NetBSD/sys/arch/arm32/mainbus/cpu.c

502 lines
12 KiB
C

/* $NetBSD: cpu.c,v 1.2 1996/02/22 22:56:16 mark Exp $ */
/*
* Copyright (c) 1995 Mark Brinicombe.
* Copyright (c) 1995 Brini.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Brini.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RiscBSD kernel project
*
* cpu.c
*
* Probing and configuration for the master cpu
*
* Created : 10/10/95
* Last updated : 10/10/95
*
* $Id: cpu.c,v 1.2 1996/02/22 22:56:16 mark Exp $
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <vm/vm_kern.h>
#include <machine/io.h>
#include <machine/katelib.h>
#include <machine/cpu.h>
#include <machine/pte.h>
#include <machine/undefined.h>
#include <machine/cpus.h>
#include "cpu.h"
#if NCPU < 1
#error Need at least 1 CPU configured
#endif
/* Array of cpu structures, one per possible cpu */
cpu_t cpus[MAX_CPUS];
char cpu_model[48];
extern int cpu_ctrl; /* Control bits for boot CPU */
volatile int undefined_test; /* Used for FPA test */
extern char *boot_args;
/* Declare prototypes */
/* Prototypes */
void identify_master_cpu __P((int /*cpu_number*/));
void identify_arm_cpu __P((int /*cpu_number*/));
void identify_arm_fpu __P((int /*cpu_number*/));
char *strstr __P((char */*s1*/, char */*s2*/));
/*
* int cpumatch(struct device *parent, void *match, void *aux)
*
* Probe for the main cpu. Currently all this does is return 1 to
* indicate that the cpu was found.
*/
int
cpumatch(parent, match, aux)
struct device *parent;
void *match;
void *aux;
{
struct device *dev = match;
if (dev->dv_unit == 0)
return(1);
return(0);
}
/*
* void cpusattach(struct device *parent, struct device *dev, void *aux)
*
* Attach the main cpu
*/
void
cpuattach(parent, self, aux)
struct device *parent;
struct device *self;
void *aux;
{
int loop;
for (loop = 0; loop < MAX_CPUS; ++loop)
bzero(&cpus[loop], sizeof(cpu_t));
identify_master_cpu(CPU_MASTER);
}
struct cfdriver cpucd = {
NULL, "cpu", cpumatch, cpuattach, DV_DULL,
sizeof(struct cpu_softc), 1
};
/*
* Used to test for an FPA. The following function is installed as a coproc1 handler
* on the undefined instruction vector and then we issue a FPA instruction.
* If undefined_test is non zero then the FPA did not handle the instruction so
* must be absent.
*/
int
fpa_test(address, instruction, frame)
u_int address;
u_int instruction;
trapframe_t *frame;
{
++undefined_test;
return(0);
}
/*
* If an FPA was found then this function is installed as the coproc1 handler
* on the undefined instruction vector. Currently we don't support FPA's
* so this just triggers an exception.
*/
int
fpa_handler(address, instruction, frame)
u_int address;
u_int instruction;
trapframe_t *frame;
{
u_int fpsr;
__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
printf("FPA exception: fpsr = %08x\n", fpsr);
return(1);
}
/*
* Identify the master (boot) CPU
* This also probes for an FPU and will install an FPE if necessary
*/
void
identify_master_cpu(cpu_number)
int cpu_number;
{
u_int fpsr;
cpus[cpu_number].cpu_class = CPU_CLASS_ARM;
cpus[cpu_number].cpu_host = CPU_HOST_MAINBUS;
cpus[cpu_number].cpu_flags = CPU_FLAG_PRESENT;
cpus[cpu_number].cpu_ctrl = cpu_ctrl;
/* Get the cpu ID from coprocessor 15 */
cpus[cpu_number].cpu_id = cpu_id();
identify_arm_cpu(cpu_number);
strcpy(cpu_model, cpus[cpu_number].cpu_model);
/*
* Ok now we test for an FPA
* At this point no floating point emulator has been installed.
* This means any FP instruction will cause undefined exception.
* We install a temporay coproc 1 handler which will modify undefined_test
* if it is called.
* We then try to read the FP status register. If undefined_test has been
* decremented then the instruction was not handled by an FPA so we know
* the FPA is missing. If undefined_test is still 1 then we know the
* instruction was handled by an FPA.
* We then remove our test handler and look at the
* FP status register for identification.
*/
install_coproc_handler(FP_COPROC, fpa_test);
undefined_test = 0;
__asm __volatile("stmfd sp!, {r0}; .word 0xee300110; mov %0, r0; ldmfd sp!, {r0}" : "=r" (fpsr));
if (undefined_test == 0) {
cpus[cpu_number].fpu_type = (fpsr >> 24);
switch (fpsr >> 24) {
case 0x81 :
cpus[cpu_number].fpu_class = FPU_CLASS_FPA;
#if 0
/* Experimental stuff used when playing with an ARM700+FPA11 */
printf("FPA11: FPSR=%08x\n", fpsr);
fpsr=0x00070400;
__asm __volatile("wfs %0" : "=r" (fpsr));
__asm __volatile("rfc %0" : "=r" (fpsr));
printf("FPA11: FPCR=%08x", fpsr);
__asm __volatile("stmfd sp!, {r0}; mov r0, #0x00000e00 ; wfc r0; ldmfd sp!, {r0}");
__asm __volatile("rfc %0" : "=r" (fpsr));
printf("FPA11: FPCR=%08x", fpsr);
#endif
break;
default :
cpus[cpu_number].fpu_class = FPU_CLASS_FPU;
break;
}
cpus[cpu_number].fpu_flags = 0;
install_coproc_handler(FP_COPROC, fpa_handler);
} else {
cpus[cpu_number].fpu_class = FPU_CLASS_NONE;
cpus[cpu_number].fpu_flags = 0;
/* Ok if ARMFPE is defined and the boot options request the ARM FPE then it will
* be installed as the FPE. If the installation fails the existing FPE is used as
* a fall back.
* If either ARMFPE is not defined or the boot args did not request it the old FPE
* is installed.
* This is just while I work on integrating the new FPE.
* It means the new FPE gets installed if compiled int (ARMFPE defined)
* and also gives me a on/off option when I boot in case the new FPE is
* causing panics.
* In all cases it falls back on the existing FPE is the ARMFPE was not successfully
* installed.
*/
#ifdef ARMFPE
if (boot_args) {
char *ptr;
ptr = strstr(boot_args, "noarmfpe");
if (!ptr) {
if (initialise_arm_fpe(&cpus[cpu_number]) != 0) {
identify_arm_fpu(cpu_number);
#ifdef FPE
initialise_fpe(&cpus[cpu_number]);
#endif
}
#ifdef FPE
} else
initialise_fpe(&cpus[cpu_number]);
} else
initialise_fpe(&cpus[cpu_number]);
#else
}
}
#endif
#else
#ifdef FPE
initialise_fpe(&cpus[cpu_number]);
#else
#error No FPE built in
#endif
#endif
}
identify_arm_fpu(cpu_number);
}
/*
* Report the type of the specifed arm processor. This uses the generic and arm specific
* information in the cpu structure to identify the processor. The remaining fields
* in the cpu structure are filled in appropriately.
*/
void
identify_arm_cpu(cpu_number)
int cpu_number;
{
cpu_t *cpu;
u_int cpuid;
cpu = &cpus[cpu_number];
if (cpu->cpu_host == CPU_HOST_NONE || cpu->cpu_class == CPU_CLASS_NONE) {
printf("No installed processor\n");
return;
}
if (cpu->cpu_class != CPU_CLASS_ARM) {
printf("identify_arm_cpu: Can only identify ARM CPU's\n");
return;
}
cpuid = cpu->cpu_id;
if (cpuid == 0) {
printf("Processor failed probe - no CPU ID\n");
return;
}
if ((cpuid & CPU_ID_DESIGNER_MASK) != CPU_ID_ARM_LTD)
printf("Unrecognised designer ID = %08x\n", cpuid);
switch (cpuid & CPU_ID_CPU_MASK) {
case ID_ARM610:
cpu->cpu_type = cpuid & CPU_ID_CPU_MASK;
break;
case ID_ARM710 :
case ID_ARM700 :
cpu->cpu_type = (cpuid & CPU_ID_CPU_MASK) >> 4;
break;
default :
printf("Unrecognised processor ID = %08x\n", cpuid);
cpu->cpu_type = cpuid & CPU_ID_CPU_MASK;
break;
}
sprintf(cpu->cpu_model, "ARM%x rev %d", cpu->cpu_type, cpuid & CPU_ID_REVISION_MASK);
if ((cpu->cpu_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
strcat(cpu->cpu_model, " IDC disabled");
else
strcat(cpu->cpu_model, " IDC enabled");
if ((cpu->cpu_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
strcat(cpu->cpu_model, " WB disabled");
else
strcat(cpu->cpu_model, " WB enabled");
if (cpu->cpu_ctrl & CPU_CONTROL_LABT_ENABLE)
strcat(cpu->cpu_model, " LABT");
else
strcat(cpu->cpu_model, " EABT");
/* Print the info */
printf(": %s\n", cpu->cpu_model);
}
/*
* Report the type of the specifed arm fpu. This uses the generic and arm specific
* information in the cpu structure to identify the fpu. The remaining fields
* in the cpu structure are filled in appropriately.
*/
void
identify_arm_fpu(cpu_number)
int cpu_number;
{
cpu_t *cpu;
cpu = &cpus[cpu_number];
if (cpu->cpu_host == CPU_HOST_NONE || cpu->cpu_class == CPU_CLASS_NONE) {
printf("No installed processor\n");
return;
}
if (cpu->cpu_class != CPU_CLASS_ARM) {
printf("identify_arm_cpu: Can only identify ARM FPU's\n");
return;
}
/* Now for the FP info */
switch (cpu->fpu_class) {
case FPU_CLASS_NONE :
strcpy(cpu->fpu_model, "None");
break;
case FPU_CLASS_FPE :
printf("fpe%d at cpu%d: %s\n", cpu_number, cpu_number, cpu->fpu_model);
printf("fpe%d: no hardware found\n", cpu_number);
break;
case FPU_CLASS_FPA :
printf("fpe%d at cpu%d: %s\n", cpu_number, cpu_number, cpu->fpu_model);
if (cpu->fpu_type == FPU_TYPE_FPA11) {
strcpy(cpu->fpu_model, "FPA11");
printf("fpe%d: fpa11 found\n", cpu_number);
} else {
strcpy(cpu->fpu_model, "FPA");
printf("fpe%d: fpa10 found\n", cpu_number);
}
if ((cpu->fpu_flags & 4) == 0)
strcat(cpu->fpu_model, "");
else
strcat(cpu->fpu_model, " clk/2");
break;
case FPU_CLASS_FPU :
sprintf(cpu->fpu_model, "Unknown FPU (ID=%02x)\n", cpu->fpu_type);
printf("fpu%d at cpu%d: %s\n", cpu_number, cpu_number, cpu->fpu_model);
break;
}
}
int
cpuopen(dev, flag, mode, p)
dev_t dev;
int flag;
int mode;
struct proc *p;
{
struct cpu_softc *sc;
int unit;
int s;
unit = minor(dev);
if (unit >= cpucd.cd_ndevs)
return(ENXIO);
sc = cpucd.cd_devs[unit];
if (!sc) return(ENXIO);
s = splhigh();
if (sc->sc_open) {
(void)splx(s);
return(EBUSY);
}
++sc->sc_open;
(void)splx(s);
return(0);
}
int
cpuclose(dev, flag, mode, p)
dev_t dev;
int flag;
int mode;
struct proc *p;
{
struct cpu_softc *sc;
int unit;
int s;
unit = minor(dev);
sc = cpucd.cd_devs[unit];
if (sc->sc_open == 0) return(ENXIO);
s = splhigh();
--sc->sc_open;
(void)splx(s);
return(0);
}
int
cpuioctl(dev, cmd, data, flag, p)
dev_t dev;
int cmd;
caddr_t data;
int flag;
struct proc *p;
{
struct cpu_softc *sc;
int unit;
unit = minor(dev);
sc = cpucd.cd_devs[unit];
switch (cmd) {
default:
return(ENXIO);
break;
}
return(0);
}
/* End of cpu.c */