db70f1818e
is easier to add probes. (From FreeBSD)
1321 lines
37 KiB
C
1321 lines
37 KiB
C
/* $NetBSD: vfs_cache.c,v 1.108 2015/10/02 16:54:15 christos Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2008 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.108 2015/10/02 16:54:15 christos Exp $");
|
|
|
|
#ifdef _KERNEL_OPT
|
|
#include "opt_ddb.h"
|
|
#include "opt_revcache.h"
|
|
#include "opt_dtrace.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/time.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/evcnt.h>
|
|
#include <sys/sdt.h>
|
|
|
|
#define NAMECACHE_ENTER_REVERSE
|
|
/*
|
|
* Name caching works as follows:
|
|
*
|
|
* Names found by directory scans are retained in a cache
|
|
* for future reference. It is managed LRU, so frequently
|
|
* used names will hang around. Cache is indexed by hash value
|
|
* obtained from (dvp, name) where dvp refers to the directory
|
|
* containing name.
|
|
*
|
|
* For simplicity (and economy of storage), names longer than
|
|
* a maximum length of NCHNAMLEN are not cached; they occur
|
|
* infrequently in any case, and are almost never of interest.
|
|
*
|
|
* Upon reaching the last segment of a path, if the reference
|
|
* is for DELETE, or NOCACHE is set (rewrite), and the
|
|
* name is located in the cache, it will be dropped.
|
|
* The entry is dropped also when it was not possible to lock
|
|
* the cached vnode, either because vget() failed or the generation
|
|
* number has changed while waiting for the lock.
|
|
*/
|
|
|
|
/*
|
|
* The locking in this subsystem works as follows:
|
|
*
|
|
* When an entry is added to the cache, via cache_enter(),
|
|
* namecache_lock is taken to exclude other writers. The new
|
|
* entry is added to the hash list in a way which permits
|
|
* concurrent lookups and invalidations in the cache done on
|
|
* other CPUs to continue in parallel.
|
|
*
|
|
* When a lookup is done in the cache, via cache_lookup() or
|
|
* cache_lookup_raw(), the per-cpu lock below is taken. This
|
|
* protects calls to cache_lookup_entry() and cache_invalidate()
|
|
* against cache_reclaim() but allows lookups to continue in
|
|
* parallel with cache_enter().
|
|
*
|
|
* cache_revlookup() takes namecache_lock to exclude cache_enter()
|
|
* and cache_reclaim() since the list it operates on is not
|
|
* maintained to allow concurrent reads.
|
|
*
|
|
* When cache_reclaim() is called namecache_lock is held to hold
|
|
* off calls to cache_enter()/cache_revlookup() and each of the
|
|
* per-cpu locks is taken to hold off lookups. Holding all these
|
|
* locks essentially idles the subsystem, ensuring there are no
|
|
* concurrent references to the cache entries being freed.
|
|
*
|
|
* 32 bit per-cpu statistic counters (struct nchstats_percpu) are
|
|
* incremented when the operations they count are performed while
|
|
* running on the corresponding CPU. Frequently individual counters
|
|
* are incremented while holding a lock (either a per-cpu lock or
|
|
* namecache_lock) sufficient to preclude concurrent increments
|
|
* being done to the same counter, so non-atomic increments are
|
|
* done using the COUNT() macro. Counters which are incremented
|
|
* when one of these locks is not held use the COUNT_UNL() macro
|
|
* instead. COUNT_UNL() could be defined to do atomic increments
|
|
* but currently just does what COUNT() does, on the theory that
|
|
* it is unlikely the non-atomic increment will be interrupted
|
|
* by something on the same CPU that increments the same counter,
|
|
* but even if it does happen the consequences aren't serious.
|
|
*
|
|
* N.B.: Attempting to protect COUNT_UNL() increments by taking
|
|
* a per-cpu lock in the namecache_count_*() functions causes
|
|
* a deadlock. Don't do that, use atomic increments instead if
|
|
* the imperfections here bug you.
|
|
*
|
|
* The 64 bit system-wide statistic counts (struct nchstats) are
|
|
* maintained by sampling the per-cpu counters periodically, adding
|
|
* in the deltas since the last samples and recording the current
|
|
* samples to use to compute the next delta. The sampling is done
|
|
* as a side effect of cache_reclaim() which is run periodically,
|
|
* for its own purposes, often enough to avoid overflow of the 32
|
|
* bit counters. While sampling in this fashion requires no locking
|
|
* it is never-the-less done only after all locks have been taken by
|
|
* cache_reclaim() to allow cache_stat_sysctl() to hold off
|
|
* cache_reclaim() with minimal locking.
|
|
*
|
|
* cache_stat_sysctl() takes its CPU's per-cpu lock to hold off
|
|
* cache_reclaim() so that it can copy the subsystem total stats
|
|
* without them being concurrently modified. If CACHE_STATS_CURRENT
|
|
* is defined it also harvests the per-cpu increments into the total,
|
|
* which again requires cache_reclaim() to be held off.
|
|
*
|
|
* The per-cpu data (a lock and the per-cpu stats structures)
|
|
* are defined next.
|
|
*/
|
|
struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
|
|
|
|
struct nchcpu {
|
|
kmutex_t cpu_lock;
|
|
struct nchstats_percpu cpu_stats;
|
|
/* XXX maybe __cacheline_aligned would improve this? */
|
|
struct nchstats_percpu cpu_stats_last; /* from last sample */
|
|
};
|
|
|
|
/*
|
|
* The type for the hash code. While the hash function generates a
|
|
* u32, the hash code has historically been passed around as a u_long,
|
|
* and the value is modified by xor'ing a uintptr_t, so it's not
|
|
* entirely clear what the best type is. For now I'll leave it
|
|
* unchanged as u_long.
|
|
*/
|
|
|
|
typedef u_long nchash_t;
|
|
|
|
/*
|
|
* Structures associated with name cacheing.
|
|
*/
|
|
|
|
static kmutex_t *namecache_lock __read_mostly;
|
|
static pool_cache_t namecache_cache __read_mostly;
|
|
static TAILQ_HEAD(, namecache) nclruhead __cacheline_aligned;
|
|
|
|
static LIST_HEAD(nchashhead, namecache) *nchashtbl __read_mostly;
|
|
static u_long nchash __read_mostly;
|
|
|
|
#define NCHASH2(hash, dvp) \
|
|
(((hash) ^ ((uintptr_t)(dvp) >> 3)) & nchash)
|
|
|
|
static LIST_HEAD(ncvhashhead, namecache) *ncvhashtbl __read_mostly;
|
|
static u_long ncvhash __read_mostly;
|
|
|
|
#define NCVHASH(vp) (((uintptr_t)(vp) >> 3) & ncvhash)
|
|
|
|
/* Number of cache entries allocated. */
|
|
static long numcache __cacheline_aligned;
|
|
|
|
/* Garbage collection queue and number of entries pending in it. */
|
|
static void *cache_gcqueue;
|
|
static u_int cache_gcpend;
|
|
|
|
/* Cache effectiveness statistics. This holds total from per-cpu stats */
|
|
struct nchstats nchstats __cacheline_aligned;
|
|
|
|
/*
|
|
* Macros to count an event, update the central stats with per-cpu
|
|
* values and add current per-cpu increments to the subsystem total
|
|
* last collected by cache_reclaim().
|
|
*/
|
|
#define CACHE_STATS_CURRENT /* nothing */
|
|
|
|
#define COUNT(cpup, f) ((cpup)->cpu_stats.f++)
|
|
|
|
#define UPDATE(cpup, f) do { \
|
|
struct nchcpu *Xcpup = (cpup); \
|
|
uint32_t Xcnt = (volatile uint32_t) Xcpup->cpu_stats.f; \
|
|
nchstats.f += Xcnt - Xcpup->cpu_stats_last.f; \
|
|
Xcpup->cpu_stats_last.f = Xcnt; \
|
|
} while (/* CONSTCOND */ 0)
|
|
|
|
#define ADD(stats, cpup, f) do { \
|
|
struct nchcpu *Xcpup = (cpup); \
|
|
stats.f += Xcpup->cpu_stats.f - Xcpup->cpu_stats_last.f; \
|
|
} while (/* CONSTCOND */ 0)
|
|
|
|
/* Do unlocked stats the same way. Use a different name to allow mind changes */
|
|
#define COUNT_UNL(cpup, f) COUNT((cpup), f)
|
|
|
|
static const int cache_lowat = 95;
|
|
static const int cache_hiwat = 98;
|
|
static const int cache_hottime = 5; /* number of seconds */
|
|
static int doingcache = 1; /* 1 => enable the cache */
|
|
|
|
static struct evcnt cache_ev_scan;
|
|
static struct evcnt cache_ev_gc;
|
|
static struct evcnt cache_ev_over;
|
|
static struct evcnt cache_ev_under;
|
|
static struct evcnt cache_ev_forced;
|
|
|
|
static void cache_invalidate(struct namecache *);
|
|
static struct namecache *cache_lookup_entry(
|
|
const struct vnode *, const char *, size_t);
|
|
static void cache_thread(void *);
|
|
static void cache_invalidate(struct namecache *);
|
|
static void cache_disassociate(struct namecache *);
|
|
static void cache_reclaim(void);
|
|
static int cache_ctor(void *, void *, int);
|
|
static void cache_dtor(void *, void *);
|
|
|
|
static struct sysctllog *sysctllog;
|
|
static void sysctl_cache_stat_setup(void);
|
|
|
|
SDT_PROVIDER_DEFINE(vfs);
|
|
|
|
SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
|
|
SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
|
|
SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
|
|
SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
|
|
SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
|
|
SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
|
|
"char *", "size_t");
|
|
SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
|
|
"char *", "size_t");
|
|
SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
|
|
"char *", "size_t");
|
|
SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
|
|
"struct vnode *");
|
|
SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
|
|
"int");
|
|
SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
|
|
SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
|
|
"char *", "size_t");
|
|
SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
|
|
"char *", "size_t");
|
|
|
|
/*
|
|
* Compute the hash for an entry.
|
|
*
|
|
* (This is for now a wrapper around namei_hash, whose interface is
|
|
* for the time being slightly inconvenient.)
|
|
*/
|
|
static nchash_t
|
|
cache_hash(const char *name, size_t namelen)
|
|
{
|
|
const char *endptr;
|
|
|
|
endptr = name + namelen;
|
|
return namei_hash(name, &endptr);
|
|
}
|
|
|
|
/*
|
|
* Invalidate a cache entry and enqueue it for garbage collection.
|
|
* The caller needs to hold namecache_lock or a per-cpu lock to hold
|
|
* off cache_reclaim().
|
|
*/
|
|
static void
|
|
cache_invalidate(struct namecache *ncp)
|
|
{
|
|
void *head;
|
|
|
|
KASSERT(mutex_owned(&ncp->nc_lock));
|
|
|
|
if (ncp->nc_dvp != NULL) {
|
|
SDT_PROBE(vfs, namecache, invalidate, done, ncp->nc_dvp,
|
|
0, 0, 0, 0);
|
|
|
|
ncp->nc_vp = NULL;
|
|
ncp->nc_dvp = NULL;
|
|
do {
|
|
head = cache_gcqueue;
|
|
ncp->nc_gcqueue = head;
|
|
} while (atomic_cas_ptr(&cache_gcqueue, head, ncp) != head);
|
|
atomic_inc_uint(&cache_gcpend);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Disassociate a namecache entry from any vnodes it is attached to,
|
|
* and remove from the global LRU list.
|
|
*/
|
|
static void
|
|
cache_disassociate(struct namecache *ncp)
|
|
{
|
|
|
|
KASSERT(mutex_owned(namecache_lock));
|
|
KASSERT(ncp->nc_dvp == NULL);
|
|
|
|
if (ncp->nc_lru.tqe_prev != NULL) {
|
|
TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
|
|
ncp->nc_lru.tqe_prev = NULL;
|
|
}
|
|
if (ncp->nc_vhash.le_prev != NULL) {
|
|
LIST_REMOVE(ncp, nc_vhash);
|
|
ncp->nc_vhash.le_prev = NULL;
|
|
}
|
|
if (ncp->nc_vlist.le_prev != NULL) {
|
|
LIST_REMOVE(ncp, nc_vlist);
|
|
ncp->nc_vlist.le_prev = NULL;
|
|
}
|
|
if (ncp->nc_dvlist.le_prev != NULL) {
|
|
LIST_REMOVE(ncp, nc_dvlist);
|
|
ncp->nc_dvlist.le_prev = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Lock all CPUs to prevent any cache lookup activity. Conceptually,
|
|
* this locks out all "readers".
|
|
*/
|
|
static void
|
|
cache_lock_cpus(void)
|
|
{
|
|
CPU_INFO_ITERATOR cii;
|
|
struct cpu_info *ci;
|
|
struct nchcpu *cpup;
|
|
|
|
/*
|
|
* Lock out all CPUs first, then harvest per-cpu stats. This
|
|
* is probably not quite as cache-efficient as doing the lock
|
|
* and harvest at the same time, but allows cache_stat_sysctl()
|
|
* to make do with a per-cpu lock.
|
|
*/
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
cpup = ci->ci_data.cpu_nch;
|
|
mutex_enter(&cpup->cpu_lock);
|
|
}
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
cpup = ci->ci_data.cpu_nch;
|
|
UPDATE(cpup, ncs_goodhits);
|
|
UPDATE(cpup, ncs_neghits);
|
|
UPDATE(cpup, ncs_badhits);
|
|
UPDATE(cpup, ncs_falsehits);
|
|
UPDATE(cpup, ncs_miss);
|
|
UPDATE(cpup, ncs_long);
|
|
UPDATE(cpup, ncs_pass2);
|
|
UPDATE(cpup, ncs_2passes);
|
|
UPDATE(cpup, ncs_revhits);
|
|
UPDATE(cpup, ncs_revmiss);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release all CPU locks.
|
|
*/
|
|
static void
|
|
cache_unlock_cpus(void)
|
|
{
|
|
CPU_INFO_ITERATOR cii;
|
|
struct cpu_info *ci;
|
|
struct nchcpu *cpup;
|
|
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
cpup = ci->ci_data.cpu_nch;
|
|
mutex_exit(&cpup->cpu_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find a single cache entry and return it locked.
|
|
* The caller needs to hold namecache_lock or a per-cpu lock to hold
|
|
* off cache_reclaim().
|
|
*/
|
|
static struct namecache *
|
|
cache_lookup_entry(const struct vnode *dvp, const char *name, size_t namelen)
|
|
{
|
|
struct nchashhead *ncpp;
|
|
struct namecache *ncp;
|
|
nchash_t hash;
|
|
|
|
KASSERT(dvp != NULL);
|
|
hash = cache_hash(name, namelen);
|
|
ncpp = &nchashtbl[NCHASH2(hash, dvp)];
|
|
|
|
LIST_FOREACH(ncp, ncpp, nc_hash) {
|
|
membar_datadep_consumer(); /* for Alpha... */
|
|
if (ncp->nc_dvp != dvp ||
|
|
ncp->nc_nlen != namelen ||
|
|
memcmp(ncp->nc_name, name, (u_int)ncp->nc_nlen))
|
|
continue;
|
|
mutex_enter(&ncp->nc_lock);
|
|
if (__predict_true(ncp->nc_dvp == dvp)) {
|
|
ncp->nc_hittime = hardclock_ticks;
|
|
SDT_PROBE(vfs, namecache, lookup, hit, dvp,
|
|
name, namelen, 0, 0);
|
|
return ncp;
|
|
}
|
|
/* Raced: entry has been nullified. */
|
|
mutex_exit(&ncp->nc_lock);
|
|
}
|
|
|
|
SDT_PROBE(vfs, namecache, lookup, miss, dvp,
|
|
name, namelen, 0, 0);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Look for a the name in the cache. We don't do this
|
|
* if the segment name is long, simply so the cache can avoid
|
|
* holding long names (which would either waste space, or
|
|
* add greatly to the complexity).
|
|
*
|
|
* Lookup is called with DVP pointing to the directory to search,
|
|
* and CNP providing the name of the entry being sought: cn_nameptr
|
|
* is the name, cn_namelen is its length, and cn_flags is the flags
|
|
* word from the namei operation.
|
|
*
|
|
* DVP must be locked.
|
|
*
|
|
* There are three possible non-error return states:
|
|
* 1. Nothing was found in the cache. Nothing is known about
|
|
* the requested name.
|
|
* 2. A negative entry was found in the cache, meaning that the
|
|
* requested name definitely does not exist.
|
|
* 3. A positive entry was found in the cache, meaning that the
|
|
* requested name does exist and that we are providing the
|
|
* vnode.
|
|
* In these cases the results are:
|
|
* 1. 0 returned; VN is set to NULL.
|
|
* 2. 1 returned; VN is set to NULL.
|
|
* 3. 1 returned; VN is set to the vnode found.
|
|
*
|
|
* The additional result argument ISWHT is set to zero, unless a
|
|
* negative entry is found that was entered as a whiteout, in which
|
|
* case ISWHT is set to one.
|
|
*
|
|
* The ISWHT_RET argument pointer may be null. In this case an
|
|
* assertion is made that the whiteout flag is not set. File systems
|
|
* that do not support whiteouts can/should do this.
|
|
*
|
|
* Filesystems that do support whiteouts should add ISWHITEOUT to
|
|
* cnp->cn_flags if ISWHT comes back nonzero.
|
|
*
|
|
* When a vnode is returned, it is locked, as per the vnode lookup
|
|
* locking protocol.
|
|
*
|
|
* There is no way for this function to fail, in the sense of
|
|
* generating an error that requires aborting the namei operation.
|
|
*
|
|
* (Prior to October 2012, this function returned an integer status,
|
|
* and a vnode, and mucked with the flags word in CNP for whiteouts.
|
|
* The integer status was -1 for "nothing found", ENOENT for "a
|
|
* negative entry found", 0 for "a positive entry found", and possibly
|
|
* other errors, and the value of VN might or might not have been set
|
|
* depending on what error occurred.)
|
|
*/
|
|
int
|
|
cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
|
|
uint32_t nameiop, uint32_t cnflags,
|
|
int *iswht_ret, struct vnode **vn_ret)
|
|
{
|
|
struct namecache *ncp;
|
|
struct vnode *vp;
|
|
struct nchcpu *cpup;
|
|
int error, ret_value;
|
|
|
|
|
|
/* Establish default result values */
|
|
if (iswht_ret != NULL) {
|
|
*iswht_ret = 0;
|
|
}
|
|
*vn_ret = NULL;
|
|
|
|
if (__predict_false(!doingcache)) {
|
|
return 0;
|
|
}
|
|
|
|
cpup = curcpu()->ci_data.cpu_nch;
|
|
mutex_enter(&cpup->cpu_lock);
|
|
if (__predict_false(namelen > NCHNAMLEN)) {
|
|
SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
|
|
name, namelen, 0, 0);
|
|
COUNT(cpup, ncs_long);
|
|
mutex_exit(&cpup->cpu_lock);
|
|
/* found nothing */
|
|
return 0;
|
|
}
|
|
|
|
ncp = cache_lookup_entry(dvp, name, namelen);
|
|
if (__predict_false(ncp == NULL)) {
|
|
COUNT(cpup, ncs_miss);
|
|
mutex_exit(&cpup->cpu_lock);
|
|
/* found nothing */
|
|
return 0;
|
|
}
|
|
if ((cnflags & MAKEENTRY) == 0) {
|
|
COUNT(cpup, ncs_badhits);
|
|
/*
|
|
* Last component and we are renaming or deleting,
|
|
* the cache entry is invalid, or otherwise don't
|
|
* want cache entry to exist.
|
|
*/
|
|
cache_invalidate(ncp);
|
|
mutex_exit(&ncp->nc_lock);
|
|
mutex_exit(&cpup->cpu_lock);
|
|
/* found nothing */
|
|
return 0;
|
|
}
|
|
if (ncp->nc_vp == NULL) {
|
|
if (iswht_ret != NULL) {
|
|
/*
|
|
* Restore the ISWHITEOUT flag saved earlier.
|
|
*/
|
|
KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
|
|
*iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
|
|
} else {
|
|
KASSERT(ncp->nc_flags == 0);
|
|
}
|
|
|
|
if (__predict_true(nameiop != CREATE ||
|
|
(cnflags & ISLASTCN) == 0)) {
|
|
COUNT(cpup, ncs_neghits);
|
|
/* found neg entry; vn is already null from above */
|
|
ret_value = 1;
|
|
} else {
|
|
COUNT(cpup, ncs_badhits);
|
|
/*
|
|
* Last component and we are renaming or
|
|
* deleting, the cache entry is invalid,
|
|
* or otherwise don't want cache entry to
|
|
* exist.
|
|
*/
|
|
cache_invalidate(ncp);
|
|
/* found nothing */
|
|
ret_value = 0;
|
|
}
|
|
mutex_exit(&ncp->nc_lock);
|
|
mutex_exit(&cpup->cpu_lock);
|
|
return ret_value;
|
|
}
|
|
|
|
vp = ncp->nc_vp;
|
|
mutex_enter(vp->v_interlock);
|
|
mutex_exit(&ncp->nc_lock);
|
|
mutex_exit(&cpup->cpu_lock);
|
|
|
|
/*
|
|
* Unlocked except for the vnode interlock. Call vget().
|
|
*/
|
|
error = vget(vp, LK_NOWAIT, false /* !wait */);
|
|
if (error) {
|
|
KASSERT(error == EBUSY);
|
|
/*
|
|
* This vnode is being cleaned out.
|
|
* XXX badhits?
|
|
*/
|
|
COUNT_UNL(cpup, ncs_falsehits);
|
|
/* found nothing */
|
|
return 0;
|
|
}
|
|
|
|
COUNT_UNL(cpup, ncs_goodhits);
|
|
/* found it */
|
|
*vn_ret = vp;
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* Cut-'n-pasted version of the above without the nameiop argument.
|
|
*/
|
|
int
|
|
cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
|
|
uint32_t cnflags,
|
|
int *iswht_ret, struct vnode **vn_ret)
|
|
{
|
|
struct namecache *ncp;
|
|
struct vnode *vp;
|
|
struct nchcpu *cpup;
|
|
int error;
|
|
|
|
/* Establish default results. */
|
|
if (iswht_ret != NULL) {
|
|
*iswht_ret = 0;
|
|
}
|
|
*vn_ret = NULL;
|
|
|
|
if (__predict_false(!doingcache)) {
|
|
/* found nothing */
|
|
return 0;
|
|
}
|
|
|
|
cpup = curcpu()->ci_data.cpu_nch;
|
|
mutex_enter(&cpup->cpu_lock);
|
|
if (__predict_false(namelen > NCHNAMLEN)) {
|
|
COUNT(cpup, ncs_long);
|
|
mutex_exit(&cpup->cpu_lock);
|
|
/* found nothing */
|
|
return 0;
|
|
}
|
|
ncp = cache_lookup_entry(dvp, name, namelen);
|
|
if (__predict_false(ncp == NULL)) {
|
|
COUNT(cpup, ncs_miss);
|
|
mutex_exit(&cpup->cpu_lock);
|
|
/* found nothing */
|
|
return 0;
|
|
}
|
|
vp = ncp->nc_vp;
|
|
if (vp == NULL) {
|
|
/*
|
|
* Restore the ISWHITEOUT flag saved earlier.
|
|
*/
|
|
if (iswht_ret != NULL) {
|
|
KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
|
|
/*cnp->cn_flags |= ncp->nc_flags;*/
|
|
*iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
|
|
}
|
|
COUNT(cpup, ncs_neghits);
|
|
mutex_exit(&ncp->nc_lock);
|
|
mutex_exit(&cpup->cpu_lock);
|
|
/* found negative entry; vn is already null from above */
|
|
return 1;
|
|
}
|
|
mutex_enter(vp->v_interlock);
|
|
mutex_exit(&ncp->nc_lock);
|
|
mutex_exit(&cpup->cpu_lock);
|
|
|
|
/*
|
|
* Unlocked except for the vnode interlock. Call vget().
|
|
*/
|
|
error = vget(vp, LK_NOWAIT, false /* !wait */);
|
|
if (error) {
|
|
KASSERT(error == EBUSY);
|
|
/*
|
|
* This vnode is being cleaned out.
|
|
* XXX badhits?
|
|
*/
|
|
COUNT_UNL(cpup, ncs_falsehits);
|
|
/* found nothing */
|
|
return 0;
|
|
}
|
|
|
|
COUNT_UNL(cpup, ncs_goodhits); /* XXX can be "badhits" */
|
|
/* found it */
|
|
*vn_ret = vp;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Scan cache looking for name of directory entry pointing at vp.
|
|
*
|
|
* If the lookup succeeds the vnode is referenced and stored in dvpp.
|
|
*
|
|
* If bufp is non-NULL, also place the name in the buffer which starts
|
|
* at bufp, immediately before *bpp, and move bpp backwards to point
|
|
* at the start of it. (Yes, this is a little baroque, but it's done
|
|
* this way to cater to the whims of getcwd).
|
|
*
|
|
* Returns 0 on success, -1 on cache miss, positive errno on failure.
|
|
*/
|
|
int
|
|
cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp)
|
|
{
|
|
struct namecache *ncp;
|
|
struct vnode *dvp;
|
|
struct ncvhashhead *nvcpp;
|
|
struct nchcpu *cpup;
|
|
char *bp;
|
|
int error, nlen;
|
|
|
|
if (!doingcache)
|
|
goto out;
|
|
|
|
nvcpp = &ncvhashtbl[NCVHASH(vp)];
|
|
|
|
/*
|
|
* We increment counters in the local CPU's per-cpu stats.
|
|
* We don't take the per-cpu lock, however, since this function
|
|
* is the only place these counters are incremented so no one
|
|
* will be racing with us to increment them.
|
|
*/
|
|
cpup = curcpu()->ci_data.cpu_nch;
|
|
mutex_enter(namecache_lock);
|
|
LIST_FOREACH(ncp, nvcpp, nc_vhash) {
|
|
mutex_enter(&ncp->nc_lock);
|
|
if (ncp->nc_vp == vp &&
|
|
(dvp = ncp->nc_dvp) != NULL &&
|
|
dvp != vp) { /* avoid pesky . entries.. */
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (ncp->nc_nlen == 1 &&
|
|
ncp->nc_name[0] == '.')
|
|
panic("cache_revlookup: found entry for .");
|
|
|
|
if (ncp->nc_nlen == 2 &&
|
|
ncp->nc_name[0] == '.' &&
|
|
ncp->nc_name[1] == '.')
|
|
panic("cache_revlookup: found entry for ..");
|
|
#endif
|
|
COUNT(cpup, ncs_revhits);
|
|
nlen = ncp->nc_nlen;
|
|
|
|
if (bufp) {
|
|
bp = *bpp;
|
|
bp -= nlen;
|
|
if (bp <= bufp) {
|
|
*dvpp = NULL;
|
|
mutex_exit(&ncp->nc_lock);
|
|
mutex_exit(namecache_lock);
|
|
SDT_PROBE(vfs, namecache, revlookup,
|
|
fail, vp, ERANGE, 0, 0, 0);
|
|
return (ERANGE);
|
|
}
|
|
memcpy(bp, ncp->nc_name, nlen);
|
|
*bpp = bp;
|
|
}
|
|
|
|
mutex_enter(dvp->v_interlock);
|
|
mutex_exit(&ncp->nc_lock);
|
|
mutex_exit(namecache_lock);
|
|
error = vget(dvp, LK_NOWAIT, false /* !wait */);
|
|
if (error) {
|
|
KASSERT(error == EBUSY);
|
|
if (bufp)
|
|
(*bpp) += nlen;
|
|
*dvpp = NULL;
|
|
SDT_PROBE(vfs, namecache, revlookup, fail, vp,
|
|
error, 0, 0, 0);
|
|
return -1;
|
|
}
|
|
*dvpp = dvp;
|
|
SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
|
|
0, 0, 0);
|
|
return (0);
|
|
}
|
|
mutex_exit(&ncp->nc_lock);
|
|
}
|
|
COUNT(cpup, ncs_revmiss);
|
|
mutex_exit(namecache_lock);
|
|
out:
|
|
*dvpp = NULL;
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Add an entry to the cache
|
|
*/
|
|
void
|
|
cache_enter(struct vnode *dvp, struct vnode *vp,
|
|
const char *name, size_t namelen, uint32_t cnflags)
|
|
{
|
|
struct namecache *ncp;
|
|
struct namecache *oncp;
|
|
struct nchashhead *ncpp;
|
|
struct ncvhashhead *nvcpp;
|
|
nchash_t hash;
|
|
|
|
/* First, check whether we can/should add a cache entry. */
|
|
if ((cnflags & MAKEENTRY) == 0 ||
|
|
__predict_false(namelen > NCHNAMLEN || !doingcache)) {
|
|
SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
|
|
0, 0);
|
|
return;
|
|
}
|
|
|
|
SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
|
|
if (numcache > desiredvnodes) {
|
|
mutex_enter(namecache_lock);
|
|
cache_ev_forced.ev_count++;
|
|
cache_reclaim();
|
|
mutex_exit(namecache_lock);
|
|
}
|
|
|
|
ncp = pool_cache_get(namecache_cache, PR_WAITOK);
|
|
mutex_enter(namecache_lock);
|
|
numcache++;
|
|
|
|
/*
|
|
* Concurrent lookups in the same directory may race for a
|
|
* cache entry. if there's a duplicated entry, free it.
|
|
*/
|
|
oncp = cache_lookup_entry(dvp, name, namelen);
|
|
if (oncp) {
|
|
cache_invalidate(oncp);
|
|
mutex_exit(&oncp->nc_lock);
|
|
}
|
|
|
|
/* Grab the vnode we just found. */
|
|
mutex_enter(&ncp->nc_lock);
|
|
ncp->nc_vp = vp;
|
|
ncp->nc_flags = 0;
|
|
ncp->nc_hittime = 0;
|
|
ncp->nc_gcqueue = NULL;
|
|
if (vp == NULL) {
|
|
/*
|
|
* For negative hits, save the ISWHITEOUT flag so we can
|
|
* restore it later when the cache entry is used again.
|
|
*/
|
|
ncp->nc_flags = cnflags & ISWHITEOUT;
|
|
}
|
|
|
|
/* Fill in cache info. */
|
|
ncp->nc_dvp = dvp;
|
|
LIST_INSERT_HEAD(&dvp->v_dnclist, ncp, nc_dvlist);
|
|
if (vp)
|
|
LIST_INSERT_HEAD(&vp->v_nclist, ncp, nc_vlist);
|
|
else {
|
|
ncp->nc_vlist.le_prev = NULL;
|
|
ncp->nc_vlist.le_next = NULL;
|
|
}
|
|
KASSERT(namelen <= NCHNAMLEN);
|
|
ncp->nc_nlen = namelen;
|
|
memcpy(ncp->nc_name, name, (unsigned)ncp->nc_nlen);
|
|
TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
|
|
hash = cache_hash(name, namelen);
|
|
ncpp = &nchashtbl[NCHASH2(hash, dvp)];
|
|
|
|
/*
|
|
* Flush updates before making visible in table. No need for a
|
|
* memory barrier on the other side: to see modifications the
|
|
* list must be followed, meaning a dependent pointer load.
|
|
* The below is LIST_INSERT_HEAD() inlined, with the memory
|
|
* barrier included in the correct place.
|
|
*/
|
|
if ((ncp->nc_hash.le_next = ncpp->lh_first) != NULL)
|
|
ncpp->lh_first->nc_hash.le_prev = &ncp->nc_hash.le_next;
|
|
ncp->nc_hash.le_prev = &ncpp->lh_first;
|
|
membar_producer();
|
|
ncpp->lh_first = ncp;
|
|
|
|
ncp->nc_vhash.le_prev = NULL;
|
|
ncp->nc_vhash.le_next = NULL;
|
|
|
|
/*
|
|
* Create reverse-cache entries (used in getcwd) for directories.
|
|
* (and in linux procfs exe node)
|
|
*/
|
|
if (vp != NULL &&
|
|
vp != dvp &&
|
|
#ifndef NAMECACHE_ENTER_REVERSE
|
|
vp->v_type == VDIR &&
|
|
#endif
|
|
(ncp->nc_nlen > 2 ||
|
|
(ncp->nc_nlen > 1 && ncp->nc_name[1] != '.') ||
|
|
(/* ncp->nc_nlen > 0 && */ ncp->nc_name[0] != '.'))) {
|
|
nvcpp = &ncvhashtbl[NCVHASH(vp)];
|
|
LIST_INSERT_HEAD(nvcpp, ncp, nc_vhash);
|
|
}
|
|
mutex_exit(&ncp->nc_lock);
|
|
mutex_exit(namecache_lock);
|
|
}
|
|
|
|
/*
|
|
* Name cache initialization, from vfs_init() when we are booting
|
|
*/
|
|
void
|
|
nchinit(void)
|
|
{
|
|
int error;
|
|
|
|
TAILQ_INIT(&nclruhead);
|
|
namecache_cache = pool_cache_init(sizeof(struct namecache),
|
|
coherency_unit, 0, 0, "ncache", NULL, IPL_NONE, cache_ctor,
|
|
cache_dtor, NULL);
|
|
KASSERT(namecache_cache != NULL);
|
|
|
|
namecache_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
|
|
|
|
nchashtbl = hashinit(desiredvnodes, HASH_LIST, true, &nchash);
|
|
ncvhashtbl =
|
|
#ifdef NAMECACHE_ENTER_REVERSE
|
|
hashinit(desiredvnodes, HASH_LIST, true, &ncvhash);
|
|
#else
|
|
hashinit(desiredvnodes/8, HASH_LIST, true, &ncvhash);
|
|
#endif
|
|
|
|
error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, cache_thread,
|
|
NULL, NULL, "cachegc");
|
|
if (error != 0)
|
|
panic("nchinit %d", error);
|
|
|
|
evcnt_attach_dynamic(&cache_ev_scan, EVCNT_TYPE_MISC, NULL,
|
|
"namecache", "entries scanned");
|
|
evcnt_attach_dynamic(&cache_ev_gc, EVCNT_TYPE_MISC, NULL,
|
|
"namecache", "entries collected");
|
|
evcnt_attach_dynamic(&cache_ev_over, EVCNT_TYPE_MISC, NULL,
|
|
"namecache", "over scan target");
|
|
evcnt_attach_dynamic(&cache_ev_under, EVCNT_TYPE_MISC, NULL,
|
|
"namecache", "under scan target");
|
|
evcnt_attach_dynamic(&cache_ev_forced, EVCNT_TYPE_MISC, NULL,
|
|
"namecache", "forced reclaims");
|
|
|
|
sysctl_cache_stat_setup();
|
|
}
|
|
|
|
static int
|
|
cache_ctor(void *arg, void *obj, int flag)
|
|
{
|
|
struct namecache *ncp;
|
|
|
|
ncp = obj;
|
|
mutex_init(&ncp->nc_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
cache_dtor(void *arg, void *obj)
|
|
{
|
|
struct namecache *ncp;
|
|
|
|
ncp = obj;
|
|
mutex_destroy(&ncp->nc_lock);
|
|
}
|
|
|
|
/*
|
|
* Called once for each CPU in the system as attached.
|
|
*/
|
|
void
|
|
cache_cpu_init(struct cpu_info *ci)
|
|
{
|
|
struct nchcpu *cpup;
|
|
size_t sz;
|
|
|
|
sz = roundup2(sizeof(*cpup), coherency_unit) + coherency_unit;
|
|
cpup = kmem_zalloc(sz, KM_SLEEP);
|
|
cpup = (void *)roundup2((uintptr_t)cpup, coherency_unit);
|
|
mutex_init(&cpup->cpu_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
ci->ci_data.cpu_nch = cpup;
|
|
}
|
|
|
|
/*
|
|
* Name cache reinitialization, for when the maximum number of vnodes increases.
|
|
*/
|
|
void
|
|
nchreinit(void)
|
|
{
|
|
struct namecache *ncp;
|
|
struct nchashhead *oldhash1, *hash1;
|
|
struct ncvhashhead *oldhash2, *hash2;
|
|
u_long i, oldmask1, oldmask2, mask1, mask2;
|
|
|
|
hash1 = hashinit(desiredvnodes, HASH_LIST, true, &mask1);
|
|
hash2 =
|
|
#ifdef NAMECACHE_ENTER_REVERSE
|
|
hashinit(desiredvnodes, HASH_LIST, true, &mask2);
|
|
#else
|
|
hashinit(desiredvnodes/8, HASH_LIST, true, &mask2);
|
|
#endif
|
|
mutex_enter(namecache_lock);
|
|
cache_lock_cpus();
|
|
oldhash1 = nchashtbl;
|
|
oldmask1 = nchash;
|
|
nchashtbl = hash1;
|
|
nchash = mask1;
|
|
oldhash2 = ncvhashtbl;
|
|
oldmask2 = ncvhash;
|
|
ncvhashtbl = hash2;
|
|
ncvhash = mask2;
|
|
for (i = 0; i <= oldmask1; i++) {
|
|
while ((ncp = LIST_FIRST(&oldhash1[i])) != NULL) {
|
|
LIST_REMOVE(ncp, nc_hash);
|
|
ncp->nc_hash.le_prev = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i <= oldmask2; i++) {
|
|
while ((ncp = LIST_FIRST(&oldhash2[i])) != NULL) {
|
|
LIST_REMOVE(ncp, nc_vhash);
|
|
ncp->nc_vhash.le_prev = NULL;
|
|
}
|
|
}
|
|
cache_unlock_cpus();
|
|
mutex_exit(namecache_lock);
|
|
hashdone(oldhash1, HASH_LIST, oldmask1);
|
|
hashdone(oldhash2, HASH_LIST, oldmask2);
|
|
}
|
|
|
|
/*
|
|
* Cache flush, a particular vnode; called when a vnode is renamed to
|
|
* hide entries that would now be invalid
|
|
*/
|
|
void
|
|
cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
|
|
{
|
|
struct namecache *ncp, *ncnext;
|
|
|
|
mutex_enter(namecache_lock);
|
|
if (flags & PURGE_PARENTS) {
|
|
SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
|
|
|
|
for (ncp = LIST_FIRST(&vp->v_nclist); ncp != NULL;
|
|
ncp = ncnext) {
|
|
ncnext = LIST_NEXT(ncp, nc_vlist);
|
|
mutex_enter(&ncp->nc_lock);
|
|
cache_invalidate(ncp);
|
|
mutex_exit(&ncp->nc_lock);
|
|
cache_disassociate(ncp);
|
|
}
|
|
}
|
|
if (flags & PURGE_CHILDREN) {
|
|
SDT_PROBE(vfs, namecache, purge, children, vp, 0, 0, 0, 0);
|
|
for (ncp = LIST_FIRST(&vp->v_dnclist); ncp != NULL;
|
|
ncp = ncnext) {
|
|
ncnext = LIST_NEXT(ncp, nc_dvlist);
|
|
mutex_enter(&ncp->nc_lock);
|
|
cache_invalidate(ncp);
|
|
mutex_exit(&ncp->nc_lock);
|
|
cache_disassociate(ncp);
|
|
}
|
|
}
|
|
if (name != NULL) {
|
|
SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
|
|
ncp = cache_lookup_entry(vp, name, namelen);
|
|
if (ncp) {
|
|
cache_invalidate(ncp);
|
|
mutex_exit(&ncp->nc_lock);
|
|
cache_disassociate(ncp);
|
|
}
|
|
}
|
|
mutex_exit(namecache_lock);
|
|
}
|
|
|
|
/*
|
|
* Cache flush, a whole filesystem; called when filesys is umounted to
|
|
* remove entries that would now be invalid.
|
|
*/
|
|
void
|
|
cache_purgevfs(struct mount *mp)
|
|
{
|
|
struct namecache *ncp, *nxtcp;
|
|
|
|
SDT_PROBE(vfs, namecache, purge, vfs, mp, 0, 0, 0, 0);
|
|
mutex_enter(namecache_lock);
|
|
for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
|
|
nxtcp = TAILQ_NEXT(ncp, nc_lru);
|
|
mutex_enter(&ncp->nc_lock);
|
|
if (ncp->nc_dvp != NULL && ncp->nc_dvp->v_mount == mp) {
|
|
/* Free the resources we had. */
|
|
cache_invalidate(ncp);
|
|
cache_disassociate(ncp);
|
|
}
|
|
mutex_exit(&ncp->nc_lock);
|
|
}
|
|
cache_reclaim();
|
|
mutex_exit(namecache_lock);
|
|
}
|
|
|
|
/*
|
|
* Scan global list invalidating entries until we meet a preset target.
|
|
* Prefer to invalidate entries that have not scored a hit within
|
|
* cache_hottime seconds. We sort the LRU list only for this routine's
|
|
* benefit.
|
|
*/
|
|
static void
|
|
cache_prune(int incache, int target)
|
|
{
|
|
struct namecache *ncp, *nxtcp, *sentinel;
|
|
int items, recent, tryharder;
|
|
|
|
KASSERT(mutex_owned(namecache_lock));
|
|
|
|
SDT_PROBE(vfs, namecache, prune, done, incache, target, 0, 0, 0);
|
|
items = 0;
|
|
tryharder = 0;
|
|
recent = hardclock_ticks - hz * cache_hottime;
|
|
sentinel = NULL;
|
|
for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
|
|
if (incache <= target)
|
|
break;
|
|
items++;
|
|
nxtcp = TAILQ_NEXT(ncp, nc_lru);
|
|
if (ncp == sentinel) {
|
|
/*
|
|
* If we looped back on ourself, then ignore
|
|
* recent entries and purge whatever we find.
|
|
*/
|
|
tryharder = 1;
|
|
}
|
|
if (ncp->nc_dvp == NULL)
|
|
continue;
|
|
if (!tryharder && (ncp->nc_hittime - recent) > 0) {
|
|
if (sentinel == NULL)
|
|
sentinel = ncp;
|
|
TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
|
|
TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
|
|
continue;
|
|
}
|
|
mutex_enter(&ncp->nc_lock);
|
|
if (ncp->nc_dvp != NULL) {
|
|
cache_invalidate(ncp);
|
|
cache_disassociate(ncp);
|
|
incache--;
|
|
}
|
|
mutex_exit(&ncp->nc_lock);
|
|
}
|
|
cache_ev_scan.ev_count += items;
|
|
}
|
|
|
|
/*
|
|
* Collect dead cache entries from all CPUs and garbage collect.
|
|
*/
|
|
static void
|
|
cache_reclaim(void)
|
|
{
|
|
struct namecache *ncp, *next;
|
|
int items;
|
|
|
|
KASSERT(mutex_owned(namecache_lock));
|
|
|
|
/*
|
|
* If the number of extant entries not awaiting garbage collection
|
|
* exceeds the high water mark, then reclaim stale entries until we
|
|
* reach our low water mark.
|
|
*/
|
|
items = numcache - cache_gcpend;
|
|
if (items > (uint64_t)desiredvnodes * cache_hiwat / 100) {
|
|
cache_prune(items, (int)((uint64_t)desiredvnodes *
|
|
cache_lowat / 100));
|
|
cache_ev_over.ev_count++;
|
|
} else
|
|
cache_ev_under.ev_count++;
|
|
|
|
/*
|
|
* Stop forward lookup activity on all CPUs and garbage collect dead
|
|
* entries.
|
|
*/
|
|
cache_lock_cpus();
|
|
ncp = cache_gcqueue;
|
|
cache_gcqueue = NULL;
|
|
items = cache_gcpend;
|
|
cache_gcpend = 0;
|
|
while (ncp != NULL) {
|
|
next = ncp->nc_gcqueue;
|
|
cache_disassociate(ncp);
|
|
KASSERT(ncp->nc_dvp == NULL);
|
|
if (ncp->nc_hash.le_prev != NULL) {
|
|
LIST_REMOVE(ncp, nc_hash);
|
|
ncp->nc_hash.le_prev = NULL;
|
|
}
|
|
pool_cache_put(namecache_cache, ncp);
|
|
ncp = next;
|
|
}
|
|
cache_unlock_cpus();
|
|
numcache -= items;
|
|
cache_ev_gc.ev_count += items;
|
|
}
|
|
|
|
/*
|
|
* Cache maintainence thread, awakening once per second to:
|
|
*
|
|
* => keep number of entries below the high water mark
|
|
* => sort pseudo-LRU list
|
|
* => garbage collect dead entries
|
|
*/
|
|
static void
|
|
cache_thread(void *arg)
|
|
{
|
|
|
|
mutex_enter(namecache_lock);
|
|
for (;;) {
|
|
cache_reclaim();
|
|
kpause("cachegc", false, hz, namecache_lock);
|
|
}
|
|
}
|
|
|
|
#ifdef DDB
|
|
void
|
|
namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
|
|
{
|
|
struct vnode *dvp = NULL;
|
|
struct namecache *ncp;
|
|
|
|
TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
|
|
if (ncp->nc_vp == vp && ncp->nc_dvp != NULL) {
|
|
(*pr)("name %.*s\n", ncp->nc_nlen, ncp->nc_name);
|
|
dvp = ncp->nc_dvp;
|
|
}
|
|
}
|
|
if (dvp == NULL) {
|
|
(*pr)("name not found\n");
|
|
return;
|
|
}
|
|
vp = dvp;
|
|
TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
|
|
if (ncp->nc_vp == vp) {
|
|
(*pr)("parent %.*s\n", ncp->nc_nlen, ncp->nc_name);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void
|
|
namecache_count_pass2(void)
|
|
{
|
|
struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
|
|
|
|
COUNT_UNL(cpup, ncs_pass2);
|
|
}
|
|
|
|
void
|
|
namecache_count_2passes(void)
|
|
{
|
|
struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
|
|
|
|
COUNT_UNL(cpup, ncs_2passes);
|
|
}
|
|
|
|
/*
|
|
* Fetch the current values of the stats. We return the most
|
|
* recent values harvested into nchstats by cache_reclaim(), which
|
|
* will be less than a second old.
|
|
*/
|
|
static int
|
|
cache_stat_sysctl(SYSCTLFN_ARGS)
|
|
{
|
|
struct nchstats stats;
|
|
struct nchcpu *my_cpup;
|
|
#ifdef CACHE_STATS_CURRENT
|
|
CPU_INFO_ITERATOR cii;
|
|
struct cpu_info *ci;
|
|
#endif /* CACHE_STATS_CURRENT */
|
|
|
|
if (oldp == NULL) {
|
|
*oldlenp = sizeof(stats);
|
|
return 0;
|
|
}
|
|
|
|
if (*oldlenp < sizeof(stats)) {
|
|
*oldlenp = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Take this CPU's per-cpu lock to hold off cache_reclaim()
|
|
* from doing a stats update while doing minimal damage to
|
|
* concurrent operations.
|
|
*/
|
|
sysctl_unlock();
|
|
my_cpup = curcpu()->ci_data.cpu_nch;
|
|
mutex_enter(&my_cpup->cpu_lock);
|
|
stats = nchstats;
|
|
#ifdef CACHE_STATS_CURRENT
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
struct nchcpu *cpup = ci->ci_data.cpu_nch;
|
|
|
|
ADD(stats, cpup, ncs_goodhits);
|
|
ADD(stats, cpup, ncs_neghits);
|
|
ADD(stats, cpup, ncs_badhits);
|
|
ADD(stats, cpup, ncs_falsehits);
|
|
ADD(stats, cpup, ncs_miss);
|
|
ADD(stats, cpup, ncs_long);
|
|
ADD(stats, cpup, ncs_pass2);
|
|
ADD(stats, cpup, ncs_2passes);
|
|
ADD(stats, cpup, ncs_revhits);
|
|
ADD(stats, cpup, ncs_revmiss);
|
|
}
|
|
#endif /* CACHE_STATS_CURRENT */
|
|
mutex_exit(&my_cpup->cpu_lock);
|
|
sysctl_relock();
|
|
|
|
*oldlenp = sizeof(stats);
|
|
return sysctl_copyout(l, &stats, oldp, sizeof(stats));
|
|
}
|
|
|
|
static void
|
|
sysctl_cache_stat_setup(void)
|
|
{
|
|
|
|
KASSERT(sysctllog == NULL);
|
|
sysctl_createv(&sysctllog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_STRUCT, "namecache_stats",
|
|
SYSCTL_DESCR("namecache statistics"),
|
|
cache_stat_sysctl, 0, NULL, 0,
|
|
CTL_VFS, CTL_CREATE, CTL_EOL);
|
|
}
|