NetBSD/sys/dev/raidframe/rf_dagutils.c
mrg 8c36bb4b69 convert the main raidPtr mutex to a kmutex, and add a couple of cv's to
cover the old sleep/wakeup points for adding_hot_spare and waitForReconCond.
convert all remaining simple_lock's to kmutexes (they're not used or compiled
right now... even with all options enabled) and remove the support for them.

this leaves just a pair of tsleep()/wakeup() calls using old scheduling APIs.
2011-05-11 18:13:12 +00:00

1441 lines
43 KiB
C

/* $NetBSD: rf_dagutils.c,v 1.53 2011/05/11 18:13:12 mrg Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Mark Holland, William V. Courtright II, Jim Zelenka
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/******************************************************************************
*
* rf_dagutils.c -- utility routines for manipulating dags
*
*****************************************************************************/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_dagutils.c,v 1.53 2011/05/11 18:13:12 mrg Exp $");
#include <dev/raidframe/raidframevar.h>
#include "rf_archs.h"
#include "rf_threadstuff.h"
#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_general.h"
#include "rf_map.h"
#include "rf_shutdown.h"
#define SNUM_DIFF(_a_,_b_) (((_a_)>(_b_))?((_a_)-(_b_)):((_b_)-(_a_)))
const RF_RedFuncs_t rf_xorFuncs = {
rf_RegularXorFunc, "Reg Xr",
rf_SimpleXorFunc, "Simple Xr"};
const RF_RedFuncs_t rf_xorRecoveryFuncs = {
rf_RecoveryXorFunc, "Recovery Xr",
rf_RecoveryXorFunc, "Recovery Xr"};
#if RF_DEBUG_VALIDATE_DAG
static void rf_RecurPrintDAG(RF_DagNode_t *, int, int);
static void rf_PrintDAG(RF_DagHeader_t *);
static int rf_ValidateBranch(RF_DagNode_t *, int *, int *,
RF_DagNode_t **, int);
static void rf_ValidateBranchVisitedBits(RF_DagNode_t *, int, int);
static void rf_ValidateVisitedBits(RF_DagHeader_t *);
#endif /* RF_DEBUG_VALIDATE_DAG */
/* The maximum number of nodes in a DAG is bounded by
(2 * raidPtr->Layout->numDataCol) + (1 * layoutPtr->numParityCol) +
(1 * 2 * layoutPtr->numParityCol) + 3
which is: 2*RF_MAXCOL+1*2+1*2*2+3
For RF_MAXCOL of 40, this works out to 89. We use this value to provide an estimate
on the maximum size needed for RF_DAGPCACHE_SIZE. For RF_MAXCOL of 40, this structure
would be 534 bytes. Too much to have on-hand in a RF_DagNode_t, but should be ok to
have a few kicking around.
*/
#define RF_DAGPCACHE_SIZE ((2*RF_MAXCOL+1*2+1*2*2+3) *(RF_MAX(sizeof(RF_DagParam_t), sizeof(RF_DagNode_t *))))
/******************************************************************************
*
* InitNode - initialize a dag node
*
* the size of the propList array is always the same as that of the
* successors array.
*
*****************************************************************************/
void
rf_InitNode(RF_DagNode_t *node, RF_NodeStatus_t initstatus, int commit,
int (*doFunc) (RF_DagNode_t *node),
int (*undoFunc) (RF_DagNode_t *node),
int (*wakeFunc) (RF_DagNode_t *node, int status),
int nSucc, int nAnte, int nParam, int nResult,
RF_DagHeader_t *hdr, const char *name, RF_AllocListElem_t *alist)
{
void **ptrs;
int nptrs;
if (nAnte > RF_MAX_ANTECEDENTS)
RF_PANIC();
node->status = initstatus;
node->commitNode = commit;
node->doFunc = doFunc;
node->undoFunc = undoFunc;
node->wakeFunc = wakeFunc;
node->numParams = nParam;
node->numResults = nResult;
node->numAntecedents = nAnte;
node->numAntDone = 0;
node->next = NULL;
/* node->list_next = NULL */ /* Don't touch this here!
It may already be
in use by the caller! */
node->numSuccedents = nSucc;
node->name = name;
node->dagHdr = hdr;
node->big_dag_ptrs = NULL;
node->big_dag_params = NULL;
node->visited = 0;
/* allocate all the pointers with one call to malloc */
nptrs = nSucc + nAnte + nResult + nSucc;
if (nptrs <= RF_DAG_PTRCACHESIZE) {
/*
* The dag_ptrs field of the node is basically some scribble
* space to be used here. We could get rid of it, and always
* allocate the range of pointers, but that's expensive. So,
* we pick a "common case" size for the pointer cache. Hopefully,
* we'll find that:
* (1) Generally, nptrs doesn't exceed RF_DAG_PTRCACHESIZE by
* only a little bit (least efficient case)
* (2) Generally, ntprs isn't a lot less than RF_DAG_PTRCACHESIZE
* (wasted memory)
*/
ptrs = (void **) node->dag_ptrs;
} else if (nptrs <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagNode_t *))) {
node->big_dag_ptrs = rf_AllocDAGPCache();
ptrs = (void **) node->big_dag_ptrs;
} else {
RF_MallocAndAdd(ptrs, nptrs * sizeof(void *),
(void **), alist);
}
node->succedents = (nSucc) ? (RF_DagNode_t **) ptrs : NULL;
node->antecedents = (nAnte) ? (RF_DagNode_t **) (ptrs + nSucc) : NULL;
node->results = (nResult) ? (void **) (ptrs + nSucc + nAnte) : NULL;
node->propList = (nSucc) ? (RF_PropHeader_t **) (ptrs + nSucc + nAnte + nResult) : NULL;
if (nParam) {
if (nParam <= RF_DAG_PARAMCACHESIZE) {
node->params = (RF_DagParam_t *) node->dag_params;
} else if (nParam <= (RF_DAGPCACHE_SIZE / sizeof(RF_DagParam_t))) {
node->big_dag_params = rf_AllocDAGPCache();
node->params = node->big_dag_params;
} else {
RF_MallocAndAdd(node->params,
nParam * sizeof(RF_DagParam_t),
(RF_DagParam_t *), alist);
}
} else {
node->params = NULL;
}
}
/******************************************************************************
*
* allocation and deallocation routines
*
*****************************************************************************/
void
rf_FreeDAG(RF_DagHeader_t *dag_h)
{
RF_AccessStripeMapHeader_t *asmap, *t_asmap;
RF_PhysDiskAddr_t *pda;
RF_DagNode_t *tmpnode;
RF_DagHeader_t *nextDag;
while (dag_h) {
nextDag = dag_h->next;
rf_FreeAllocList(dag_h->allocList);
for (asmap = dag_h->asmList; asmap;) {
t_asmap = asmap;
asmap = asmap->next;
rf_FreeAccessStripeMap(t_asmap);
}
while (dag_h->pda_cleanup_list) {
pda = dag_h->pda_cleanup_list;
dag_h->pda_cleanup_list = dag_h->pda_cleanup_list->next;
rf_FreePhysDiskAddr(pda);
}
while (dag_h->nodes) {
tmpnode = dag_h->nodes;
dag_h->nodes = dag_h->nodes->list_next;
rf_FreeDAGNode(tmpnode);
}
rf_FreeDAGHeader(dag_h);
dag_h = nextDag;
}
}
#define RF_MAX_FREE_DAGH 128
#define RF_MIN_FREE_DAGH 32
#define RF_MAX_FREE_DAGNODE 512 /* XXX Tune this... */
#define RF_MIN_FREE_DAGNODE 128 /* XXX Tune this... */
#define RF_MAX_FREE_DAGLIST 128
#define RF_MIN_FREE_DAGLIST 32
#define RF_MAX_FREE_DAGPCACHE 128
#define RF_MIN_FREE_DAGPCACHE 8
#define RF_MAX_FREE_FUNCLIST 128
#define RF_MIN_FREE_FUNCLIST 32
#define RF_MAX_FREE_BUFFERS 128
#define RF_MIN_FREE_BUFFERS 32
static void rf_ShutdownDAGs(void *);
static void
rf_ShutdownDAGs(void *ignored)
{
pool_destroy(&rf_pools.dagh);
pool_destroy(&rf_pools.dagnode);
pool_destroy(&rf_pools.daglist);
pool_destroy(&rf_pools.dagpcache);
pool_destroy(&rf_pools.funclist);
}
int
rf_ConfigureDAGs(RF_ShutdownList_t **listp)
{
rf_pool_init(&rf_pools.dagnode, sizeof(RF_DagNode_t),
"rf_dagnode_pl", RF_MIN_FREE_DAGNODE, RF_MAX_FREE_DAGNODE);
rf_pool_init(&rf_pools.dagh, sizeof(RF_DagHeader_t),
"rf_dagh_pl", RF_MIN_FREE_DAGH, RF_MAX_FREE_DAGH);
rf_pool_init(&rf_pools.daglist, sizeof(RF_DagList_t),
"rf_daglist_pl", RF_MIN_FREE_DAGLIST, RF_MAX_FREE_DAGLIST);
rf_pool_init(&rf_pools.dagpcache, RF_DAGPCACHE_SIZE,
"rf_dagpcache_pl", RF_MIN_FREE_DAGPCACHE, RF_MAX_FREE_DAGPCACHE);
rf_pool_init(&rf_pools.funclist, sizeof(RF_FuncList_t),
"rf_funclist_pl", RF_MIN_FREE_FUNCLIST, RF_MAX_FREE_FUNCLIST);
rf_ShutdownCreate(listp, rf_ShutdownDAGs, NULL);
return (0);
}
RF_DagHeader_t *
rf_AllocDAGHeader(void)
{
RF_DagHeader_t *dh;
dh = pool_get(&rf_pools.dagh, PR_WAITOK);
memset((char *) dh, 0, sizeof(RF_DagHeader_t));
return (dh);
}
void
rf_FreeDAGHeader(RF_DagHeader_t * dh)
{
pool_put(&rf_pools.dagh, dh);
}
RF_DagNode_t *
rf_AllocDAGNode(void)
{
RF_DagNode_t *node;
node = pool_get(&rf_pools.dagnode, PR_WAITOK);
memset(node, 0, sizeof(RF_DagNode_t));
return (node);
}
void
rf_FreeDAGNode(RF_DagNode_t *node)
{
if (node->big_dag_ptrs) {
rf_FreeDAGPCache(node->big_dag_ptrs);
}
if (node->big_dag_params) {
rf_FreeDAGPCache(node->big_dag_params);
}
pool_put(&rf_pools.dagnode, node);
}
RF_DagList_t *
rf_AllocDAGList(void)
{
RF_DagList_t *dagList;
dagList = pool_get(&rf_pools.daglist, PR_WAITOK);
memset(dagList, 0, sizeof(RF_DagList_t));
return (dagList);
}
void
rf_FreeDAGList(RF_DagList_t *dagList)
{
pool_put(&rf_pools.daglist, dagList);
}
void *
rf_AllocDAGPCache(void)
{
void *p;
p = pool_get(&rf_pools.dagpcache, PR_WAITOK);
memset(p, 0, RF_DAGPCACHE_SIZE);
return (p);
}
void
rf_FreeDAGPCache(void *p)
{
pool_put(&rf_pools.dagpcache, p);
}
RF_FuncList_t *
rf_AllocFuncList(void)
{
RF_FuncList_t *funcList;
funcList = pool_get(&rf_pools.funclist, PR_WAITOK);
memset(funcList, 0, sizeof(RF_FuncList_t));
return (funcList);
}
void
rf_FreeFuncList(RF_FuncList_t *funcList)
{
pool_put(&rf_pools.funclist, funcList);
}
/* allocates a stripe buffer -- a buffer large enough to hold all the data
in an entire stripe.
*/
void *
rf_AllocStripeBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h,
int size)
{
RF_VoidPointerListElem_t *vple;
void *p;
RF_ASSERT((size <= (raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
raidPtr->logBytesPerSector))));
p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
raidPtr->logBytesPerSector),
M_RAIDFRAME, M_NOWAIT);
if (!p) {
rf_lock_mutex2(raidPtr->mutex);
if (raidPtr->stripebuf_count > 0) {
vple = raidPtr->stripebuf;
raidPtr->stripebuf = vple->next;
p = vple->p;
rf_FreeVPListElem(vple);
raidPtr->stripebuf_count--;
} else {
#ifdef DIAGNOSTIC
printf("raid%d: Help! Out of emergency full-stripe buffers!\n", raidPtr->raidid);
#endif
}
rf_unlock_mutex2(raidPtr->mutex);
if (!p) {
/* We didn't get a buffer... not much we can do other than wait,
and hope that someone frees up memory for us.. */
p = malloc( raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit <<
raidPtr->logBytesPerSector), M_RAIDFRAME, M_WAITOK);
}
}
memset(p, 0, raidPtr->numCol * (raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector));
vple = rf_AllocVPListElem();
vple->p = p;
vple->next = dag_h->desc->stripebufs;
dag_h->desc->stripebufs = vple;
return (p);
}
void
rf_FreeStripeBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
{
rf_lock_mutex2(raidPtr->mutex);
if (raidPtr->stripebuf_count < raidPtr->numEmergencyStripeBuffers) {
/* just tack it in */
vple->next = raidPtr->stripebuf;
raidPtr->stripebuf = vple;
raidPtr->stripebuf_count++;
} else {
free(vple->p, M_RAIDFRAME);
rf_FreeVPListElem(vple);
}
rf_unlock_mutex2(raidPtr->mutex);
}
/* allocates a buffer big enough to hold the data described by the
caller (ie. the data of the associated PDA). Glue this buffer
into our dag_h cleanup structure. */
void *
rf_AllocBuffer(RF_Raid_t *raidPtr, RF_DagHeader_t *dag_h, int size)
{
RF_VoidPointerListElem_t *vple;
void *p;
p = rf_AllocIOBuffer(raidPtr, size);
vple = rf_AllocVPListElem();
vple->p = p;
vple->next = dag_h->desc->iobufs;
dag_h->desc->iobufs = vple;
return (p);
}
void *
rf_AllocIOBuffer(RF_Raid_t *raidPtr, int size)
{
RF_VoidPointerListElem_t *vple;
void *p;
RF_ASSERT((size <= (raidPtr->Layout.sectorsPerStripeUnit <<
raidPtr->logBytesPerSector)));
p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
raidPtr->logBytesPerSector,
M_RAIDFRAME, M_NOWAIT);
if (!p) {
rf_lock_mutex2(raidPtr->mutex);
if (raidPtr->iobuf_count > 0) {
vple = raidPtr->iobuf;
raidPtr->iobuf = vple->next;
p = vple->p;
rf_FreeVPListElem(vple);
raidPtr->iobuf_count--;
} else {
#ifdef DIAGNOSTIC
printf("raid%d: Help! Out of emergency buffers!\n", raidPtr->raidid);
#endif
}
rf_unlock_mutex2(raidPtr->mutex);
if (!p) {
/* We didn't get a buffer... not much we can do other than wait,
and hope that someone frees up memory for us.. */
p = malloc( raidPtr->Layout.sectorsPerStripeUnit <<
raidPtr->logBytesPerSector,
M_RAIDFRAME, M_WAITOK);
}
}
memset(p, 0, raidPtr->Layout.sectorsPerStripeUnit << raidPtr->logBytesPerSector);
return (p);
}
void
rf_FreeIOBuffer(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *vple)
{
rf_lock_mutex2(raidPtr->mutex);
if (raidPtr->iobuf_count < raidPtr->numEmergencyBuffers) {
/* just tack it in */
vple->next = raidPtr->iobuf;
raidPtr->iobuf = vple;
raidPtr->iobuf_count++;
} else {
free(vple->p, M_RAIDFRAME);
rf_FreeVPListElem(vple);
}
rf_unlock_mutex2(raidPtr->mutex);
}
#if RF_DEBUG_VALIDATE_DAG
/******************************************************************************
*
* debug routines
*
*****************************************************************************/
char *
rf_NodeStatusString(RF_DagNode_t *node)
{
switch (node->status) {
case rf_wait:
return ("wait");
case rf_fired:
return ("fired");
case rf_good:
return ("good");
case rf_bad:
return ("bad");
default:
return ("?");
}
}
void
rf_PrintNodeInfoString(RF_DagNode_t *node)
{
RF_PhysDiskAddr_t *pda;
int (*df) (RF_DagNode_t *) = node->doFunc;
int i, lk, unlk;
void *bufPtr;
if ((df == rf_DiskReadFunc) || (df == rf_DiskWriteFunc)
|| (df == rf_DiskReadMirrorIdleFunc)
|| (df == rf_DiskReadMirrorPartitionFunc)) {
pda = (RF_PhysDiskAddr_t *) node->params[0].p;
bufPtr = (void *) node->params[1].p;
lk = 0;
unlk = 0;
RF_ASSERT(!(lk && unlk));
printf("c %d offs %ld nsect %d buf 0x%lx %s\n", pda->col,
(long) pda->startSector, (int) pda->numSector, (long) bufPtr,
(lk) ? "LOCK" : ((unlk) ? "UNLK" : " "));
return;
}
if ((df == rf_SimpleXorFunc) || (df == rf_RegularXorFunc)
|| (df == rf_RecoveryXorFunc)) {
printf("result buf 0x%lx\n", (long) node->results[0]);
for (i = 0; i < node->numParams - 1; i += 2) {
pda = (RF_PhysDiskAddr_t *) node->params[i].p;
bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
printf(" buf 0x%lx c%d offs %ld nsect %d\n",
(long) bufPtr, pda->col,
(long) pda->startSector, (int) pda->numSector);
}
return;
}
#if RF_INCLUDE_PARITYLOGGING > 0
if (df == rf_ParityLogOverwriteFunc || df == rf_ParityLogUpdateFunc) {
for (i = 0; i < node->numParams - 1; i += 2) {
pda = (RF_PhysDiskAddr_t *) node->params[i].p;
bufPtr = (RF_PhysDiskAddr_t *) node->params[i + 1].p;
printf(" c%d offs %ld nsect %d buf 0x%lx\n",
pda->col, (long) pda->startSector,
(int) pda->numSector, (long) bufPtr);
}
return;
}
#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
if ((df == rf_TerminateFunc) || (df == rf_NullNodeFunc)) {
printf("\n");
return;
}
printf("?\n");
}
#ifdef DEBUG
static void
rf_RecurPrintDAG(RF_DagNode_t *node, int depth, int unvisited)
{
char *anttype;
int i;
node->visited = (unvisited) ? 0 : 1;
printf("(%d) %d C%d %s: %s,s%d %d/%d,a%d/%d,p%d,r%d S{", depth,
node->nodeNum, node->commitNode, node->name, rf_NodeStatusString(node),
node->numSuccedents, node->numSuccFired, node->numSuccDone,
node->numAntecedents, node->numAntDone, node->numParams, node->numResults);
for (i = 0; i < node->numSuccedents; i++) {
printf("%d%s", node->succedents[i]->nodeNum,
((i == node->numSuccedents - 1) ? "\0" : " "));
}
printf("} A{");
for (i = 0; i < node->numAntecedents; i++) {
switch (node->antType[i]) {
case rf_trueData:
anttype = "T";
break;
case rf_antiData:
anttype = "A";
break;
case rf_outputData:
anttype = "O";
break;
case rf_control:
anttype = "C";
break;
default:
anttype = "?";
break;
}
printf("%d(%s)%s", node->antecedents[i]->nodeNum, anttype, (i == node->numAntecedents - 1) ? "\0" : " ");
}
printf("}; ");
rf_PrintNodeInfoString(node);
for (i = 0; i < node->numSuccedents; i++) {
if (node->succedents[i]->visited == unvisited)
rf_RecurPrintDAG(node->succedents[i], depth + 1, unvisited);
}
}
static void
rf_PrintDAG(RF_DagHeader_t *dag_h)
{
int unvisited, i;
char *status;
/* set dag status */
switch (dag_h->status) {
case rf_enable:
status = "enable";
break;
case rf_rollForward:
status = "rollForward";
break;
case rf_rollBackward:
status = "rollBackward";
break;
default:
status = "illegal!";
break;
}
/* find out if visited bits are currently set or clear */
unvisited = dag_h->succedents[0]->visited;
printf("DAG type: %s\n", dag_h->creator);
printf("format is (depth) num commit type: status,nSucc nSuccFired/nSuccDone,nAnte/nAnteDone,nParam,nResult S{x} A{x(type)}; info\n");
printf("(0) %d Hdr: %s, s%d, (commit %d/%d) S{", dag_h->nodeNum,
status, dag_h->numSuccedents, dag_h->numCommitNodes, dag_h->numCommits);
for (i = 0; i < dag_h->numSuccedents; i++) {
printf("%d%s", dag_h->succedents[i]->nodeNum,
((i == dag_h->numSuccedents - 1) ? "\0" : " "));
}
printf("};\n");
for (i = 0; i < dag_h->numSuccedents; i++) {
if (dag_h->succedents[i]->visited == unvisited)
rf_RecurPrintDAG(dag_h->succedents[i], 1, unvisited);
}
}
#endif
/* assigns node numbers */
int
rf_AssignNodeNums(RF_DagHeader_t * dag_h)
{
int unvisited, i, nnum;
RF_DagNode_t *node;
nnum = 0;
unvisited = dag_h->succedents[0]->visited;
dag_h->nodeNum = nnum++;
for (i = 0; i < dag_h->numSuccedents; i++) {
node = dag_h->succedents[i];
if (node->visited == unvisited) {
nnum = rf_RecurAssignNodeNums(dag_h->succedents[i], nnum, unvisited);
}
}
return (nnum);
}
int
rf_RecurAssignNodeNums(RF_DagNode_t *node, int num, int unvisited)
{
int i;
node->visited = (unvisited) ? 0 : 1;
node->nodeNum = num++;
for (i = 0; i < node->numSuccedents; i++) {
if (node->succedents[i]->visited == unvisited) {
num = rf_RecurAssignNodeNums(node->succedents[i], num, unvisited);
}
}
return (num);
}
/* set the header pointers in each node to "newptr" */
void
rf_ResetDAGHeaderPointers(RF_DagHeader_t *dag_h, RF_DagHeader_t *newptr)
{
int i;
for (i = 0; i < dag_h->numSuccedents; i++)
if (dag_h->succedents[i]->dagHdr != newptr)
rf_RecurResetDAGHeaderPointers(dag_h->succedents[i], newptr);
}
void
rf_RecurResetDAGHeaderPointers(RF_DagNode_t *node, RF_DagHeader_t *newptr)
{
int i;
node->dagHdr = newptr;
for (i = 0; i < node->numSuccedents; i++)
if (node->succedents[i]->dagHdr != newptr)
rf_RecurResetDAGHeaderPointers(node->succedents[i], newptr);
}
void
rf_PrintDAGList(RF_DagHeader_t * dag_h)
{
int i = 0;
for (; dag_h; dag_h = dag_h->next) {
rf_AssignNodeNums(dag_h);
printf("\n\nDAG %d IN LIST:\n", i++);
rf_PrintDAG(dag_h);
}
}
static int
rf_ValidateBranch(RF_DagNode_t *node, int *scount, int *acount,
RF_DagNode_t **nodes, int unvisited)
{
int i, retcode = 0;
/* construct an array of node pointers indexed by node num */
node->visited = (unvisited) ? 0 : 1;
nodes[node->nodeNum] = node;
if (node->next != NULL) {
printf("INVALID DAG: next pointer in node is not NULL\n");
retcode = 1;
}
if (node->status != rf_wait) {
printf("INVALID DAG: Node status is not wait\n");
retcode = 1;
}
if (node->numAntDone != 0) {
printf("INVALID DAG: numAntDone is not zero\n");
retcode = 1;
}
if (node->doFunc == rf_TerminateFunc) {
if (node->numSuccedents != 0) {
printf("INVALID DAG: Terminator node has succedents\n");
retcode = 1;
}
} else {
if (node->numSuccedents == 0) {
printf("INVALID DAG: Non-terminator node has no succedents\n");
retcode = 1;
}
}
for (i = 0; i < node->numSuccedents; i++) {
if (!node->succedents[i]) {
printf("INVALID DAG: succedent %d of node %s is NULL\n", i, node->name);
retcode = 1;
}
scount[node->succedents[i]->nodeNum]++;
}
for (i = 0; i < node->numAntecedents; i++) {
if (!node->antecedents[i]) {
printf("INVALID DAG: antecedent %d of node %s is NULL\n", i, node->name);
retcode = 1;
}
acount[node->antecedents[i]->nodeNum]++;
}
for (i = 0; i < node->numSuccedents; i++) {
if (node->succedents[i]->visited == unvisited) {
if (rf_ValidateBranch(node->succedents[i], scount,
acount, nodes, unvisited)) {
retcode = 1;
}
}
}
return (retcode);
}
static void
rf_ValidateBranchVisitedBits(RF_DagNode_t *node, int unvisited, int rl)
{
int i;
RF_ASSERT(node->visited == unvisited);
for (i = 0; i < node->numSuccedents; i++) {
if (node->succedents[i] == NULL) {
printf("node=%lx node->succedents[%d] is NULL\n", (long) node, i);
RF_ASSERT(0);
}
rf_ValidateBranchVisitedBits(node->succedents[i], unvisited, rl + 1);
}
}
/* NOTE: never call this on a big dag, because it is exponential
* in execution time
*/
static void
rf_ValidateVisitedBits(RF_DagHeader_t *dag)
{
int i, unvisited;
unvisited = dag->succedents[0]->visited;
for (i = 0; i < dag->numSuccedents; i++) {
if (dag->succedents[i] == NULL) {
printf("dag=%lx dag->succedents[%d] is NULL\n", (long) dag, i);
RF_ASSERT(0);
}
rf_ValidateBranchVisitedBits(dag->succedents[i], unvisited, 0);
}
}
/* validate a DAG. _at entry_ verify that:
* -- numNodesCompleted is zero
* -- node queue is null
* -- dag status is rf_enable
* -- next pointer is null on every node
* -- all nodes have status wait
* -- numAntDone is zero in all nodes
* -- terminator node has zero successors
* -- no other node besides terminator has zero successors
* -- no successor or antecedent pointer in a node is NULL
* -- number of times that each node appears as a successor of another node
* is equal to the antecedent count on that node
* -- number of times that each node appears as an antecedent of another node
* is equal to the succedent count on that node
* -- what else?
*/
int
rf_ValidateDAG(RF_DagHeader_t *dag_h)
{
int i, nodecount;
int *scount, *acount;/* per-node successor and antecedent counts */
RF_DagNode_t **nodes; /* array of ptrs to nodes in dag */
int retcode = 0;
int unvisited;
int commitNodeCount = 0;
if (rf_validateVisitedDebug)
rf_ValidateVisitedBits(dag_h);
if (dag_h->numNodesCompleted != 0) {
printf("INVALID DAG: num nodes completed is %d, should be 0\n", dag_h->numNodesCompleted);
retcode = 1;
goto validate_dag_bad;
}
if (dag_h->status != rf_enable) {
printf("INVALID DAG: not enabled\n");
retcode = 1;
goto validate_dag_bad;
}
if (dag_h->numCommits != 0) {
printf("INVALID DAG: numCommits != 0 (%d)\n", dag_h->numCommits);
retcode = 1;
goto validate_dag_bad;
}
if (dag_h->numSuccedents != 1) {
/* currently, all dags must have only one succedent */
printf("INVALID DAG: numSuccedents !1 (%d)\n", dag_h->numSuccedents);
retcode = 1;
goto validate_dag_bad;
}
nodecount = rf_AssignNodeNums(dag_h);
unvisited = dag_h->succedents[0]->visited;
RF_Malloc(scount, nodecount * sizeof(int), (int *));
RF_Malloc(acount, nodecount * sizeof(int), (int *));
RF_Malloc(nodes, nodecount * sizeof(RF_DagNode_t *),
(RF_DagNode_t **));
for (i = 0; i < dag_h->numSuccedents; i++) {
if ((dag_h->succedents[i]->visited == unvisited)
&& rf_ValidateBranch(dag_h->succedents[i], scount,
acount, nodes, unvisited)) {
retcode = 1;
}
}
/* start at 1 to skip the header node */
for (i = 1; i < nodecount; i++) {
if (nodes[i]->commitNode)
commitNodeCount++;
if (nodes[i]->doFunc == NULL) {
printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
retcode = 1;
goto validate_dag_out;
}
if (nodes[i]->undoFunc == NULL) {
printf("INVALID DAG: node %s has an undefined doFunc\n", nodes[i]->name);
retcode = 1;
goto validate_dag_out;
}
if (nodes[i]->numAntecedents != scount[nodes[i]->nodeNum]) {
printf("INVALID DAG: node %s has %d antecedents but appears as a succedent %d times\n",
nodes[i]->name, nodes[i]->numAntecedents, scount[nodes[i]->nodeNum]);
retcode = 1;
goto validate_dag_out;
}
if (nodes[i]->numSuccedents != acount[nodes[i]->nodeNum]) {
printf("INVALID DAG: node %s has %d succedents but appears as an antecedent %d times\n",
nodes[i]->name, nodes[i]->numSuccedents, acount[nodes[i]->nodeNum]);
retcode = 1;
goto validate_dag_out;
}
}
if (dag_h->numCommitNodes != commitNodeCount) {
printf("INVALID DAG: incorrect commit node count. hdr->numCommitNodes (%d) found (%d) commit nodes in graph\n",
dag_h->numCommitNodes, commitNodeCount);
retcode = 1;
goto validate_dag_out;
}
validate_dag_out:
RF_Free(scount, nodecount * sizeof(int));
RF_Free(acount, nodecount * sizeof(int));
RF_Free(nodes, nodecount * sizeof(RF_DagNode_t *));
if (retcode)
rf_PrintDAGList(dag_h);
if (rf_validateVisitedDebug)
rf_ValidateVisitedBits(dag_h);
return (retcode);
validate_dag_bad:
rf_PrintDAGList(dag_h);
return (retcode);
}
#endif /* RF_DEBUG_VALIDATE_DAG */
/******************************************************************************
*
* misc construction routines
*
*****************************************************************************/
void
rf_redirect_asm(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
{
int ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) ? 1 : 0;
int fcol = raidPtr->reconControl->fcol;
int scol = raidPtr->reconControl->spareCol;
RF_PhysDiskAddr_t *pda;
RF_ASSERT(raidPtr->status == rf_rs_reconstructing);
for (pda = asmap->physInfo; pda; pda = pda->next) {
if (pda->col == fcol) {
#if RF_DEBUG_DAG
if (rf_dagDebug) {
if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap,
pda->startSector)) {
RF_PANIC();
}
}
#endif
/* printf("Remapped data for large write\n"); */
if (ds) {
raidPtr->Layout.map->MapSector(raidPtr, pda->raidAddress,
&pda->col, &pda->startSector, RF_REMAP);
} else {
pda->col = scol;
}
}
}
for (pda = asmap->parityInfo; pda; pda = pda->next) {
if (pda->col == fcol) {
#if RF_DEBUG_DAG
if (rf_dagDebug) {
if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
RF_PANIC();
}
}
#endif
}
if (ds) {
(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
} else {
pda->col = scol;
}
}
}
/* this routine allocates read buffers and generates stripe maps for the
* regions of the array from the start of the stripe to the start of the
* access, and from the end of the access to the end of the stripe. It also
* computes and returns the number of DAG nodes needed to read all this data.
* Note that this routine does the wrong thing if the access is fully
* contained within one stripe unit, so we RF_ASSERT against this case at the
* start.
*
* layoutPtr - in: layout information
* asmap - in: access stripe map
* dag_h - in: header of the dag to create
* new_asm_h - in: ptr to array of 2 headers. to be filled in
* nRodNodes - out: num nodes to be generated to read unaccessed data
* sosBuffer, eosBuffer - out: pointers to newly allocated buffer
*/
void
rf_MapUnaccessedPortionOfStripe(RF_Raid_t *raidPtr,
RF_RaidLayout_t *layoutPtr,
RF_AccessStripeMap_t *asmap,
RF_DagHeader_t *dag_h,
RF_AccessStripeMapHeader_t **new_asm_h,
int *nRodNodes,
char **sosBuffer, char **eosBuffer,
RF_AllocListElem_t *allocList)
{
RF_RaidAddr_t sosRaidAddress, eosRaidAddress;
RF_SectorNum_t sosNumSector, eosNumSector;
RF_ASSERT(asmap->numStripeUnitsAccessed > (layoutPtr->numDataCol / 2));
/* generate an access map for the region of the array from start of
* stripe to start of access */
new_asm_h[0] = new_asm_h[1] = NULL;
*nRodNodes = 0;
if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->raidAddress)) {
sosRaidAddress = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
sosNumSector = asmap->raidAddress - sosRaidAddress;
*sosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, sosNumSector));
new_asm_h[0] = rf_MapAccess(raidPtr, sosRaidAddress, sosNumSector, *sosBuffer, RF_DONT_REMAP);
new_asm_h[0]->next = dag_h->asmList;
dag_h->asmList = new_asm_h[0];
*nRodNodes += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
RF_ASSERT(new_asm_h[0]->stripeMap->next == NULL);
/* we're totally within one stripe here */
if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
rf_redirect_asm(raidPtr, new_asm_h[0]->stripeMap);
}
/* generate an access map for the region of the array from end of
* access to end of stripe */
if (!rf_RaidAddressStripeAligned(layoutPtr, asmap->endRaidAddress)) {
eosRaidAddress = asmap->endRaidAddress;
eosNumSector = rf_RaidAddressOfNextStripeBoundary(layoutPtr, eosRaidAddress) - eosRaidAddress;
*eosBuffer = rf_AllocStripeBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, eosNumSector));
new_asm_h[1] = rf_MapAccess(raidPtr, eosRaidAddress, eosNumSector, *eosBuffer, RF_DONT_REMAP);
new_asm_h[1]->next = dag_h->asmList;
dag_h->asmList = new_asm_h[1];
*nRodNodes += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
RF_ASSERT(new_asm_h[1]->stripeMap->next == NULL);
/* we're totally within one stripe here */
if (asmap->flags & RF_ASM_REDIR_LARGE_WRITE)
rf_redirect_asm(raidPtr, new_asm_h[1]->stripeMap);
}
}
/* returns non-zero if the indicated ranges of stripe unit offsets overlap */
int
rf_PDAOverlap(RF_RaidLayout_t *layoutPtr,
RF_PhysDiskAddr_t *src, RF_PhysDiskAddr_t *dest)
{
RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
/* use -1 to be sure we stay within SU */
RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1);
RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
return ((RF_MAX(soffs, doffs) <= RF_MIN(send, dend)) ? 1 : 0);
}
/* GenerateFailedAccessASMs
*
* this routine figures out what portion of the stripe needs to be read
* to effect the degraded read or write operation. It's primary function
* is to identify everything required to recover the data, and then
* eliminate anything that is already being accessed by the user.
*
* The main result is two new ASMs, one for the region from the start of the
* stripe to the start of the access, and one for the region from the end of
* the access to the end of the stripe. These ASMs describe everything that
* needs to be read to effect the degraded access. Other results are:
* nXorBufs -- the total number of buffers that need to be XORed together to
* recover the lost data,
* rpBufPtr -- ptr to a newly-allocated buffer to hold the parity. If NULL
* at entry, not allocated.
* overlappingPDAs --
* describes which of the non-failed PDAs in the user access
* overlap data that needs to be read to effect recovery.
* overlappingPDAs[i]==1 if and only if, neglecting the failed
* PDA, the ith pda in the input asm overlaps data that needs
* to be read for recovery.
*/
/* in: asm - ASM for the actual access, one stripe only */
/* in: failedPDA - which component of the access has failed */
/* in: dag_h - header of the DAG we're going to create */
/* out: new_asm_h - the two new ASMs */
/* out: nXorBufs - the total number of xor bufs required */
/* out: rpBufPtr - a buffer for the parity read */
void
rf_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
RF_PhysDiskAddr_t *failedPDA,
RF_DagHeader_t *dag_h,
RF_AccessStripeMapHeader_t **new_asm_h,
int *nXorBufs, char **rpBufPtr,
char *overlappingPDAs,
RF_AllocListElem_t *allocList)
{
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
/* s=start, e=end, s=stripe, a=access, f=failed, su=stripe unit */
RF_RaidAddr_t sosAddr, sosEndAddr, eosStartAddr, eosAddr;
RF_PhysDiskAddr_t *pda;
int foundit, i;
foundit = 0;
/* first compute the following raid addresses: start of stripe,
* (sosAddr) MIN(start of access, start of failed SU), (sosEndAddr)
* MAX(end of access, end of failed SU), (eosStartAddr) end of
* stripe (i.e. start of next stripe) (eosAddr) */
sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
sosEndAddr = RF_MIN(asmap->raidAddress, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
eosStartAddr = RF_MAX(asmap->endRaidAddress, rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, failedPDA->raidAddress));
eosAddr = rf_RaidAddressOfNextStripeBoundary(layoutPtr, asmap->raidAddress);
/* now generate access stripe maps for each of the above regions of
* the stripe. Use a dummy (NULL) buf ptr for now */
new_asm_h[0] = (sosAddr != sosEndAddr) ? rf_MapAccess(raidPtr, sosAddr, sosEndAddr - sosAddr, NULL, RF_DONT_REMAP) : NULL;
new_asm_h[1] = (eosStartAddr != eosAddr) ? rf_MapAccess(raidPtr, eosStartAddr, eosAddr - eosStartAddr, NULL, RF_DONT_REMAP) : NULL;
/* walk through the PDAs and range-restrict each SU to the region of
* the SU touched on the failed PDA. also compute total data buffer
* space requirements in this step. Ignore the parity for now. */
/* Also count nodes to find out how many bufs need to be xored together */
(*nXorBufs) = 1; /* in read case, 1 is for parity. In write
* case, 1 is for failed data */
if (new_asm_h[0]) {
new_asm_h[0]->next = dag_h->asmList;
dag_h->asmList = new_asm_h[0];
for (pda = new_asm_h[0]->stripeMap->physInfo; pda; pda = pda->next) {
rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
}
(*nXorBufs) += new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
}
if (new_asm_h[1]) {
new_asm_h[1]->next = dag_h->asmList;
dag_h->asmList = new_asm_h[1];
for (pda = new_asm_h[1]->stripeMap->physInfo; pda; pda = pda->next) {
rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_NOBUFFER, 0);
pda->bufPtr = rf_AllocBuffer(raidPtr, dag_h, pda->numSector << raidPtr->logBytesPerSector);
}
(*nXorBufs) += new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
}
/* allocate a buffer for parity */
if (rpBufPtr)
*rpBufPtr = rf_AllocBuffer(raidPtr, dag_h, failedPDA->numSector << raidPtr->logBytesPerSector);
/* the last step is to figure out how many more distinct buffers need
* to get xor'd to produce the missing unit. there's one for each
* user-data read node that overlaps the portion of the failed unit
* being accessed */
for (foundit = i = 0, pda = asmap->physInfo; pda; i++, pda = pda->next) {
if (pda == failedPDA) {
i--;
foundit = 1;
continue;
}
if (rf_PDAOverlap(layoutPtr, pda, failedPDA)) {
overlappingPDAs[i] = 1;
(*nXorBufs)++;
}
}
if (!foundit) {
RF_ERRORMSG("GenerateFailedAccessASMs: did not find failedPDA in asm list\n");
RF_ASSERT(0);
}
#if RF_DEBUG_DAG
if (rf_degDagDebug) {
if (new_asm_h[0]) {
printf("First asm:\n");
rf_PrintFullAccessStripeMap(new_asm_h[0], 1);
}
if (new_asm_h[1]) {
printf("Second asm:\n");
rf_PrintFullAccessStripeMap(new_asm_h[1], 1);
}
}
#endif
}
/* adjusts the offset and number of sectors in the destination pda so that
* it covers at most the region of the SU covered by the source PDA. This
* is exclusively a restriction: the number of sectors indicated by the
* target PDA can only shrink.
*
* For example: s = sectors within SU indicated by source PDA
* d = sectors within SU indicated by dest PDA
* r = results, stored in dest PDA
*
* |--------------- one stripe unit ---------------------|
* | sssssssssssssssssssssssssssssssss |
* | ddddddddddddddddddddddddddddddddddddddddddddd |
* | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr |
*
* Another example:
*
* |--------------- one stripe unit ---------------------|
* | sssssssssssssssssssssssssssssssss |
* | ddddddddddddddddddddddd |
* | rrrrrrrrrrrrrrrr |
*
*/
void
rf_RangeRestrictPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *src,
RF_PhysDiskAddr_t *dest, int dobuffer, int doraidaddr)
{
RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
RF_SectorNum_t soffs = rf_StripeUnitOffset(layoutPtr, src->startSector);
RF_SectorNum_t doffs = rf_StripeUnitOffset(layoutPtr, dest->startSector);
RF_SectorNum_t send = rf_StripeUnitOffset(layoutPtr, src->startSector + src->numSector - 1); /* use -1 to be sure we
* stay within SU */
RF_SectorNum_t dend = rf_StripeUnitOffset(layoutPtr, dest->startSector + dest->numSector - 1);
RF_SectorNum_t subAddr = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->startSector); /* stripe unit boundary */
dest->startSector = subAddr + RF_MAX(soffs, doffs);
dest->numSector = subAddr + RF_MIN(send, dend) + 1 - dest->startSector;
if (dobuffer)
dest->bufPtr = (char *)(dest->bufPtr) + ((soffs > doffs) ? rf_RaidAddressToByte(raidPtr, soffs - doffs) : 0);
if (doraidaddr) {
dest->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, dest->raidAddress) +
rf_StripeUnitOffset(layoutPtr, dest->startSector);
}
}
#if (RF_INCLUDE_CHAINDECLUSTER > 0)
/*
* Want the highest of these primes to be the largest one
* less than the max expected number of columns (won't hurt
* to be too small or too large, but won't be optimal, either)
* --jimz
*/
#define NLOWPRIMES 8
static int lowprimes[NLOWPRIMES] = {2, 3, 5, 7, 11, 13, 17, 19};
/*****************************************************************************
* compute the workload shift factor. (chained declustering)
*
* return nonzero if access should shift to secondary, otherwise,
* access is to primary
*****************************************************************************/
int
rf_compute_workload_shift(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda)
{
/*
* variables:
* d = column of disk containing primary
* f = column of failed disk
* n = number of disks in array
* sd = "shift distance" (number of columns that d is to the right of f)
* v = numerator of redirection ratio
* k = denominator of redirection ratio
*/
RF_RowCol_t d, f, sd, n;
int k, v, ret, i;
n = raidPtr->numCol;
/* assign column of primary copy to d */
d = pda->col;
/* assign column of dead disk to f */
for (f = 0; ((!RF_DEAD_DISK(raidPtr->Disks[f].status)) && (f < n)); f++);
RF_ASSERT(f < n);
RF_ASSERT(f != d);
sd = (f > d) ? (n + d - f) : (d - f);
RF_ASSERT(sd < n);
/*
* v of every k accesses should be redirected
*
* v/k := (n-1-sd)/(n-1)
*/
v = (n - 1 - sd);
k = (n - 1);
#if 1
/*
* XXX
* Is this worth it?
*
* Now reduce the fraction, by repeatedly factoring
* out primes (just like they teach in elementary school!)
*/
for (i = 0; i < NLOWPRIMES; i++) {
if (lowprimes[i] > v)
break;
while (((v % lowprimes[i]) == 0) && ((k % lowprimes[i]) == 0)) {
v /= lowprimes[i];
k /= lowprimes[i];
}
}
#endif
raidPtr->hist_diskreq[d]++;
if (raidPtr->hist_diskreq[d] > v) {
ret = 0; /* do not redirect */
} else {
ret = 1; /* redirect */
}
#if 0
printf("d=%d f=%d sd=%d v=%d k=%d ret=%d h=%d\n", d, f, sd, v, k, ret,
raidPtr->hist_diskreq[d]);
#endif
if (raidPtr->hist_diskreq[d] >= k) {
/* reset counter */
raidPtr->hist_diskreq[d] = 0;
}
return (ret);
}
#endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
/*
* Disk selection routines
*/
/*
* Selects the disk with the shortest queue from a mirror pair.
* Both the disk I/Os queued in RAIDframe as well as those at the physical
* disk are counted as members of the "queue"
*/
void
rf_SelectMirrorDiskIdle(RF_DagNode_t * node)
{
RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
RF_RowCol_t colData, colMirror;
int dataQueueLength, mirrorQueueLength, usemirror;
RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
RF_PhysDiskAddr_t *tmp_pda;
RF_RaidDisk_t *disks = raidPtr->Disks;
RF_DiskQueue_t *dqs = raidPtr->Queues, *dataQueue, *mirrorQueue;
/* return the [row col] of the disk with the shortest queue */
colData = data_pda->col;
colMirror = mirror_pda->col;
dataQueue = &(dqs[colData]);
mirrorQueue = &(dqs[colMirror]);
#ifdef RF_LOCK_QUEUES_TO_READ_LEN
RF_LOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
#endif /* RF_LOCK_QUEUES_TO_READ_LEN */
dataQueueLength = dataQueue->queueLength + dataQueue->numOutstanding;
#ifdef RF_LOCK_QUEUES_TO_READ_LEN
RF_UNLOCK_QUEUE_MUTEX(dataQueue, "SelectMirrorDiskIdle");
RF_LOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
#endif /* RF_LOCK_QUEUES_TO_READ_LEN */
mirrorQueueLength = mirrorQueue->queueLength + mirrorQueue->numOutstanding;
#ifdef RF_LOCK_QUEUES_TO_READ_LEN
RF_UNLOCK_QUEUE_MUTEX(mirrorQueue, "SelectMirrorDiskIdle");
#endif /* RF_LOCK_QUEUES_TO_READ_LEN */
usemirror = 0;
if (RF_DEAD_DISK(disks[colMirror].status)) {
usemirror = 0;
} else
if (RF_DEAD_DISK(disks[colData].status)) {
usemirror = 1;
} else
if (raidPtr->parity_good == RF_RAID_DIRTY) {
/* Trust only the main disk */
usemirror = 0;
} else
if (dataQueueLength < mirrorQueueLength) {
usemirror = 0;
} else
if (mirrorQueueLength < dataQueueLength) {
usemirror = 1;
} else {
/* queues are equal length. attempt
* cleverness. */
if (SNUM_DIFF(dataQueue->last_deq_sector, data_pda->startSector)
<= SNUM_DIFF(mirrorQueue->last_deq_sector, mirror_pda->startSector)) {
usemirror = 0;
} else {
usemirror = 1;
}
}
if (usemirror) {
/* use mirror (parity) disk, swap params 0 & 4 */
tmp_pda = data_pda;
node->params[0].p = mirror_pda;
node->params[4].p = tmp_pda;
} else {
/* use data disk, leave param 0 unchanged */
}
/* printf("dataQueueLength %d, mirrorQueueLength
* %d\n",dataQueueLength, mirrorQueueLength); */
}
#if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
/*
* Do simple partitioning. This assumes that
* the data and parity disks are laid out identically.
*/
void
rf_SelectMirrorDiskPartition(RF_DagNode_t * node)
{
RF_Raid_t *raidPtr = (RF_Raid_t *) node->dagHdr->raidPtr;
RF_RowCol_t colData, colMirror;
RF_PhysDiskAddr_t *data_pda = (RF_PhysDiskAddr_t *) node->params[0].p;
RF_PhysDiskAddr_t *mirror_pda = (RF_PhysDiskAddr_t *) node->params[4].p;
RF_PhysDiskAddr_t *tmp_pda;
RF_RaidDisk_t *disks = raidPtr->Disks;
int usemirror;
/* return the [row col] of the disk with the shortest queue */
colData = data_pda->col;
colMirror = mirror_pda->col;
usemirror = 0;
if (RF_DEAD_DISK(disks[colMirror].status)) {
usemirror = 0;
} else
if (RF_DEAD_DISK(disks[colData].status)) {
usemirror = 1;
} else
if (raidPtr->parity_good == RF_RAID_DIRTY) {
/* Trust only the main disk */
usemirror = 0;
} else
if (data_pda->startSector <
(disks[colData].numBlocks / 2)) {
usemirror = 0;
} else {
usemirror = 1;
}
if (usemirror) {
/* use mirror (parity) disk, swap params 0 & 4 */
tmp_pda = data_pda;
node->params[0].p = mirror_pda;
node->params[4].p = tmp_pda;
} else {
/* use data disk, leave param 0 unchanged */
}
}
#endif