3897 lines
100 KiB
C
3897 lines
100 KiB
C
/* $NetBSD: atw.c,v 1.142 2008/12/16 22:35:30 christos Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.142 2008/12/16 22:35:30 christos Exp $");
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/device.h>
|
|
#include <sys/time.h>
|
|
#include <lib/libkern/libkern.h>
|
|
|
|
#include <machine/endian.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#include <net80211/ieee80211_netbsd.h>
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_radiotap.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <sys/bus.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <dev/ic/atwreg.h>
|
|
#include <dev/ic/rf3000reg.h>
|
|
#include <dev/ic/si4136reg.h>
|
|
#include <dev/ic/atwvar.h>
|
|
#include <dev/ic/smc93cx6var.h>
|
|
|
|
/* XXX TBD open questions
|
|
*
|
|
*
|
|
* When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
|
|
* modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
|
|
* handle this for me?
|
|
*
|
|
*/
|
|
/* device attachment
|
|
*
|
|
* print TOFS[012]
|
|
*
|
|
* device initialization
|
|
*
|
|
* clear ATW_FRCTL_MAXPSP to disable max power saving
|
|
* set ATW_TXBR_ALCUPDATE to enable ALC
|
|
* set TOFS[012]? (hope not)
|
|
* disable rx/tx
|
|
* set ATW_PAR_SWR (software reset)
|
|
* wait for ATW_PAR_SWR clear
|
|
* disable interrupts
|
|
* ack status register
|
|
* enable interrupts
|
|
*
|
|
* rx/tx initialization
|
|
*
|
|
* disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
|
|
* allocate and init descriptor rings
|
|
* write ATW_PAR_DSL (descriptor skip length)
|
|
* write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
|
|
* write ATW_NAR_SQ for one/both transmit descriptor rings
|
|
* write ATW_NAR_SQ for one/both transmit descriptor rings
|
|
* enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
|
|
*
|
|
* rx/tx end
|
|
*
|
|
* stop DMA
|
|
* disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
|
|
* flush tx w/ ATW_NAR_HF
|
|
*
|
|
* scan
|
|
*
|
|
* initialize rx/tx
|
|
*
|
|
* BSS join: (re)association response
|
|
*
|
|
* set ATW_FRCTL_AID
|
|
*
|
|
* optimizations ???
|
|
*
|
|
*/
|
|
|
|
#define ATW_REFSLAVE /* slavishly do what the reference driver does */
|
|
|
|
#define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
|
|
#define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
|
|
int atw_voodoo = VOODOO_DUR_11_ROUNDING;
|
|
|
|
int atw_pseudo_milli = 1;
|
|
int atw_magic_delay1 = 100 * 1000;
|
|
int atw_magic_delay2 = 100 * 1000;
|
|
/* more magic multi-millisecond delays (units: microseconds) */
|
|
int atw_nar_delay = 20 * 1000;
|
|
int atw_magic_delay4 = 10 * 1000;
|
|
int atw_rf_delay1 = 10 * 1000;
|
|
int atw_rf_delay2 = 5 * 1000;
|
|
int atw_plcphd_delay = 2 * 1000;
|
|
int atw_bbp_io_enable_delay = 20 * 1000;
|
|
int atw_bbp_io_disable_delay = 2 * 1000;
|
|
int atw_writewep_delay = 1000;
|
|
int atw_beacon_len_adjust = 4;
|
|
int atw_dwelltime = 200;
|
|
int atw_xindiv2 = 0;
|
|
|
|
#ifdef ATW_DEBUG
|
|
int atw_debug = 0;
|
|
|
|
#define ATW_DPRINTF(x) if (atw_debug > 0) printf x
|
|
#define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
|
|
#define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
|
|
#define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
|
|
#define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
|
|
#define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
|
|
|
|
static void atw_dump_pkt(struct ifnet *, struct mbuf *);
|
|
static void atw_print_regs(struct atw_softc *, const char *);
|
|
|
|
/* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
|
|
# ifdef ATW_BBPDEBUG
|
|
static void atw_rf3000_print(struct atw_softc *);
|
|
static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
|
|
# endif /* ATW_BBPDEBUG */
|
|
|
|
# ifdef ATW_SYNDEBUG
|
|
static void atw_si4126_print(struct atw_softc *);
|
|
static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
|
|
# endif /* ATW_SYNDEBUG */
|
|
|
|
#else
|
|
#define ATW_DPRINTF(x)
|
|
#define ATW_DPRINTF2(x)
|
|
#define ATW_DPRINTF3(x)
|
|
#define DPRINTF(sc, x) /* nothing */
|
|
#define DPRINTF2(sc, x) /* nothing */
|
|
#define DPRINTF3(sc, x) /* nothing */
|
|
#endif
|
|
|
|
/* ifnet methods */
|
|
int atw_init(struct ifnet *);
|
|
int atw_ioctl(struct ifnet *, u_long, void *);
|
|
void atw_start(struct ifnet *);
|
|
void atw_stop(struct ifnet *, int);
|
|
void atw_watchdog(struct ifnet *);
|
|
|
|
/* Device attachment */
|
|
void atw_attach(struct atw_softc *);
|
|
int atw_detach(struct atw_softc *);
|
|
static void atw_evcnt_attach(struct atw_softc *);
|
|
static void atw_evcnt_detach(struct atw_softc *);
|
|
|
|
/* Rx/Tx process */
|
|
int atw_add_rxbuf(struct atw_softc *, int);
|
|
void atw_idle(struct atw_softc *, u_int32_t);
|
|
void atw_rxdrain(struct atw_softc *);
|
|
void atw_txdrain(struct atw_softc *);
|
|
|
|
/* Device (de)activation and power state */
|
|
void atw_disable(struct atw_softc *);
|
|
int atw_enable(struct atw_softc *);
|
|
void atw_reset(struct atw_softc *);
|
|
|
|
/* Interrupt handlers */
|
|
void atw_linkintr(struct atw_softc *, u_int32_t);
|
|
void atw_rxintr(struct atw_softc *);
|
|
void atw_txintr(struct atw_softc *);
|
|
|
|
/* 802.11 state machine */
|
|
static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
|
|
static void atw_next_scan(void *);
|
|
static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
|
|
struct ieee80211_node *, int, int, u_int32_t);
|
|
static int atw_tune(struct atw_softc *);
|
|
|
|
/* Device initialization */
|
|
static void atw_bbp_io_init(struct atw_softc *);
|
|
static void atw_cfp_init(struct atw_softc *);
|
|
static void atw_cmdr_init(struct atw_softc *);
|
|
static void atw_ifs_init(struct atw_softc *);
|
|
static void atw_nar_init(struct atw_softc *);
|
|
static void atw_response_times_init(struct atw_softc *);
|
|
static void atw_rf_reset(struct atw_softc *);
|
|
static void atw_test1_init(struct atw_softc *);
|
|
static void atw_tofs0_init(struct atw_softc *);
|
|
static void atw_tofs2_init(struct atw_softc *);
|
|
static void atw_txlmt_init(struct atw_softc *);
|
|
static void atw_wcsr_init(struct atw_softc *);
|
|
|
|
/* Key management */
|
|
static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
|
|
static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
|
|
const u_int8_t[IEEE80211_ADDR_LEN]);
|
|
static void atw_key_update_begin(struct ieee80211com *);
|
|
static void atw_key_update_end(struct ieee80211com *);
|
|
|
|
/* RAM/ROM utilities */
|
|
static void atw_clear_sram(struct atw_softc *);
|
|
static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
|
|
static int atw_read_srom(struct atw_softc *);
|
|
|
|
/* BSS setup */
|
|
static void atw_predict_beacon(struct atw_softc *);
|
|
static void atw_start_beacon(struct atw_softc *, int);
|
|
static void atw_write_bssid(struct atw_softc *);
|
|
static void atw_write_ssid(struct atw_softc *);
|
|
static void atw_write_sup_rates(struct atw_softc *);
|
|
static void atw_write_wep(struct atw_softc *);
|
|
|
|
/* Media */
|
|
static int atw_media_change(struct ifnet *);
|
|
|
|
static void atw_filter_setup(struct atw_softc *);
|
|
|
|
/* 802.11 utilities */
|
|
static uint64_t atw_get_tsft(struct atw_softc *);
|
|
static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t,
|
|
uint32_t);
|
|
static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *);
|
|
static void atw_node_free(struct ieee80211_node *);
|
|
|
|
/*
|
|
* Tuner/transceiver/modem
|
|
*/
|
|
static void atw_bbp_io_enable(struct atw_softc *, int);
|
|
|
|
/* RFMD RF3000 Baseband Processor */
|
|
static int atw_rf3000_init(struct atw_softc *);
|
|
static int atw_rf3000_tune(struct atw_softc *, u_int);
|
|
static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
|
|
|
|
/* Silicon Laboratories Si4126 RF/IF Synthesizer */
|
|
static void atw_si4126_tune(struct atw_softc *, u_int);
|
|
static void atw_si4126_write(struct atw_softc *, u_int, u_int);
|
|
|
|
const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
|
|
const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
|
|
|
|
const char *atw_tx_state[] = {
|
|
"STOPPED",
|
|
"RUNNING - read descriptor",
|
|
"RUNNING - transmitting",
|
|
"RUNNING - filling fifo", /* XXX */
|
|
"SUSPENDED",
|
|
"RUNNING -- write descriptor",
|
|
"RUNNING -- write last descriptor",
|
|
"RUNNING - fifo full"
|
|
};
|
|
|
|
const char *atw_rx_state[] = {
|
|
"STOPPED",
|
|
"RUNNING - read descriptor",
|
|
"RUNNING - check this packet, pre-fetch next",
|
|
"RUNNING - wait for reception",
|
|
"SUSPENDED",
|
|
"RUNNING - write descriptor",
|
|
"RUNNING - flush fifo",
|
|
"RUNNING - fifo drain"
|
|
};
|
|
|
|
static inline int
|
|
is_running(struct ifnet *ifp)
|
|
{
|
|
return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
|
|
}
|
|
|
|
int
|
|
atw_activate(device_t self, enum devact act)
|
|
{
|
|
struct atw_softc *sc = device_private(self);
|
|
int rv = 0, s;
|
|
|
|
s = splnet();
|
|
switch (act) {
|
|
case DVACT_ACTIVATE:
|
|
rv = EOPNOTSUPP;
|
|
break;
|
|
|
|
case DVACT_DEACTIVATE:
|
|
if_deactivate(&sc->sc_if);
|
|
break;
|
|
}
|
|
splx(s);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* atw_enable:
|
|
*
|
|
* Enable the ADM8211 chip.
|
|
*/
|
|
int
|
|
atw_enable(struct atw_softc *sc)
|
|
{
|
|
|
|
if (ATW_IS_ENABLED(sc) == 0) {
|
|
if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "device enable failed\n");
|
|
return (EIO);
|
|
}
|
|
sc->sc_flags |= ATWF_ENABLED;
|
|
/* Power may have been removed, and WEP keys thus
|
|
* reset.
|
|
*/
|
|
sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* atw_disable:
|
|
*
|
|
* Disable the ADM8211 chip.
|
|
*/
|
|
void
|
|
atw_disable(struct atw_softc *sc)
|
|
{
|
|
if (!ATW_IS_ENABLED(sc))
|
|
return;
|
|
if (sc->sc_disable != NULL)
|
|
(*sc->sc_disable)(sc);
|
|
sc->sc_flags &= ~ATWF_ENABLED;
|
|
}
|
|
|
|
/* Returns -1 on failure. */
|
|
static int
|
|
atw_read_srom(struct atw_softc *sc)
|
|
{
|
|
struct seeprom_descriptor sd;
|
|
uint32_t test0, fail_bits;
|
|
|
|
(void)memset(&sd, 0, sizeof(sd));
|
|
|
|
test0 = ATW_READ(sc, ATW_TEST0);
|
|
|
|
switch (sc->sc_rev) {
|
|
case ATW_REVISION_BA:
|
|
case ATW_REVISION_CA:
|
|
fail_bits = ATW_TEST0_EPNE;
|
|
break;
|
|
default:
|
|
fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
|
|
break;
|
|
}
|
|
if ((test0 & fail_bits) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
|
|
return -1;
|
|
}
|
|
|
|
switch (test0 & ATW_TEST0_EPTYP_MASK) {
|
|
case ATW_TEST0_EPTYP_93c66:
|
|
ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
|
|
sc->sc_sromsz = 512;
|
|
sd.sd_chip = C56_66;
|
|
break;
|
|
case ATW_TEST0_EPTYP_93c46:
|
|
ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
|
|
sc->sc_sromsz = 128;
|
|
sd.sd_chip = C46;
|
|
break;
|
|
default:
|
|
printf("%s: unknown SROM type %" __PRIuBITS "\n",
|
|
device_xname(sc->sc_dev),
|
|
__SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
|
|
return -1;
|
|
}
|
|
|
|
sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
|
|
|
|
if (sc->sc_srom == NULL) {
|
|
aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
|
|
return -1;
|
|
}
|
|
|
|
(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
|
|
|
|
/* ADM8211 has a single 32-bit register for controlling the
|
|
* 93cx6 SROM. Bit SRS enables the serial port. There is no
|
|
* "ready" bit. The ADM8211 input/output sense is the reverse
|
|
* of read_seeprom's.
|
|
*/
|
|
sd.sd_tag = sc->sc_st;
|
|
sd.sd_bsh = sc->sc_sh;
|
|
sd.sd_regsize = 4;
|
|
sd.sd_control_offset = ATW_SPR;
|
|
sd.sd_status_offset = ATW_SPR;
|
|
sd.sd_dataout_offset = ATW_SPR;
|
|
sd.sd_CK = ATW_SPR_SCLK;
|
|
sd.sd_CS = ATW_SPR_SCS;
|
|
sd.sd_DI = ATW_SPR_SDO;
|
|
sd.sd_DO = ATW_SPR_SDI;
|
|
sd.sd_MS = ATW_SPR_SRS;
|
|
sd.sd_RDY = 0;
|
|
|
|
if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
|
|
aprint_error_dev(sc->sc_dev, "could not read SROM\n");
|
|
free(sc->sc_srom, M_DEVBUF);
|
|
return -1;
|
|
}
|
|
#ifdef ATW_DEBUG
|
|
{
|
|
int i;
|
|
ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
|
|
for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
|
|
if (((i % 8) == 0) && (i != 0)) {
|
|
ATW_DPRINTF(("\n\t"));
|
|
}
|
|
ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
|
|
}
|
|
ATW_DPRINTF(("\n"));
|
|
}
|
|
#endif /* ATW_DEBUG */
|
|
return 0;
|
|
}
|
|
|
|
#ifdef ATW_DEBUG
|
|
static void
|
|
atw_print_regs(struct atw_softc *sc, const char *where)
|
|
{
|
|
#define PRINTREG(sc, reg) \
|
|
ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
|
|
device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
|
|
|
|
ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
|
|
|
|
PRINTREG(sc, ATW_PAR);
|
|
PRINTREG(sc, ATW_FRCTL);
|
|
PRINTREG(sc, ATW_TDR);
|
|
PRINTREG(sc, ATW_WTDP);
|
|
PRINTREG(sc, ATW_RDR);
|
|
PRINTREG(sc, ATW_WRDP);
|
|
PRINTREG(sc, ATW_RDB);
|
|
PRINTREG(sc, ATW_CSR3A);
|
|
PRINTREG(sc, ATW_TDBD);
|
|
PRINTREG(sc, ATW_TDBP);
|
|
PRINTREG(sc, ATW_STSR);
|
|
PRINTREG(sc, ATW_CSR5A);
|
|
PRINTREG(sc, ATW_NAR);
|
|
PRINTREG(sc, ATW_CSR6A);
|
|
PRINTREG(sc, ATW_IER);
|
|
PRINTREG(sc, ATW_CSR7A);
|
|
PRINTREG(sc, ATW_LPC);
|
|
PRINTREG(sc, ATW_TEST1);
|
|
PRINTREG(sc, ATW_SPR);
|
|
PRINTREG(sc, ATW_TEST0);
|
|
PRINTREG(sc, ATW_WCSR);
|
|
PRINTREG(sc, ATW_WPDR);
|
|
PRINTREG(sc, ATW_GPTMR);
|
|
PRINTREG(sc, ATW_GPIO);
|
|
PRINTREG(sc, ATW_BBPCTL);
|
|
PRINTREG(sc, ATW_SYNCTL);
|
|
PRINTREG(sc, ATW_PLCPHD);
|
|
PRINTREG(sc, ATW_MMIWADDR);
|
|
PRINTREG(sc, ATW_MMIRADDR1);
|
|
PRINTREG(sc, ATW_MMIRADDR2);
|
|
PRINTREG(sc, ATW_TXBR);
|
|
PRINTREG(sc, ATW_CSR15A);
|
|
PRINTREG(sc, ATW_ALCSTAT);
|
|
PRINTREG(sc, ATW_TOFS2);
|
|
PRINTREG(sc, ATW_CMDR);
|
|
PRINTREG(sc, ATW_PCIC);
|
|
PRINTREG(sc, ATW_PMCSR);
|
|
PRINTREG(sc, ATW_PAR0);
|
|
PRINTREG(sc, ATW_PAR1);
|
|
PRINTREG(sc, ATW_MAR0);
|
|
PRINTREG(sc, ATW_MAR1);
|
|
PRINTREG(sc, ATW_ATIMDA0);
|
|
PRINTREG(sc, ATW_ABDA1);
|
|
PRINTREG(sc, ATW_BSSID0);
|
|
PRINTREG(sc, ATW_TXLMT);
|
|
PRINTREG(sc, ATW_MIBCNT);
|
|
PRINTREG(sc, ATW_BCNT);
|
|
PRINTREG(sc, ATW_TSFTH);
|
|
PRINTREG(sc, ATW_TSC);
|
|
PRINTREG(sc, ATW_SYNRF);
|
|
PRINTREG(sc, ATW_BPLI);
|
|
PRINTREG(sc, ATW_CAP0);
|
|
PRINTREG(sc, ATW_CAP1);
|
|
PRINTREG(sc, ATW_RMD);
|
|
PRINTREG(sc, ATW_CFPP);
|
|
PRINTREG(sc, ATW_TOFS0);
|
|
PRINTREG(sc, ATW_TOFS1);
|
|
PRINTREG(sc, ATW_IFST);
|
|
PRINTREG(sc, ATW_RSPT);
|
|
PRINTREG(sc, ATW_TSFTL);
|
|
PRINTREG(sc, ATW_WEPCTL);
|
|
PRINTREG(sc, ATW_WESK);
|
|
PRINTREG(sc, ATW_WEPCNT);
|
|
PRINTREG(sc, ATW_MACTEST);
|
|
PRINTREG(sc, ATW_FER);
|
|
PRINTREG(sc, ATW_FEMR);
|
|
PRINTREG(sc, ATW_FPSR);
|
|
PRINTREG(sc, ATW_FFER);
|
|
#undef PRINTREG
|
|
}
|
|
#endif /* ATW_DEBUG */
|
|
|
|
/*
|
|
* Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
|
|
*/
|
|
void
|
|
atw_attach(struct atw_softc *sc)
|
|
{
|
|
static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
|
|
};
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
int country_code, error, i, nrate, srom_major;
|
|
u_int32_t reg;
|
|
static const char *type_strings[] = {"Intersil (not supported)",
|
|
"RFMD", "Marvel (not supported)"};
|
|
|
|
sc->sc_txth = atw_txthresh_tab_lo;
|
|
|
|
SIMPLEQ_INIT(&sc->sc_txfreeq);
|
|
SIMPLEQ_INIT(&sc->sc_txdirtyq);
|
|
|
|
#ifdef ATW_DEBUG
|
|
atw_print_regs(sc, "atw_attach");
|
|
#endif /* ATW_DEBUG */
|
|
|
|
/*
|
|
* Allocate the control data structures, and create and load the
|
|
* DMA map for it.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat,
|
|
sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
|
|
1, &sc->sc_cdnseg, 0)) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
|
|
error);
|
|
goto fail_0;
|
|
}
|
|
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
|
|
sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
|
|
BUS_DMA_COHERENT)) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
|
|
error);
|
|
goto fail_1;
|
|
}
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmat,
|
|
sizeof(struct atw_control_data), 1,
|
|
sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
|
|
"error = %d\n", error);
|
|
goto fail_2;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
|
|
sc->sc_control_data, sizeof(struct atw_control_data), NULL,
|
|
0)) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
|
|
error);
|
|
goto fail_3;
|
|
}
|
|
|
|
/*
|
|
* Create the transmit buffer DMA maps.
|
|
*/
|
|
sc->sc_ntxsegs = ATW_NTXSEGS;
|
|
for (i = 0; i < ATW_TXQUEUELEN; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
sc->sc_ntxsegs, MCLBYTES, 0, 0,
|
|
&sc->sc_txsoft[i].txs_dmamap)) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
|
|
"error = %d\n", i, error);
|
|
goto fail_4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the receive buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < ATW_NRXDESC; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
|
|
"error = %d\n", i, error);
|
|
goto fail_5;
|
|
}
|
|
}
|
|
for (i = 0; i < ATW_NRXDESC; i++) {
|
|
sc->sc_rxsoft[i].rxs_mbuf = NULL;
|
|
}
|
|
|
|
switch (sc->sc_rev) {
|
|
case ATW_REVISION_AB:
|
|
case ATW_REVISION_AF:
|
|
sc->sc_sramlen = ATW_SRAM_A_SIZE;
|
|
break;
|
|
case ATW_REVISION_BA:
|
|
case ATW_REVISION_CA:
|
|
sc->sc_sramlen = ATW_SRAM_B_SIZE;
|
|
break;
|
|
}
|
|
|
|
/* Reset the chip to a known state. */
|
|
atw_reset(sc);
|
|
|
|
if (atw_read_srom(sc) == -1)
|
|
return;
|
|
|
|
sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
|
|
ATW_SR_RFTYPE_MASK);
|
|
|
|
sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
|
|
ATW_SR_BBPTYPE_MASK);
|
|
|
|
if (sc->sc_rftype >= __arraycount(type_strings)) {
|
|
aprint_error_dev(sc->sc_dev, "unknown RF\n");
|
|
return;
|
|
}
|
|
if (sc->sc_bbptype >= __arraycount(type_strings)) {
|
|
aprint_error_dev(sc->sc_dev, "unknown BBP\n");
|
|
return;
|
|
}
|
|
|
|
printf("%s: %s RF, %s BBP", device_xname(sc->sc_dev),
|
|
type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
|
|
|
|
/* XXX There exists a Linux driver which seems to use RFType = 0 for
|
|
* MARVEL. My bug, or theirs?
|
|
*/
|
|
|
|
reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
|
|
|
|
switch (sc->sc_rftype) {
|
|
case ATW_RFTYPE_INTERSIL:
|
|
reg |= ATW_SYNCTL_CS1;
|
|
break;
|
|
case ATW_RFTYPE_RFMD:
|
|
reg |= ATW_SYNCTL_CS0;
|
|
break;
|
|
case ATW_RFTYPE_MARVEL:
|
|
break;
|
|
}
|
|
|
|
sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
|
|
sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
|
|
|
|
reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
|
|
|
|
switch (sc->sc_bbptype) {
|
|
case ATW_BBPTYPE_INTERSIL:
|
|
reg |= ATW_BBPCTL_TWI;
|
|
break;
|
|
case ATW_BBPTYPE_RFMD:
|
|
reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
|
|
ATW_BBPCTL_CCA_ACTLO;
|
|
break;
|
|
case ATW_BBPTYPE_MARVEL:
|
|
break;
|
|
case ATW_C_BBPTYPE_RFMD:
|
|
printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
|
|
device_xname(sc->sc_dev));
|
|
break;
|
|
}
|
|
|
|
sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
|
|
sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
|
|
|
|
/*
|
|
* From this point forward, the attachment cannot fail. A failure
|
|
* before this point releases all resources that may have been
|
|
* allocated.
|
|
*/
|
|
sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
|
|
|
|
ATW_DPRINTF((" SROM MAC %04x%04x%04x",
|
|
htole16(sc->sc_srom[ATW_SR_MAC00]),
|
|
htole16(sc->sc_srom[ATW_SR_MAC01]),
|
|
htole16(sc->sc_srom[ATW_SR_MAC10])));
|
|
|
|
srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
|
|
ATW_SR_MAJOR_MASK);
|
|
|
|
if (srom_major < 2)
|
|
sc->sc_rf3000_options1 = 0;
|
|
else if (sc->sc_rev == ATW_REVISION_BA) {
|
|
sc->sc_rf3000_options1 =
|
|
__SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
|
|
ATW_SR_CR28_MASK);
|
|
} else
|
|
sc->sc_rf3000_options1 = 0;
|
|
|
|
sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
|
|
ATW_SR_CR29_MASK);
|
|
|
|
country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
|
|
ATW_SR_CTRY_MASK);
|
|
|
|
#define ADD_CHANNEL(_ic, _chan) do { \
|
|
_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
|
|
_ic->ic_channels[_chan].ic_freq = \
|
|
ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
|
|
} while (0)
|
|
|
|
/* Find available channels */
|
|
switch (country_code) {
|
|
case COUNTRY_MMK2: /* 1-14 */
|
|
ADD_CHANNEL(ic, 14);
|
|
/*FALLTHROUGH*/
|
|
case COUNTRY_ETSI: /* 1-13 */
|
|
for (i = 1; i <= 13; i++)
|
|
ADD_CHANNEL(ic, i);
|
|
break;
|
|
case COUNTRY_FCC: /* 1-11 */
|
|
case COUNTRY_IC: /* 1-11 */
|
|
for (i = 1; i <= 11; i++)
|
|
ADD_CHANNEL(ic, i);
|
|
break;
|
|
case COUNTRY_MMK: /* 14 */
|
|
ADD_CHANNEL(ic, 14);
|
|
break;
|
|
case COUNTRY_FRANCE: /* 10-13 */
|
|
for (i = 10; i <= 13; i++)
|
|
ADD_CHANNEL(ic, i);
|
|
break;
|
|
default: /* assume channels 10-11 */
|
|
case COUNTRY_SPAIN: /* 10-11 */
|
|
for (i = 10; i <= 11; i++)
|
|
ADD_CHANNEL(ic, i);
|
|
break;
|
|
}
|
|
|
|
/* Read the MAC address. */
|
|
reg = ATW_READ(sc, ATW_PAR0);
|
|
ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
|
|
ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
|
|
ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
|
|
ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
|
|
reg = ATW_READ(sc, ATW_PAR1);
|
|
ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
|
|
ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
|
|
|
|
if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
|
|
printf(" could not get mac address, attach failed\n");
|
|
return;
|
|
}
|
|
|
|
printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
|
|
|
|
memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
|
|
IFF_NOTRAILERS;
|
|
ifp->if_ioctl = atw_ioctl;
|
|
ifp->if_start = atw_start;
|
|
ifp->if_watchdog = atw_watchdog;
|
|
ifp->if_init = atw_init;
|
|
ifp->if_stop = atw_stop;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
ic->ic_ifp = ifp;
|
|
ic->ic_phytype = IEEE80211_T_DS;
|
|
ic->ic_opmode = IEEE80211_M_STA;
|
|
ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
|
|
IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
|
|
|
|
nrate = 0;
|
|
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
|
|
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
|
|
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
|
|
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
|
|
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
|
|
|
|
/*
|
|
* Call MI attach routines.
|
|
*/
|
|
|
|
if_attach(ifp);
|
|
ieee80211_ifattach(ic);
|
|
|
|
atw_evcnt_attach(sc);
|
|
|
|
sc->sc_newstate = ic->ic_newstate;
|
|
ic->ic_newstate = atw_newstate;
|
|
|
|
sc->sc_recv_mgmt = ic->ic_recv_mgmt;
|
|
ic->ic_recv_mgmt = atw_recv_mgmt;
|
|
|
|
sc->sc_node_free = ic->ic_node_free;
|
|
ic->ic_node_free = atw_node_free;
|
|
|
|
sc->sc_node_alloc = ic->ic_node_alloc;
|
|
ic->ic_node_alloc = atw_node_alloc;
|
|
|
|
ic->ic_crypto.cs_key_delete = atw_key_delete;
|
|
ic->ic_crypto.cs_key_set = atw_key_set;
|
|
ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
|
|
ic->ic_crypto.cs_key_update_end = atw_key_update_end;
|
|
|
|
/* possibly we should fill in our own sc_send_prresp, since
|
|
* the ADM8211 is probably sending probe responses in ad hoc
|
|
* mode.
|
|
*/
|
|
|
|
/* complete initialization */
|
|
ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
|
|
callout_init(&sc->sc_scan_ch, 0);
|
|
|
|
#if NBPFILTER > 0
|
|
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
|
|
sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
|
|
#endif
|
|
|
|
if (!pmf_device_register1(sc->sc_dev, NULL, NULL, atw_shutdown)) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"couldn't establish power handler\n");
|
|
} else
|
|
pmf_class_network_register(sc->sc_dev, &sc->sc_if);
|
|
|
|
memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
|
|
sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
|
|
sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
|
|
|
|
memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
|
|
sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
|
|
sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
|
|
|
|
ieee80211_announce(ic);
|
|
return;
|
|
|
|
/*
|
|
* Free any resources we've allocated during the failed attach
|
|
* attempt. Do this in reverse order and fall through.
|
|
*/
|
|
fail_5:
|
|
for (i = 0; i < ATW_NRXDESC; i++) {
|
|
if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
|
|
continue;
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
|
|
}
|
|
fail_4:
|
|
for (i = 0; i < ATW_TXQUEUELEN; i++) {
|
|
if (sc->sc_txsoft[i].txs_dmamap == NULL)
|
|
continue;
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_3:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_2:
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
|
|
sizeof(struct atw_control_data));
|
|
fail_1:
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
|
|
fail_0:
|
|
return;
|
|
}
|
|
|
|
static struct ieee80211_node *
|
|
atw_node_alloc(struct ieee80211_node_table *nt)
|
|
{
|
|
struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
|
|
struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
|
|
|
|
DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
|
|
return ni;
|
|
}
|
|
|
|
static void
|
|
atw_node_free(struct ieee80211_node *ni)
|
|
{
|
|
struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
|
|
|
|
DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
|
|
ether_sprintf(ni->ni_bssid)));
|
|
(*sc->sc_node_free)(ni);
|
|
}
|
|
|
|
|
|
static void
|
|
atw_test1_reset(struct atw_softc *sc)
|
|
{
|
|
switch (sc->sc_rev) {
|
|
case ATW_REVISION_BA:
|
|
if (1 /* XXX condition on transceiver type */) {
|
|
ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
|
|
}
|
|
break;
|
|
case ATW_REVISION_CA:
|
|
ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* atw_reset:
|
|
*
|
|
* Perform a soft reset on the ADM8211.
|
|
*/
|
|
void
|
|
atw_reset(struct atw_softc *sc)
|
|
{
|
|
int i;
|
|
uint32_t lpc;
|
|
|
|
ATW_WRITE(sc, ATW_NAR, 0x0);
|
|
DELAY(atw_nar_delay);
|
|
|
|
/* Reference driver has a cryptic remark indicating that this might
|
|
* power-on the chip. I know that it turns off power-saving....
|
|
*/
|
|
ATW_WRITE(sc, ATW_FRCTL, 0x0);
|
|
|
|
ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
|
|
|
|
for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
|
|
if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
|
|
break;
|
|
DELAY(atw_pseudo_milli);
|
|
}
|
|
|
|
/* ... and then pause 100ms longer for good measure. */
|
|
DELAY(atw_magic_delay1);
|
|
|
|
DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
|
|
|
|
if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
|
|
aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
|
|
|
|
/*
|
|
* Initialize the PCI Access Register.
|
|
*/
|
|
sc->sc_busmode = ATW_PAR_PBL_8DW;
|
|
|
|
ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
|
|
DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
|
|
ATW_READ(sc, ATW_PAR), sc->sc_busmode));
|
|
|
|
atw_test1_reset(sc);
|
|
|
|
/* Turn off maximum power saving, etc. */
|
|
ATW_WRITE(sc, ATW_FRCTL, 0x0);
|
|
|
|
DELAY(atw_magic_delay2);
|
|
|
|
/* Recall EEPROM. */
|
|
ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
|
|
|
|
DELAY(atw_magic_delay4);
|
|
|
|
lpc = ATW_READ(sc, ATW_LPC);
|
|
|
|
DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
|
|
|
|
/* A reset seems to affect the SRAM contents, so put them into
|
|
* a known state.
|
|
*/
|
|
atw_clear_sram(sc);
|
|
|
|
memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
|
|
}
|
|
|
|
static void
|
|
atw_clear_sram(struct atw_softc *sc)
|
|
{
|
|
memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
|
|
sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
|
|
/* XXX not for revision 0x20. */
|
|
atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
|
|
}
|
|
|
|
/* TBD atw_init
|
|
*
|
|
* set MAC based on ic->ic_bss->myaddr
|
|
* write WEP keys
|
|
* set TX rate
|
|
*/
|
|
|
|
/* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
|
|
* without receiving a beacon with the preferred BSSID & SSID.
|
|
* atw_write_bssid & atw_write_ssid set the BSSID & SSID.
|
|
*/
|
|
static void
|
|
atw_wcsr_init(struct atw_softc *sc)
|
|
{
|
|
uint32_t wcsr;
|
|
|
|
wcsr = ATW_READ(sc, ATW_WCSR);
|
|
wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
|
|
wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
|
|
ATW_WRITE(sc, ATW_WCSR, wcsr); /* XXX resets wake-up status bits */
|
|
|
|
DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
|
|
device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
|
|
}
|
|
|
|
/* Turn off power management. Set Rx store-and-forward mode. */
|
|
static void
|
|
atw_cmdr_init(struct atw_softc *sc)
|
|
{
|
|
uint32_t cmdr;
|
|
cmdr = ATW_READ(sc, ATW_CMDR);
|
|
cmdr &= ~ATW_CMDR_APM;
|
|
cmdr |= ATW_CMDR_RTE;
|
|
cmdr &= ~ATW_CMDR_DRT_MASK;
|
|
cmdr |= ATW_CMDR_DRT_SF;
|
|
|
|
ATW_WRITE(sc, ATW_CMDR, cmdr);
|
|
}
|
|
|
|
static void
|
|
atw_tofs2_init(struct atw_softc *sc)
|
|
{
|
|
uint32_t tofs2;
|
|
/* XXX this magic can probably be figured out from the RFMD docs */
|
|
#ifndef ATW_REFSLAVE
|
|
tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
|
|
__SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
|
|
__SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
|
|
__SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
|
|
__SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
|
|
__SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
|
|
__SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
|
|
__SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
|
|
#else
|
|
/* XXX new magic from reference driver source */
|
|
tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
|
|
__SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
|
|
__SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */
|
|
__SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
|
|
__SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
|
|
__SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
|
|
__SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */
|
|
__SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */
|
|
#endif
|
|
ATW_WRITE(sc, ATW_TOFS2, tofs2);
|
|
}
|
|
|
|
static void
|
|
atw_nar_init(struct atw_softc *sc)
|
|
{
|
|
ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
|
|
}
|
|
|
|
static void
|
|
atw_txlmt_init(struct atw_softc *sc)
|
|
{
|
|
ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
|
|
__SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
|
|
}
|
|
|
|
static void
|
|
atw_test1_init(struct atw_softc *sc)
|
|
{
|
|
uint32_t test1;
|
|
|
|
test1 = ATW_READ(sc, ATW_TEST1);
|
|
test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
|
|
/* XXX magic 0x1 */
|
|
test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
|
|
ATW_WRITE(sc, ATW_TEST1, test1);
|
|
}
|
|
|
|
static void
|
|
atw_rf_reset(struct atw_softc *sc)
|
|
{
|
|
/* XXX this resets an Intersil RF front-end? */
|
|
/* TBD condition on Intersil RFType? */
|
|
ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
|
|
DELAY(atw_rf_delay1);
|
|
ATW_WRITE(sc, ATW_SYNRF, 0);
|
|
DELAY(atw_rf_delay2);
|
|
}
|
|
|
|
/* Set 16 TU max duration for the contention-free period (CFP). */
|
|
static void
|
|
atw_cfp_init(struct atw_softc *sc)
|
|
{
|
|
uint32_t cfpp;
|
|
|
|
cfpp = ATW_READ(sc, ATW_CFPP);
|
|
cfpp &= ~ATW_CFPP_CFPMD;
|
|
cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
|
|
ATW_WRITE(sc, ATW_CFPP, cfpp);
|
|
}
|
|
|
|
static void
|
|
atw_tofs0_init(struct atw_softc *sc)
|
|
{
|
|
/* XXX I guess that the Cardbus clock is 22 MHz?
|
|
* I am assuming that the role of ATW_TOFS0_USCNT is
|
|
* to divide the bus clock to get a 1 MHz clock---the datasheet is not
|
|
* very clear on this point. It says in the datasheet that it is
|
|
* possible for the ADM8211 to accommodate bus speeds between 22 MHz
|
|
* and 33 MHz; maybe this is the way? I see a binary-only driver write
|
|
* these values. These values are also the power-on default.
|
|
*/
|
|
ATW_WRITE(sc, ATW_TOFS0,
|
|
__SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
|
|
ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
|
|
}
|
|
|
|
/* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
|
|
static void
|
|
atw_ifs_init(struct atw_softc *sc)
|
|
{
|
|
uint32_t ifst;
|
|
/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
|
|
* Go figure.
|
|
*/
|
|
ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
|
|
__SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
|
|
ATW_IFST_SIFS_MASK) |
|
|
__SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
|
|
__SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
|
|
|
|
ATW_WRITE(sc, ATW_IFST, ifst);
|
|
}
|
|
|
|
static void
|
|
atw_response_times_init(struct atw_softc *sc)
|
|
{
|
|
/* XXX More magic. Relates to ACK timing? The datasheet seems to
|
|
* indicate that the MAC expects at least SIFS + MIRT microseconds
|
|
* to pass after it transmits a frame that requires a response;
|
|
* it waits at most SIFS + MART microseconds for the response.
|
|
* Surely this is not the ACK timeout?
|
|
*/
|
|
ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
|
|
__SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
|
|
}
|
|
|
|
/* Set up the MMI read/write addresses for the baseband. The Tx/Rx
|
|
* engines read and write baseband registers after Rx and before
|
|
* Tx, respectively.
|
|
*/
|
|
static void
|
|
atw_bbp_io_init(struct atw_softc *sc)
|
|
{
|
|
uint32_t mmiraddr2;
|
|
|
|
/* XXX The reference driver does this, but is it *really*
|
|
* necessary?
|
|
*/
|
|
switch (sc->sc_rev) {
|
|
case ATW_REVISION_AB:
|
|
case ATW_REVISION_AF:
|
|
mmiraddr2 = 0x0;
|
|
break;
|
|
default:
|
|
mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
|
|
mmiraddr2 &=
|
|
~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
|
|
break;
|
|
}
|
|
|
|
switch (sc->sc_bbptype) {
|
|
case ATW_BBPTYPE_INTERSIL:
|
|
ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
|
|
ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
|
|
mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
|
|
break;
|
|
case ATW_BBPTYPE_MARVEL:
|
|
/* TBD find out the Marvel settings. */
|
|
break;
|
|
case ATW_BBPTYPE_RFMD:
|
|
default:
|
|
ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
|
|
ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
|
|
mmiraddr2 |= ATW_MMIRADDR2_RFMD;
|
|
break;
|
|
}
|
|
ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
|
|
ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
|
|
}
|
|
|
|
/*
|
|
* atw_init: [ ifnet interface function ]
|
|
*
|
|
* Initialize the interface. Must be called at splnet().
|
|
*/
|
|
int
|
|
atw_init(struct ifnet *ifp)
|
|
{
|
|
struct atw_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct atw_txsoft *txs;
|
|
struct atw_rxsoft *rxs;
|
|
int i, error = 0;
|
|
|
|
if ((error = atw_enable(sc)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Cancel any pending I/O. This also resets.
|
|
*/
|
|
atw_stop(ifp, 0);
|
|
|
|
DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
|
|
__func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
|
|
ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
|
|
|
|
atw_wcsr_init(sc);
|
|
|
|
atw_cmdr_init(sc);
|
|
|
|
/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
|
|
*
|
|
* XXX Set transmit power for ATIM, RTS, Beacon.
|
|
*/
|
|
ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
|
|
__SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
|
|
|
|
atw_tofs2_init(sc);
|
|
|
|
atw_nar_init(sc);
|
|
|
|
atw_txlmt_init(sc);
|
|
|
|
atw_test1_init(sc);
|
|
|
|
atw_rf_reset(sc);
|
|
|
|
atw_cfp_init(sc);
|
|
|
|
atw_tofs0_init(sc);
|
|
|
|
atw_ifs_init(sc);
|
|
|
|
/* XXX Fall asleep after one second of inactivity.
|
|
* XXX A frame may only dribble in for 65536us.
|
|
*/
|
|
ATW_WRITE(sc, ATW_RMD,
|
|
__SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
|
|
|
|
atw_response_times_init(sc);
|
|
|
|
atw_bbp_io_init(sc);
|
|
|
|
ATW_WRITE(sc, ATW_STSR, 0xffffffff);
|
|
|
|
if ((error = atw_rf3000_init(sc)) != 0)
|
|
goto out;
|
|
|
|
ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
|
|
DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
|
|
ATW_READ(sc, ATW_PAR), sc->sc_busmode));
|
|
|
|
/*
|
|
* Initialize the transmit descriptor ring.
|
|
*/
|
|
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
|
|
for (i = 0; i < ATW_NTXDESC; i++) {
|
|
sc->sc_txdescs[i].at_ctl = 0;
|
|
/* no transmit chaining */
|
|
sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
|
|
sc->sc_txdescs[i].at_buf2 =
|
|
htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
|
|
}
|
|
/* use ring mode */
|
|
sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
|
|
ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
sc->sc_txfree = ATW_NTXDESC;
|
|
sc->sc_txnext = 0;
|
|
|
|
/*
|
|
* Initialize the transmit job descriptors.
|
|
*/
|
|
SIMPLEQ_INIT(&sc->sc_txfreeq);
|
|
SIMPLEQ_INIT(&sc->sc_txdirtyq);
|
|
for (i = 0; i < ATW_TXQUEUELEN; i++) {
|
|
txs = &sc->sc_txsoft[i];
|
|
txs->txs_mbuf = NULL;
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
}
|
|
|
|
/*
|
|
* Initialize the receive descriptor and receive job
|
|
* descriptor rings.
|
|
*/
|
|
for (i = 0; i < ATW_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf == NULL) {
|
|
if ((error = atw_add_rxbuf(sc, i)) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "unable to allocate or map rx "
|
|
"buffer %d, error = %d\n",
|
|
i, error);
|
|
/*
|
|
* XXX Should attempt to run with fewer receive
|
|
* XXX buffers instead of just failing.
|
|
*/
|
|
atw_rxdrain(sc);
|
|
goto out;
|
|
}
|
|
} else
|
|
atw_init_rxdesc(sc, i);
|
|
}
|
|
sc->sc_rxptr = 0;
|
|
|
|
/*
|
|
* Initialize the interrupt mask and enable interrupts.
|
|
*/
|
|
/* normal interrupts */
|
|
sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
|
|
ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
|
|
|
|
/* abnormal interrupts */
|
|
sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
|
|
ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
|
|
ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
|
|
|
|
sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
|
|
ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
|
|
sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
|
|
sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
|
|
ATW_INTR_TRT;
|
|
|
|
sc->sc_linkint_mask &= sc->sc_inten;
|
|
sc->sc_rxint_mask &= sc->sc_inten;
|
|
sc->sc_txint_mask &= sc->sc_inten;
|
|
|
|
ATW_WRITE(sc, ATW_IER, sc->sc_inten);
|
|
ATW_WRITE(sc, ATW_STSR, 0xffffffff);
|
|
|
|
DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
|
|
device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
|
|
|
|
/*
|
|
* Give the transmit and receive rings to the ADM8211.
|
|
*/
|
|
ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
|
|
ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
|
|
|
|
sc->sc_txthresh = 0;
|
|
sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
|
|
sc->sc_txth[sc->sc_txthresh].txth_opmode;
|
|
|
|
/* common 802.11 configuration */
|
|
ic->ic_flags &= ~IEEE80211_F_IBSSON;
|
|
switch (ic->ic_opmode) {
|
|
case IEEE80211_M_STA:
|
|
break;
|
|
case IEEE80211_M_AHDEMO: /* XXX */
|
|
case IEEE80211_M_IBSS:
|
|
ic->ic_flags |= IEEE80211_F_IBSSON;
|
|
/*FALLTHROUGH*/
|
|
case IEEE80211_M_HOSTAP: /* XXX */
|
|
break;
|
|
case IEEE80211_M_MONITOR: /* XXX */
|
|
break;
|
|
}
|
|
|
|
switch (ic->ic_opmode) {
|
|
case IEEE80211_M_AHDEMO:
|
|
case IEEE80211_M_HOSTAP:
|
|
#ifndef IEEE80211_NO_HOSTAP
|
|
ic->ic_bss->ni_intval = ic->ic_lintval;
|
|
ic->ic_bss->ni_rssi = 0;
|
|
ic->ic_bss->ni_rstamp = 0;
|
|
#endif /* !IEEE80211_NO_HOSTAP */
|
|
break;
|
|
default: /* XXX */
|
|
break;
|
|
}
|
|
|
|
sc->sc_wepctl = 0;
|
|
|
|
atw_write_ssid(sc);
|
|
atw_write_sup_rates(sc);
|
|
atw_write_wep(sc);
|
|
|
|
ic->ic_state = IEEE80211_S_INIT;
|
|
|
|
/*
|
|
* Set the receive filter. This will start the transmit and
|
|
* receive processes.
|
|
*/
|
|
atw_filter_setup(sc);
|
|
|
|
/*
|
|
* Start the receive process.
|
|
*/
|
|
ATW_WRITE(sc, ATW_RDR, 0x1);
|
|
|
|
/*
|
|
* Note that the interface is now running.
|
|
*/
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/* send no beacons, yet. */
|
|
atw_start_beacon(sc, 0);
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR)
|
|
error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
|
|
else
|
|
error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
|
|
out:
|
|
if (error) {
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
sc->sc_tx_timer = 0;
|
|
ifp->if_timer = 0;
|
|
printf("%s: interface not running\n", device_xname(sc->sc_dev));
|
|
}
|
|
#ifdef ATW_DEBUG
|
|
atw_print_regs(sc, "end of init");
|
|
#endif /* ATW_DEBUG */
|
|
|
|
return (error);
|
|
}
|
|
|
|
/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
|
|
* 0: MAC control of RF3000/Si4126.
|
|
*
|
|
* Applies power, or selects RF front-end? Sets reset condition.
|
|
*
|
|
* TBD support non-RFMD BBP, non-SiLabs synth.
|
|
*/
|
|
static void
|
|
atw_bbp_io_enable(struct atw_softc *sc, int enable)
|
|
{
|
|
if (enable) {
|
|
ATW_WRITE(sc, ATW_SYNRF,
|
|
ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
|
|
DELAY(atw_bbp_io_enable_delay);
|
|
} else {
|
|
ATW_WRITE(sc, ATW_SYNRF, 0);
|
|
DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
|
|
}
|
|
}
|
|
|
|
static int
|
|
atw_tune(struct atw_softc *sc)
|
|
{
|
|
int rc;
|
|
u_int chan;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
|
|
if (chan == IEEE80211_CHAN_ANY)
|
|
panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
|
|
|
|
if (chan == sc->sc_cur_chan)
|
|
return 0;
|
|
|
|
DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
|
|
sc->sc_cur_chan, chan));
|
|
|
|
atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
|
|
|
|
atw_si4126_tune(sc, chan);
|
|
if ((rc = atw_rf3000_tune(sc, chan)) != 0)
|
|
printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
|
|
chan);
|
|
|
|
ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
|
|
DELAY(atw_nar_delay);
|
|
ATW_WRITE(sc, ATW_RDR, 0x1);
|
|
|
|
if (rc == 0) {
|
|
sc->sc_cur_chan = chan;
|
|
sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
|
|
htole16(ic->ic_curchan->ic_freq);
|
|
sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
|
|
htole16(ic->ic_curchan->ic_flags);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
#ifdef ATW_SYNDEBUG
|
|
static void
|
|
atw_si4126_print(struct atw_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
u_int addr, val;
|
|
|
|
val = 0;
|
|
|
|
if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
|
|
return;
|
|
|
|
for (addr = 0; addr <= 8; addr++) {
|
|
printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
|
|
if (atw_si4126_read(sc, addr, &val) == 0) {
|
|
printf("<unknown> (quitting print-out)\n");
|
|
break;
|
|
}
|
|
printf("%05x\n", val);
|
|
}
|
|
}
|
|
#endif /* ATW_SYNDEBUG */
|
|
|
|
/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
|
|
*
|
|
* The RF/IF synthesizer produces two reference frequencies for
|
|
* the RF2948B transceiver. The first frequency the RF2948B requires
|
|
* is two times the so-called "intermediate frequency" (IF). Since
|
|
* a SAW filter on the radio fixes the IF at 374 MHz, I program the
|
|
* Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second
|
|
* frequency required by the transceiver is the radio frequency
|
|
* (RF). This is a superheterodyne transceiver; for f(chan) the
|
|
* center frequency of the channel we are tuning, RF = f(chan) -
|
|
* IF.
|
|
*
|
|
* XXX I am told by SiLabs that the Si4126 will accept a broader range
|
|
* of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
|
|
* XINDIV2 = 1. I've tried this (it is necessary to double R) and it
|
|
* works, but I have still programmed for XINDIV2 = 1 to be safe.
|
|
*/
|
|
static void
|
|
atw_si4126_tune(struct atw_softc *sc, u_int chan)
|
|
{
|
|
u_int mhz;
|
|
u_int R;
|
|
u_int32_t gpio;
|
|
u_int16_t gain;
|
|
|
|
#ifdef ATW_SYNDEBUG
|
|
atw_si4126_print(sc);
|
|
#endif /* ATW_SYNDEBUG */
|
|
|
|
if (chan == 14)
|
|
mhz = 2484;
|
|
else
|
|
mhz = 2412 + 5 * (chan - 1);
|
|
|
|
/* Tune IF to 748 MHz to suit the IF LO input of the
|
|
* RF2494B, which is 2 x IF. No need to set an IF divider
|
|
* because an IF in 526 MHz - 952 MHz is allowed.
|
|
*
|
|
* XIN is 44.000 MHz, so divide it by two to get allowable
|
|
* range of 2-25 MHz. SiLabs tells me that this is not
|
|
* strictly necessary.
|
|
*/
|
|
|
|
if (atw_xindiv2)
|
|
R = 44;
|
|
else
|
|
R = 88;
|
|
|
|
/* Power-up RF, IF synthesizers. */
|
|
atw_si4126_write(sc, SI4126_POWER,
|
|
SI4126_POWER_PDIB|SI4126_POWER_PDRB);
|
|
|
|
/* set LPWR, too? */
|
|
atw_si4126_write(sc, SI4126_MAIN,
|
|
(atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
|
|
|
|
/* Set the phase-locked loop gain. If RF2 N > 2047, then
|
|
* set KP2 to 1.
|
|
*
|
|
* REFDIF This is different from the reference driver, which
|
|
* always sets SI4126_GAIN to 0.
|
|
*/
|
|
gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
|
|
|
|
atw_si4126_write(sc, SI4126_GAIN, gain);
|
|
|
|
/* XIN = 44 MHz.
|
|
*
|
|
* If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496,
|
|
* R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
|
|
*
|
|
* If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88
|
|
* so that 1496/88 * 44 MHz = 748 MHz.
|
|
*/
|
|
atw_si4126_write(sc, SI4126_IFN, 1496);
|
|
|
|
atw_si4126_write(sc, SI4126_IFR, R);
|
|
|
|
#ifndef ATW_REFSLAVE
|
|
/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
|
|
* then RF1 becomes the active RF synthesizer, even on the Si4126,
|
|
* which has no RF1!
|
|
*/
|
|
atw_si4126_write(sc, SI4126_RF1R, R);
|
|
|
|
atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
|
|
#endif
|
|
|
|
/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
|
|
* where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44.
|
|
* Now let's multiply it to mhz. So mhz - IF = N.
|
|
*/
|
|
atw_si4126_write(sc, SI4126_RF2R, R);
|
|
|
|
atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
|
|
|
|
/* wait 100us from power-up for RF, IF to settle */
|
|
DELAY(100);
|
|
|
|
gpio = ATW_READ(sc, ATW_GPIO);
|
|
gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
|
|
gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
|
|
|
|
if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
|
|
/* Set a Prism RF front-end to a special mode for channel 14?
|
|
*
|
|
* Apparently the SMC2635W needs this, although I don't think
|
|
* it has a Prism RF.
|
|
*/
|
|
gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
|
|
}
|
|
ATW_WRITE(sc, ATW_GPIO, gpio);
|
|
|
|
#ifdef ATW_SYNDEBUG
|
|
atw_si4126_print(sc);
|
|
#endif /* ATW_SYNDEBUG */
|
|
}
|
|
|
|
/* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
|
|
* diversity.
|
|
*
|
|
* !!!
|
|
* !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
|
|
* !!!
|
|
*/
|
|
static int
|
|
atw_rf3000_init(struct atw_softc *sc)
|
|
{
|
|
int rc = 0;
|
|
|
|
atw_bbp_io_enable(sc, 1);
|
|
|
|
/* CCA is acquisition sensitive */
|
|
rc = atw_rf3000_write(sc, RF3000_CCACTL,
|
|
__SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
|
|
|
|
if (rc != 0)
|
|
goto out;
|
|
|
|
/* enable diversity */
|
|
rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
|
|
|
|
if (rc != 0)
|
|
goto out;
|
|
|
|
/* sensible setting from a binary-only driver */
|
|
rc = atw_rf3000_write(sc, RF3000_GAINCTL,
|
|
__SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
|
|
|
|
if (rc != 0)
|
|
goto out;
|
|
|
|
/* magic from a binary-only driver */
|
|
rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
|
|
__SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
|
|
|
|
if (rc != 0)
|
|
goto out;
|
|
|
|
rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
|
|
|
|
if (rc != 0)
|
|
goto out;
|
|
|
|
/* XXX Reference driver remarks that Abocom sets this to 50.
|
|
* Meaning 0x50, I think.... 50 = 0x32, which would set a bit
|
|
* in the "reserved" area of register RF3000_OPTIONS1.
|
|
*/
|
|
rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
|
|
|
|
if (rc != 0)
|
|
goto out;
|
|
|
|
rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
|
|
|
|
if (rc != 0)
|
|
goto out;
|
|
|
|
out:
|
|
atw_bbp_io_enable(sc, 0);
|
|
return rc;
|
|
}
|
|
|
|
#ifdef ATW_BBPDEBUG
|
|
static void
|
|
atw_rf3000_print(struct atw_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
u_int addr, val;
|
|
|
|
if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
|
|
return;
|
|
|
|
for (addr = 0x01; addr <= 0x15; addr++) {
|
|
printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
|
|
if (atw_rf3000_read(sc, addr, &val) != 0) {
|
|
printf("<unknown> (quitting print-out)\n");
|
|
break;
|
|
}
|
|
printf("%08x\n", val);
|
|
}
|
|
}
|
|
#endif /* ATW_BBPDEBUG */
|
|
|
|
/* Set the power settings on the BBP for channel `chan'. */
|
|
static int
|
|
atw_rf3000_tune(struct atw_softc *sc, u_int chan)
|
|
{
|
|
int rc = 0;
|
|
u_int32_t reg;
|
|
u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
|
|
|
|
txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
|
|
lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
|
|
lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
|
|
|
|
/* odd channels: LSB, even channels: MSB */
|
|
if (chan % 2 == 1) {
|
|
txpower &= 0xFF;
|
|
lpf_cutoff &= 0xFF;
|
|
lna_gs_thresh &= 0xFF;
|
|
} else {
|
|
txpower >>= 8;
|
|
lpf_cutoff >>= 8;
|
|
lna_gs_thresh >>= 8;
|
|
}
|
|
|
|
#ifdef ATW_BBPDEBUG
|
|
atw_rf3000_print(sc);
|
|
#endif /* ATW_BBPDEBUG */
|
|
|
|
DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
|
|
"lna_gs_thresh %02x\n",
|
|
device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
|
|
|
|
atw_bbp_io_enable(sc, 1);
|
|
|
|
if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
|
|
__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
|
|
goto out;
|
|
|
|
if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
|
|
goto out;
|
|
|
|
if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
|
|
goto out;
|
|
|
|
rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
|
|
|
|
if (rc != 0)
|
|
goto out;
|
|
|
|
rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
|
|
|
|
if (rc != 0)
|
|
goto out;
|
|
|
|
#ifdef ATW_BBPDEBUG
|
|
atw_rf3000_print(sc);
|
|
#endif /* ATW_BBPDEBUG */
|
|
|
|
out:
|
|
atw_bbp_io_enable(sc, 0);
|
|
|
|
/* set beacon, rts, atim transmit power */
|
|
reg = ATW_READ(sc, ATW_PLCPHD);
|
|
reg &= ~ATW_PLCPHD_SERVICE_MASK;
|
|
reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
|
|
ATW_PLCPHD_SERVICE_MASK);
|
|
ATW_WRITE(sc, ATW_PLCPHD, reg);
|
|
DELAY(atw_plcphd_delay);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Write a register on the RF3000 baseband processor using the
|
|
* registers provided by the ADM8211 for this purpose.
|
|
*
|
|
* Return 0 on success.
|
|
*/
|
|
static int
|
|
atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
|
|
{
|
|
u_int32_t reg;
|
|
int i;
|
|
|
|
reg = sc->sc_bbpctl_wr |
|
|
__SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
|
|
__SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
|
|
|
|
for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
|
|
ATW_WRITE(sc, ATW_BBPCTL, reg);
|
|
DELAY(2 * atw_pseudo_milli);
|
|
if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i < 0) {
|
|
printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
|
|
return ETIMEDOUT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Read a register on the RF3000 baseband processor using the registers
|
|
* the ADM8211 provides for this purpose.
|
|
*
|
|
* The 7-bit register address is addr. Record the 8-bit data in the register
|
|
* in *val.
|
|
*
|
|
* Return 0 on success.
|
|
*
|
|
* XXX This does not seem to work. The ADM8211 must require more or
|
|
* different magic to read the chip than to write it. Possibly some
|
|
* of the magic I have derived from a binary-only driver concerns
|
|
* the "chip address" (see the RF3000 manual).
|
|
*/
|
|
#ifdef ATW_BBPDEBUG
|
|
static int
|
|
atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
|
|
{
|
|
u_int32_t reg;
|
|
int i;
|
|
|
|
for (i = 1000; --i >= 0; ) {
|
|
if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
|
|
break;
|
|
DELAY(100);
|
|
}
|
|
|
|
if (i < 0) {
|
|
printf("%s: start atw_rf3000_read, BBPCTL busy\n",
|
|
device_xname(sc->sc_dev));
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
|
|
|
|
ATW_WRITE(sc, ATW_BBPCTL, reg);
|
|
|
|
for (i = 1000; --i >= 0; ) {
|
|
DELAY(100);
|
|
if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
|
|
break;
|
|
}
|
|
|
|
ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
|
|
|
|
if (i < 0) {
|
|
printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
|
|
device_xname(sc->sc_dev), reg);
|
|
return ETIMEDOUT;
|
|
}
|
|
if (val != NULL)
|
|
*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
|
|
return 0;
|
|
}
|
|
#endif /* ATW_BBPDEBUG */
|
|
|
|
/* Write a register on the Si4126 RF/IF synthesizer using the registers
|
|
* provided by the ADM8211 for that purpose.
|
|
*
|
|
* val is 18 bits of data, and val is the 4-bit address of the register.
|
|
*
|
|
* Return 0 on success.
|
|
*/
|
|
static void
|
|
atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
|
|
{
|
|
uint32_t bits, mask, reg;
|
|
const int nbits = 22;
|
|
|
|
KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
|
|
KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
|
|
|
|
bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
|
|
__SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
|
|
|
|
reg = ATW_SYNRF_SELSYN;
|
|
/* reference driver: reset Si4126 serial bus to initial
|
|
* conditions?
|
|
*/
|
|
ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
|
|
ATW_WRITE(sc, ATW_SYNRF, reg);
|
|
|
|
for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
|
|
if ((bits & mask) != 0)
|
|
reg |= ATW_SYNRF_SYNDATA;
|
|
else
|
|
reg &= ~ATW_SYNRF_SYNDATA;
|
|
ATW_WRITE(sc, ATW_SYNRF, reg);
|
|
ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
|
|
ATW_WRITE(sc, ATW_SYNRF, reg);
|
|
}
|
|
ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
|
|
ATW_WRITE(sc, ATW_SYNRF, 0x0);
|
|
}
|
|
|
|
/* Read 18-bit data from the 4-bit address addr in Si4126
|
|
* RF synthesizer and write the data to *val. Return 0 on success.
|
|
*
|
|
* XXX This does not seem to work. The ADM8211 must require more or
|
|
* different magic to read the chip than to write it.
|
|
*/
|
|
#ifdef ATW_SYNDEBUG
|
|
static int
|
|
atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
|
|
{
|
|
u_int32_t reg;
|
|
int i;
|
|
|
|
KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
|
|
|
|
for (i = 1000; --i >= 0; ) {
|
|
if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
|
|
break;
|
|
DELAY(100);
|
|
}
|
|
|
|
if (i < 0) {
|
|
printf("%s: start atw_si4126_read, SYNCTL busy\n",
|
|
device_xname(sc->sc_dev));
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
|
|
|
|
ATW_WRITE(sc, ATW_SYNCTL, reg);
|
|
|
|
for (i = 1000; --i >= 0; ) {
|
|
DELAY(100);
|
|
if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
|
|
break;
|
|
}
|
|
|
|
ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
|
|
|
|
if (i < 0) {
|
|
printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
|
|
device_xname(sc->sc_dev), reg);
|
|
return ETIMEDOUT;
|
|
}
|
|
if (val != NULL)
|
|
*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
|
|
ATW_SYNCTL_DATA_MASK);
|
|
return 0;
|
|
}
|
|
#endif /* ATW_SYNDEBUG */
|
|
|
|
/* XXX is the endianness correct? test. */
|
|
#define atw_calchash(addr) \
|
|
(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
|
|
|
|
/*
|
|
* atw_filter_setup:
|
|
*
|
|
* Set the ADM8211's receive filter.
|
|
*/
|
|
static void
|
|
atw_filter_setup(struct atw_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ethercom *ec = &sc->sc_ec;
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
int hash;
|
|
u_int32_t hashes[2];
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
|
|
/* According to comments in tlp_al981_filter_setup
|
|
* (dev/ic/tulip.c) the ADMtek AL981 does not like for its
|
|
* multicast filter to be set while it is running. Hopefully
|
|
* the ADM8211 is not the same!
|
|
*/
|
|
if ((ifp->if_flags & IFF_RUNNING) != 0)
|
|
atw_idle(sc, ATW_NAR_SR);
|
|
|
|
sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
|
|
/* XXX in scan mode, do not filter packets. Maybe this is
|
|
* unnecessary.
|
|
*/
|
|
if (ic->ic_state == IEEE80211_S_SCAN ||
|
|
(ifp->if_flags & IFF_PROMISC) != 0) {
|
|
sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
|
|
goto allmulti;
|
|
}
|
|
|
|
hashes[0] = hashes[1] = 0x0;
|
|
|
|
/*
|
|
* Program the 64-bit multicast hash filter.
|
|
*/
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
|
|
ETHER_ADDR_LEN) != 0)
|
|
goto allmulti;
|
|
|
|
hash = atw_calchash(enm->enm_addrlo);
|
|
hashes[hash >> 5] |= 1 << (hash & 0x1f);
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
sc->sc_opmode |= ATW_NAR_MM;
|
|
}
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
goto setit;
|
|
|
|
allmulti:
|
|
sc->sc_opmode |= ATW_NAR_MM;
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
hashes[0] = hashes[1] = 0xffffffff;
|
|
|
|
setit:
|
|
ATW_WRITE(sc, ATW_MAR0, hashes[0]);
|
|
ATW_WRITE(sc, ATW_MAR1, hashes[1]);
|
|
ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
|
|
DELAY(atw_nar_delay);
|
|
ATW_WRITE(sc, ATW_RDR, 0x1);
|
|
|
|
DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
|
|
ATW_READ(sc, ATW_NAR), sc->sc_opmode));
|
|
}
|
|
|
|
/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
|
|
* a beacon's BSSID and SSID against the preferred BSSID and SSID
|
|
* before it will raise ATW_INTR_LINKON. When the ADM8211 receives
|
|
* no beacon with the preferred BSSID and SSID in the number of
|
|
* beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
|
|
*/
|
|
static void
|
|
atw_write_bssid(struct atw_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
u_int8_t *bssid;
|
|
|
|
bssid = ic->ic_bss->ni_bssid;
|
|
|
|
ATW_WRITE(sc, ATW_BSSID0,
|
|
__SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
|
|
__SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
|
|
__SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
|
|
__SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
|
|
|
|
ATW_WRITE(sc, ATW_ABDA1,
|
|
(ATW_READ(sc, ATW_ABDA1) &
|
|
~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
|
|
__SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
|
|
__SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
|
|
|
|
DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
|
|
ether_sprintf(sc->sc_bssid)));
|
|
DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
|
|
|
|
memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
|
|
}
|
|
|
|
/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
|
|
* 16-bit word.
|
|
*/
|
|
static void
|
|
atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
|
|
{
|
|
u_int i;
|
|
u_int8_t *ptr;
|
|
|
|
memcpy(&sc->sc_sram[ofs], buf, buflen);
|
|
|
|
KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
|
|
|
|
KASSERT(buflen + ofs <= sc->sc_sramlen);
|
|
|
|
ptr = &sc->sc_sram[ofs];
|
|
|
|
for (i = 0; i < buflen; i += 2) {
|
|
ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
|
|
__SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
|
|
DELAY(atw_writewep_delay);
|
|
|
|
ATW_WRITE(sc, ATW_WESK,
|
|
__SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
|
|
DELAY(atw_writewep_delay);
|
|
}
|
|
ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
|
|
|
|
if (sc->sc_if.if_flags & IFF_DEBUG) {
|
|
int n_octets = 0;
|
|
printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
|
|
device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
|
|
for (i = 0; i < buflen; i++) {
|
|
printf(" %02x", ptr[i]);
|
|
if (++n_octets % 24 == 0)
|
|
printf("\n");
|
|
}
|
|
if (n_octets % 24 != 0)
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
static int
|
|
atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
|
|
{
|
|
struct atw_softc *sc = ic->ic_ifp->if_softc;
|
|
u_int keyix = k->wk_keyix;
|
|
|
|
DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
|
|
|
|
if (keyix >= IEEE80211_WEP_NKID)
|
|
return 0;
|
|
if (k->wk_keylen != 0)
|
|
sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
|
|
const u_int8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
struct atw_softc *sc = ic->ic_ifp->if_softc;
|
|
|
|
DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
|
|
|
|
if (k->wk_keyix >= IEEE80211_WEP_NKID)
|
|
return 0;
|
|
|
|
sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
atw_key_update_begin(struct ieee80211com *ic)
|
|
{
|
|
#ifdef ATW_DEBUG
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct atw_softc *sc = ifp->if_softc;
|
|
#endif
|
|
|
|
DPRINTF(sc, ("%s:\n", __func__));
|
|
}
|
|
|
|
static void
|
|
atw_key_update_end(struct ieee80211com *ic)
|
|
{
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct atw_softc *sc = ifp->if_softc;
|
|
|
|
DPRINTF(sc, ("%s:\n", __func__));
|
|
|
|
if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
|
|
return;
|
|
if (ATW_IS_ENABLED(sc) == 0)
|
|
return;
|
|
atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
|
|
atw_write_wep(sc);
|
|
ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
|
|
DELAY(atw_nar_delay);
|
|
ATW_WRITE(sc, ATW_RDR, 0x1);
|
|
}
|
|
|
|
/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
|
|
static void
|
|
atw_write_wep(struct atw_softc *sc)
|
|
{
|
|
#if 0
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
u_int32_t reg;
|
|
int i;
|
|
#endif
|
|
/* SRAM shared-key record format: key0 flags key1 ... key12 */
|
|
u_int8_t buf[IEEE80211_WEP_NKID]
|
|
[1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
|
|
|
|
sc->sc_wepctl = 0;
|
|
ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
|
|
|
|
memset(&buf[0][0], 0, sizeof(buf));
|
|
|
|
#if 0
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
|
|
if (ic->ic_nw_keys[i].wk_keylen > 5) {
|
|
buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
|
|
} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
|
|
buf[i][1] = ATW_WEP_ENABLED;
|
|
} else {
|
|
buf[i][1] = 0;
|
|
continue;
|
|
}
|
|
buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
|
|
memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
|
|
ic->ic_nw_keys[i].wk_keylen - 1);
|
|
}
|
|
|
|
reg = ATW_READ(sc, ATW_MACTEST);
|
|
reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
|
|
reg &= ~ATW_MACTEST_KEYID_MASK;
|
|
reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
|
|
ATW_WRITE(sc, ATW_MACTEST, reg);
|
|
|
|
if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
|
|
sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
|
|
|
|
switch (sc->sc_rev) {
|
|
case ATW_REVISION_AB:
|
|
case ATW_REVISION_AF:
|
|
/* Bypass WEP on Rx. */
|
|
sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
|
|
sizeof(buf));
|
|
|
|
sc->sc_flags |= ATWF_WEP_SRAM_VALID;
|
|
}
|
|
|
|
static void
|
|
atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
|
|
struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
|
|
{
|
|
struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
|
|
|
|
/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
|
|
return;
|
|
|
|
(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
|
|
|
|
switch (subtype) {
|
|
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
|
|
case IEEE80211_FC0_SUBTYPE_BEACON:
|
|
if (ic->ic_opmode == IEEE80211_M_IBSS &&
|
|
ic->ic_state == IEEE80211_S_RUN) {
|
|
if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
|
|
(void)ieee80211_ibss_merge(ni);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
|
|
* In ad hoc mode, the SSID is written to the beacons sent by the
|
|
* ADM8211. In both ad hoc and infrastructure mode, beacons received
|
|
* with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
|
|
* indications.
|
|
*/
|
|
static void
|
|
atw_write_ssid(struct atw_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
|
|
* it only expects the element length, not its ID.
|
|
*/
|
|
u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
|
|
|
|
memset(buf, 0, sizeof(buf));
|
|
buf[0] = ic->ic_bss->ni_esslen;
|
|
memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
|
|
|
|
atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
|
|
roundup(1 + ic->ic_bss->ni_esslen, 2));
|
|
}
|
|
|
|
/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
|
|
* In ad hoc mode, the supported rates are written to beacons sent by the
|
|
* ADM8211.
|
|
*/
|
|
static void
|
|
atw_write_sup_rates(struct atw_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
|
|
* supported rates
|
|
*/
|
|
u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
|
|
|
|
memset(buf, 0, sizeof(buf));
|
|
|
|
buf[0] = ic->ic_bss->ni_rates.rs_nrates;
|
|
|
|
memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
|
|
ic->ic_bss->ni_rates.rs_nrates);
|
|
|
|
atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
|
|
}
|
|
|
|
/* Start/stop sending beacons. */
|
|
void
|
|
atw_start_beacon(struct atw_softc *sc, int start)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint16_t chan;
|
|
uint32_t bcnt, bpli, cap0, cap1, capinfo;
|
|
size_t len;
|
|
|
|
if (ATW_IS_ENABLED(sc) == 0)
|
|
return;
|
|
|
|
/* start beacons */
|
|
len = sizeof(struct ieee80211_frame) +
|
|
8 /* timestamp */ + 2 /* beacon interval */ +
|
|
2 /* capability info */ +
|
|
2 + ic->ic_bss->ni_esslen /* SSID element */ +
|
|
2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
|
|
3 /* DS parameters */ +
|
|
IEEE80211_CRC_LEN;
|
|
|
|
bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
|
|
cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
|
|
cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
|
|
|
|
ATW_WRITE(sc, ATW_BCNT, bcnt);
|
|
ATW_WRITE(sc, ATW_CAP1, cap1);
|
|
|
|
if (!start)
|
|
return;
|
|
|
|
/* TBD use ni_capinfo */
|
|
|
|
capinfo = 0;
|
|
if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
|
|
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
|
|
if (ic->ic_flags & IEEE80211_F_PRIVACY)
|
|
capinfo |= IEEE80211_CAPINFO_PRIVACY;
|
|
|
|
switch (ic->ic_opmode) {
|
|
case IEEE80211_M_IBSS:
|
|
len += 4; /* IBSS parameters */
|
|
capinfo |= IEEE80211_CAPINFO_IBSS;
|
|
break;
|
|
case IEEE80211_M_HOSTAP:
|
|
/* XXX 6-byte minimum TIM */
|
|
len += atw_beacon_len_adjust;
|
|
capinfo |= IEEE80211_CAPINFO_ESS;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
/* set listen interval
|
|
* XXX do software units agree w/ hardware?
|
|
*/
|
|
bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
|
|
__SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
|
|
|
|
chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
|
|
|
|
bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
|
|
cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
|
|
cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
|
|
|
|
ATW_WRITE(sc, ATW_BCNT, bcnt);
|
|
ATW_WRITE(sc, ATW_BPLI, bpli);
|
|
ATW_WRITE(sc, ATW_CAP0, cap0);
|
|
ATW_WRITE(sc, ATW_CAP1, cap1);
|
|
|
|
DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
|
|
device_xname(sc->sc_dev), bcnt));
|
|
|
|
DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
|
|
device_xname(sc->sc_dev), cap1));
|
|
}
|
|
|
|
/* Return the 32 lsb of the last TSFT divisible by ival. */
|
|
static inline uint32_t
|
|
atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
|
|
{
|
|
/* Following the reference driver's lead, I compute
|
|
*
|
|
* (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
|
|
*
|
|
* without using 64-bit arithmetic, using the following
|
|
* relationship:
|
|
*
|
|
* (0x100000000 * H + L) % m
|
|
* = ((0x100000000 % m) * H + L) % m
|
|
* = (((0xffffffff + 1) % m) * H + L) % m
|
|
* = ((0xffffffff % m + 1 % m) * H + L) % m
|
|
* = ((0xffffffff % m + 1) * H + L) % m
|
|
*/
|
|
return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
|
|
}
|
|
|
|
static uint64_t
|
|
atw_get_tsft(struct atw_softc *sc)
|
|
{
|
|
int i;
|
|
uint32_t tsfth, tsftl;
|
|
for (i = 0; i < 2; i++) {
|
|
tsfth = ATW_READ(sc, ATW_TSFTH);
|
|
tsftl = ATW_READ(sc, ATW_TSFTL);
|
|
if (ATW_READ(sc, ATW_TSFTH) == tsfth)
|
|
break;
|
|
}
|
|
return ((uint64_t)tsfth << 32) | tsftl;
|
|
}
|
|
|
|
/* If we've created an IBSS, write the TSF time in the ADM8211 to
|
|
* the ieee80211com.
|
|
*
|
|
* Predict the next target beacon transmission time (TBTT) and
|
|
* write it to the ADM8211.
|
|
*/
|
|
static void
|
|
atw_predict_beacon(struct atw_softc *sc)
|
|
{
|
|
#define TBTTOFS 20 /* TU */
|
|
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint64_t tsft;
|
|
uint32_t ival, past_even, tbtt, tsfth, tsftl;
|
|
union {
|
|
uint64_t word;
|
|
uint8_t tstamp[8];
|
|
} u;
|
|
|
|
if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
|
|
((ic->ic_opmode == IEEE80211_M_IBSS) &&
|
|
(ic->ic_flags & IEEE80211_F_SIBSS))) {
|
|
tsft = atw_get_tsft(sc);
|
|
u.word = htole64(tsft);
|
|
(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
|
|
sizeof(ic->ic_bss->ni_tstamp));
|
|
} else
|
|
tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
|
|
|
|
ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
|
|
|
|
tsftl = tsft & 0xFFFFFFFF;
|
|
tsfth = tsft >> 32;
|
|
|
|
/* We sent/received the last beacon `past' microseconds
|
|
* after the interval divided the TSF timer.
|
|
*/
|
|
past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
|
|
|
|
/* Skip ten beacons so that the TBTT cannot pass before
|
|
* we've programmed it. Ten is an arbitrary number.
|
|
*/
|
|
tbtt = past_even + ival * 10;
|
|
|
|
ATW_WRITE(sc, ATW_TOFS1,
|
|
__SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
|
|
__SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
|
|
__SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
|
|
ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
|
|
#undef TBTTOFS
|
|
}
|
|
|
|
static void
|
|
atw_next_scan(void *arg)
|
|
{
|
|
struct atw_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int s;
|
|
|
|
/* don't call atw_start w/o network interrupts blocked */
|
|
s = splnet();
|
|
if (ic->ic_state == IEEE80211_S_SCAN)
|
|
ieee80211_next_scan(ic);
|
|
splx(s);
|
|
}
|
|
|
|
/* Synchronize the hardware state with the software state. */
|
|
static int
|
|
atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
|
|
{
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct atw_softc *sc = ifp->if_softc;
|
|
enum ieee80211_state ostate;
|
|
int error = 0;
|
|
|
|
ostate = ic->ic_state;
|
|
callout_stop(&sc->sc_scan_ch);
|
|
|
|
switch (nstate) {
|
|
case IEEE80211_S_AUTH:
|
|
case IEEE80211_S_ASSOC:
|
|
atw_write_bssid(sc);
|
|
error = atw_tune(sc);
|
|
break;
|
|
case IEEE80211_S_INIT:
|
|
callout_stop(&sc->sc_scan_ch);
|
|
sc->sc_cur_chan = IEEE80211_CHAN_ANY;
|
|
atw_start_beacon(sc, 0);
|
|
break;
|
|
case IEEE80211_S_SCAN:
|
|
error = atw_tune(sc);
|
|
callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
|
|
atw_next_scan, sc);
|
|
break;
|
|
case IEEE80211_S_RUN:
|
|
error = atw_tune(sc);
|
|
atw_write_bssid(sc);
|
|
atw_write_ssid(sc);
|
|
atw_write_sup_rates(sc);
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
|
|
ic->ic_opmode == IEEE80211_M_MONITOR)
|
|
break;
|
|
|
|
/* set listen interval
|
|
* XXX do software units agree w/ hardware?
|
|
*/
|
|
ATW_WRITE(sc, ATW_BPLI,
|
|
__SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
|
|
__SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
|
|
ATW_BPLI_LI_MASK));
|
|
|
|
DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
|
|
ATW_READ(sc, ATW_BPLI)));
|
|
|
|
atw_predict_beacon(sc);
|
|
|
|
switch (ic->ic_opmode) {
|
|
case IEEE80211_M_AHDEMO:
|
|
case IEEE80211_M_HOSTAP:
|
|
case IEEE80211_M_IBSS:
|
|
atw_start_beacon(sc, 1);
|
|
break;
|
|
case IEEE80211_M_MONITOR:
|
|
case IEEE80211_M_STA:
|
|
break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
|
|
}
|
|
|
|
/*
|
|
* atw_add_rxbuf:
|
|
*
|
|
* Add a receive buffer to the indicated descriptor.
|
|
*/
|
|
int
|
|
atw_add_rxbuf(struct atw_softc *sc, int idx)
|
|
{
|
|
struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
if (rxs->rxs_mbuf != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
|
|
|
|
rxs->rxs_mbuf = m;
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
|
|
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
|
|
BUS_DMA_READ|BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
|
|
idx, error);
|
|
panic("atw_add_rxbuf"); /* XXX */
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
|
|
atw_init_rxdesc(sc, idx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Release any queued transmit buffers.
|
|
*/
|
|
void
|
|
atw_txdrain(struct atw_softc *sc)
|
|
{
|
|
struct atw_txsoft *txs;
|
|
|
|
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
|
|
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
|
|
if (txs->txs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
sc->sc_txfree += txs->txs_ndescs;
|
|
}
|
|
|
|
KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
|
|
!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
|
|
sc->sc_txfree != ATW_NTXDESC));
|
|
sc->sc_if.if_flags &= ~IFF_OACTIVE;
|
|
sc->sc_tx_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* atw_stop: [ ifnet interface function ]
|
|
*
|
|
* Stop transmission on the interface.
|
|
*/
|
|
void
|
|
atw_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct atw_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
|
|
|
|
/* Disable interrupts. */
|
|
ATW_WRITE(sc, ATW_IER, 0);
|
|
|
|
/* Stop the transmit and receive processes. */
|
|
sc->sc_opmode = 0;
|
|
ATW_WRITE(sc, ATW_NAR, 0);
|
|
DELAY(atw_nar_delay);
|
|
ATW_WRITE(sc, ATW_TDBD, 0);
|
|
ATW_WRITE(sc, ATW_TDBP, 0);
|
|
ATW_WRITE(sc, ATW_RDB, 0);
|
|
|
|
atw_txdrain(sc);
|
|
|
|
/*
|
|
* Mark the interface down and cancel the watchdog timer.
|
|
*/
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
sc->sc_tx_timer = 0;
|
|
ifp->if_timer = 0;
|
|
|
|
if (disable) {
|
|
atw_rxdrain(sc);
|
|
atw_disable(sc);
|
|
} else
|
|
atw_reset(sc);
|
|
}
|
|
|
|
/*
|
|
* atw_rxdrain:
|
|
*
|
|
* Drain the receive queue.
|
|
*/
|
|
void
|
|
atw_rxdrain(struct atw_softc *sc)
|
|
{
|
|
struct atw_rxsoft *rxs;
|
|
int i;
|
|
|
|
for (i = 0; i < ATW_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf == NULL)
|
|
continue;
|
|
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
|
|
m_freem(rxs->rxs_mbuf);
|
|
rxs->rxs_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* atw_detach:
|
|
*
|
|
* Detach an ADM8211 interface.
|
|
*/
|
|
int
|
|
atw_detach(struct atw_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
struct atw_rxsoft *rxs;
|
|
struct atw_txsoft *txs;
|
|
int i;
|
|
|
|
/*
|
|
* Succeed now if there isn't any work to do.
|
|
*/
|
|
if ((sc->sc_flags & ATWF_ATTACHED) == 0)
|
|
return (0);
|
|
|
|
pmf_device_deregister(sc->sc_dev);
|
|
|
|
callout_stop(&sc->sc_scan_ch);
|
|
|
|
ieee80211_ifdetach(&sc->sc_ic);
|
|
if_detach(ifp);
|
|
|
|
for (i = 0; i < ATW_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
|
|
m_freem(rxs->rxs_mbuf);
|
|
rxs->rxs_mbuf = NULL;
|
|
}
|
|
bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
|
|
}
|
|
for (i = 0; i < ATW_TXQUEUELEN; i++) {
|
|
txs = &sc->sc_txsoft[i];
|
|
if (txs->txs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
|
|
sizeof(struct atw_control_data));
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
|
|
|
|
if (sc->sc_srom)
|
|
free(sc->sc_srom, M_DEVBUF);
|
|
|
|
atw_evcnt_detach(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* atw_shutdown: make sure the interface is stopped at reboot time. */
|
|
bool
|
|
atw_shutdown(device_t self, int flags)
|
|
{
|
|
struct atw_softc *sc = device_private(self);
|
|
|
|
atw_stop(&sc->sc_if, 1);
|
|
return true;
|
|
}
|
|
|
|
int
|
|
atw_intr(void *arg)
|
|
{
|
|
struct atw_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
u_int32_t status, rxstatus, txstatus, linkstatus;
|
|
int handled = 0, txthresh;
|
|
|
|
#ifdef DEBUG
|
|
if (ATW_IS_ENABLED(sc) == 0)
|
|
panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
|
|
#endif
|
|
|
|
/*
|
|
* If the interface isn't running, the interrupt couldn't
|
|
* possibly have come from us.
|
|
*/
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0 ||
|
|
!device_is_active(sc->sc_dev))
|
|
return (0);
|
|
|
|
for (;;) {
|
|
status = ATW_READ(sc, ATW_STSR);
|
|
|
|
if (status)
|
|
ATW_WRITE(sc, ATW_STSR, status);
|
|
|
|
#ifdef ATW_DEBUG
|
|
#define PRINTINTR(flag) do { \
|
|
if ((status & flag) != 0) { \
|
|
printf("%s" #flag, delim); \
|
|
delim = ","; \
|
|
} \
|
|
} while (0)
|
|
|
|
if (atw_debug > 1 && status) {
|
|
const char *delim = "<";
|
|
|
|
printf("%s: reg[STSR] = %x",
|
|
device_xname(sc->sc_dev), status);
|
|
|
|
PRINTINTR(ATW_INTR_FBE);
|
|
PRINTINTR(ATW_INTR_LINKOFF);
|
|
PRINTINTR(ATW_INTR_LINKON);
|
|
PRINTINTR(ATW_INTR_RCI);
|
|
PRINTINTR(ATW_INTR_RDU);
|
|
PRINTINTR(ATW_INTR_REIS);
|
|
PRINTINTR(ATW_INTR_RPS);
|
|
PRINTINTR(ATW_INTR_TCI);
|
|
PRINTINTR(ATW_INTR_TDU);
|
|
PRINTINTR(ATW_INTR_TLT);
|
|
PRINTINTR(ATW_INTR_TPS);
|
|
PRINTINTR(ATW_INTR_TRT);
|
|
PRINTINTR(ATW_INTR_TUF);
|
|
PRINTINTR(ATW_INTR_BCNTC);
|
|
PRINTINTR(ATW_INTR_ATIME);
|
|
PRINTINTR(ATW_INTR_TBTT);
|
|
PRINTINTR(ATW_INTR_TSCZ);
|
|
PRINTINTR(ATW_INTR_TSFTF);
|
|
printf(">\n");
|
|
}
|
|
#undef PRINTINTR
|
|
#endif /* ATW_DEBUG */
|
|
|
|
if ((status & sc->sc_inten) == 0)
|
|
break;
|
|
|
|
handled = 1;
|
|
|
|
rxstatus = status & sc->sc_rxint_mask;
|
|
txstatus = status & sc->sc_txint_mask;
|
|
linkstatus = status & sc->sc_linkint_mask;
|
|
|
|
if (linkstatus) {
|
|
atw_linkintr(sc, linkstatus);
|
|
}
|
|
|
|
if (rxstatus) {
|
|
/* Grab any new packets. */
|
|
atw_rxintr(sc);
|
|
|
|
if (rxstatus & ATW_INTR_RDU) {
|
|
printf("%s: receive ring overrun\n",
|
|
device_xname(sc->sc_dev));
|
|
/* Get the receive process going again. */
|
|
ATW_WRITE(sc, ATW_RDR, 0x1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (txstatus) {
|
|
/* Sweep up transmit descriptors. */
|
|
atw_txintr(sc);
|
|
|
|
if (txstatus & ATW_INTR_TLT) {
|
|
DPRINTF(sc, ("%s: tx lifetime exceeded\n",
|
|
device_xname(sc->sc_dev)));
|
|
}
|
|
|
|
if (txstatus & ATW_INTR_TRT) {
|
|
DPRINTF(sc, ("%s: tx retry limit exceeded\n",
|
|
device_xname(sc->sc_dev)));
|
|
}
|
|
|
|
/* If Tx under-run, increase our transmit threshold
|
|
* if another is available.
|
|
*/
|
|
txthresh = sc->sc_txthresh + 1;
|
|
if ((txstatus & ATW_INTR_TUF) &&
|
|
sc->sc_txth[txthresh].txth_name != NULL) {
|
|
/* Idle the transmit process. */
|
|
atw_idle(sc, ATW_NAR_ST);
|
|
|
|
sc->sc_txthresh = txthresh;
|
|
sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
|
|
sc->sc_opmode |=
|
|
sc->sc_txth[txthresh].txth_opmode;
|
|
printf("%s: transmit underrun; new "
|
|
"threshold: %s\n", device_xname(sc->sc_dev),
|
|
sc->sc_txth[txthresh].txth_name);
|
|
|
|
/* Set the new threshold and restart
|
|
* the transmit process.
|
|
*/
|
|
ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
|
|
DELAY(atw_nar_delay);
|
|
ATW_WRITE(sc, ATW_RDR, 0x1);
|
|
/* XXX Log every Nth underrun from
|
|
* XXX now on?
|
|
*/
|
|
}
|
|
}
|
|
|
|
if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
|
|
if (status & ATW_INTR_TPS)
|
|
printf("%s: transmit process stopped\n",
|
|
device_xname(sc->sc_dev));
|
|
if (status & ATW_INTR_RPS)
|
|
printf("%s: receive process stopped\n",
|
|
device_xname(sc->sc_dev));
|
|
(void)atw_init(ifp);
|
|
break;
|
|
}
|
|
|
|
if (status & ATW_INTR_FBE) {
|
|
aprint_error_dev(sc->sc_dev, "fatal bus error\n");
|
|
(void)atw_init(ifp);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Not handled:
|
|
*
|
|
* Transmit buffer unavailable -- normal
|
|
* condition, nothing to do, really.
|
|
*
|
|
* Early receive interrupt -- not available on
|
|
* all chips, we just use RI. We also only
|
|
* use single-segment receive DMA, so this
|
|
* is mostly useless.
|
|
*
|
|
* TBD others
|
|
*/
|
|
}
|
|
|
|
/* Try to get more packets going. */
|
|
atw_start(ifp);
|
|
|
|
return (handled);
|
|
}
|
|
|
|
/*
|
|
* atw_idle:
|
|
*
|
|
* Cause the transmit and/or receive processes to go idle.
|
|
*
|
|
* XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
|
|
* process in STSR if I clear SR or ST after the process has already
|
|
* ceased. Fair enough. But the Rx process status bits in ATW_TEST0
|
|
* do not seem to be too reliable. Perhaps I have the sense of the
|
|
* Rx bits switched with the Tx bits?
|
|
*/
|
|
void
|
|
atw_idle(struct atw_softc *sc, u_int32_t bits)
|
|
{
|
|
u_int32_t ackmask = 0, opmode, stsr, test0;
|
|
int i, s;
|
|
|
|
s = splnet();
|
|
|
|
opmode = sc->sc_opmode & ~bits;
|
|
|
|
if (bits & ATW_NAR_SR)
|
|
ackmask |= ATW_INTR_RPS;
|
|
|
|
if (bits & ATW_NAR_ST) {
|
|
ackmask |= ATW_INTR_TPS;
|
|
/* set ATW_NAR_HF to flush TX FIFO. */
|
|
opmode |= ATW_NAR_HF;
|
|
}
|
|
|
|
ATW_WRITE(sc, ATW_NAR, opmode);
|
|
DELAY(atw_nar_delay);
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
stsr = ATW_READ(sc, ATW_STSR);
|
|
if ((stsr & ackmask) == ackmask)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
|
|
|
|
if ((stsr & ackmask) == ackmask)
|
|
goto out;
|
|
|
|
test0 = ATW_READ(sc, ATW_TEST0);
|
|
|
|
if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
|
|
(test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
|
|
printf("%s: transmit process not idle [%s]\n",
|
|
device_xname(sc->sc_dev),
|
|
atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
|
|
printf("%s: bits %08x test0 %08x stsr %08x\n",
|
|
device_xname(sc->sc_dev), bits, test0, stsr);
|
|
}
|
|
|
|
if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
|
|
(test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
|
|
DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
|
|
device_xname(sc->sc_dev),
|
|
atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
|
|
DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
|
|
device_xname(sc->sc_dev), bits, test0, stsr));
|
|
}
|
|
out:
|
|
if ((bits & ATW_NAR_ST) != 0)
|
|
atw_txdrain(sc);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* atw_linkintr:
|
|
*
|
|
* Helper; handle link-status interrupts.
|
|
*/
|
|
void
|
|
atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
if (ic->ic_state != IEEE80211_S_RUN)
|
|
return;
|
|
|
|
if (linkstatus & ATW_INTR_LINKON) {
|
|
DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
|
|
sc->sc_rescan_timer = 0;
|
|
} else if (linkstatus & ATW_INTR_LINKOFF) {
|
|
DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
|
|
if (ic->ic_opmode != IEEE80211_M_STA)
|
|
return;
|
|
sc->sc_rescan_timer = 3;
|
|
sc->sc_if.if_timer = 1;
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
|
|
{
|
|
if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
|
|
return 0;
|
|
if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
|
|
return 0;
|
|
return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
|
|
}
|
|
|
|
/*
|
|
* atw_rxintr:
|
|
*
|
|
* Helper; handle receive interrupts.
|
|
*/
|
|
void
|
|
atw_rxintr(struct atw_softc *sc)
|
|
{
|
|
static int rate_tbl[] = {2, 4, 11, 22, 44};
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni;
|
|
struct ieee80211_frame_min *wh;
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
struct atw_rxsoft *rxs;
|
|
struct mbuf *m;
|
|
u_int32_t rxstat;
|
|
int i, len, rate, rate0;
|
|
u_int32_t rssi, ctlrssi;
|
|
|
|
for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
|
|
ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
|
|
ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
|
|
rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
|
|
|
|
if (rxstat & ATW_RXSTAT_OWN)
|
|
break; /* We have processed all receive buffers. */
|
|
|
|
DPRINTF3(sc,
|
|
("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
|
|
device_xname(sc->sc_dev),
|
|
rxstat, ctlrssi,
|
|
le32toh(sc->sc_rxdescs[i].ar_buf1),
|
|
le32toh(sc->sc_rxdescs[i].ar_buf2)));
|
|
|
|
/*
|
|
* Make sure the packet fits in one buffer. This should
|
|
* always be the case.
|
|
*/
|
|
if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
|
|
(ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
|
|
printf("%s: incoming packet spilled, resetting\n",
|
|
device_xname(sc->sc_dev));
|
|
(void)atw_init(ifp);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If an error occurred, update stats, clear the status
|
|
* word, and leave the packet buffer in place. It will
|
|
* simply be reused the next time the ring comes around.
|
|
*/
|
|
if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
|
|
#define PRINTERR(bit, str) \
|
|
if (rxstat & (bit)) \
|
|
aprint_error_dev(sc->sc_dev, "receive error: %s\n", \
|
|
str)
|
|
ifp->if_ierrors++;
|
|
PRINTERR(ATW_RXSTAT_DE, "descriptor error");
|
|
PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
|
|
#if 0
|
|
PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
|
|
PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
|
|
PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
|
|
PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
|
|
#endif
|
|
#undef PRINTERR
|
|
atw_init_rxdesc(sc, i);
|
|
continue;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
|
|
/*
|
|
* No errors; receive the packet. Note the ADM8211
|
|
* includes the CRC in promiscuous mode.
|
|
*/
|
|
len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
|
|
|
|
/*
|
|
* Allocate a new mbuf cluster. If that fails, we are
|
|
* out of memory, and must drop the packet and recycle
|
|
* the buffer that's already attached to this descriptor.
|
|
*/
|
|
m = rxs->rxs_mbuf;
|
|
if (atw_add_rxbuf(sc, i) != 0) {
|
|
ifp->if_ierrors++;
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
atw_init_rxdesc(sc, i);
|
|
continue;
|
|
}
|
|
|
|
ifp->if_ipackets++;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
|
|
|
|
rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
|
|
|
|
/* The RSSI comes straight from a register in the
|
|
* baseband processor. I know that for the RF3000,
|
|
* the RSSI register also contains the antenna-selection
|
|
* bits. Mask those off.
|
|
*
|
|
* TBD Treat other basebands.
|
|
* TBD Use short-preamble bit and such in RF3000_RXSTAT.
|
|
*/
|
|
if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
|
|
rssi = ctlrssi & RF3000_RSSI_MASK;
|
|
else
|
|
rssi = ctlrssi;
|
|
|
|
#if NBPFILTER > 0
|
|
/* Pass this up to any BPF listeners. */
|
|
if (sc->sc_radiobpf != NULL) {
|
|
struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
|
|
|
|
tap->ar_rate = rate;
|
|
|
|
/* TBD verify units are dB */
|
|
tap->ar_antsignal = (int)rssi;
|
|
if (sc->sc_opmode & ATW_NAR_PR)
|
|
tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
|
|
else
|
|
tap->ar_flags = 0;
|
|
|
|
if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
|
|
tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
|
|
|
|
bpf_mtap2(sc->sc_radiobpf, tap,
|
|
sizeof(sc->sc_rxtapu), m);
|
|
}
|
|
#endif /* NBPFILTER > 0 */
|
|
|
|
sc->sc_recv_ev.ev_count++;
|
|
|
|
if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
|
|
if (rxstat & ATW_RXSTAT_CRC16E)
|
|
sc->sc_crc16e_ev.ev_count++;
|
|
if (rxstat & ATW_RXSTAT_CRC32E)
|
|
sc->sc_crc32e_ev.ev_count++;
|
|
if (rxstat & ATW_RXSTAT_ICVE)
|
|
sc->sc_icve_ev.ev_count++;
|
|
if (rxstat & ATW_RXSTAT_SFDE)
|
|
sc->sc_sfde_ev.ev_count++;
|
|
if (rxstat & ATW_RXSTAT_SIGE)
|
|
sc->sc_sige_ev.ev_count++;
|
|
ifp->if_ierrors++;
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
|
|
if (sc->sc_opmode & ATW_NAR_PR)
|
|
m_adj(m, -IEEE80211_CRC_LEN);
|
|
|
|
wh = mtod(m, struct ieee80211_frame_min *);
|
|
ni = ieee80211_find_rxnode(ic, wh);
|
|
#if 0
|
|
if (atw_hw_decrypted(sc, wh)) {
|
|
wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
|
|
DPRINTF(sc, ("%s: hw decrypted\n", __func__));
|
|
}
|
|
#endif
|
|
ieee80211_input(ic, m, ni, (int)rssi, 0);
|
|
ieee80211_free_node(ni);
|
|
}
|
|
|
|
/* Update the receive pointer. */
|
|
sc->sc_rxptr = i;
|
|
}
|
|
|
|
/*
|
|
* atw_txintr:
|
|
*
|
|
* Helper; handle transmit interrupts.
|
|
*/
|
|
void
|
|
atw_txintr(struct atw_softc *sc)
|
|
{
|
|
static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
struct atw_txsoft *txs;
|
|
u_int32_t txstat;
|
|
|
|
DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
|
|
device_xname(sc->sc_dev), sc->sc_flags));
|
|
|
|
/*
|
|
* Go through our Tx list and free mbufs for those
|
|
* frames that have been transmitted.
|
|
*/
|
|
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
|
|
ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
#ifdef ATW_DEBUG
|
|
if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
|
|
int i;
|
|
printf(" txsoft %p transmit chain:\n", txs);
|
|
ATW_CDTXSYNC(sc, txs->txs_firstdesc,
|
|
txs->txs_ndescs - 1,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
|
|
printf(" descriptor %d:\n", i);
|
|
printf(" at_status: 0x%08x\n",
|
|
le32toh(sc->sc_txdescs[i].at_stat));
|
|
printf(" at_flags: 0x%08x\n",
|
|
le32toh(sc->sc_txdescs[i].at_flags));
|
|
printf(" at_buf1: 0x%08x\n",
|
|
le32toh(sc->sc_txdescs[i].at_buf1));
|
|
printf(" at_buf2: 0x%08x\n",
|
|
le32toh(sc->sc_txdescs[i].at_buf2));
|
|
if (i == txs->txs_lastdesc)
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
|
|
if (txstat & ATW_TXSTAT_OWN)
|
|
break;
|
|
|
|
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
|
|
|
|
sc->sc_txfree += txs->txs_ndescs;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
|
|
0, txs->txs_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
|
|
|
|
KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
|
|
sc->sc_txfree == 0));
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
if ((ifp->if_flags & IFF_DEBUG) != 0 &&
|
|
(txstat & ATW_TXSTAT_ERRMASK) != 0) {
|
|
snprintb(txstat_buf, sizeof(txstat_buf),
|
|
ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
|
|
printf("%s: txstat %s %" __PRIuBITS "\n",
|
|
device_xname(sc->sc_dev), txstat_buf,
|
|
__SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
|
|
}
|
|
|
|
/*
|
|
* Check for errors and collisions.
|
|
*/
|
|
if (txstat & ATW_TXSTAT_TUF)
|
|
sc->sc_stats.ts_tx_tuf++;
|
|
if (txstat & ATW_TXSTAT_TLT)
|
|
sc->sc_stats.ts_tx_tlt++;
|
|
if (txstat & ATW_TXSTAT_TRT)
|
|
sc->sc_stats.ts_tx_trt++;
|
|
if (txstat & ATW_TXSTAT_TRO)
|
|
sc->sc_stats.ts_tx_tro++;
|
|
if (txstat & ATW_TXSTAT_SOFBR) {
|
|
sc->sc_stats.ts_tx_sofbr++;
|
|
}
|
|
|
|
if ((txstat & ATW_TXSTAT_ES) == 0)
|
|
ifp->if_collisions +=
|
|
__SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
|
|
else
|
|
ifp->if_oerrors++;
|
|
|
|
ifp->if_opackets++;
|
|
}
|
|
|
|
/*
|
|
* If there are no more pending transmissions, cancel the watchdog
|
|
* timer.
|
|
*/
|
|
if (txs == NULL) {
|
|
KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
|
|
sc->sc_tx_timer = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* atw_watchdog: [ifnet interface function]
|
|
*
|
|
* Watchdog timer handler.
|
|
*/
|
|
void
|
|
atw_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct atw_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
ifp->if_timer = 0;
|
|
if (ATW_IS_ENABLED(sc) == 0)
|
|
return;
|
|
|
|
if (sc->sc_rescan_timer) {
|
|
if (--sc->sc_rescan_timer == 0)
|
|
(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
|
|
}
|
|
if (sc->sc_tx_timer) {
|
|
if (--sc->sc_tx_timer == 0 &&
|
|
!SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
|
|
printf("%s: transmit timeout\n", ifp->if_xname);
|
|
ifp->if_oerrors++;
|
|
(void)atw_init(ifp);
|
|
atw_start(ifp);
|
|
}
|
|
}
|
|
if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
|
|
ifp->if_timer = 1;
|
|
ieee80211_watchdog(ic);
|
|
}
|
|
|
|
static void
|
|
atw_evcnt_detach(struct atw_softc *sc)
|
|
{
|
|
evcnt_detach(&sc->sc_sige_ev);
|
|
evcnt_detach(&sc->sc_sfde_ev);
|
|
evcnt_detach(&sc->sc_icve_ev);
|
|
evcnt_detach(&sc->sc_crc32e_ev);
|
|
evcnt_detach(&sc->sc_crc16e_ev);
|
|
evcnt_detach(&sc->sc_recv_ev);
|
|
}
|
|
|
|
static void
|
|
atw_evcnt_attach(struct atw_softc *sc)
|
|
{
|
|
evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
|
|
NULL, sc->sc_if.if_xname, "recv");
|
|
evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
|
|
&sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
|
|
evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
|
|
&sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
|
|
evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
|
|
&sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
|
|
evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
|
|
&sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
|
|
evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
|
|
&sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
|
|
}
|
|
|
|
#ifdef ATW_DEBUG
|
|
static void
|
|
atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
|
|
{
|
|
struct atw_softc *sc = ifp->if_softc;
|
|
struct mbuf *m;
|
|
int i, noctets = 0;
|
|
|
|
printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
|
|
m0->m_pkthdr.len);
|
|
|
|
for (m = m0; m; m = m->m_next) {
|
|
if (m->m_len == 0)
|
|
continue;
|
|
for (i = 0; i < m->m_len; i++) {
|
|
printf(" %02x", ((u_int8_t*)m->m_data)[i]);
|
|
if (++noctets % 24 == 0)
|
|
printf("\n");
|
|
}
|
|
}
|
|
printf("%s%s: %d bytes emitted\n",
|
|
(noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
|
|
}
|
|
#endif /* ATW_DEBUG */
|
|
|
|
/*
|
|
* atw_start: [ifnet interface function]
|
|
*
|
|
* Start packet transmission on the interface.
|
|
*/
|
|
void
|
|
atw_start(struct ifnet *ifp)
|
|
{
|
|
struct atw_softc *sc = ifp->if_softc;
|
|
struct ieee80211_key *k;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni;
|
|
struct ieee80211_frame_min *whm;
|
|
struct ieee80211_frame *wh;
|
|
struct atw_frame *hh;
|
|
struct mbuf *m0, *m;
|
|
struct atw_txsoft *txs, *last_txs;
|
|
struct atw_txdesc *txd;
|
|
int npkt, rate;
|
|
bus_dmamap_t dmamap;
|
|
int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
|
|
|
|
DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
|
|
device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
/*
|
|
* Remember the previous number of free descriptors and
|
|
* the first descriptor we'll use.
|
|
*/
|
|
ofree = sc->sc_txfree;
|
|
firsttx = lasttx = sc->sc_txnext;
|
|
|
|
DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
|
|
device_xname(sc->sc_dev), ofree, firsttx));
|
|
|
|
/*
|
|
* Loop through the send queue, setting up transmit descriptors
|
|
* until we drain the queue, or use up all available transmit
|
|
* descriptors.
|
|
*/
|
|
while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
|
|
sc->sc_txfree != 0) {
|
|
|
|
/*
|
|
* Grab a packet off the management queue, if it
|
|
* is not empty. Otherwise, from the data queue.
|
|
*/
|
|
IF_DEQUEUE(&ic->ic_mgtq, m0);
|
|
if (m0 != NULL) {
|
|
ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
|
|
m0->m_pkthdr.rcvif = NULL;
|
|
} else if (ic->ic_state != IEEE80211_S_RUN)
|
|
break; /* send no data until associated */
|
|
else {
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
#if NBPFILTER > 0
|
|
if (ifp->if_bpf != NULL)
|
|
bpf_mtap(ifp->if_bpf, m0);
|
|
#endif /* NBPFILTER > 0 */
|
|
ni = ieee80211_find_txnode(ic,
|
|
mtod(m0, struct ether_header *)->ether_dhost);
|
|
if (ni == NULL) {
|
|
ifp->if_oerrors++;
|
|
break;
|
|
}
|
|
if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
|
|
ieee80211_free_node(ni);
|
|
ifp->if_oerrors++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
rate = MAX(ieee80211_get_rate(ni), 2);
|
|
|
|
whm = mtod(m0, struct ieee80211_frame_min *);
|
|
|
|
if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
|
|
k = NULL;
|
|
else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
|
|
m_freem(m0);
|
|
ieee80211_free_node(ni);
|
|
ifp->if_oerrors++;
|
|
break;
|
|
}
|
|
|
|
if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
|
|
ic->ic_flags, ic->ic_fragthreshold, rate,
|
|
&txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
|
|
DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
|
|
m_freem(m0);
|
|
break;
|
|
}
|
|
|
|
/* XXX Misleading if fragmentation is enabled. Better
|
|
* to fragment in software?
|
|
*/
|
|
*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Pass the packet to any BPF listeners.
|
|
*/
|
|
if (ic->ic_rawbpf != NULL)
|
|
bpf_mtap((void *)ic->ic_rawbpf, m0);
|
|
|
|
if (sc->sc_radiobpf != NULL) {
|
|
struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
|
|
|
|
tap->at_rate = rate;
|
|
|
|
bpf_mtap2(sc->sc_radiobpf, tap,
|
|
sizeof(sc->sc_txtapu), m0);
|
|
}
|
|
#endif /* NBPFILTER > 0 */
|
|
|
|
M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
|
|
|
|
if (ni != NULL)
|
|
ieee80211_free_node(ni);
|
|
|
|
if (m0 == NULL) {
|
|
ifp->if_oerrors++;
|
|
break;
|
|
}
|
|
|
|
/* just to make sure. */
|
|
m0 = m_pullup(m0, sizeof(struct atw_frame));
|
|
|
|
if (m0 == NULL) {
|
|
ifp->if_oerrors++;
|
|
break;
|
|
}
|
|
|
|
hh = mtod(m0, struct atw_frame *);
|
|
wh = &hh->atw_ihdr;
|
|
|
|
/* Copy everything we need from the 802.11 header:
|
|
* Frame Control; address 1, address 3, or addresses
|
|
* 3 and 4. NIC fills in BSSID, SA.
|
|
*/
|
|
if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
|
|
if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
|
|
panic("%s: illegal WDS frame",
|
|
device_xname(sc->sc_dev));
|
|
memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
|
|
} else
|
|
memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
|
|
|
|
*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
|
|
|
|
/* initialize remaining Tx parameters */
|
|
memset(&hh->u, 0, sizeof(hh->u));
|
|
|
|
hh->atw_rate = rate * 5;
|
|
/* XXX this could be incorrect if M_FCS. _encap should
|
|
* probably strip FCS just in case it sticks around in
|
|
* bridged packets.
|
|
*/
|
|
hh->atw_service = 0x00; /* XXX guess */
|
|
hh->atw_paylen = htole16(m0->m_pkthdr.len -
|
|
sizeof(struct atw_frame));
|
|
|
|
hh->atw_fragthr = htole16(ic->ic_fragthreshold);
|
|
hh->atw_rtylmt = 3;
|
|
hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
|
|
#if 0
|
|
if (do_encrypt) {
|
|
hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
|
|
hh->atw_keyid = ic->ic_def_txkey;
|
|
}
|
|
#endif
|
|
|
|
hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
|
|
hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
|
|
if (txs->txs_d0.d_residue)
|
|
hh->atw_head_plcplen |= htole16(0x8000);
|
|
if (txs->txs_dn.d_residue)
|
|
hh->atw_tail_plcplen |= htole16(0x8000);
|
|
hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
|
|
hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
|
|
|
|
/* never fragment multicast frames */
|
|
if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
|
|
hh->atw_fragthr = htole16(ic->ic_fragthreshold);
|
|
} else if (sc->sc_flags & ATWF_RTSCTS) {
|
|
hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
|
|
}
|
|
|
|
#ifdef ATW_DEBUG
|
|
hh->atw_fragnum = 0;
|
|
|
|
if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
|
|
printf("%s: dst = %s, rate = 0x%02x, "
|
|
"service = 0x%02x, paylen = 0x%04x\n",
|
|
device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
|
|
hh->atw_rate, hh->atw_service, hh->atw_paylen);
|
|
|
|
printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
|
|
"dur1 = 0x%04x, dur2 = 0x%04x, "
|
|
"dur3 = 0x%04x, rts_dur = 0x%04x\n",
|
|
device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
|
|
hh->atw_tail_plcplen, hh->atw_head_plcplen,
|
|
hh->atw_tail_dur, hh->atw_head_dur);
|
|
|
|
printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
|
|
"fragnum = 0x%02x, rtylmt = 0x%04x\n",
|
|
device_xname(sc->sc_dev), hh->atw_hdrctl,
|
|
hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
|
|
|
|
printf("%s: keyid = %d\n",
|
|
device_xname(sc->sc_dev), hh->atw_keyid);
|
|
|
|
atw_dump_pkt(ifp, m0);
|
|
}
|
|
#endif /* ATW_DEBUG */
|
|
|
|
dmamap = txs->txs_dmamap;
|
|
|
|
/*
|
|
* Load the DMA map. Copy and try (once) again if the packet
|
|
* didn't fit in the alloted number of segments.
|
|
*/
|
|
for (first = 1;
|
|
(error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
|
|
BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
|
|
first = 0) {
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
|
|
break;
|
|
}
|
|
if (m0->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
|
|
"cluster\n");
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
}
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
|
|
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
|
|
m_freem(m0);
|
|
m0 = m;
|
|
m = NULL;
|
|
}
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
|
|
"error = %d\n", error);
|
|
m_freem(m0);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Ensure we have enough descriptors free to describe
|
|
* the packet.
|
|
*/
|
|
if (dmamap->dm_nsegs > sc->sc_txfree) {
|
|
/*
|
|
* Not enough free descriptors to transmit
|
|
* this packet. Unload the DMA map and
|
|
* drop the packet. Notify the upper layer
|
|
* that there are no more slots left.
|
|
*
|
|
* XXX We could allocate an mbuf and copy, but
|
|
* XXX it is worth it?
|
|
*/
|
|
bus_dmamap_unload(sc->sc_dmat, dmamap);
|
|
m_freem(m0);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
|
|
*/
|
|
|
|
/* Sync the DMA map. */
|
|
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* XXX arbitrary retry limit; 8 because I have seen it in
|
|
* use already and maybe 0 means "no tries" !
|
|
*/
|
|
ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
|
|
|
|
DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
|
|
device_xname(sc->sc_dev), rate * 5));
|
|
ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
|
|
|
|
/*
|
|
* Initialize the transmit descriptors.
|
|
*/
|
|
for (nexttx = sc->sc_txnext, seg = 0;
|
|
seg < dmamap->dm_nsegs;
|
|
seg++, nexttx = ATW_NEXTTX(nexttx)) {
|
|
/*
|
|
* If this is the first descriptor we're
|
|
* enqueueing, don't set the OWN bit just
|
|
* yet. That could cause a race condition.
|
|
* We'll do it below.
|
|
*/
|
|
txd = &sc->sc_txdescs[nexttx];
|
|
txd->at_ctl = ctl |
|
|
((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
|
|
|
|
txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
|
|
txd->at_flags =
|
|
htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
|
|
ATW_TXFLAG_TBS1_MASK)) |
|
|
((nexttx == (ATW_NTXDESC - 1))
|
|
? htole32(ATW_TXFLAG_TER) : 0);
|
|
lasttx = nexttx;
|
|
}
|
|
|
|
/* Set `first segment' and `last segment' appropriately. */
|
|
sc->sc_txdescs[sc->sc_txnext].at_flags |=
|
|
htole32(ATW_TXFLAG_FS);
|
|
sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
|
|
|
|
#ifdef ATW_DEBUG
|
|
if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
|
|
printf(" txsoft %p transmit chain:\n", txs);
|
|
for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
|
|
printf(" descriptor %d:\n", seg);
|
|
printf(" at_ctl: 0x%08x\n",
|
|
le32toh(sc->sc_txdescs[seg].at_ctl));
|
|
printf(" at_flags: 0x%08x\n",
|
|
le32toh(sc->sc_txdescs[seg].at_flags));
|
|
printf(" at_buf1: 0x%08x\n",
|
|
le32toh(sc->sc_txdescs[seg].at_buf1));
|
|
printf(" at_buf2: 0x%08x\n",
|
|
le32toh(sc->sc_txdescs[seg].at_buf2));
|
|
if (seg == lasttx)
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Sync the descriptors we're using. */
|
|
ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Store a pointer to the packet so we can free it later,
|
|
* and remember what txdirty will be once the packet is
|
|
* done.
|
|
*/
|
|
txs->txs_mbuf = m0;
|
|
txs->txs_firstdesc = sc->sc_txnext;
|
|
txs->txs_lastdesc = lasttx;
|
|
txs->txs_ndescs = dmamap->dm_nsegs;
|
|
|
|
/* Advance the tx pointer. */
|
|
sc->sc_txfree -= dmamap->dm_nsegs;
|
|
sc->sc_txnext = nexttx;
|
|
|
|
SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
|
|
SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
|
|
|
|
last_txs = txs;
|
|
}
|
|
|
|
if (sc->sc_txfree != ofree) {
|
|
DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
|
|
device_xname(sc->sc_dev), lasttx, firsttx));
|
|
/*
|
|
* Cause a transmit interrupt to happen on the
|
|
* last packet we enqueued.
|
|
*/
|
|
sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
|
|
ATW_CDTXSYNC(sc, lasttx, 1,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* The entire packet chain is set up. Give the
|
|
* first descriptor to the chip now.
|
|
*/
|
|
sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
|
|
ATW_CDTXSYNC(sc, firsttx, 1,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Wake up the transmitter. */
|
|
ATW_WRITE(sc, ATW_TDR, 0x1);
|
|
|
|
if (txs == NULL || sc->sc_txfree == 0)
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
sc->sc_tx_timer = 5;
|
|
ifp->if_timer = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* atw_ioctl: [ifnet interface function]
|
|
*
|
|
* Handle control requests from the operator.
|
|
*/
|
|
int
|
|
atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct atw_softc *sc = ifp->if_softc;
|
|
int s, error = 0;
|
|
|
|
/* XXX monkey see, monkey do. comes from wi_ioctl. */
|
|
if (!device_is_active(sc->sc_dev))
|
|
return ENXIO;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFFLAGS:
|
|
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
|
|
break;
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ATW_IS_ENABLED(sc)) {
|
|
/*
|
|
* To avoid rescanning another access point,
|
|
* do not call atw_init() here. Instead,
|
|
* only reflect media settings.
|
|
*/
|
|
atw_filter_setup(sc);
|
|
} else
|
|
error = atw_init(ifp);
|
|
} else if (ATW_IS_ENABLED(sc))
|
|
atw_stop(ifp, 1);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
atw_filter_setup(sc); /* do not rescan */
|
|
error = 0;
|
|
}
|
|
break;
|
|
default:
|
|
error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
|
|
if (error == ENETRESET || error == ERESTART) {
|
|
if (is_running(ifp))
|
|
error = atw_init(ifp);
|
|
else
|
|
error = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Try to get more packets going. */
|
|
if (ATW_IS_ENABLED(sc))
|
|
atw_start(ifp);
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
atw_media_change(struct ifnet *ifp)
|
|
{
|
|
int error;
|
|
|
|
error = ieee80211_media_change(ifp);
|
|
if (error == ENETRESET) {
|
|
if (is_running(ifp))
|
|
error = atw_init(ifp);
|
|
else
|
|
error = 0;
|
|
}
|
|
return error;
|
|
}
|