDT /* XXX is it right ? */))
panic("HYPERVISOR_set_gdt failed!\n");
#else
if (HYPERVISOR_set_gdt(frames, LAST_RESERVED_GDT_ENTRY + 1))
panic("HYPERVISOR_set_gdt failed!\n");
#endif
lgdt_finish();
#endif
}
void
init386(paddr_t first_avail)
{
#if !defined(XEN)
union descriptor *tgdt;
#endif
extern void consinit(void);
#if !defined(XEN)
extern struct extent *iomem_ex;
#if !defined(REALBASEMEM) && !defined(REALEXTMEM)
struct btinfo_memmap *bim;
#endif
struct region_descriptor region;
#endif
int x;
#if !defined(XEN)
int first16q;
u_int64_t seg_start, seg_end;
u_int64_t seg_start1, seg_end1;
#endif
paddr_t realmode_reserved_start;
psize_t realmode_reserved_size;
int needs_earlier_install_pte0;
#if NBIOSCALL > 0
extern int biostramp_image_size;
extern u_char biostramp_image[];
#endif
XENPRINTK(("HYPERVISOR_shared_info %p (%x)\n", HYPERVISOR_shared_info,
xen_start_info.shared_info));
#if defined(XEN3) && defined(XENDEBUG)
XENPRINTK(("HYPERVISOR_shared_info nsec %u\n",
HYPERVISOR_shared_info->wc_sec));
if ((xen_start_info.flags & SIF_INITDOMAIN) == 0) {
extern volatile struct xencons_interface *xencons_interface;
extern struct xenstore_domain_interface *xenstore_interface;
XENPRINTK(("xencons %p (%x)\n",
xencons_interface, xen_start_info.console_mfn));
XENPRINTK(("xenstore %p (%x)\n",
xenstore_interface, xen_start_info.store_mfn));
}
#endif
#ifdef XENDEBUG_LOW
xen_dbglow_init();
#endif
cpu_probe_features(&cpu_info_primary);
cpu_feature = cpu_info_primary.ci_feature_flags;
/* not on Xen... */
cpu_feature &= ~(CPUID_PGE|CPUID_PSE|CPUID_MTRR|CPUID_FXSR);
proc0paddr = UAREA_TO_USER(proc0uarea);
lwp0.l_addr = proc0paddr;
XENPRINTK(("proc0paddr %p pcb %p first_avail %p\n",
proc0paddr, cpu_info_primary.ci_curpcb, (void *)first_avail));
XENPRINTK(("ptdpaddr %p atdevbase %p\n", (void *)PDPpaddr,
(void *)atdevbase));
#if defined(XEN) && (NISA > 0 || NPCI > 0)
x86_bus_space_init();
#endif
consinit(); /* XXX SHOULD NOT BE DONE HERE */
xen_parse_cmdline(XEN_PARSE_BOOTFLAGS, NULL);
/*
* Initailize PAGE_SIZE-dependent variables.
*/
uvm_setpagesize();
/*
* Saving SSE registers won't work if the save area isn't
* 16-byte aligned.
*/
if (offsetof(struct user, u_pcb.pcb_savefpu) & 0xf)
panic("init386: pcb_savefpu not 16-byte aligned");
/*
* Start with 2 color bins -- this is just a guess to get us
* started. We'll recolor when we determine the largest cache
* sizes on the system.
*/
uvmexp.ncolors = 2;
#if !defined(XEN)
/*
* BIOS leaves data in physical page 0
* Even if it didn't, our VM system doesn't like using zero as a
* physical page number.
* We may also need pages in low memory (one each) for secondary CPU
* startup, for BIOS calls, and for ACPI, plus a page table page to map
* them into the first few pages of the kernel's pmap.
*/
avail_start = PAGE_SIZE;
#else
/* Make sure the end of the space used by the kernel is rounded. */
first_avail = round_page(first_avail);
avail_start = first_avail - KERNBASE;
avail_end = ptoa(xen_start_info.nr_pages) + XPMAP_OFFSET;
pmap_pa_start = (KERNTEXTOFF - KERNBASE);
pmap_pa_end = avail_end;
mem_clusters[0].start = avail_start;
mem_clusters[0].size = avail_end - avail_start;
mem_cluster_cnt++;
physmem += xen_start_info.nr_pages;
uvmexp.wired += atop(avail_start);
#endif
/*
* reserve memory for real-mode call
*/
needs_earlier_install_pte0 = 0;
realmode_reserved_start = 0;
realmode_reserved_size = 0;
#if NBIOSCALL > 0
/* save us a page for trampoline code */
realmode_reserved_size += PAGE_SIZE;
needs_earlier_install_pte0 = 1;
#endif
#ifdef MULTIPROCESSOR /* XXX */
#if !defined(XEN)
KASSERT(avail_start == PAGE_SIZE); /* XXX */
#endif
if (realmode_reserved_size < MP_TRAMPOLINE) /* XXX */
realmode_reserved_size = MP_TRAMPOLINE; /* XXX */
needs_earlier_install_pte0 = 1; /* XXX */
#endif /* XXX */
if (needs_earlier_install_pte0) {
/* page table for directory entry 0 */
realmode_reserved_size += PAGE_SIZE;
}
if (realmode_reserved_size>0) {
realmode_reserved_start = avail_start;
avail_start += realmode_reserved_size;
}
#ifdef DEBUG_MEMLOAD
printf("mem_cluster_count: %d\n", mem_cluster_cnt);
#endif
/*
* Call pmap initialization to make new kernel address space.
* We must do this before loading pages into the VM system.
*/
pmap_bootstrap((vaddr_t)atdevbase + IOM_SIZE);
#if !defined(XEN)
#if !defined(REALBASEMEM) && !defined(REALEXTMEM)
/*
* Check to see if we have a memory map from the BIOS (passed
* to us by the boot program.
*/
bim = lookup_bootinfo(BTINFO_MEMMAP);
if (bim != NULL && bim->num > 0) {
#ifdef DEBUG_MEMLOAD
printf("BIOS MEMORY MAP (%d ENTRIES):\n", bim->num);
#endif
for (x = 0; x < bim->num; x++) {
#ifdef DEBUG_MEMLOAD
printf(" addr 0x%qx size 0x%qx type 0x%x\n",
bim->entry[x].addr,
bim->entry[x].size,
bim->entry[x].type);
#endif
/*
* If the segment is not memory, skip it.
*/
switch (bim->entry[x].type) {
case BIM_Memory:
case BIM_ACPI:
case BIM_NVS:
break;
default:
continue;
}
/*
* Sanity check the entry.
* XXX Need to handle uint64_t in extent code
* XXX and 64-bit physical addresses in i386
* XXX port.
*/
seg_start = bim->entry[x].addr;
seg_end = bim->entry[x].addr + bim->entry[x].size;
/*
* Avoid Compatibility Holes.
* XXX Holes within memory space that allow access
* XXX to be directed to the PC-compatible frame buffer
* XXX (0xa0000-0xbffff),to adapter ROM space
* XXX (0xc0000-0xdffff), and to system BIOS space
* XXX (0xe0000-0xfffff).
* XXX Some laptop(for example,Toshiba Satellite2550X)
* XXX report this area and occurred problems,
* XXX so we avoid this area.
*/
if (seg_start < 0x100000 && seg_end > 0xa0000) {
printf("WARNING: memory map entry overlaps "
"with ``Compatibility Holes'': "
"0x%qx/0x%qx/0x%x\n", seg_start,
seg_end - seg_start, bim->entry[x].type);
add_mem_cluster(seg_start, 0xa0000,
bim->entry[x].type);
add_mem_cluster(0x100000, seg_end,
bim->entry[x].type);
} else
add_mem_cluster(seg_start, seg_end,
bim->entry[x].type);
}
}
#endif /* ! REALBASEMEM && ! REALEXTMEM */
/*
* If the loop above didn't find any valid segment, fall back to
* former code.
*/
if (mem_cluster_cnt == 0) {
/*
* Allocate the physical addresses used by RAM from the iomem
* extent map. This is done before the addresses are
* page rounded just to make sure we get them all.
*/
if (extent_alloc_region(iomem_ex, 0, KBTOB(biosbasemem),
EX_NOWAIT)) {
/* XXX What should we do? */
printf("WARNING: CAN'T ALLOCATE BASE MEMORY FROM "
"IOMEM EXTENT MAP!\n");
}
mem_clusters[0].start = 0;
mem_clusters[0].size = trunc_page(KBTOB(biosbasemem));
physmem += atop(mem_clusters[0].size);
if (extent_alloc_region(iomem_ex, IOM_END, KBTOB(biosextmem),
EX_NOWAIT)) {
/* XXX What should we do? */
printf("WARNING: CAN'T ALLOCATE EXTENDED MEMORY FROM "
"IOMEM EXTENT MAP!\n");
}
#if NISADMA > 0
/*
* Some motherboards/BIOSes remap the 384K of RAM that would
* normally be covered by the ISA hole to the end of memory
* so that it can be used. However, on a 16M system, this
* would cause bounce buffers to be allocated and used.
* This is not desirable behaviour, as more than 384K of
* bounce buffers might be allocated. As a work-around,
* we round memory down to the nearest 1M boundary if
* we're using any isadma devices and the remapped memory
* is what puts us over 16M.
*/
if (biosextmem > (15*1024) && biosextmem < (16*1024)) {
char pbuf[9];
format_bytes(pbuf, sizeof(pbuf),
biosextmem - (15*1024));
printf("Warning: ignoring %s of remapped memory\n",
pbuf);
biosextmem = (15*1024);
}
#endif
mem_clusters[1].start = IOM_END;
mem_clusters[1].size = trunc_page(KBTOB(biosextmem));
physmem += atop(mem_clusters[1].size);
mem_cluster_cnt = 2;
avail_end = IOM_END + trunc_page(KBTOB(biosextmem));
}
/*
* If we have 16M of RAM or less, just put it all on
* the default free list. Otherwise, put the first
* 16M of RAM on a lower priority free list (so that
* all of the ISA DMA'able memory won't be eaten up
* first-off).
*/
if (avail_end <= (16 * 1024 * 1024))
first16q = VM_FREELIST_DEFAULT;
else
first16q = VM_FREELIST_FIRST16;
/* Make sure the end of the space used by the kernel is rounded. */
first_avail = round_page(first_avail);
#endif
XENPRINTK(("load the memory cluster %p(%d) - %p(%ld)\n",
(void *)avail_start, (int)atop(avail_start),
(void *)avail_end, (int)atop(avail_end)));
uvm_page_physload(atop(avail_start), atop(avail_end),
atop(avail_start), atop(avail_end),
VM_FREELIST_DEFAULT);
#if !defined(XEN)
/*
* Now, load the memory clusters (which have already been
* rounded and truncated) into the VM system.
*
* NOTE: WE ASSUME THAT MEMORY STARTS AT 0 AND THAT THE KERNEL
* IS LOADED AT IOM_END (1M).
*/
for (x = 0; x < mem_cluster_cnt; x++) {
seg_start = mem_clusters[x].start;
seg_end = mem_clusters[x].start + mem_clusters[x].size;
seg_start1 = 0;
seg_end1 = 0;
/*
* Skip memory before our available starting point.
*/
if (seg_end <= avail_start)
continue;
if (avail_start >= seg_start && avail_start < seg_end) {
if (seg_start != 0)
panic("init386: memory doesn't start at 0");
seg_start = avail_start;
if (seg_start == seg_end)
continue;
}
/*
* If this segment contains the kernel, split it
* in two, around the kernel.
*/
if (seg_start <= IOM_END && first_avail <= seg_end) {
seg_start1 = first_avail;
seg_end1 = seg_end;
seg_end = IOM_END;
}
/* First hunk */
if (seg_start != seg_end) {
if (seg_start < (16 * 1024 * 1024) &&
first16q != VM_FREELIST_DEFAULT) {
u_int64_t tmp;
if (seg_end > (16 * 1024 * 1024))
tmp = (16 * 1024 * 1024);
else
tmp = seg_end;
if (tmp != seg_start) {
#ifdef DEBUG_MEMLOAD
printf("loading 0x%qx-0x%qx "
"(0x%lx-0x%lx)\n",
seg_start, tmp,
atop(seg_start), atop(tmp));
#endif
uvm_page_physload(atop(seg_start),
atop(tmp), atop(seg_start),
atop(tmp), first16q);
}
seg_start = tmp;
}
if (seg_start != seg_end) {
#ifdef DEBUG_MEMLOAD
printf("loading 0x%qx-0x%qx (0x%lx-0x%lx)\n",
seg_start, seg_end,
atop(seg_start), atop(seg_end));
#endif
uvm_page_physload(atop(seg_start),
atop(seg_end), atop(seg_start),
atop(seg_end), VM_FREELIST_DEFAULT);
}
}
/* Second hunk */
if (seg_start1 != seg_end1) {
if (seg_start1 < (16 * 1024 * 1024) &&
first16q != VM_FREELIST_DEFAULT) {
u_int64_t tmp;
if (seg_end1 > (16 * 1024 * 1024))
tmp = (16 * 1024 * 1024);
else
tmp = seg_end1;
if (tmp != seg_start1) {
#ifdef DEBUG_MEMLOAD
printf("loading 0x%qx-0x%qx "
"(0x%lx-0x%lx)\n",
seg_start1, tmp,
atop(seg_start1), atop(tmp));
#endif
uvm_page_physload(atop(seg_start1),
atop(tmp), atop(seg_start1),
atop(tmp), first16q);
}
seg_start1 = tmp;
}
if (seg_start1 != seg_end1) {
#ifdef DEBUG_MEMLOAD
printf("loading 0x%qx-0x%qx (0x%lx-0x%lx)\n",
seg_start1, seg_end1,
atop(seg_start1), atop(seg_end1));
#endif
uvm_page_physload(atop(seg_start1),
atop(seg_end1), atop(seg_start1),
atop(seg_end1), VM_FREELIST_DEFAULT);
}
}
}
#endif
/*
* Steal memory for the message buffer (at end of core).
*/
{
struct vm_physseg *vps;
psize_t sz = round_page(MSGBUFSIZE);
psize_t reqsz = sz;
for (x = 0; x < vm_nphysseg; x++) {
vps = &vm_physmem[x];
if (ptoa(vps->avail_end) == avail_end)
goto found;
}
panic("init386: can't find end of memory");
found:
/* Shrink so it'll fit in the last segment. */
if ((vps->avail_end - vps->avail_start) < atop(sz))
sz = ptoa(vps->avail_end - vps->avail_start);
vps->avail_end -= atop(sz);
vps->end -= atop(sz);
msgbuf_paddr = ptoa(vps->avail_end);
/* Remove the last segment if it now has no pages. */
if (vps->start == vps->end) {
for (vm_nphysseg--; x < vm_nphysseg; x++)
vm_physmem[x] = vm_physmem[x + 1];
}
/* Now find where the new avail_end is. */
for (avail_end = 0, x = 0; x < vm_nphysseg; x++)
if (vm_physmem[x].avail_end > avail_end)
avail_end = vm_physmem[x].avail_end;
avail_end = ptoa(avail_end);
/* Warn if the message buffer had to be shrunk. */
if (sz != reqsz)
printf("WARNING: %ld bytes not available for msgbuf "
"in last cluster (%ld used)\n", reqsz, sz);
}
/*
* install PT page for the first 4M if needed.
*/
if (needs_earlier_install_pte0) {
paddr_t paddr;
#ifdef DIAGNOSTIC
if (realmode_reserved_size < PAGE_SIZE) {
panic("cannot steal memory for first 4M PT page.");
}
#endif
paddr=realmode_reserved_start+realmode_reserved_size-PAGE_SIZE;
pmap_kenter_pa((vaddr_t)vtopte(0), paddr,
VM_PROT_READ|VM_PROT_WRITE);
pmap_update(pmap_kernel());
/* make sure it is clean before using */
memset(vtopte(0), 0, PAGE_SIZE);
realmode_reserved_size -= PAGE_SIZE;
}
#if NBIOSCALL > 0
/*
* this should be caught at kernel build time, but put it here
* in case someone tries to fake it out...
*/
#ifdef DIAGNOSTIC
if (realmode_reserved_start > BIOSTRAMP_BASE ||
(realmode_reserved_start+realmode_reserved_size) < (BIOSTRAMP_BASE+
PAGE_SIZE)) {
panic("cannot steal memory for PT page of bioscall.");
}
if (biostramp_image_size > PAGE_SIZE)
panic("biostramp_image_size too big: %x vs. %x",
biostramp_image_size, PAGE_SIZE);
#endif
pmap_kenter_pa((vaddr_t)BIOSTRAMP_BASE, /* virtual */
(paddr_t)BIOSTRAMP_BASE, /* physical */
VM_PROT_ALL); /* protection */
pmap_update(pmap_kernel());
memcpy((void *)BIOSTRAMP_BASE, biostramp_image, biostramp_image_size);
#ifdef DEBUG_BIOSCALL
printf("biostramp installed @ %x\n", BIOSTRAMP_BASE);
#endif
realmode_reserved_size -= PAGE_SIZE;
realmode_reserved_start += PAGE_SIZE;
#endif
pmap_kenter_pa(idt_vaddr, idt_paddr, VM_PROT_READ|VM_PROT_WRITE);
pmap_update(pmap_kernel());
memset((void *)idt_vaddr, 0, PAGE_SIZE);
#if !defined(XEN)
idt = (struct gate_descriptor *)idt_vaddr;
#ifdef I586_CPU
pmap_kenter_pa(pentium_idt_vaddr, idt_paddr, VM_PROT_READ);
pentium_idt = (union descriptor *)pentium_idt_vaddr;
#endif
#endif
pmap_update(pmap_kernel());
initgdt();
HYPERVISOR_set_callbacks(
GSEL(GCODE_SEL, SEL_KPL), (unsigned long)hypervisor_callback,
GSEL(GCODE_SEL, SEL_KPL), (unsigned long)failsafe_callback);
#if !defined(XEN)
tgdt = gdt;
gdt = (union descriptor *)
((char *)idt + NIDT * sizeof (struct gate_descriptor));
ldt = gdt + NGDT;
memcpy(gdt, tgdt, NGDT*sizeof(*gdt));
setsegment(&gdt[GLDT_SEL].sd, ldt, NLDT * sizeof(ldt[0]) - 1,
SDT_SYSLDT, SEL_KPL, 0, 0);
#else
ldt = (union descriptor *)idt_vaddr;
#endif
/* make ldt gates and memory segments */
setgate(&ldt[LSYS5CALLS_SEL].gd, &IDTVEC(osyscall), 1,
SDT_SYS386CGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
ldt[LUCODE_SEL] = gdt[GUCODE_SEL];
ldt[LUCODEBIG_SEL] = gdt[GUCODEBIG_SEL];
ldt[LUDATA_SEL] = gdt[GUDATA_SEL];
ldt[LSOL26CALLS_SEL] = ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
#if !defined(XEN)
/* exceptions */
for (x = 0; x < 32; x++) {
setgate(&idt[x], IDTVEC(exceptions)[x], 0, SDT_SYS386TGT,
(x == 3 || x == 4) ? SEL_UPL : SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
idt_allocmap[x] = 1;
}
/* new-style interrupt gate for syscalls */
setgate(&idt[128], &IDTVEC(syscall), 0, SDT_SYS386TGT, SEL_UPL,
GSEL(GCODE_SEL, SEL_KPL));
idt_allocmap[128] = 1;
#ifdef COMPAT_SVR4
setgate(&idt[0xd2], &IDTVEC(svr4_fasttrap), 0, SDT_SYS386TGT,
SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
idt_allocmap[0xd2] = 1;
#endif /* COMPAT_SVR4 */
#endif
memset(xen_idt, 0, sizeof(trap_info_t) * MAX_XEN_IDT);
xen_idt_idx = 0;
for (x = 0; x < 32; x++) {
KASSERT(xen_idt_idx < MAX_XEN_IDT);
xen_idt[xen_idt_idx].vector = x;
xen_idt[xen_idt_idx].flags =
(x == 3 || x == 4) ? SEL_UPL : SEL_XEN;
xen_idt[xen_idt_idx].cs = GSEL(GCODE_SEL, SEL_KPL);
xen_idt[xen_idt_idx].address =
(uint32_t)IDTVEC(exceptions)[x];
xen_idt_idx++;
}
KASSERT(xen_idt_idx < MAX_XEN_IDT);
xen_idt[xen_idt_idx].vector = 128;
xen_idt[xen_idt_idx].flags = SEL_UPL;
xen_idt[xen_idt_idx].cs = GSEL(GCODE_SEL, SEL_KPL);
xen_idt[xen_idt_idx].address = (uint32_t)&IDTVEC(syscall);
xen_idt_idx++;
#ifdef COMPAT_SVR4
KASSERT(xen_idt_idx < MAX_XEN_IDT);
xen_idt[xen_idt_idx].vector = 0xd2;
xen_idt[xen_idt_idx].flags = SEL_UPL;
xen_idt[xen_idt_idx].cs = GSEL(GCODE_SEL, SEL_KPL);
xen_idt[xen_idt_idx].address = (uint32_t)&IDTVEC(svr4_fasttrap);
xen_idt_idx++;
#endif /* COMPAT_SVR4 */
#if !defined(XEN)
setregion(&region, gdt, NGDT * sizeof(gdt[0]) - 1);
lgdt(&region);
#else
lldt(GSEL(GLDT_SEL, SEL_KPL));
#endif
#if !defined(XEN)
cpu_init_idt();
#else
XENPRINTF(("HYPERVISOR_set_trap_table %p\n", xen_idt));
if (HYPERVISOR_set_trap_table(xen_idt))
panic("HYPERVISOR_set_trap_table %p failed\n", xen_idt);
#endif
#if NKSYMS || defined(DDB) || defined(LKM)
{
extern int end;
struct btinfo_symtab *symtab;
#ifdef DDB
db_machine_init();
#endif
symtab = lookup_bootinfo(BTINFO_SYMTAB);
if (symtab) {
symtab->ssym += KERNBASE;
symtab->esym += KERNBASE;
ksyms_init(symtab->nsym, (int *)symtab->ssym,
(int *)symtab->esym);
}
else
ksyms_init(*(int *)&end, ((int *)&end) + 1,
xen_start_info.mod_start ?
(void *)xen_start_info.mod_start :
(void *)xen_start_info.mfn_list);
}
#endif
#ifdef DDB
XENPRINTF(("Debugger\n"));
if (boothowto & RB_KDB)
Debugger();
#endif
#ifdef IPKDB
XENPRINTF(("ipkdb_init\n"));
ipkdb_init();
if (boothowto & RB_KDB)
ipkdb_connect(0);
#endif
#ifdef KGDB
XENPRINTF(("kgdb_port_init\n"));
kgdb_port_init();
if (boothowto & RB_KDB) {
kgdb_debug_init = 1;
kgdb_connect(1);
}
#endif
#if NMCA > 0
XENPRINTF(("mca_busprobe\n"));
/* check for MCA bus, needed to be done before ISA stuff - if
* MCA is detected, ISA needs to use level triggered interrupts
* by default */
mca_busprobe();
#endif
#if defined(XEN)
XENPRINTF(("events_default_setup\n"));
events_default_setup();
#else
intr_default_setup();
#endif
/* Initialize software interrupts. */
XENPRINTF(("softintr_init\n"));
softintr_init();
XENPRINTF(("splraise(IPL_IPI)\n"));
splraise(IPL_IPI);
XENPRINTF(("enable_intr\n"));
enable_intr();
XENPRINTF(("physmem %lu\n", ptoa(physmem)));
if (physmem < btoc(2 * 1024 * 1024)) {
printf("warning: too little memory available; "
"have %lu bytes, want %lu bytes\n"
"running in degraded mode\n"
"press a key to confirm\n\n",
ptoa(physmem), 2*1024*1024UL);
cngetc();
}
#ifdef __HAVE_CPU_MAXPROC
XENPRINTF(("cpu_maxproc\n"));
/* Make sure maxproc is sane */
if (maxproc > cpu_maxproc())
maxproc = cpu_maxproc();
#endif
XENPRINTF(("init386 end\n"));
}
#ifdef COMPAT_NOMID
static int
exec_nomid(struct lwp *l, struct exec_package *epp)
{
int error;
u_long midmag, magic;
u_short mid;
struct exec *execp = epp->ep_hdr;
/* check on validity of epp->ep_hdr performed by exec_out_makecmds */
midmag = ntohl(execp->a_midmag);
mid = (midmag >> 16) & 0xffff;
magic = midmag & 0xffff;
if (magic == 0) {
magic = (execp->a_midmag & 0xffff);
mid = MID_ZERO;
}
midmag = mid << 16 | magic;
switch (midmag) {
case (MID_ZERO << 16) | ZMAGIC:
/*
* 386BSD's ZMAGIC format:
*/
error = exec_aout_prep_oldzmagic(l, epp);
break;
case (MID_ZERO << 16) | QMAGIC:
/*
* BSDI's QMAGIC format:
* same as new ZMAGIC format, but with different magic number
*/
error = exec_aout_prep_zmagic(l, epp);
break;
case (MID_ZERO << 16) | NMAGIC:
/*
* BSDI's NMAGIC format:
* same as NMAGIC format, but with different magic number
* and with text starting at 0.
*/
error = exec_aout_prep_oldnmagic(l, epp);
break;
case (MID_ZERO << 16) | OMAGIC:
/*
* BSDI's OMAGIC format:
* same as OMAGIC format, but with different magic number
* and with text starting at 0.
*/
error = exec_aout_prep_oldomagic(l, epp);
break;
default:
error = ENOEXEC;
}
return error;
}
#endif
/*
* cpu_exec_aout_makecmds():
* CPU-dependent a.out format hook for execve().
*
* Determine of the given exec package refers to something which we
* understand and, if so, set up the vmcmds for it.
*
* On the i386, old (386bsd) ZMAGIC binaries and BSDI QMAGIC binaries
* if COMPAT_NOMID is given as a kernel option.
*/
int
cpu_exec_aout_makecmds(struct lwp *l, struct exec_package *epp)
{
int error = ENOEXEC;
#ifdef COMPAT_NOMID
if ((error = exec_nomid(l, epp)) == 0)
return error;
#endif /* ! COMPAT_NOMID */
return error;
}
#include <dev/ic/mc146818reg.h> /* for NVRAM POST */
#include <i386/isa/nvram.h> /* for NVRAM POST */
void
cpu_reset()
{
disable_intr();
#if 0
/*
* Ensure the NVRAM reset byte contains something vaguely sane.
*/
outb(IO_RTC, NVRAM_RESET);
outb(IO_RTC+1, NVRAM_RESET_RST);
/*
* The keyboard controller has 4 random output pins, one of which is
* connected to the RESET pin on the CPU in many PCs. We tell the
* keyboard controller to pulse this line a couple of times.
*/
outb(IO_KBD + KBCMDP, KBC_PULSE0);
delay(100000);
outb(IO_KBD + KBCMDP, KBC_PULSE0);
delay(100000);
#endif
HYPERVISOR_reboot();
for (;;);
}
void
cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
{
const struct trapframe *tf = l->l_md.md_regs;
__greg_t *gr = mcp->__gregs;
__greg_t ras_eip;
/* Save register context. */
#ifdef VM86
if (tf->tf_eflags & PSL_VM) {
gr[_REG_GS] = tf->tf_vm86_gs;
gr[_REG_FS] = tf->tf_vm86_fs;
gr[_REG_ES] = tf->tf_vm86_es;
gr[_REG_DS] = tf->tf_vm86_ds;
gr[_REG_EFL] = get_vflags(l);
} else
#endif
{
gr[_REG_GS] = tf->tf_gs;
gr[_REG_FS] = tf->tf_fs;
gr[_REG_ES] = tf->tf_es;
gr[_REG_DS] = tf->tf_ds;
gr[_REG_EFL] = tf->tf_eflags;
}
gr[_REG_EDI] = tf->tf_edi;
gr[_REG_ESI] = tf->tf_esi;
gr[_REG_EBP] = tf->tf_ebp;
gr[_REG_EBX] = tf->tf_ebx;
gr[_REG_EDX] = tf->tf_edx;
gr[_REG_ECX] = tf->tf_ecx;
gr[_REG_EAX] = tf->tf_eax;
gr[_REG_EIP] = tf->tf_eip;
gr[_REG_CS] = tf->tf_cs;
gr[_REG_ESP] = tf->tf_esp;
gr[_REG_UESP] = tf->tf_esp;
gr[_REG_SS] = tf->tf_ss;
gr[_REG_TRAPNO] = tf->tf_trapno;
gr[_REG_ERR] = tf->tf_err;
if ((ras_eip = (__greg_t)ras_lookup(l->l_proc,
(void *) gr[_REG_EIP])) != -1)
gr[_REG_EIP] = ras_eip;
*flags |= _UC_CPU;
/* Save floating point register context, if any. */
if ((l->l_md.md_flags & MDL_USEDFPU) != 0) {
#if NNPX > 0
/*
* If this process is the current FP owner, dump its
* context to the PCB first.
* XXX npxsave() also clears the FPU state; depending on the
* XXX application this might be a penalty.
*/
if (l->l_addr->u_pcb.pcb_fpcpu) {
npxsave_lwp(l, 1);
}
#endif
if (i386_use_fxsave) {
memcpy(&mcp->__fpregs.__fp_reg_set.__fp_xmm_state.__fp_xmm,
&l->l_addr->u_pcb.pcb_savefpu.sv_xmm,
sizeof (mcp->__fpregs.__fp_reg_set.__fp_xmm_state.__fp_xmm));
*flags |= _UC_FXSAVE;
} else {
memcpy(&mcp->__fpregs.__fp_reg_set.__fpchip_state.__fp_state,
&l->l_addr->u_pcb.pcb_savefpu.sv_87,
sizeof (mcp->__fpregs.__fp_reg_set.__fpchip_state.__fp_state));
}
#if 0
/* Apparently nothing ever touches this. */
ucp->mcp.mc_fp.fp_emcsts = l->l_addr->u_pcb.pcb_saveemc;
#endif
*flags |= _UC_FPU;
}
}
int
cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
{
struct trapframe *tf = l->l_md.md_regs;
const __greg_t *gr = mcp->__gregs;
struct proc *p = l->l_proc;
/* Restore register context, if any. */
if ((flags & _UC_CPU) != 0) {
#ifdef VM86
if (gr[_REG_EFL] & PSL_VM) {
tf->tf_vm86_gs = gr[_REG_GS];
tf->tf_vm86_fs = gr[_REG_FS];
tf->tf_vm86_es = gr[_REG_ES];
tf->tf_vm86_ds = gr[_REG_DS];
set_vflags(l, gr[_REG_EFL]);
if (flags & _UC_VM) {
void syscall_vm86(struct trapframe *);
l->l_proc->p_md.md_syscall = syscall_vm86;
}
} else
#endif
{
/*
* Check for security violations. If we're returning
* to protected mode, the CPU will validate the segment
* registers automatically and generate a trap on
* violations. We handle the trap, rather than doing
* all of the checking here.
*/
if (((gr[_REG_EFL] ^ tf->tf_eflags) & PSL_USERSTATIC) ||
!USERMODE(gr[_REG_CS], gr[_REG_EFL])) {
printf("cpu_setmcontext error: uc EFL: 0x%08x"
" tf EFL: 0x%08x uc CS: 0x%x\n",
gr[_REG_EFL], tf->tf_eflags, gr[_REG_CS]);
return (EINVAL);
}
tf->tf_gs = gr[_REG_GS];
tf->tf_fs = gr[_REG_FS];
tf->tf_es = gr[_REG_ES];
tf->tf_ds = gr[_REG_DS];
/* Only change the user-alterable part of eflags */
tf->tf_eflags &= ~PSL_USER;
tf->tf_eflags |= (gr[_REG_EFL] & PSL_USER);
}
tf->tf_edi = gr[_REG_EDI];
tf->tf_esi = gr[_REG_ESI];
tf->tf_ebp = gr[_REG_EBP];
tf->tf_ebx = gr[_REG_EBX];
tf->tf_edx = gr[_REG_EDX];
tf->tf_ecx = gr[_REG_ECX];
tf->tf_eax = gr[_REG_EAX];
tf->tf_eip = gr[_REG_EIP];
tf->tf_cs = gr[_REG_CS];
tf->tf_esp = gr[_REG_UESP];
tf->tf_ss = gr[_REG_SS];
}
/* Restore floating point register context, if any. */
if ((flags & _UC_FPU) != 0) {
#if NNPX > 0
/*
* If we were using the FPU, forget that we were.
*/
if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
npxsave_lwp(l, 0);
#endif
if (flags & _UC_FXSAVE) {
if (i386_use_fxsave) {
memcpy(
&l->l_addr->u_pcb.pcb_savefpu.sv_xmm,
&mcp->__fpregs.__fp_reg_set.__fp_xmm_state.__fp_xmm,
sizeof (&l->l_addr->u_pcb.pcb_savefpu.sv_xmm));
} else {
/* This is a weird corner case */
process_xmm_to_s87((struct savexmm *)
&mcp->__fpregs.__fp_reg_set.__fp_xmm_state.__fp_xmm,
&l->l_addr->u_pcb.pcb_savefpu.sv_87);
}
} else {
if (i386_use_fxsave) {
process_s87_to_xmm((struct save87 *)
&mcp->__fpregs.__fp_reg_set.__fpchip_state.__fp_state,
&l->l_addr->u_pcb.pcb_savefpu.sv_xmm);
} else {
memcpy(&l->l_addr->u_pcb.pcb_savefpu.sv_87,
&mcp->__fpregs.__fp_reg_set.__fpchip_state.__fp_state,
sizeof (l->l_addr->u_pcb.pcb_savefpu.sv_87));
}
}
/* If not set already. */
l->l_md.md_flags |= MDL_USEDFPU;
#if 0
/* Apparently unused. */
l->l_addr->u_pcb.pcb_saveemc = mcp->mc_fp.fp_emcsts;
#endif
}
mutex_enter(&p->p_smutex);
if (flags & _UC_SETSTACK)
l->l_sigstk.ss_flags |= SS_ONSTACK;
if (flags & _UC_CLRSTACK)
l->l_sigstk.ss_flags &= ~SS_ONSTACK;
mutex_exit(&p->p_smutex);
return (0);
}
void
cpu_initclocks()
{
(*initclock_func)();
}
void
cpu_need_resched(struct cpu_info *ci, int flags)
{
bool immed = (flags & RESCHED_IMMED) != 0;
if (ci->ci_want_resched && !immed)
return;
ci->ci_want_resched = 1;
if (ci->ci_curlwp != ci->ci_data.cpu_idlelwp) {
aston(ci->ci_curlwp);
#ifdef MULTIPROCESSOR
if (immed && ci != curcpu()) {
x86_send_ipi(ci, 0);
}
#endif
} else {
#ifdef MULTIPROCESSOR
if (ci != curcpu())
x86_send_ipi(ci, 0);
#endif
}
}
void
cpu_signotify(struct lwp *l)
{
aston(l);
#ifdef MULTIPROCESSOR
if (l->l_cpu != NULL && l->l_cpu != curcpu())
x86_send_ipi(l->l_cpu, 0);
#endif
}
void
cpu_need_proftick(struct lwp *l)
{
KASSERT(l->l_cpu == curcpu());
l->l_pflag |= LP_OWEUPC;
aston(l);
}
/*
* Allocate an IDT vector slot within the given range.
* XXX needs locking to avoid MP allocation races.
*/
int
idt_vec_alloc(int low, int high)
{
int vec;
simple_lock(&idt_lock);
for (vec = low; vec <= high; vec++) {
if (idt_allocmap[vec] == 0) {
idt_allocmap[vec] = 1;
simple_unlock(&idt_lock);
return vec;
}
}
simple_unlock(&idt_lock);
return 0;
}
void
idt_vec_set(int vec, void (*function)(void))
{
/*
* Vector should be allocated, so no locking needed.
*/
KASSERT(idt_allocmap[vec] == 1);
setgate(&idt[vec], function, 0, SDT_SYS386IGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
}
void
idt_vec_free(int vec)
{
simple_lock(&idt_lock);
unsetgate(&idt[vec]);
idt_allocmap[vec] = 0;
simple_unlock(&idt_lock);
}
/*
* Number of processes is limited by number of available GDT slots.
*/
int
cpu_maxproc(void)
{
#ifdef USER_LDT
return ((MAXGDTSIZ - NGDT) / 2);
#else
return (MAXGDTSIZ - NGDT);
#endif
}