NetBSD/sys/dev/ic/atw.c

3897 lines
100 KiB
C

/* $NetBSD: atw.c,v 1.142 2008/12/16 22:35:30 christos Exp $ */
/*-
* Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.142 2008/12/16 22:35:30 christos Exp $");
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/time.h>
#include <lib/libkern/libkern.h>
#include <machine/endian.h>
#include <uvm/uvm_extern.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net80211/ieee80211_netbsd.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <sys/bus.h>
#include <sys/intr.h>
#include <dev/ic/atwreg.h>
#include <dev/ic/rf3000reg.h>
#include <dev/ic/si4136reg.h>
#include <dev/ic/atwvar.h>
#include <dev/ic/smc93cx6var.h>
/* XXX TBD open questions
*
*
* When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
* modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
* handle this for me?
*
*/
/* device attachment
*
* print TOFS[012]
*
* device initialization
*
* clear ATW_FRCTL_MAXPSP to disable max power saving
* set ATW_TXBR_ALCUPDATE to enable ALC
* set TOFS[012]? (hope not)
* disable rx/tx
* set ATW_PAR_SWR (software reset)
* wait for ATW_PAR_SWR clear
* disable interrupts
* ack status register
* enable interrupts
*
* rx/tx initialization
*
* disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
* allocate and init descriptor rings
* write ATW_PAR_DSL (descriptor skip length)
* write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
* write ATW_NAR_SQ for one/both transmit descriptor rings
* write ATW_NAR_SQ for one/both transmit descriptor rings
* enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
*
* rx/tx end
*
* stop DMA
* disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
* flush tx w/ ATW_NAR_HF
*
* scan
*
* initialize rx/tx
*
* BSS join: (re)association response
*
* set ATW_FRCTL_AID
*
* optimizations ???
*
*/
#define ATW_REFSLAVE /* slavishly do what the reference driver does */
#define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
#define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
int atw_voodoo = VOODOO_DUR_11_ROUNDING;
int atw_pseudo_milli = 1;
int atw_magic_delay1 = 100 * 1000;
int atw_magic_delay2 = 100 * 1000;
/* more magic multi-millisecond delays (units: microseconds) */
int atw_nar_delay = 20 * 1000;
int atw_magic_delay4 = 10 * 1000;
int atw_rf_delay1 = 10 * 1000;
int atw_rf_delay2 = 5 * 1000;
int atw_plcphd_delay = 2 * 1000;
int atw_bbp_io_enable_delay = 20 * 1000;
int atw_bbp_io_disable_delay = 2 * 1000;
int atw_writewep_delay = 1000;
int atw_beacon_len_adjust = 4;
int atw_dwelltime = 200;
int atw_xindiv2 = 0;
#ifdef ATW_DEBUG
int atw_debug = 0;
#define ATW_DPRINTF(x) if (atw_debug > 0) printf x
#define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
#define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
#define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
#define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
#define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
static void atw_dump_pkt(struct ifnet *, struct mbuf *);
static void atw_print_regs(struct atw_softc *, const char *);
/* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
# ifdef ATW_BBPDEBUG
static void atw_rf3000_print(struct atw_softc *);
static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
# endif /* ATW_BBPDEBUG */
# ifdef ATW_SYNDEBUG
static void atw_si4126_print(struct atw_softc *);
static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
# endif /* ATW_SYNDEBUG */
#else
#define ATW_DPRINTF(x)
#define ATW_DPRINTF2(x)
#define ATW_DPRINTF3(x)
#define DPRINTF(sc, x) /* nothing */
#define DPRINTF2(sc, x) /* nothing */
#define DPRINTF3(sc, x) /* nothing */
#endif
/* ifnet methods */
int atw_init(struct ifnet *);
int atw_ioctl(struct ifnet *, u_long, void *);
void atw_start(struct ifnet *);
void atw_stop(struct ifnet *, int);
void atw_watchdog(struct ifnet *);
/* Device attachment */
void atw_attach(struct atw_softc *);
int atw_detach(struct atw_softc *);
static void atw_evcnt_attach(struct atw_softc *);
static void atw_evcnt_detach(struct atw_softc *);
/* Rx/Tx process */
int atw_add_rxbuf(struct atw_softc *, int);
void atw_idle(struct atw_softc *, u_int32_t);
void atw_rxdrain(struct atw_softc *);
void atw_txdrain(struct atw_softc *);
/* Device (de)activation and power state */
void atw_disable(struct atw_softc *);
int atw_enable(struct atw_softc *);
void atw_reset(struct atw_softc *);
/* Interrupt handlers */
void atw_linkintr(struct atw_softc *, u_int32_t);
void atw_rxintr(struct atw_softc *);
void atw_txintr(struct atw_softc *);
/* 802.11 state machine */
static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
static void atw_next_scan(void *);
static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
struct ieee80211_node *, int, int, u_int32_t);
static int atw_tune(struct atw_softc *);
/* Device initialization */
static void atw_bbp_io_init(struct atw_softc *);
static void atw_cfp_init(struct atw_softc *);
static void atw_cmdr_init(struct atw_softc *);
static void atw_ifs_init(struct atw_softc *);
static void atw_nar_init(struct atw_softc *);
static void atw_response_times_init(struct atw_softc *);
static void atw_rf_reset(struct atw_softc *);
static void atw_test1_init(struct atw_softc *);
static void atw_tofs0_init(struct atw_softc *);
static void atw_tofs2_init(struct atw_softc *);
static void atw_txlmt_init(struct atw_softc *);
static void atw_wcsr_init(struct atw_softc *);
/* Key management */
static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
const u_int8_t[IEEE80211_ADDR_LEN]);
static void atw_key_update_begin(struct ieee80211com *);
static void atw_key_update_end(struct ieee80211com *);
/* RAM/ROM utilities */
static void atw_clear_sram(struct atw_softc *);
static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
static int atw_read_srom(struct atw_softc *);
/* BSS setup */
static void atw_predict_beacon(struct atw_softc *);
static void atw_start_beacon(struct atw_softc *, int);
static void atw_write_bssid(struct atw_softc *);
static void atw_write_ssid(struct atw_softc *);
static void atw_write_sup_rates(struct atw_softc *);
static void atw_write_wep(struct atw_softc *);
/* Media */
static int atw_media_change(struct ifnet *);
static void atw_filter_setup(struct atw_softc *);
/* 802.11 utilities */
static uint64_t atw_get_tsft(struct atw_softc *);
static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
uint32_t);
static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
static void atw_node_free(struct ieee80211_node *);
/*
* Tuner/transceiver/modem
*/
static void atw_bbp_io_enable(struct atw_softc *, int);
/* RFMD RF3000 Baseband Processor */
static int atw_rf3000_init(struct atw_softc *);
static int atw_rf3000_tune(struct atw_softc *, u_int);
static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
/* Silicon Laboratories Si4126 RF/IF Synthesizer */
static void atw_si4126_tune(struct atw_softc *, u_int);
static void atw_si4126_write(struct atw_softc *, u_int, u_int);
const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
const char *atw_tx_state[] = {
"STOPPED",
"RUNNING - read descriptor",
"RUNNING - transmitting",
"RUNNING - filling fifo", /* XXX */
"SUSPENDED",
"RUNNING -- write descriptor",
"RUNNING -- write last descriptor",
"RUNNING - fifo full"
};
const char *atw_rx_state[] = {
"STOPPED",
"RUNNING - read descriptor",
"RUNNING - check this packet, pre-fetch next",
"RUNNING - wait for reception",
"SUSPENDED",
"RUNNING - write descriptor",
"RUNNING - flush fifo",
"RUNNING - fifo drain"
};
static inline int
is_running(struct ifnet *ifp)
{
return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
}
int
atw_activate(device_t self, enum devact act)
{
struct atw_softc *sc = device_private(self);
int rv = 0, s;
s = splnet();
switch (act) {
case DVACT_ACTIVATE:
rv = EOPNOTSUPP;
break;
case DVACT_DEACTIVATE:
if_deactivate(&sc->sc_if);
break;
}
splx(s);
return rv;
}
/*
* atw_enable:
*
* Enable the ADM8211 chip.
*/
int
atw_enable(struct atw_softc *sc)
{
if (ATW_IS_ENABLED(sc) == 0) {
if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
aprint_error_dev(sc->sc_dev, "device enable failed\n");
return (EIO);
}
sc->sc_flags |= ATWF_ENABLED;
/* Power may have been removed, and WEP keys thus
* reset.
*/
sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
}
return (0);
}
/*
* atw_disable:
*
* Disable the ADM8211 chip.
*/
void
atw_disable(struct atw_softc *sc)
{
if (!ATW_IS_ENABLED(sc))
return;
if (sc->sc_disable != NULL)
(*sc->sc_disable)(sc);
sc->sc_flags &= ~ATWF_ENABLED;
}
/* Returns -1 on failure. */
static int
atw_read_srom(struct atw_softc *sc)
{
struct seeprom_descriptor sd;
uint32_t test0, fail_bits;
(void)memset(&sd, 0, sizeof(sd));
test0 = ATW_READ(sc, ATW_TEST0);
switch (sc->sc_rev) {
case ATW_REVISION_BA:
case ATW_REVISION_CA:
fail_bits = ATW_TEST0_EPNE;
break;
default:
fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
break;
}
if ((test0 & fail_bits) != 0) {
aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
return -1;
}
switch (test0 & ATW_TEST0_EPTYP_MASK) {
case ATW_TEST0_EPTYP_93c66:
ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
sc->sc_sromsz = 512;
sd.sd_chip = C56_66;
break;
case ATW_TEST0_EPTYP_93c46:
ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
sc->sc_sromsz = 128;
sd.sd_chip = C46;
break;
default:
printf("%s: unknown SROM type %" __PRIuBITS "\n",
device_xname(sc->sc_dev),
__SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
return -1;
}
sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
if (sc->sc_srom == NULL) {
aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
return -1;
}
(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
/* ADM8211 has a single 32-bit register for controlling the
* 93cx6 SROM. Bit SRS enables the serial port. There is no
* "ready" bit. The ADM8211 input/output sense is the reverse
* of read_seeprom's.
*/
sd.sd_tag = sc->sc_st;
sd.sd_bsh = sc->sc_sh;
sd.sd_regsize = 4;
sd.sd_control_offset = ATW_SPR;
sd.sd_status_offset = ATW_SPR;
sd.sd_dataout_offset = ATW_SPR;
sd.sd_CK = ATW_SPR_SCLK;
sd.sd_CS = ATW_SPR_SCS;
sd.sd_DI = ATW_SPR_SDO;
sd.sd_DO = ATW_SPR_SDI;
sd.sd_MS = ATW_SPR_SRS;
sd.sd_RDY = 0;
if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
aprint_error_dev(sc->sc_dev, "could not read SROM\n");
free(sc->sc_srom, M_DEVBUF);
return -1;
}
#ifdef ATW_DEBUG
{
int i;
ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
if (((i % 8) == 0) && (i != 0)) {
ATW_DPRINTF(("\n\t"));
}
ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
}
ATW_DPRINTF(("\n"));
}
#endif /* ATW_DEBUG */
return 0;
}
#ifdef ATW_DEBUG
static void
atw_print_regs(struct atw_softc *sc, const char *where)
{
#define PRINTREG(sc, reg) \
ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
PRINTREG(sc, ATW_PAR);
PRINTREG(sc, ATW_FRCTL);
PRINTREG(sc, ATW_TDR);
PRINTREG(sc, ATW_WTDP);
PRINTREG(sc, ATW_RDR);
PRINTREG(sc, ATW_WRDP);
PRINTREG(sc, ATW_RDB);
PRINTREG(sc, ATW_CSR3A);
PRINTREG(sc, ATW_TDBD);
PRINTREG(sc, ATW_TDBP);
PRINTREG(sc, ATW_STSR);
PRINTREG(sc, ATW_CSR5A);
PRINTREG(sc, ATW_NAR);
PRINTREG(sc, ATW_CSR6A);
PRINTREG(sc, ATW_IER);
PRINTREG(sc, ATW_CSR7A);
PRINTREG(sc, ATW_LPC);
PRINTREG(sc, ATW_TEST1);
PRINTREG(sc, ATW_SPR);
PRINTREG(sc, ATW_TEST0);
PRINTREG(sc, ATW_WCSR);
PRINTREG(sc, ATW_WPDR);
PRINTREG(sc, ATW_GPTMR);
PRINTREG(sc, ATW_GPIO);
PRINTREG(sc, ATW_BBPCTL);
PRINTREG(sc, ATW_SYNCTL);
PRINTREG(sc, ATW_PLCPHD);
PRINTREG(sc, ATW_MMIWADDR);
PRINTREG(sc, ATW_MMIRADDR1);
PRINTREG(sc, ATW_MMIRADDR2);
PRINTREG(sc, ATW_TXBR);
PRINTREG(sc, ATW_CSR15A);
PRINTREG(sc, ATW_ALCSTAT);
PRINTREG(sc, ATW_TOFS2);
PRINTREG(sc, ATW_CMDR);
PRINTREG(sc, ATW_PCIC);
PRINTREG(sc, ATW_PMCSR);
PRINTREG(sc, ATW_PAR0);
PRINTREG(sc, ATW_PAR1);
PRINTREG(sc, ATW_MAR0);
PRINTREG(sc, ATW_MAR1);
PRINTREG(sc, ATW_ATIMDA0);
PRINTREG(sc, ATW_ABDA1);
PRINTREG(sc, ATW_BSSID0);
PRINTREG(sc, ATW_TXLMT);
PRINTREG(sc, ATW_MIBCNT);
PRINTREG(sc, ATW_BCNT);
PRINTREG(sc, ATW_TSFTH);
PRINTREG(sc, ATW_TSC);
PRINTREG(sc, ATW_SYNRF);
PRINTREG(sc, ATW_BPLI);
PRINTREG(sc, ATW_CAP0);
PRINTREG(sc, ATW_CAP1);
PRINTREG(sc, ATW_RMD);
PRINTREG(sc, ATW_CFPP);
PRINTREG(sc, ATW_TOFS0);
PRINTREG(sc, ATW_TOFS1);
PRINTREG(sc, ATW_IFST);
PRINTREG(sc, ATW_RSPT);
PRINTREG(sc, ATW_TSFTL);
PRINTREG(sc, ATW_WEPCTL);
PRINTREG(sc, ATW_WESK);
PRINTREG(sc, ATW_WEPCNT);
PRINTREG(sc, ATW_MACTEST);
PRINTREG(sc, ATW_FER);
PRINTREG(sc, ATW_FEMR);
PRINTREG(sc, ATW_FPSR);
PRINTREG(sc, ATW_FFER);
#undef PRINTREG
}
#endif /* ATW_DEBUG */
/*
* Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
*/
void
atw_attach(struct atw_softc *sc)
{
static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
int country_code, error, i, nrate, srom_major;
u_int32_t reg;
static const char *type_strings[] = {"Intersil (not supported)",
"RFMD", "Marvel (not supported)"};
sc->sc_txth = atw_txthresh_tab_lo;
SIMPLEQ_INIT(&sc->sc_txfreeq);
SIMPLEQ_INIT(&sc->sc_txdirtyq);
#ifdef ATW_DEBUG
atw_print_regs(sc, "atw_attach");
#endif /* ATW_DEBUG */
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
1, &sc->sc_cdnseg, 0)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
BUS_DMA_COHERENT)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct atw_control_data), 1,
sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
"error = %d\n", error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct atw_control_data), NULL,
0)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
error);
goto fail_3;
}
/*
* Create the transmit buffer DMA maps.
*/
sc->sc_ntxsegs = ATW_NTXSEGS;
for (i = 0; i < ATW_TXQUEUELEN; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
sc->sc_ntxsegs, MCLBYTES, 0, 0,
&sc->sc_txsoft[i].txs_dmamap)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
"error = %d\n", i, error);
goto fail_4;
}
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < ATW_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
"error = %d\n", i, error);
goto fail_5;
}
}
for (i = 0; i < ATW_NRXDESC; i++) {
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
switch (sc->sc_rev) {
case ATW_REVISION_AB:
case ATW_REVISION_AF:
sc->sc_sramlen = ATW_SRAM_A_SIZE;
break;
case ATW_REVISION_BA:
case ATW_REVISION_CA:
sc->sc_sramlen = ATW_SRAM_B_SIZE;
break;
}
/* Reset the chip to a known state. */
atw_reset(sc);
if (atw_read_srom(sc) == -1)
return;
sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
ATW_SR_RFTYPE_MASK);
sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
ATW_SR_BBPTYPE_MASK);
if (sc->sc_rftype >= __arraycount(type_strings)) {
aprint_error_dev(sc->sc_dev, "unknown RF\n");
return;
}
if (sc->sc_bbptype >= __arraycount(type_strings)) {
aprint_error_dev(sc->sc_dev, "unknown BBP\n");
return;
}
printf("%s: %s RF, %s BBP", device_xname(sc->sc_dev),
type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
/* XXX There exists a Linux driver which seems to use RFType = 0 for
* MARVEL. My bug, or theirs?
*/
reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
switch (sc->sc_rftype) {
case ATW_RFTYPE_INTERSIL:
reg |= ATW_SYNCTL_CS1;
break;
case ATW_RFTYPE_RFMD:
reg |= ATW_SYNCTL_CS0;
break;
case ATW_RFTYPE_MARVEL:
break;
}
sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
switch (sc->sc_bbptype) {
case ATW_BBPTYPE_INTERSIL:
reg |= ATW_BBPCTL_TWI;
break;
case ATW_BBPTYPE_RFMD:
reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
ATW_BBPCTL_CCA_ACTLO;
break;
case ATW_BBPTYPE_MARVEL:
break;
case ATW_C_BBPTYPE_RFMD:
printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
device_xname(sc->sc_dev));
break;
}
sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
/*
* From this point forward, the attachment cannot fail. A failure
* before this point releases all resources that may have been
* allocated.
*/
sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
ATW_DPRINTF((" SROM MAC %04x%04x%04x",
htole16(sc->sc_srom[ATW_SR_MAC00]),
htole16(sc->sc_srom[ATW_SR_MAC01]),
htole16(sc->sc_srom[ATW_SR_MAC10])));
srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
ATW_SR_MAJOR_MASK);
if (srom_major < 2)
sc->sc_rf3000_options1 = 0;
else if (sc->sc_rev == ATW_REVISION_BA) {
sc->sc_rf3000_options1 =
__SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
ATW_SR_CR28_MASK);
} else
sc->sc_rf3000_options1 = 0;
sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
ATW_SR_CR29_MASK);
country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
ATW_SR_CTRY_MASK);
#define ADD_CHANNEL(_ic, _chan) do { \
_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
_ic->ic_channels[_chan].ic_freq = \
ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
} while (0)
/* Find available channels */
switch (country_code) {
case COUNTRY_MMK2: /* 1-14 */
ADD_CHANNEL(ic, 14);
/*FALLTHROUGH*/
case COUNTRY_ETSI: /* 1-13 */
for (i = 1; i <= 13; i++)
ADD_CHANNEL(ic, i);
break;
case COUNTRY_FCC: /* 1-11 */
case COUNTRY_IC: /* 1-11 */
for (i = 1; i <= 11; i++)
ADD_CHANNEL(ic, i);
break;
case COUNTRY_MMK: /* 14 */
ADD_CHANNEL(ic, 14);
break;
case COUNTRY_FRANCE: /* 10-13 */
for (i = 10; i <= 13; i++)
ADD_CHANNEL(ic, i);
break;
default: /* assume channels 10-11 */
case COUNTRY_SPAIN: /* 10-11 */
for (i = 10; i <= 11; i++)
ADD_CHANNEL(ic, i);
break;
}
/* Read the MAC address. */
reg = ATW_READ(sc, ATW_PAR0);
ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
reg = ATW_READ(sc, ATW_PAR1);
ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
printf(" could not get mac address, attach failed\n");
return;
}
printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
IFF_NOTRAILERS;
ifp->if_ioctl = atw_ioctl;
ifp->if_start = atw_start;
ifp->if_watchdog = atw_watchdog;
ifp->if_init = atw_init;
ifp->if_stop = atw_stop;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_DS;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
nrate = 0;
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
/*
* Call MI attach routines.
*/
if_attach(ifp);
ieee80211_ifattach(ic);
atw_evcnt_attach(sc);
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = atw_newstate;
sc->sc_recv_mgmt = ic->ic_recv_mgmt;
ic->ic_recv_mgmt = atw_recv_mgmt;
sc->sc_node_free = ic->ic_node_free;
ic->ic_node_free = atw_node_free;
sc->sc_node_alloc = ic->ic_node_alloc;
ic->ic_node_alloc = atw_node_alloc;
ic->ic_crypto.cs_key_delete = atw_key_delete;
ic->ic_crypto.cs_key_set = atw_key_set;
ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
ic->ic_crypto.cs_key_update_end = atw_key_update_end;
/* possibly we should fill in our own sc_send_prresp, since
* the ADM8211 is probably sending probe responses in ad hoc
* mode.
*/
/* complete initialization */
ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
callout_init(&sc->sc_scan_ch, 0);
#if NBPFILTER > 0
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
#endif
if (!pmf_device_register1(sc->sc_dev, NULL, NULL, atw_shutdown)) {
aprint_error_dev(sc->sc_dev,
"couldn't establish power handler\n");
} else
pmf_class_network_register(sc->sc_dev, &sc->sc_if);
memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
ieee80211_announce(ic);
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_5:
for (i = 0; i < ATW_NRXDESC; i++) {
if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
continue;
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
}
fail_4:
for (i = 0; i < ATW_TXQUEUELEN; i++) {
if (sc->sc_txsoft[i].txs_dmamap == NULL)
continue;
bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
sizeof(struct atw_control_data));
fail_1:
bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
fail_0:
return;
}
static struct ieee80211_node *
atw_node_alloc(struct ieee80211_node_table *nt)
{
struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
return ni;
}
static void
atw_node_free(struct ieee80211_node *ni)
{
struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
ether_sprintf(ni->ni_bssid)));
(*sc->sc_node_free)(ni);
}
static void
atw_test1_reset(struct atw_softc *sc)
{
switch (sc->sc_rev) {
case ATW_REVISION_BA:
if (1 /* XXX condition on transceiver type */) {
ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
}
break;
case ATW_REVISION_CA:
ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
break;
default:
break;
}
}
/*
* atw_reset:
*
* Perform a soft reset on the ADM8211.
*/
void
atw_reset(struct atw_softc *sc)
{
int i;
uint32_t lpc;
ATW_WRITE(sc, ATW_NAR, 0x0);
DELAY(atw_nar_delay);
/* Reference driver has a cryptic remark indicating that this might
* power-on the chip. I know that it turns off power-saving....
*/
ATW_WRITE(sc, ATW_FRCTL, 0x0);
ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
break;
DELAY(atw_pseudo_milli);
}
/* ... and then pause 100ms longer for good measure. */
DELAY(atw_magic_delay1);
DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
/*
* Initialize the PCI Access Register.
*/
sc->sc_busmode = ATW_PAR_PBL_8DW;
ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
ATW_READ(sc, ATW_PAR), sc->sc_busmode));
atw_test1_reset(sc);
/* Turn off maximum power saving, etc. */
ATW_WRITE(sc, ATW_FRCTL, 0x0);
DELAY(atw_magic_delay2);
/* Recall EEPROM. */
ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
DELAY(atw_magic_delay4);
lpc = ATW_READ(sc, ATW_LPC);
DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
/* A reset seems to affect the SRAM contents, so put them into
* a known state.
*/
atw_clear_sram(sc);
memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
}
static void
atw_clear_sram(struct atw_softc *sc)
{
memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
/* XXX not for revision 0x20. */
atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
}
/* TBD atw_init
*
* set MAC based on ic->ic_bss->myaddr
* write WEP keys
* set TX rate
*/
/* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
* without receiving a beacon with the preferred BSSID & SSID.
* atw_write_bssid & atw_write_ssid set the BSSID & SSID.
*/
static void
atw_wcsr_init(struct atw_softc *sc)
{
uint32_t wcsr;
wcsr = ATW_READ(sc, ATW_WCSR);
wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
}
/* Turn off power management. Set Rx store-and-forward mode. */
static void
atw_cmdr_init(struct atw_softc *sc)
{
uint32_t cmdr;
cmdr = ATW_READ(sc, ATW_CMDR);
cmdr &= ~ATW_CMDR_APM;
cmdr |= ATW_CMDR_RTE;
cmdr &= ~ATW_CMDR_DRT_MASK;
cmdr |= ATW_CMDR_DRT_SF;
ATW_WRITE(sc, ATW_CMDR, cmdr);
}
static void
atw_tofs2_init(struct atw_softc *sc)
{
uint32_t tofs2;
/* XXX this magic can probably be figured out from the RFMD docs */
#ifndef ATW_REFSLAVE
tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
__SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
__SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
__SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
__SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
__SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
__SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
__SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
#else
/* XXX new magic from reference driver source */
tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
__SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
__SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */
__SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
__SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
__SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
__SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */
__SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */
#endif
ATW_WRITE(sc, ATW_TOFS2, tofs2);
}
static void
atw_nar_init(struct atw_softc *sc)
{
ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
}
static void
atw_txlmt_init(struct atw_softc *sc)
{
ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
__SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
}
static void
atw_test1_init(struct atw_softc *sc)
{
uint32_t test1;
test1 = ATW_READ(sc, ATW_TEST1);
test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
/* XXX magic 0x1 */
test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
ATW_WRITE(sc, ATW_TEST1, test1);
}
static void
atw_rf_reset(struct atw_softc *sc)
{
/* XXX this resets an Intersil RF front-end? */
/* TBD condition on Intersil RFType? */
ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
DELAY(atw_rf_delay1);
ATW_WRITE(sc, ATW_SYNRF, 0);
DELAY(atw_rf_delay2);
}
/* Set 16 TU max duration for the contention-free period (CFP). */
static void
atw_cfp_init(struct atw_softc *sc)
{
uint32_t cfpp;
cfpp = ATW_READ(sc, ATW_CFPP);
cfpp &= ~ATW_CFPP_CFPMD;
cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
ATW_WRITE(sc, ATW_CFPP, cfpp);
}
static void
atw_tofs0_init(struct atw_softc *sc)
{
/* XXX I guess that the Cardbus clock is 22 MHz?
* I am assuming that the role of ATW_TOFS0_USCNT is
* to divide the bus clock to get a 1 MHz clock---the datasheet is not
* very clear on this point. It says in the datasheet that it is
* possible for the ADM8211 to accommodate bus speeds between 22 MHz
* and 33 MHz; maybe this is the way? I see a binary-only driver write
* these values. These values are also the power-on default.
*/
ATW_WRITE(sc, ATW_TOFS0,
__SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
}
/* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
static void
atw_ifs_init(struct atw_softc *sc)
{
uint32_t ifst;
/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
* Go figure.
*/
ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
__SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
ATW_IFST_SIFS_MASK) |
__SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
__SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
ATW_WRITE(sc, ATW_IFST, ifst);
}
static void
atw_response_times_init(struct atw_softc *sc)
{
/* XXX More magic. Relates to ACK timing? The datasheet seems to
* indicate that the MAC expects at least SIFS + MIRT microseconds
* to pass after it transmits a frame that requires a response;
* it waits at most SIFS + MART microseconds for the response.
* Surely this is not the ACK timeout?
*/
ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
__SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
}
/* Set up the MMI read/write addresses for the baseband. The Tx/Rx
* engines read and write baseband registers after Rx and before
* Tx, respectively.
*/
static void
atw_bbp_io_init(struct atw_softc *sc)
{
uint32_t mmiraddr2;
/* XXX The reference driver does this, but is it *really*
* necessary?
*/
switch (sc->sc_rev) {
case ATW_REVISION_AB:
case ATW_REVISION_AF:
mmiraddr2 = 0x0;
break;
default:
mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
mmiraddr2 &=
~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
break;
}
switch (sc->sc_bbptype) {
case ATW_BBPTYPE_INTERSIL:
ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
break;
case ATW_BBPTYPE_MARVEL:
/* TBD find out the Marvel settings. */
break;
case ATW_BBPTYPE_RFMD:
default:
ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
mmiraddr2 |= ATW_MMIRADDR2_RFMD;
break;
}
ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
}
/*
* atw_init: [ ifnet interface function ]
*
* Initialize the interface. Must be called at splnet().
*/
int
atw_init(struct ifnet *ifp)
{
struct atw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct atw_txsoft *txs;
struct atw_rxsoft *rxs;
int i, error = 0;
if ((error = atw_enable(sc)) != 0)
goto out;
/*
* Cancel any pending I/O. This also resets.
*/
atw_stop(ifp, 0);
DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
__func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
atw_wcsr_init(sc);
atw_cmdr_init(sc);
/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
*
* XXX Set transmit power for ATIM, RTS, Beacon.
*/
ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
__SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
atw_tofs2_init(sc);
atw_nar_init(sc);
atw_txlmt_init(sc);
atw_test1_init(sc);
atw_rf_reset(sc);
atw_cfp_init(sc);
atw_tofs0_init(sc);
atw_ifs_init(sc);
/* XXX Fall asleep after one second of inactivity.
* XXX A frame may only dribble in for 65536us.
*/
ATW_WRITE(sc, ATW_RMD,
__SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
atw_response_times_init(sc);
atw_bbp_io_init(sc);
ATW_WRITE(sc, ATW_STSR, 0xffffffff);
if ((error = atw_rf3000_init(sc)) != 0)
goto out;
ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
ATW_READ(sc, ATW_PAR), sc->sc_busmode));
/*
* Initialize the transmit descriptor ring.
*/
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
for (i = 0; i < ATW_NTXDESC; i++) {
sc->sc_txdescs[i].at_ctl = 0;
/* no transmit chaining */
sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
sc->sc_txdescs[i].at_buf2 =
htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
}
/* use ring mode */
sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->sc_txfree = ATW_NTXDESC;
sc->sc_txnext = 0;
/*
* Initialize the transmit job descriptors.
*/
SIMPLEQ_INIT(&sc->sc_txfreeq);
SIMPLEQ_INIT(&sc->sc_txdirtyq);
for (i = 0; i < ATW_TXQUEUELEN; i++) {
txs = &sc->sc_txsoft[i];
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
for (i = 0; i < ATW_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf == NULL) {
if ((error = atw_add_rxbuf(sc, i)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to allocate or map rx "
"buffer %d, error = %d\n",
i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
atw_rxdrain(sc);
goto out;
}
} else
atw_init_rxdesc(sc, i);
}
sc->sc_rxptr = 0;
/*
* Initialize the interrupt mask and enable interrupts.
*/
/* normal interrupts */
sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
/* abnormal interrupts */
sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
ATW_INTR_TRT;
sc->sc_linkint_mask &= sc->sc_inten;
sc->sc_rxint_mask &= sc->sc_inten;
sc->sc_txint_mask &= sc->sc_inten;
ATW_WRITE(sc, ATW_IER, sc->sc_inten);
ATW_WRITE(sc, ATW_STSR, 0xffffffff);
DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
/*
* Give the transmit and receive rings to the ADM8211.
*/
ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
sc->sc_txthresh = 0;
sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
sc->sc_txth[sc->sc_txthresh].txth_opmode;
/* common 802.11 configuration */
ic->ic_flags &= ~IEEE80211_F_IBSSON;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
break;
case IEEE80211_M_AHDEMO: /* XXX */
case IEEE80211_M_IBSS:
ic->ic_flags |= IEEE80211_F_IBSSON;
/*FALLTHROUGH*/
case IEEE80211_M_HOSTAP: /* XXX */
break;
case IEEE80211_M_MONITOR: /* XXX */
break;
}
switch (ic->ic_opmode) {
case IEEE80211_M_AHDEMO:
case IEEE80211_M_HOSTAP:
#ifndef IEEE80211_NO_HOSTAP
ic->ic_bss->ni_intval = ic->ic_lintval;
ic->ic_bss->ni_rssi = 0;
ic->ic_bss->ni_rstamp = 0;
#endif /* !IEEE80211_NO_HOSTAP */
break;
default: /* XXX */
break;
}
sc->sc_wepctl = 0;
atw_write_ssid(sc);
atw_write_sup_rates(sc);
atw_write_wep(sc);
ic->ic_state = IEEE80211_S_INIT;
/*
* Set the receive filter. This will start the transmit and
* receive processes.
*/
atw_filter_setup(sc);
/*
* Start the receive process.
*/
ATW_WRITE(sc, ATW_RDR, 0x1);
/*
* Note that the interface is now running.
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* send no beacons, yet. */
atw_start_beacon(sc, 0);
if (ic->ic_opmode == IEEE80211_M_MONITOR)
error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
out:
if (error) {
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
printf("%s: interface not running\n", device_xname(sc->sc_dev));
}
#ifdef ATW_DEBUG
atw_print_regs(sc, "end of init");
#endif /* ATW_DEBUG */
return (error);
}
/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
* 0: MAC control of RF3000/Si4126.
*
* Applies power, or selects RF front-end? Sets reset condition.
*
* TBD support non-RFMD BBP, non-SiLabs synth.
*/
static void
atw_bbp_io_enable(struct atw_softc *sc, int enable)
{
if (enable) {
ATW_WRITE(sc, ATW_SYNRF,
ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
DELAY(atw_bbp_io_enable_delay);
} else {
ATW_WRITE(sc, ATW_SYNRF, 0);
DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
}
}
static int
atw_tune(struct atw_softc *sc)
{
int rc;
u_int chan;
struct ieee80211com *ic = &sc->sc_ic;
chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
if (chan == IEEE80211_CHAN_ANY)
panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
if (chan == sc->sc_cur_chan)
return 0;
DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
sc->sc_cur_chan, chan));
atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
atw_si4126_tune(sc, chan);
if ((rc = atw_rf3000_tune(sc, chan)) != 0)
printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
chan);
ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
DELAY(atw_nar_delay);
ATW_WRITE(sc, ATW_RDR, 0x1);
if (rc == 0) {
sc->sc_cur_chan = chan;
sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
htole16(ic->ic_curchan->ic_freq);
sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
htole16(ic->ic_curchan->ic_flags);
}
return rc;
}
#ifdef ATW_SYNDEBUG
static void
atw_si4126_print(struct atw_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
u_int addr, val;
val = 0;
if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
return;
for (addr = 0; addr <= 8; addr++) {
printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
if (atw_si4126_read(sc, addr, &val) == 0) {
printf("<unknown> (quitting print-out)\n");
break;
}
printf("%05x\n", val);
}
}
#endif /* ATW_SYNDEBUG */
/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
*
* The RF/IF synthesizer produces two reference frequencies for
* the RF2948B transceiver. The first frequency the RF2948B requires
* is two times the so-called "intermediate frequency" (IF). Since
* a SAW filter on the radio fixes the IF at 374 MHz, I program the
* Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second
* frequency required by the transceiver is the radio frequency
* (RF). This is a superheterodyne transceiver; for f(chan) the
* center frequency of the channel we are tuning, RF = f(chan) -
* IF.
*
* XXX I am told by SiLabs that the Si4126 will accept a broader range
* of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
* XINDIV2 = 1. I've tried this (it is necessary to double R) and it
* works, but I have still programmed for XINDIV2 = 1 to be safe.
*/
static void
atw_si4126_tune(struct atw_softc *sc, u_int chan)
{
u_int mhz;
u_int R;
u_int32_t gpio;
u_int16_t gain;
#ifdef ATW_SYNDEBUG
atw_si4126_print(sc);
#endif /* ATW_SYNDEBUG */
if (chan == 14)
mhz = 2484;
else
mhz = 2412 + 5 * (chan - 1);
/* Tune IF to 748 MHz to suit the IF LO input of the
* RF2494B, which is 2 x IF. No need to set an IF divider
* because an IF in 526 MHz - 952 MHz is allowed.
*
* XIN is 44.000 MHz, so divide it by two to get allowable
* range of 2-25 MHz. SiLabs tells me that this is not
* strictly necessary.
*/
if (atw_xindiv2)
R = 44;
else
R = 88;
/* Power-up RF, IF synthesizers. */
atw_si4126_write(sc, SI4126_POWER,
SI4126_POWER_PDIB|SI4126_POWER_PDRB);
/* set LPWR, too? */
atw_si4126_write(sc, SI4126_MAIN,
(atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
/* Set the phase-locked loop gain. If RF2 N > 2047, then
* set KP2 to 1.
*
* REFDIF This is different from the reference driver, which
* always sets SI4126_GAIN to 0.
*/
gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
atw_si4126_write(sc, SI4126_GAIN, gain);
/* XIN = 44 MHz.
*
* If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
* R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
*
* If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
* so that 1496/88 * 44 MHz = 748 MHz.
*/
atw_si4126_write(sc, SI4126_IFN, 1496);
atw_si4126_write(sc, SI4126_IFR, R);
#ifndef ATW_REFSLAVE
/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
* then RF1 becomes the active RF synthesizer, even on the Si4126,
* which has no RF1!
*/
atw_si4126_write(sc, SI4126_RF1R, R);
atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
#endif
/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
* where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44.
* Now let's multiply it to mhz. So mhz - IF = N.
*/
atw_si4126_write(sc, SI4126_RF2R, R);
atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
/* wait 100us from power-up for RF, IF to settle */
DELAY(100);
gpio = ATW_READ(sc, ATW_GPIO);
gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
/* Set a Prism RF front-end to a special mode for channel 14?
*
* Apparently the SMC2635W needs this, although I don't think
* it has a Prism RF.
*/
gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
}
ATW_WRITE(sc, ATW_GPIO, gpio);
#ifdef ATW_SYNDEBUG
atw_si4126_print(sc);
#endif /* ATW_SYNDEBUG */
}
/* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
* diversity.
*
* !!!
* !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
* !!!
*/
static int
atw_rf3000_init(struct atw_softc *sc)
{
int rc = 0;
atw_bbp_io_enable(sc, 1);
/* CCA is acquisition sensitive */
rc = atw_rf3000_write(sc, RF3000_CCACTL,
__SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
if (rc != 0)
goto out;
/* enable diversity */
rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
if (rc != 0)
goto out;
/* sensible setting from a binary-only driver */
rc = atw_rf3000_write(sc, RF3000_GAINCTL,
__SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
if (rc != 0)
goto out;
/* magic from a binary-only driver */
rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
__SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
if (rc != 0)
goto out;
rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
if (rc != 0)
goto out;
/* XXX Reference driver remarks that Abocom sets this to 50.
* Meaning 0x50, I think.... 50 = 0x32, which would set a bit
* in the "reserved" area of register RF3000_OPTIONS1.
*/
rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
if (rc != 0)
goto out;
rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
if (rc != 0)
goto out;
out:
atw_bbp_io_enable(sc, 0);
return rc;
}
#ifdef ATW_BBPDEBUG
static void
atw_rf3000_print(struct atw_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
u_int addr, val;
if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
return;
for (addr = 0x01; addr <= 0x15; addr++) {
printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
if (atw_rf3000_read(sc, addr, &val) != 0) {
printf("<unknown> (quitting print-out)\n");
break;
}
printf("%08x\n", val);
}
}
#endif /* ATW_BBPDEBUG */
/* Set the power settings on the BBP for channel `chan'. */
static int
atw_rf3000_tune(struct atw_softc *sc, u_int chan)
{
int rc = 0;
u_int32_t reg;
u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
/* odd channels: LSB, even channels: MSB */
if (chan % 2 == 1) {
txpower &= 0xFF;
lpf_cutoff &= 0xFF;
lna_gs_thresh &= 0xFF;
} else {
txpower >>= 8;
lpf_cutoff >>= 8;
lna_gs_thresh >>= 8;
}
#ifdef ATW_BBPDEBUG
atw_rf3000_print(sc);
#endif /* ATW_BBPDEBUG */
DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
"lna_gs_thresh %02x\n",
device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
atw_bbp_io_enable(sc, 1);
if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
goto out;
if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
goto out;
if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
goto out;
rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
if (rc != 0)
goto out;
rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
if (rc != 0)
goto out;
#ifdef ATW_BBPDEBUG
atw_rf3000_print(sc);
#endif /* ATW_BBPDEBUG */
out:
atw_bbp_io_enable(sc, 0);
/* set beacon, rts, atim transmit power */
reg = ATW_READ(sc, ATW_PLCPHD);
reg &= ~ATW_PLCPHD_SERVICE_MASK;
reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
ATW_PLCPHD_SERVICE_MASK);
ATW_WRITE(sc, ATW_PLCPHD, reg);
DELAY(atw_plcphd_delay);
return rc;
}
/* Write a register on the RF3000 baseband processor using the
* registers provided by the ADM8211 for this purpose.
*
* Return 0 on success.
*/
static int
atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
{
u_int32_t reg;
int i;
reg = sc->sc_bbpctl_wr |
__SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
__SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
ATW_WRITE(sc, ATW_BBPCTL, reg);
DELAY(2 * atw_pseudo_milli);
if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
break;
}
if (i < 0) {
printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
return ETIMEDOUT;
}
return 0;
}
/* Read a register on the RF3000 baseband processor using the registers
* the ADM8211 provides for this purpose.
*
* The 7-bit register address is addr. Record the 8-bit data in the register
* in *val.
*
* Return 0 on success.
*
* XXX This does not seem to work. The ADM8211 must require more or
* different magic to read the chip than to write it. Possibly some
* of the magic I have derived from a binary-only driver concerns
* the "chip address" (see the RF3000 manual).
*/
#ifdef ATW_BBPDEBUG
static int
atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
{
u_int32_t reg;
int i;
for (i = 1000; --i >= 0; ) {
if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
break;
DELAY(100);
}
if (i < 0) {
printf("%s: start atw_rf3000_read, BBPCTL busy\n",
device_xname(sc->sc_dev));
return ETIMEDOUT;
}
reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
ATW_WRITE(sc, ATW_BBPCTL, reg);
for (i = 1000; --i >= 0; ) {
DELAY(100);
if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
break;
}
ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
if (i < 0) {
printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
device_xname(sc->sc_dev), reg);
return ETIMEDOUT;
}
if (val != NULL)
*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
return 0;
}
#endif /* ATW_BBPDEBUG */
/* Write a register on the Si4126 RF/IF synthesizer using the registers
* provided by the ADM8211 for that purpose.
*
* val is 18 bits of data, and val is the 4-bit address of the register.
*
* Return 0 on success.
*/
static void
atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
{
uint32_t bits, mask, reg;
const int nbits = 22;
KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
__SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
reg = ATW_SYNRF_SELSYN;
/* reference driver: reset Si4126 serial bus to initial
* conditions?
*/
ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
ATW_WRITE(sc, ATW_SYNRF, reg);
for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
if ((bits & mask) != 0)
reg |= ATW_SYNRF_SYNDATA;
else
reg &= ~ATW_SYNRF_SYNDATA;
ATW_WRITE(sc, ATW_SYNRF, reg);
ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
ATW_WRITE(sc, ATW_SYNRF, reg);
}
ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
ATW_WRITE(sc, ATW_SYNRF, 0x0);
}
/* Read 18-bit data from the 4-bit address addr in Si4126
* RF synthesizer and write the data to *val. Return 0 on success.
*
* XXX This does not seem to work. The ADM8211 must require more or
* different magic to read the chip than to write it.
*/
#ifdef ATW_SYNDEBUG
static int
atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
{
u_int32_t reg;
int i;
KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
for (i = 1000; --i >= 0; ) {
if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
break;
DELAY(100);
}
if (i < 0) {
printf("%s: start atw_si4126_read, SYNCTL busy\n",
device_xname(sc->sc_dev));
return ETIMEDOUT;
}
reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
ATW_WRITE(sc, ATW_SYNCTL, reg);
for (i = 1000; --i >= 0; ) {
DELAY(100);
if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
break;
}
ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
if (i < 0) {
printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
device_xname(sc->sc_dev), reg);
return ETIMEDOUT;
}
if (val != NULL)
*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
ATW_SYNCTL_DATA_MASK);
return 0;
}
#endif /* ATW_SYNDEBUG */
/* XXX is the endianness correct? test. */
#define atw_calchash(addr) \
(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
/*
* atw_filter_setup:
*
* Set the ADM8211's receive filter.
*/
static void
atw_filter_setup(struct atw_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ethercom *ec = &sc->sc_ec;
struct ifnet *ifp = &sc->sc_if;
int hash;
u_int32_t hashes[2];
struct ether_multi *enm;
struct ether_multistep step;
/* According to comments in tlp_al981_filter_setup
* (dev/ic/tulip.c) the ADMtek AL981 does not like for its
* multicast filter to be set while it is running. Hopefully
* the ADM8211 is not the same!
*/
if ((ifp->if_flags & IFF_RUNNING) != 0)
atw_idle(sc, ATW_NAR_SR);
sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
ifp->if_flags &= ~IFF_ALLMULTI;
/* XXX in scan mode, do not filter packets. Maybe this is
* unnecessary.
*/
if (ic->ic_state == IEEE80211_S_SCAN ||
(ifp->if_flags & IFF_PROMISC) != 0) {
sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
goto allmulti;
}
hashes[0] = hashes[1] = 0x0;
/*
* Program the 64-bit multicast hash filter.
*/
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0)
goto allmulti;
hash = atw_calchash(enm->enm_addrlo);
hashes[hash >> 5] |= 1 << (hash & 0x1f);
ETHER_NEXT_MULTI(step, enm);
sc->sc_opmode |= ATW_NAR_MM;
}
ifp->if_flags &= ~IFF_ALLMULTI;
goto setit;
allmulti:
sc->sc_opmode |= ATW_NAR_MM;
ifp->if_flags |= IFF_ALLMULTI;
hashes[0] = hashes[1] = 0xffffffff;
setit:
ATW_WRITE(sc, ATW_MAR0, hashes[0]);
ATW_WRITE(sc, ATW_MAR1, hashes[1]);
ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
DELAY(atw_nar_delay);
ATW_WRITE(sc, ATW_RDR, 0x1);
DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
ATW_READ(sc, ATW_NAR), sc->sc_opmode));
}
/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
* a beacon's BSSID and SSID against the preferred BSSID and SSID
* before it will raise ATW_INTR_LINKON. When the ADM8211 receives
* no beacon with the preferred BSSID and SSID in the number of
* beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
*/
static void
atw_write_bssid(struct atw_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
u_int8_t *bssid;
bssid = ic->ic_bss->ni_bssid;
ATW_WRITE(sc, ATW_BSSID0,
__SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
__SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
__SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
__SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
ATW_WRITE(sc, ATW_ABDA1,
(ATW_READ(sc, ATW_ABDA1) &
~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
__SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
__SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
ether_sprintf(sc->sc_bssid)));
DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
}
/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
* 16-bit word.
*/
static void
atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
{
u_int i;
u_int8_t *ptr;
memcpy(&sc->sc_sram[ofs], buf, buflen);
KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
KASSERT(buflen + ofs <= sc->sc_sramlen);
ptr = &sc->sc_sram[ofs];
for (i = 0; i < buflen; i += 2) {
ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
__SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
DELAY(atw_writewep_delay);
ATW_WRITE(sc, ATW_WESK,
__SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
DELAY(atw_writewep_delay);
}
ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
if (sc->sc_if.if_flags & IFF_DEBUG) {
int n_octets = 0;
printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
for (i = 0; i < buflen; i++) {
printf(" %02x", ptr[i]);
if (++n_octets % 24 == 0)
printf("\n");
}
if (n_octets % 24 != 0)
printf("\n");
}
}
static int
atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
{
struct atw_softc *sc = ic->ic_ifp->if_softc;
u_int keyix = k->wk_keyix;
DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
if (keyix >= IEEE80211_WEP_NKID)
return 0;
if (k->wk_keylen != 0)
sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
return 1;
}
static int
atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
const u_int8_t mac[IEEE80211_ADDR_LEN])
{
struct atw_softc *sc = ic->ic_ifp->if_softc;
DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
if (k->wk_keyix >= IEEE80211_WEP_NKID)
return 0;
sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
return 1;
}
static void
atw_key_update_begin(struct ieee80211com *ic)
{
#ifdef ATW_DEBUG
struct ifnet *ifp = ic->ic_ifp;
struct atw_softc *sc = ifp->if_softc;
#endif
DPRINTF(sc, ("%s:\n", __func__));
}
static void
atw_key_update_end(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct atw_softc *sc = ifp->if_softc;
DPRINTF(sc, ("%s:\n", __func__));
if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
return;
if (ATW_IS_ENABLED(sc) == 0)
return;
atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
atw_write_wep(sc);
ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
DELAY(atw_nar_delay);
ATW_WRITE(sc, ATW_RDR, 0x1);
}
/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
static void
atw_write_wep(struct atw_softc *sc)
{
#if 0
struct ieee80211com *ic = &sc->sc_ic;
u_int32_t reg;
int i;
#endif
/* SRAM shared-key record format: key0 flags key1 ... key12 */
u_int8_t buf[IEEE80211_WEP_NKID]
[1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
sc->sc_wepctl = 0;
ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
memset(&buf[0][0], 0, sizeof(buf));
#if 0
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
if (ic->ic_nw_keys[i].wk_keylen > 5) {
buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
buf[i][1] = ATW_WEP_ENABLED;
} else {
buf[i][1] = 0;
continue;
}
buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
ic->ic_nw_keys[i].wk_keylen - 1);
}
reg = ATW_READ(sc, ATW_MACTEST);
reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
reg &= ~ATW_MACTEST_KEYID_MASK;
reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
ATW_WRITE(sc, ATW_MACTEST, reg);
if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
switch (sc->sc_rev) {
case ATW_REVISION_AB:
case ATW_REVISION_AF:
/* Bypass WEP on Rx. */
sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
break;
default:
break;
}
#endif
atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
sizeof(buf));
sc->sc_flags |= ATWF_WEP_SRAM_VALID;
}
static void
atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
{
struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
return;
(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
switch (subtype) {
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
case IEEE80211_FC0_SUBTYPE_BEACON:
if (ic->ic_opmode == IEEE80211_M_IBSS &&
ic->ic_state == IEEE80211_S_RUN) {
if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
(void)ieee80211_ibss_merge(ni);
}
break;
default:
break;
}
return;
}
/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
* In ad hoc mode, the SSID is written to the beacons sent by the
* ADM8211. In both ad hoc and infrastructure mode, beacons received
* with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
* indications.
*/
static void
atw_write_ssid(struct atw_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
* it only expects the element length, not its ID.
*/
u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
memset(buf, 0, sizeof(buf));
buf[0] = ic->ic_bss->ni_esslen;
memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
roundup(1 + ic->ic_bss->ni_esslen, 2));
}
/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
* In ad hoc mode, the supported rates are written to beacons sent by the
* ADM8211.
*/
static void
atw_write_sup_rates(struct atw_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
* supported rates
*/
u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
memset(buf, 0, sizeof(buf));
buf[0] = ic->ic_bss->ni_rates.rs_nrates;
memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
ic->ic_bss->ni_rates.rs_nrates);
atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
}
/* Start/stop sending beacons. */
void
atw_start_beacon(struct atw_softc *sc, int start)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t chan;
uint32_t bcnt, bpli, cap0, cap1, capinfo;
size_t len;
if (ATW_IS_ENABLED(sc) == 0)
return;
/* start beacons */
len = sizeof(struct ieee80211_frame) +
8 /* timestamp */ + 2 /* beacon interval */ +
2 /* capability info */ +
2 + ic->ic_bss->ni_esslen /* SSID element */ +
2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
3 /* DS parameters */ +
IEEE80211_CRC_LEN;
bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
ATW_WRITE(sc, ATW_BCNT, bcnt);
ATW_WRITE(sc, ATW_CAP1, cap1);
if (!start)
return;
/* TBD use ni_capinfo */
capinfo = 0;
if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
if (ic->ic_flags & IEEE80211_F_PRIVACY)
capinfo |= IEEE80211_CAPINFO_PRIVACY;
switch (ic->ic_opmode) {
case IEEE80211_M_IBSS:
len += 4; /* IBSS parameters */
capinfo |= IEEE80211_CAPINFO_IBSS;
break;
case IEEE80211_M_HOSTAP:
/* XXX 6-byte minimum TIM */
len += atw_beacon_len_adjust;
capinfo |= IEEE80211_CAPINFO_ESS;
break;
default:
return;
}
/* set listen interval
* XXX do software units agree w/ hardware?
*/
bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
__SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
ATW_WRITE(sc, ATW_BCNT, bcnt);
ATW_WRITE(sc, ATW_BPLI, bpli);
ATW_WRITE(sc, ATW_CAP0, cap0);
ATW_WRITE(sc, ATW_CAP1, cap1);
DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
device_xname(sc->sc_dev), bcnt));
DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
device_xname(sc->sc_dev), cap1));
}
/* Return the 32 lsb of the last TSFT divisible by ival. */
static inline uint32_t
atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
{
/* Following the reference driver's lead, I compute
*
* (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
*
* without using 64-bit arithmetic, using the following
* relationship:
*
* (0x100000000 * H + L) % m
* = ((0x100000000 % m) * H + L) % m
* = (((0xffffffff + 1) % m) * H + L) % m
* = ((0xffffffff % m + 1 % m) * H + L) % m
* = ((0xffffffff % m + 1) * H + L) % m
*/
return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
}
static uint64_t
atw_get_tsft(struct atw_softc *sc)
{
int i;
uint32_t tsfth, tsftl;
for (i = 0; i < 2; i++) {
tsfth = ATW_READ(sc, ATW_TSFTH);
tsftl = ATW_READ(sc, ATW_TSFTL);
if (ATW_READ(sc, ATW_TSFTH) == tsfth)
break;
}
return ((uint64_t)tsfth << 32) | tsftl;
}
/* If we've created an IBSS, write the TSF time in the ADM8211 to
* the ieee80211com.
*
* Predict the next target beacon transmission time (TBTT) and
* write it to the ADM8211.
*/
static void
atw_predict_beacon(struct atw_softc *sc)
{
#define TBTTOFS 20 /* TU */
struct ieee80211com *ic = &sc->sc_ic;
uint64_t tsft;
uint32_t ival, past_even, tbtt, tsfth, tsftl;
union {
uint64_t word;
uint8_t tstamp[8];
} u;
if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
((ic->ic_opmode == IEEE80211_M_IBSS) &&
(ic->ic_flags & IEEE80211_F_SIBSS))) {
tsft = atw_get_tsft(sc);
u.word = htole64(tsft);
(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
sizeof(ic->ic_bss->ni_tstamp));
} else
tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
tsftl = tsft & 0xFFFFFFFF;
tsfth = tsft >> 32;
/* We sent/received the last beacon `past' microseconds
* after the interval divided the TSF timer.
*/
past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
/* Skip ten beacons so that the TBTT cannot pass before
* we've programmed it. Ten is an arbitrary number.
*/
tbtt = past_even + ival * 10;
ATW_WRITE(sc, ATW_TOFS1,
__SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
__SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
__SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
#undef TBTTOFS
}
static void
atw_next_scan(void *arg)
{
struct atw_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int s;
/* don't call atw_start w/o network interrupts blocked */
s = splnet();
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
splx(s);
}
/* Synchronize the hardware state with the software state. */
static int
atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = ic->ic_ifp;
struct atw_softc *sc = ifp->if_softc;
enum ieee80211_state ostate;
int error = 0;
ostate = ic->ic_state;
callout_stop(&sc->sc_scan_ch);
switch (nstate) {
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
atw_write_bssid(sc);
error = atw_tune(sc);
break;
case IEEE80211_S_INIT:
callout_stop(&sc->sc_scan_ch);
sc->sc_cur_chan = IEEE80211_CHAN_ANY;
atw_start_beacon(sc, 0);
break;
case IEEE80211_S_SCAN:
error = atw_tune(sc);
callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
atw_next_scan, sc);
break;
case IEEE80211_S_RUN:
error = atw_tune(sc);
atw_write_bssid(sc);
atw_write_ssid(sc);
atw_write_sup_rates(sc);
if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
ic->ic_opmode == IEEE80211_M_MONITOR)
break;
/* set listen interval
* XXX do software units agree w/ hardware?
*/
ATW_WRITE(sc, ATW_BPLI,
__SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
__SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
ATW_BPLI_LI_MASK));
DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
ATW_READ(sc, ATW_BPLI)));
atw_predict_beacon(sc);
switch (ic->ic_opmode) {
case IEEE80211_M_AHDEMO:
case IEEE80211_M_HOSTAP:
case IEEE80211_M_IBSS:
atw_start_beacon(sc, 1);
break;
case IEEE80211_M_MONITOR:
case IEEE80211_M_STA:
break;
}
break;
}
return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
}
/*
* atw_add_rxbuf:
*
* Add a receive buffer to the indicated descriptor.
*/
int
atw_add_rxbuf(struct atw_softc *sc, int idx)
{
struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
if (rxs->rxs_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
rxs->rxs_mbuf = m;
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
idx, error);
panic("atw_add_rxbuf"); /* XXX */
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
atw_init_rxdesc(sc, idx);
return (0);
}
/*
* Release any queued transmit buffers.
*/
void
atw_txdrain(struct atw_softc *sc)
{
struct atw_txsoft *txs;
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
if (txs->txs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
sc->sc_txfree += txs->txs_ndescs;
}
KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
sc->sc_txfree != ATW_NTXDESC));
sc->sc_if.if_flags &= ~IFF_OACTIVE;
sc->sc_tx_timer = 0;
}
/*
* atw_stop: [ ifnet interface function ]
*
* Stop transmission on the interface.
*/
void
atw_stop(struct ifnet *ifp, int disable)
{
struct atw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
/* Disable interrupts. */
ATW_WRITE(sc, ATW_IER, 0);
/* Stop the transmit and receive processes. */
sc->sc_opmode = 0;
ATW_WRITE(sc, ATW_NAR, 0);
DELAY(atw_nar_delay);
ATW_WRITE(sc, ATW_TDBD, 0);
ATW_WRITE(sc, ATW_TDBP, 0);
ATW_WRITE(sc, ATW_RDB, 0);
atw_txdrain(sc);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
if (disable) {
atw_rxdrain(sc);
atw_disable(sc);
} else
atw_reset(sc);
}
/*
* atw_rxdrain:
*
* Drain the receive queue.
*/
void
atw_rxdrain(struct atw_softc *sc)
{
struct atw_rxsoft *rxs;
int i;
for (i = 0; i < ATW_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf == NULL)
continue;
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
}
/*
* atw_detach:
*
* Detach an ADM8211 interface.
*/
int
atw_detach(struct atw_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
struct atw_rxsoft *rxs;
struct atw_txsoft *txs;
int i;
/*
* Succeed now if there isn't any work to do.
*/
if ((sc->sc_flags & ATWF_ATTACHED) == 0)
return (0);
pmf_device_deregister(sc->sc_dev);
callout_stop(&sc->sc_scan_ch);
ieee80211_ifdetach(&sc->sc_ic);
if_detach(ifp);
for (i = 0; i < ATW_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
}
for (i = 0; i < ATW_TXQUEUELEN; i++) {
txs = &sc->sc_txsoft[i];
if (txs->txs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
sizeof(struct atw_control_data));
bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
if (sc->sc_srom)
free(sc->sc_srom, M_DEVBUF);
atw_evcnt_detach(sc);
return (0);
}
/* atw_shutdown: make sure the interface is stopped at reboot time. */
bool
atw_shutdown(device_t self, int flags)
{
struct atw_softc *sc = device_private(self);
atw_stop(&sc->sc_if, 1);
return true;
}
int
atw_intr(void *arg)
{
struct atw_softc *sc = arg;
struct ifnet *ifp = &sc->sc_if;
u_int32_t status, rxstatus, txstatus, linkstatus;
int handled = 0, txthresh;
#ifdef DEBUG
if (ATW_IS_ENABLED(sc) == 0)
panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
#endif
/*
* If the interface isn't running, the interrupt couldn't
* possibly have come from us.
*/
if ((ifp->if_flags & IFF_RUNNING) == 0 ||
!device_is_active(sc->sc_dev))
return (0);
for (;;) {
status = ATW_READ(sc, ATW_STSR);
if (status)
ATW_WRITE(sc, ATW_STSR, status);
#ifdef ATW_DEBUG
#define PRINTINTR(flag) do { \
if ((status & flag) != 0) { \
printf("%s" #flag, delim); \
delim = ","; \
} \
} while (0)
if (atw_debug > 1 && status) {
const char *delim = "<";
printf("%s: reg[STSR] = %x",
device_xname(sc->sc_dev), status);
PRINTINTR(ATW_INTR_FBE);
PRINTINTR(ATW_INTR_LINKOFF);
PRINTINTR(ATW_INTR_LINKON);
PRINTINTR(ATW_INTR_RCI);
PRINTINTR(ATW_INTR_RDU);
PRINTINTR(ATW_INTR_REIS);
PRINTINTR(ATW_INTR_RPS);
PRINTINTR(ATW_INTR_TCI);
PRINTINTR(ATW_INTR_TDU);
PRINTINTR(ATW_INTR_TLT);
PRINTINTR(ATW_INTR_TPS);
PRINTINTR(ATW_INTR_TRT);
PRINTINTR(ATW_INTR_TUF);
PRINTINTR(ATW_INTR_BCNTC);
PRINTINTR(ATW_INTR_ATIME);
PRINTINTR(ATW_INTR_TBTT);
PRINTINTR(ATW_INTR_TSCZ);
PRINTINTR(ATW_INTR_TSFTF);
printf(">\n");
}
#undef PRINTINTR
#endif /* ATW_DEBUG */
if ((status & sc->sc_inten) == 0)
break;
handled = 1;
rxstatus = status & sc->sc_rxint_mask;
txstatus = status & sc->sc_txint_mask;
linkstatus = status & sc->sc_linkint_mask;
if (linkstatus) {
atw_linkintr(sc, linkstatus);
}
if (rxstatus) {
/* Grab any new packets. */
atw_rxintr(sc);
if (rxstatus & ATW_INTR_RDU) {
printf("%s: receive ring overrun\n",
device_xname(sc->sc_dev));
/* Get the receive process going again. */
ATW_WRITE(sc, ATW_RDR, 0x1);
break;
}
}
if (txstatus) {
/* Sweep up transmit descriptors. */
atw_txintr(sc);
if (txstatus & ATW_INTR_TLT) {
DPRINTF(sc, ("%s: tx lifetime exceeded\n",
device_xname(sc->sc_dev)));
}
if (txstatus & ATW_INTR_TRT) {
DPRINTF(sc, ("%s: tx retry limit exceeded\n",
device_xname(sc->sc_dev)));
}
/* If Tx under-run, increase our transmit threshold
* if another is available.
*/
txthresh = sc->sc_txthresh + 1;
if ((txstatus & ATW_INTR_TUF) &&
sc->sc_txth[txthresh].txth_name != NULL) {
/* Idle the transmit process. */
atw_idle(sc, ATW_NAR_ST);
sc->sc_txthresh = txthresh;
sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
sc->sc_opmode |=
sc->sc_txth[txthresh].txth_opmode;
printf("%s: transmit underrun; new "
"threshold: %s\n", device_xname(sc->sc_dev),
sc->sc_txth[txthresh].txth_name);
/* Set the new threshold and restart
* the transmit process.
*/
ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
DELAY(atw_nar_delay);
ATW_WRITE(sc, ATW_RDR, 0x1);
/* XXX Log every Nth underrun from
* XXX now on?
*/
}
}
if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
if (status & ATW_INTR_TPS)
printf("%s: transmit process stopped\n",
device_xname(sc->sc_dev));
if (status & ATW_INTR_RPS)
printf("%s: receive process stopped\n",
device_xname(sc->sc_dev));
(void)atw_init(ifp);
break;
}
if (status & ATW_INTR_FBE) {
aprint_error_dev(sc->sc_dev, "fatal bus error\n");
(void)atw_init(ifp);
break;
}
/*
* Not handled:
*
* Transmit buffer unavailable -- normal
* condition, nothing to do, really.
*
* Early receive interrupt -- not available on
* all chips, we just use RI. We also only
* use single-segment receive DMA, so this
* is mostly useless.
*
* TBD others
*/
}
/* Try to get more packets going. */
atw_start(ifp);
return (handled);
}
/*
* atw_idle:
*
* Cause the transmit and/or receive processes to go idle.
*
* XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
* process in STSR if I clear SR or ST after the process has already
* ceased. Fair enough. But the Rx process status bits in ATW_TEST0
* do not seem to be too reliable. Perhaps I have the sense of the
* Rx bits switched with the Tx bits?
*/
void
atw_idle(struct atw_softc *sc, u_int32_t bits)
{
u_int32_t ackmask = 0, opmode, stsr, test0;
int i, s;
s = splnet();
opmode = sc->sc_opmode & ~bits;
if (bits & ATW_NAR_SR)
ackmask |= ATW_INTR_RPS;
if (bits & ATW_NAR_ST) {
ackmask |= ATW_INTR_TPS;
/* set ATW_NAR_HF to flush TX FIFO. */
opmode |= ATW_NAR_HF;
}
ATW_WRITE(sc, ATW_NAR, opmode);
DELAY(atw_nar_delay);
for (i = 0; i < 1000; i++) {
stsr = ATW_READ(sc, ATW_STSR);
if ((stsr & ackmask) == ackmask)
break;
DELAY(10);
}
ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
if ((stsr & ackmask) == ackmask)
goto out;
test0 = ATW_READ(sc, ATW_TEST0);
if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
(test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
printf("%s: transmit process not idle [%s]\n",
device_xname(sc->sc_dev),
atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
printf("%s: bits %08x test0 %08x stsr %08x\n",
device_xname(sc->sc_dev), bits, test0, stsr);
}
if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
(test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
device_xname(sc->sc_dev),
atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
device_xname(sc->sc_dev), bits, test0, stsr));
}
out:
if ((bits & ATW_NAR_ST) != 0)
atw_txdrain(sc);
splx(s);
return;
}
/*
* atw_linkintr:
*
* Helper; handle link-status interrupts.
*/
void
atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
{
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_state != IEEE80211_S_RUN)
return;
if (linkstatus & ATW_INTR_LINKON) {
DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
sc->sc_rescan_timer = 0;
} else if (linkstatus & ATW_INTR_LINKOFF) {
DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
if (ic->ic_opmode != IEEE80211_M_STA)
return;
sc->sc_rescan_timer = 3;
sc->sc_if.if_timer = 1;
}
}
static inline int
atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
{
if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
return 0;
if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
return 0;
return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
}
/*
* atw_rxintr:
*
* Helper; handle receive interrupts.
*/
void
atw_rxintr(struct atw_softc *sc)
{
static int rate_tbl[] = {2, 4, 11, 22, 44};
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct ieee80211_frame_min *wh;
struct ifnet *ifp = &sc->sc_if;
struct atw_rxsoft *rxs;
struct mbuf *m;
u_int32_t rxstat;
int i, len, rate, rate0;
u_int32_t rssi, ctlrssi;
for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
rxs = &sc->sc_rxsoft[i];
ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
if (rxstat & ATW_RXSTAT_OWN)
break; /* We have processed all receive buffers. */
DPRINTF3(sc,
("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
device_xname(sc->sc_dev),
rxstat, ctlrssi,
le32toh(sc->sc_rxdescs[i].ar_buf1),
le32toh(sc->sc_rxdescs[i].ar_buf2)));
/*
* Make sure the packet fits in one buffer. This should
* always be the case.
*/
if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
(ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
printf("%s: incoming packet spilled, resetting\n",
device_xname(sc->sc_dev));
(void)atw_init(ifp);
return;
}
/*
* If an error occurred, update stats, clear the status
* word, and leave the packet buffer in place. It will
* simply be reused the next time the ring comes around.
*/
if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
#define PRINTERR(bit, str) \
if (rxstat & (bit)) \
aprint_error_dev(sc->sc_dev, "receive error: %s\n", \
str)
ifp->if_ierrors++;
PRINTERR(ATW_RXSTAT_DE, "descriptor error");
PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
#if 0
PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
#endif
#undef PRINTERR
atw_init_rxdesc(sc, i);
continue;
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
/*
* No errors; receive the packet. Note the ADM8211
* includes the CRC in promiscuous mode.
*/
len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
/*
* Allocate a new mbuf cluster. If that fails, we are
* out of memory, and must drop the packet and recycle
* the buffer that's already attached to this descriptor.
*/
m = rxs->rxs_mbuf;
if (atw_add_rxbuf(sc, i) != 0) {
ifp->if_ierrors++;
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
atw_init_rxdesc(sc, i);
continue;
}
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
/* The RSSI comes straight from a register in the
* baseband processor. I know that for the RF3000,
* the RSSI register also contains the antenna-selection
* bits. Mask those off.
*
* TBD Treat other basebands.
* TBD Use short-preamble bit and such in RF3000_RXSTAT.
*/
if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
rssi = ctlrssi & RF3000_RSSI_MASK;
else
rssi = ctlrssi;
#if NBPFILTER > 0
/* Pass this up to any BPF listeners. */
if (sc->sc_radiobpf != NULL) {
struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->ar_rate = rate;
/* TBD verify units are dB */
tap->ar_antsignal = (int)rssi;
if (sc->sc_opmode & ATW_NAR_PR)
tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
else
tap->ar_flags = 0;
if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
bpf_mtap2(sc->sc_radiobpf, tap,
sizeof(sc->sc_rxtapu), m);
}
#endif /* NBPFILTER > 0 */
sc->sc_recv_ev.ev_count++;
if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
if (rxstat & ATW_RXSTAT_CRC16E)
sc->sc_crc16e_ev.ev_count++;
if (rxstat & ATW_RXSTAT_CRC32E)
sc->sc_crc32e_ev.ev_count++;
if (rxstat & ATW_RXSTAT_ICVE)
sc->sc_icve_ev.ev_count++;
if (rxstat & ATW_RXSTAT_SFDE)
sc->sc_sfde_ev.ev_count++;
if (rxstat & ATW_RXSTAT_SIGE)
sc->sc_sige_ev.ev_count++;
ifp->if_ierrors++;
m_freem(m);
continue;
}
if (sc->sc_opmode & ATW_NAR_PR)
m_adj(m, -IEEE80211_CRC_LEN);
wh = mtod(m, struct ieee80211_frame_min *);
ni = ieee80211_find_rxnode(ic, wh);
#if 0
if (atw_hw_decrypted(sc, wh)) {
wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
DPRINTF(sc, ("%s: hw decrypted\n", __func__));
}
#endif
ieee80211_input(ic, m, ni, (int)rssi, 0);
ieee80211_free_node(ni);
}
/* Update the receive pointer. */
sc->sc_rxptr = i;
}
/*
* atw_txintr:
*
* Helper; handle transmit interrupts.
*/
void
atw_txintr(struct atw_softc *sc)
{
static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
struct ifnet *ifp = &sc->sc_if;
struct atw_txsoft *txs;
u_int32_t txstat;
DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
device_xname(sc->sc_dev), sc->sc_flags));
/*
* Go through our Tx list and free mbufs for those
* frames that have been transmitted.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
#ifdef ATW_DEBUG
if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
int i;
printf(" txsoft %p transmit chain:\n", txs);
ATW_CDTXSYNC(sc, txs->txs_firstdesc,
txs->txs_ndescs - 1,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
printf(" descriptor %d:\n", i);
printf(" at_status: 0x%08x\n",
le32toh(sc->sc_txdescs[i].at_stat));
printf(" at_flags: 0x%08x\n",
le32toh(sc->sc_txdescs[i].at_flags));
printf(" at_buf1: 0x%08x\n",
le32toh(sc->sc_txdescs[i].at_buf1));
printf(" at_buf2: 0x%08x\n",
le32toh(sc->sc_txdescs[i].at_buf2));
if (i == txs->txs_lastdesc)
break;
}
}
#endif
txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
if (txstat & ATW_TXSTAT_OWN)
break;
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
sc->sc_txfree += txs->txs_ndescs;
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
0, txs->txs_dmamap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
sc->sc_txfree == 0));
ifp->if_flags &= ~IFF_OACTIVE;
if ((ifp->if_flags & IFF_DEBUG) != 0 &&
(txstat & ATW_TXSTAT_ERRMASK) != 0) {
snprintb(txstat_buf, sizeof(txstat_buf),
ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
printf("%s: txstat %s %" __PRIuBITS "\n",
device_xname(sc->sc_dev), txstat_buf,
__SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
}
/*
* Check for errors and collisions.
*/
if (txstat & ATW_TXSTAT_TUF)
sc->sc_stats.ts_tx_tuf++;
if (txstat & ATW_TXSTAT_TLT)
sc->sc_stats.ts_tx_tlt++;
if (txstat & ATW_TXSTAT_TRT)
sc->sc_stats.ts_tx_trt++;
if (txstat & ATW_TXSTAT_TRO)
sc->sc_stats.ts_tx_tro++;
if (txstat & ATW_TXSTAT_SOFBR) {
sc->sc_stats.ts_tx_sofbr++;
}
if ((txstat & ATW_TXSTAT_ES) == 0)
ifp->if_collisions +=
__SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
else
ifp->if_oerrors++;
ifp->if_opackets++;
}
/*
* If there are no more pending transmissions, cancel the watchdog
* timer.
*/
if (txs == NULL) {
KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
sc->sc_tx_timer = 0;
}
}
/*
* atw_watchdog: [ifnet interface function]
*
* Watchdog timer handler.
*/
void
atw_watchdog(struct ifnet *ifp)
{
struct atw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
ifp->if_timer = 0;
if (ATW_IS_ENABLED(sc) == 0)
return;
if (sc->sc_rescan_timer) {
if (--sc->sc_rescan_timer == 0)
(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
}
if (sc->sc_tx_timer) {
if (--sc->sc_tx_timer == 0 &&
!SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
printf("%s: transmit timeout\n", ifp->if_xname);
ifp->if_oerrors++;
(void)atw_init(ifp);
atw_start(ifp);
}
}
if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
ifp->if_timer = 1;
ieee80211_watchdog(ic);
}
static void
atw_evcnt_detach(struct atw_softc *sc)
{
evcnt_detach(&sc->sc_sige_ev);
evcnt_detach(&sc->sc_sfde_ev);
evcnt_detach(&sc->sc_icve_ev);
evcnt_detach(&sc->sc_crc32e_ev);
evcnt_detach(&sc->sc_crc16e_ev);
evcnt_detach(&sc->sc_recv_ev);
}
static void
atw_evcnt_attach(struct atw_softc *sc)
{
evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
NULL, sc->sc_if.if_xname, "recv");
evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
&sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
&sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
&sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
&sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
&sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
}
#ifdef ATW_DEBUG
static void
atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
{
struct atw_softc *sc = ifp->if_softc;
struct mbuf *m;
int i, noctets = 0;
printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
m0->m_pkthdr.len);
for (m = m0; m; m = m->m_next) {
if (m->m_len == 0)
continue;
for (i = 0; i < m->m_len; i++) {
printf(" %02x", ((u_int8_t*)m->m_data)[i]);
if (++noctets % 24 == 0)
printf("\n");
}
}
printf("%s%s: %d bytes emitted\n",
(noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
}
#endif /* ATW_DEBUG */
/*
* atw_start: [ifnet interface function]
*
* Start packet transmission on the interface.
*/
void
atw_start(struct ifnet *ifp)
{
struct atw_softc *sc = ifp->if_softc;
struct ieee80211_key *k;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct ieee80211_frame_min *whm;
struct ieee80211_frame *wh;
struct atw_frame *hh;
struct mbuf *m0, *m;
struct atw_txsoft *txs, *last_txs;
struct atw_txdesc *txd;
int npkt, rate;
bus_dmamap_t dmamap;
int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Remember the previous number of free descriptors and
* the first descriptor we'll use.
*/
ofree = sc->sc_txfree;
firsttx = lasttx = sc->sc_txnext;
DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
device_xname(sc->sc_dev), ofree, firsttx));
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
sc->sc_txfree != 0) {
/*
* Grab a packet off the management queue, if it
* is not empty. Otherwise, from the data queue.
*/
IF_DEQUEUE(&ic->ic_mgtq, m0);
if (m0 != NULL) {
ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
m0->m_pkthdr.rcvif = NULL;
} else if (ic->ic_state != IEEE80211_S_RUN)
break; /* send no data until associated */
else {
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m0);
#endif /* NBPFILTER > 0 */
ni = ieee80211_find_txnode(ic,
mtod(m0, struct ether_header *)->ether_dhost);
if (ni == NULL) {
ifp->if_oerrors++;
break;
}
if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
}
rate = MAX(ieee80211_get_rate(ni), 2);
whm = mtod(m0, struct ieee80211_frame_min *);
if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
k = NULL;
else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
m_freem(m0);
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
ic->ic_flags, ic->ic_fragthreshold, rate,
&txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
m_freem(m0);
break;
}
/* XXX Misleading if fragmentation is enabled. Better
* to fragment in software?
*/
*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
#if NBPFILTER > 0
/*
* Pass the packet to any BPF listeners.
*/
if (ic->ic_rawbpf != NULL)
bpf_mtap((void *)ic->ic_rawbpf, m0);
if (sc->sc_radiobpf != NULL) {
struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
tap->at_rate = rate;
bpf_mtap2(sc->sc_radiobpf, tap,
sizeof(sc->sc_txtapu), m0);
}
#endif /* NBPFILTER > 0 */
M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
if (ni != NULL)
ieee80211_free_node(ni);
if (m0 == NULL) {
ifp->if_oerrors++;
break;
}
/* just to make sure. */
m0 = m_pullup(m0, sizeof(struct atw_frame));
if (m0 == NULL) {
ifp->if_oerrors++;
break;
}
hh = mtod(m0, struct atw_frame *);
wh = &hh->atw_ihdr;
/* Copy everything we need from the 802.11 header:
* Frame Control; address 1, address 3, or addresses
* 3 and 4. NIC fills in BSSID, SA.
*/
if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
panic("%s: illegal WDS frame",
device_xname(sc->sc_dev));
memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
} else
memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
/* initialize remaining Tx parameters */
memset(&hh->u, 0, sizeof(hh->u));
hh->atw_rate = rate * 5;
/* XXX this could be incorrect if M_FCS. _encap should
* probably strip FCS just in case it sticks around in
* bridged packets.
*/
hh->atw_service = 0x00; /* XXX guess */
hh->atw_paylen = htole16(m0->m_pkthdr.len -
sizeof(struct atw_frame));
hh->atw_fragthr = htole16(ic->ic_fragthreshold);
hh->atw_rtylmt = 3;
hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
#if 0
if (do_encrypt) {
hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
hh->atw_keyid = ic->ic_def_txkey;
}
#endif
hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
if (txs->txs_d0.d_residue)
hh->atw_head_plcplen |= htole16(0x8000);
if (txs->txs_dn.d_residue)
hh->atw_tail_plcplen |= htole16(0x8000);
hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
/* never fragment multicast frames */
if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
hh->atw_fragthr = htole16(ic->ic_fragthreshold);
} else if (sc->sc_flags & ATWF_RTSCTS) {
hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
}
#ifdef ATW_DEBUG
hh->atw_fragnum = 0;
if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
printf("%s: dst = %s, rate = 0x%02x, "
"service = 0x%02x, paylen = 0x%04x\n",
device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
hh->atw_rate, hh->atw_service, hh->atw_paylen);
printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
"dur1 = 0x%04x, dur2 = 0x%04x, "
"dur3 = 0x%04x, rts_dur = 0x%04x\n",
device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
hh->atw_tail_plcplen, hh->atw_head_plcplen,
hh->atw_tail_dur, hh->atw_head_dur);
printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
"fragnum = 0x%02x, rtylmt = 0x%04x\n",
device_xname(sc->sc_dev), hh->atw_hdrctl,
hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
printf("%s: keyid = %d\n",
device_xname(sc->sc_dev), hh->atw_keyid);
atw_dump_pkt(ifp, m0);
}
#endif /* ATW_DEBUG */
dmamap = txs->txs_dmamap;
/*
* Load the DMA map. Copy and try (once) again if the packet
* didn't fit in the alloted number of segments.
*/
for (first = 1;
(error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
first = 0) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
break;
}
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
"cluster\n");
m_freem(m);
break;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
m_freem(m0);
m0 = m;
m = NULL;
}
if (error != 0) {
aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
"error = %d\n", error);
m_freem(m0);
break;
}
/*
* Ensure we have enough descriptors free to describe
* the packet.
*/
if (dmamap->dm_nsegs > sc->sc_txfree) {
/*
* Not enough free descriptors to transmit
* this packet. Unload the DMA map and
* drop the packet. Notify the upper layer
* that there are no more slots left.
*
* XXX We could allocate an mbuf and copy, but
* XXX it is worth it?
*/
bus_dmamap_unload(sc->sc_dmat, dmamap);
m_freem(m0);
break;
}
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/* XXX arbitrary retry limit; 8 because I have seen it in
* use already and maybe 0 means "no tries" !
*/
ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
device_xname(sc->sc_dev), rate * 5));
ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
/*
* Initialize the transmit descriptors.
*/
for (nexttx = sc->sc_txnext, seg = 0;
seg < dmamap->dm_nsegs;
seg++, nexttx = ATW_NEXTTX(nexttx)) {
/*
* If this is the first descriptor we're
* enqueueing, don't set the OWN bit just
* yet. That could cause a race condition.
* We'll do it below.
*/
txd = &sc->sc_txdescs[nexttx];
txd->at_ctl = ctl |
((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
txd->at_flags =
htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
ATW_TXFLAG_TBS1_MASK)) |
((nexttx == (ATW_NTXDESC - 1))
? htole32(ATW_TXFLAG_TER) : 0);
lasttx = nexttx;
}
/* Set `first segment' and `last segment' appropriately. */
sc->sc_txdescs[sc->sc_txnext].at_flags |=
htole32(ATW_TXFLAG_FS);
sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
#ifdef ATW_DEBUG
if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
printf(" txsoft %p transmit chain:\n", txs);
for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
printf(" descriptor %d:\n", seg);
printf(" at_ctl: 0x%08x\n",
le32toh(sc->sc_txdescs[seg].at_ctl));
printf(" at_flags: 0x%08x\n",
le32toh(sc->sc_txdescs[seg].at_flags));
printf(" at_buf1: 0x%08x\n",
le32toh(sc->sc_txdescs[seg].at_buf1));
printf(" at_buf2: 0x%08x\n",
le32toh(sc->sc_txdescs[seg].at_buf2));
if (seg == lasttx)
break;
}
}
#endif
/* Sync the descriptors we're using. */
ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Store a pointer to the packet so we can free it later,
* and remember what txdirty will be once the packet is
* done.
*/
txs->txs_mbuf = m0;
txs->txs_firstdesc = sc->sc_txnext;
txs->txs_lastdesc = lasttx;
txs->txs_ndescs = dmamap->dm_nsegs;
/* Advance the tx pointer. */
sc->sc_txfree -= dmamap->dm_nsegs;
sc->sc_txnext = nexttx;
SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
last_txs = txs;
}
if (sc->sc_txfree != ofree) {
DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
device_xname(sc->sc_dev), lasttx, firsttx));
/*
* Cause a transmit interrupt to happen on the
* last packet we enqueued.
*/
sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
ATW_CDTXSYNC(sc, lasttx, 1,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* The entire packet chain is set up. Give the
* first descriptor to the chip now.
*/
sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
ATW_CDTXSYNC(sc, firsttx, 1,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Wake up the transmitter. */
ATW_WRITE(sc, ATW_TDR, 0x1);
if (txs == NULL || sc->sc_txfree == 0)
ifp->if_flags |= IFF_OACTIVE;
/* Set a watchdog timer in case the chip flakes out. */
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
/*
* atw_ioctl: [ifnet interface function]
*
* Handle control requests from the operator.
*/
int
atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct atw_softc *sc = ifp->if_softc;
int s, error = 0;
/* XXX monkey see, monkey do. comes from wi_ioctl. */
if (!device_is_active(sc->sc_dev))
return ENXIO;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
if (ifp->if_flags & IFF_UP) {
if (ATW_IS_ENABLED(sc)) {
/*
* To avoid rescanning another access point,
* do not call atw_init() here. Instead,
* only reflect media settings.
*/
atw_filter_setup(sc);
} else
error = atw_init(ifp);
} else if (ATW_IS_ENABLED(sc))
atw_stop(ifp, 1);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
atw_filter_setup(sc); /* do not rescan */
error = 0;
}
break;
default:
error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
if (error == ENETRESET || error == ERESTART) {
if (is_running(ifp))
error = atw_init(ifp);
else
error = 0;
}
break;
}
/* Try to get more packets going. */
if (ATW_IS_ENABLED(sc))
atw_start(ifp);
splx(s);
return (error);
}
static int
atw_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error == ENETRESET) {
if (is_running(ifp))
error = atw_init(ifp);
else
error = 0;
}
return error;
}