NetBSD/sys/dev/ic/atppc.c
2014-07-13 17:12:23 +00:00

2370 lines
56 KiB
C

/* $NetBSD: atppc.c,v 1.32 2014/07/13 17:12:23 dholland Exp $ */
/*
* Copyright (c) 2001 Alcove - Nicolas Souchu
* Copyright (c) 2003, 2004 Gary Thorpe <gathorpe@users.sourceforge.net>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* FreeBSD: src/sys/isa/ppc.c,v 1.26.2.5 2001/10/02 05:21:45 nsouch Exp
*
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: atppc.c,v 1.32 2014/07/13 17:12:23 dholland Exp $");
#include "opt_atppc.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/kmem.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/vnode.h>
#include <sys/syslog.h>
#include <sys/bus.h>
/*#include <sys/intr.h>*/
#include <dev/isa/isareg.h>
#include <dev/ic/atppcreg.h>
#include <dev/ic/atppcvar.h>
#include <dev/ppbus/ppbus_conf.h>
#include <dev/ppbus/ppbus_msq.h>
#include <dev/ppbus/ppbus_io.h>
#include <dev/ppbus/ppbus_var.h>
#ifdef ATPPC_DEBUG
int atppc_debug = 1;
#endif
#ifdef ATPPC_VERBOSE
int atppc_verbose = 1;
#endif
/* List of supported chipsets detection routines */
static int (*chipset_detect[])(struct atppc_softc *) = {
/* XXX Add these LATER: maybe as separate devices?
atppc_pc873xx_detect,
atppc_smc37c66xgt_detect,
atppc_w83877f_detect,
atppc_smc37c935_detect,
*/
NULL
};
/* Prototypes for functions. */
/* Print function for config_found() */
static int atppc_print(void *, const char *);
/* Detection routines */
static int atppc_detect_fifo(struct atppc_softc *);
static int atppc_detect_chipset(struct atppc_softc *);
static int atppc_detect_generic(struct atppc_softc *);
/* Routines for ppbus interface (bus + device) */
static int atppc_read(device_t, char *, int, int, size_t *);
static int atppc_write(device_t, char *, int, int, size_t *);
static int atppc_setmode(device_t, int);
static int atppc_getmode(device_t);
static int atppc_check_epp_timeout(device_t);
static void atppc_reset_epp_timeout(device_t);
static void atppc_ecp_sync(device_t);
static int atppc_exec_microseq(device_t, struct ppbus_microseq * *);
static u_int8_t atppc_io(device_t, int, u_char *, int, u_char);
static int atppc_read_ivar(device_t, int, unsigned int *);
static int atppc_write_ivar(device_t, int, unsigned int *);
static int atppc_add_handler(device_t, void (*)(void *), void *);
static int atppc_remove_handler(device_t, void (*)(void *));
/* Utility functions */
/* Functions to read bytes into device's input buffer */
static void atppc_nibble_read(struct atppc_softc * const);
static void atppc_byte_read(struct atppc_softc * const);
static void atppc_epp_read(struct atppc_softc * const);
static void atppc_ecp_read(struct atppc_softc * const);
static void atppc_ecp_read_dma(struct atppc_softc *, unsigned int *,
unsigned char);
static void atppc_ecp_read_pio(struct atppc_softc *, unsigned int *,
unsigned char);
static void atppc_ecp_read_error(struct atppc_softc *);
/* Functions to write bytes to device's output buffer */
static void atppc_std_write(struct atppc_softc * const);
static void atppc_epp_write(struct atppc_softc * const);
static void atppc_fifo_write(struct atppc_softc * const);
static void atppc_fifo_write_dma(struct atppc_softc * const, unsigned char,
unsigned char);
static void atppc_fifo_write_pio(struct atppc_softc * const, unsigned char,
unsigned char);
static void atppc_fifo_write_error(struct atppc_softc * const,
const unsigned int);
/* Miscellaneous */
static int atppc_poll_str(const struct atppc_softc * const, const u_int8_t,
const u_int8_t);
static int atppc_wait_interrupt(struct atppc_softc * const, kcondvar_t *,
const u_int8_t);
/*
* Generic attach and detach functions for atppc device. If sc_dev_ok in soft
* configuration data is not ATPPC_ATTACHED, these should be skipped altogether.
*/
/* Soft configuration attach for atppc */
void
atppc_sc_attach(struct atppc_softc *lsc)
{
/* Adapter used to configure ppbus device */
struct parport_adapter sc_parport_adapter;
char buf[64];
mutex_init(&lsc->sc_lock, MUTEX_DEFAULT, IPL_TTY);
cv_init(&lsc->sc_out_cv, "atppcout");
cv_init(&lsc->sc_in_cv, "atppcin");
/* Probe and set up chipset */
if (atppc_detect_chipset(lsc) != 0) {
if (atppc_detect_generic(lsc) != 0) {
ATPPC_DPRINTF(("%s: Error detecting chipset\n",
device_xname(lsc->sc_dev)));
}
}
/* Probe and setup FIFO queue */
if (atppc_detect_fifo(lsc) == 0) {
printf("%s: FIFO <depth,wthr,rthr>=<%d,%d,%d>\n",
device_xname(lsc->sc_dev), lsc->sc_fifo, lsc->sc_wthr,
lsc->sc_rthr);
}
/* Print out chipset capabilities */
snprintb(buf, sizeof(buf), "\20\1INTR\2DMA\3FIFO\4PS2\5ECP\6EPP",
lsc->sc_has);
printf("%s: capabilities=%s\n", device_xname(lsc->sc_dev), buf);
/* Initialize device's buffer pointers */
lsc->sc_outb = lsc->sc_outbstart = lsc->sc_inb = lsc->sc_inbstart
= NULL;
lsc->sc_inb_nbytes = lsc->sc_outb_nbytes = 0;
/* Last configuration step: set mode to standard mode */
if (atppc_setmode(lsc->sc_dev, PPBUS_COMPATIBLE) != 0) {
ATPPC_DPRINTF(("%s: unable to initialize mode.\n",
device_xname(lsc->sc_dev)));
}
/* Set up parport_adapter structure */
/* Set capabilites */
sc_parport_adapter.capabilities = 0;
if (lsc->sc_has & ATPPC_HAS_INTR) {
sc_parport_adapter.capabilities |= PPBUS_HAS_INTR;
}
if (lsc->sc_has & ATPPC_HAS_DMA) {
sc_parport_adapter.capabilities |= PPBUS_HAS_DMA;
}
if (lsc->sc_has & ATPPC_HAS_FIFO) {
sc_parport_adapter.capabilities |= PPBUS_HAS_FIFO;
}
if (lsc->sc_has & ATPPC_HAS_PS2) {
sc_parport_adapter.capabilities |= PPBUS_HAS_PS2;
}
if (lsc->sc_has & ATPPC_HAS_EPP) {
sc_parport_adapter.capabilities |= PPBUS_HAS_EPP;
}
if (lsc->sc_has & ATPPC_HAS_ECP) {
sc_parport_adapter.capabilities |= PPBUS_HAS_ECP;
}
/* Set function pointers */
sc_parport_adapter.parport_io = atppc_io;
sc_parport_adapter.parport_exec_microseq = atppc_exec_microseq;
sc_parport_adapter.parport_reset_epp_timeout =
atppc_reset_epp_timeout;
sc_parport_adapter.parport_setmode = atppc_setmode;
sc_parport_adapter.parport_getmode = atppc_getmode;
sc_parport_adapter.parport_ecp_sync = atppc_ecp_sync;
sc_parport_adapter.parport_read = atppc_read;
sc_parport_adapter.parport_write = atppc_write;
sc_parport_adapter.parport_read_ivar = atppc_read_ivar;
sc_parport_adapter.parport_write_ivar = atppc_write_ivar;
sc_parport_adapter.parport_dma_malloc = lsc->sc_dma_malloc;
sc_parport_adapter.parport_dma_free = lsc->sc_dma_free;
sc_parport_adapter.parport_add_handler = atppc_add_handler;
sc_parport_adapter.parport_remove_handler = atppc_remove_handler;
/* Initialize handler list, may be added to by grandchildren */
SLIST_INIT(&(lsc->sc_handler_listhead));
/* Initialize interrupt state */
lsc->sc_irqstat = ATPPC_IRQ_NONE;
lsc->sc_ecr_intr = lsc->sc_ctr_intr = lsc->sc_str_intr = 0;
/* Disable DMA/interrupts (each ppbus driver selects usage itself) */
lsc->sc_use = 0;
/* Configure child of the device. */
lsc->child = config_found(lsc->sc_dev, &(sc_parport_adapter),
atppc_print);
return;
}
/* Soft configuration detach */
int
atppc_sc_detach(struct atppc_softc *lsc, int flag)
{
device_t dev = lsc->sc_dev;
/* Detach children devices */
if (config_detach(lsc->child, flag) && !(flag & DETACH_QUIET)) {
aprint_error_dev(dev, "not able to detach child device, ");
if (!(flag & DETACH_FORCE)) {
printf("cannot detach\n");
return 1;
} else {
printf("continuing (DETACH_FORCE)\n");
}
}
if (!(flag & DETACH_QUIET))
printf("%s detached", device_xname(dev));
return 0;
}
/* Used by config_found() to print out device information */
static int
atppc_print(void *aux, const char *name)
{
/* Print out something on failure. */
if (name != NULL) {
printf("%s: child devices", name);
return UNCONF;
}
return QUIET;
}
/*
* Machine independent detection routines for atppc driver.
*/
/* Detect parallel port I/O port: taken from FreeBSD code directly. */
int
atppc_detect_port(bus_space_tag_t iot, bus_space_handle_t ioh)
{
/*
* Much shorter than scheme used by lpt_isa_probe() and lpt_port_test()
* in original lpt driver.
* Write to data register common to all controllers and read back the
* values. Also tests control and status registers.
*/
/*
* Cannot use convenient macros because the device's config structure
* may not have been created yet: major change from FreeBSD code.
*/
int rval;
u_int8_t ctr_sav, dtr_sav, str_sav;
/* Store writtable registers' values and test if they can be read */
str_sav = bus_space_read_1(iot, ioh, ATPPC_SPP_STR);
ctr_sav = bus_space_read_1(iot, ioh, ATPPC_SPP_CTR);
dtr_sav = bus_space_read_1(iot, ioh, ATPPC_SPP_DTR);
bus_space_barrier(iot, ioh, 0, IO_LPTSIZE,
BUS_SPACE_BARRIER_READ);
/*
* Ensure PS2 ports in output mode, also read back value of control
* register.
*/
bus_space_write_1(iot, ioh, ATPPC_SPP_CTR, 0x0c);
bus_space_barrier(iot, ioh, 0, IO_LPTSIZE,
BUS_SPACE_BARRIER_WRITE);
if (bus_space_read_1(iot, ioh, ATPPC_SPP_CTR) != 0x0c) {
rval = 0;
} else {
/*
* Test if two values can be written and read from the data
* register.
*/
bus_space_barrier(iot, ioh, 0, IO_LPTSIZE,
BUS_SPACE_BARRIER_READ);
bus_space_write_1(iot, ioh, ATPPC_SPP_DTR, 0xaa);
bus_space_barrier(iot, ioh, 0, IO_LPTSIZE,
BUS_SPACE_BARRIER_WRITE);
if (bus_space_read_1(iot, ioh, ATPPC_SPP_DTR) != 0xaa) {
rval = 1;
} else {
/* Second value to test */
bus_space_barrier(iot, ioh, 0, IO_LPTSIZE,
BUS_SPACE_BARRIER_READ);
bus_space_write_1(iot, ioh, ATPPC_SPP_DTR, 0x55);
bus_space_barrier(iot, ioh, 0, IO_LPTSIZE,
BUS_SPACE_BARRIER_WRITE);
if (bus_space_read_1(iot, ioh, ATPPC_SPP_DTR) != 0x55) {
rval = 1;
} else {
rval = 0;
}
}
}
/* Restore registers */
bus_space_barrier(iot, ioh, 0, IO_LPTSIZE,
BUS_SPACE_BARRIER_READ);
bus_space_write_1(iot, ioh, ATPPC_SPP_CTR, ctr_sav);
bus_space_write_1(iot, ioh, ATPPC_SPP_DTR, dtr_sav);
bus_space_write_1(iot, ioh, ATPPC_SPP_STR, str_sav);
bus_space_barrier(iot, ioh, 0, IO_LPTSIZE,
BUS_SPACE_BARRIER_WRITE);
return rval;
}
/* Detect parallel port chipset. */
static int
atppc_detect_chipset(struct atppc_softc *atppc)
{
/* Try each detection routine. */
int i, mode;
for (i = 0; chipset_detect[i] != NULL; i++) {
if ((mode = chipset_detect[i](atppc)) != -1) {
atppc->sc_mode = mode;
return 0;
}
}
return 1;
}
/* Detect generic capabilities. */
static int
atppc_detect_generic(struct atppc_softc *atppc)
{
u_int8_t ecr_sav = atppc_r_ecr(atppc);
u_int8_t ctr_sav = atppc_r_ctr(atppc);
u_int8_t str_sav = atppc_r_str(atppc);
u_int8_t tmp;
atppc_barrier_r(atppc);
/* Default to generic */
atppc->sc_type = ATPPC_TYPE_GENERIC;
atppc->sc_model = GENERIC;
/* Check for ECP */
tmp = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if ((tmp & ATPPC_FIFO_EMPTY) && !(tmp & ATPPC_FIFO_FULL)) {
atppc_w_ecr(atppc, 0x34);
atppc_barrier_w(atppc);
tmp = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if (tmp == 0x35) {
atppc->sc_has |= ATPPC_HAS_ECP;
}
}
/* Allow search for SMC style ECP+EPP mode */
if (atppc->sc_has & ATPPC_HAS_ECP) {
atppc_w_ecr(atppc, ATPPC_ECR_EPP);
atppc_barrier_w(atppc);
}
/* Check for EPP by checking for timeout bit */
if (atppc_check_epp_timeout(atppc->sc_dev) != 0) {
atppc->sc_has |= ATPPC_HAS_EPP;
atppc->sc_epp = ATPPC_EPP_1_9;
if (atppc->sc_has & ATPPC_HAS_ECP) {
/* SMC like chipset found */
atppc->sc_model = SMC_LIKE;
atppc->sc_type = ATPPC_TYPE_SMCLIKE;
}
}
/* Detect PS2 mode */
if (atppc->sc_has & ATPPC_HAS_ECP) {
/* Put ECP port into PS2 mode */
atppc_w_ecr(atppc, ATPPC_ECR_PS2);
atppc_barrier_w(atppc);
}
/* Put PS2 port in input mode: writes should not be readable */
atppc_w_ctr(atppc, 0x20);
atppc_barrier_w(atppc);
/*
* Write two values to data port: if neither are read back,
* bidirectional mode is functional.
*/
atppc_w_dtr(atppc, 0xaa);
atppc_barrier_w(atppc);
tmp = atppc_r_dtr(atppc);
atppc_barrier_r(atppc);
if (tmp != 0xaa) {
atppc_w_dtr(atppc, 0x55);
atppc_barrier_w(atppc);
tmp = atppc_r_dtr(atppc);
atppc_barrier_r(atppc);
if (tmp != 0x55) {
atppc->sc_has |= ATPPC_HAS_PS2;
}
}
/* Restore to previous state */
atppc_w_ecr(atppc, ecr_sav);
atppc_w_ctr(atppc, ctr_sav);
atppc_w_str(atppc, str_sav);
atppc_barrier_w(atppc);
return 0;
}
/*
* Detect parallel port FIFO: taken from FreeBSD code directly.
*/
static int
atppc_detect_fifo(struct atppc_softc *atppc)
{
#ifdef ATPPC_DEBUG
device_t dev = atppc->sc_dev;
#endif
u_int8_t ecr_sav;
u_int8_t ctr_sav;
u_int8_t str_sav;
u_int8_t cc;
short i;
/* If there is no ECP mode, we cannot config a FIFO */
if (!(atppc->sc_has & ATPPC_HAS_ECP)) {
return (EINVAL);
}
/* save registers */
ecr_sav = atppc_r_ecr(atppc);
ctr_sav = atppc_r_ctr(atppc);
str_sav = atppc_r_str(atppc);
atppc_barrier_r(atppc);
/* Enter ECP configuration mode, no interrupt, no DMA */
atppc_w_ecr(atppc, (ATPPC_ECR_CFG | ATPPC_SERVICE_INTR) &
~ATPPC_ENABLE_DMA);
atppc_barrier_w(atppc);
/* read PWord size - transfers in FIFO mode must be PWord aligned */
atppc->sc_pword = (atppc_r_cnfgA(atppc) & ATPPC_PWORD_MASK);
atppc_barrier_r(atppc);
/* XXX 16 and 32 bits implementations not supported */
if (atppc->sc_pword != ATPPC_PWORD_8) {
ATPPC_DPRINTF(("%s(%s): FIFO PWord(%d) not supported.\n",
__func__, device_xname(dev), atppc->sc_pword));
goto error;
}
/* Byte mode, reverse direction, no interrupt, no DMA */
atppc_w_ecr(atppc, ATPPC_ECR_PS2 | ATPPC_SERVICE_INTR);
atppc_w_ctr(atppc, (ctr_sav & ~IRQENABLE) | PCD);
/* enter ECP test mode, no interrupt, no DMA */
atppc_w_ecr(atppc, ATPPC_ECR_TST | ATPPC_SERVICE_INTR);
atppc_barrier_w(atppc);
/* flush the FIFO */
for (i = 0; i < 1024; i++) {
atppc_r_fifo(atppc);
atppc_barrier_r(atppc);
cc = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if (cc & ATPPC_FIFO_EMPTY)
break;
}
if (i >= 1024) {
ATPPC_DPRINTF(("%s(%s): cannot flush FIFO.\n", __func__,
device_xname(dev)));
goto error;
}
/* Test mode, enable interrupts, no DMA */
atppc_w_ecr(atppc, ATPPC_ECR_TST);
atppc_barrier_w(atppc);
/* Determine readIntrThreshold - fill FIFO until serviceIntr is set */
for (i = atppc->sc_rthr = atppc->sc_fifo = 0; i < 1024; i++) {
atppc_w_fifo(atppc, (char)i);
atppc_barrier_w(atppc);
cc = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if ((atppc->sc_rthr == 0) && (cc & ATPPC_SERVICE_INTR)) {
/* readThreshold reached */
atppc->sc_rthr = i + 1;
}
if (cc & ATPPC_FIFO_FULL) {
atppc->sc_fifo = i + 1;
break;
}
}
if (i >= 1024) {
ATPPC_DPRINTF(("%s(%s): cannot fill FIFO.\n", __func__,
device_xname(dev)));
goto error;
}
/* Change direction */
atppc_w_ctr(atppc, (ctr_sav & ~IRQENABLE) & ~PCD);
atppc_barrier_w(atppc);
/* Clear the serviceIntr bit we've already set in the above loop */
atppc_w_ecr(atppc, ATPPC_ECR_TST);
atppc_barrier_w(atppc);
/* Determine writeIntrThreshold - empty FIFO until serviceIntr is set */
for (atppc->sc_wthr = 0; i > -1; i--) {
cc = atppc_r_fifo(atppc);
atppc_barrier_r(atppc);
if (cc != (char)(atppc->sc_fifo - i - 1)) {
ATPPC_DPRINTF(("%s(%s): invalid data in FIFO.\n",
__func__, device_xname(dev)));
goto error;
}
cc = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if ((atppc->sc_wthr == 0) && (cc & ATPPC_SERVICE_INTR)) {
/* writeIntrThreshold reached */
atppc->sc_wthr = atppc->sc_fifo - i;
}
if (i > 0 && (cc & ATPPC_FIFO_EMPTY)) {
/* If FIFO empty before the last byte, error */
ATPPC_DPRINTF(("%s(%s): data lost in FIFO.\n", __func__,
device_xname(dev)));
goto error;
}
}
/* FIFO must be empty after the last byte */
cc = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if (!(cc & ATPPC_FIFO_EMPTY)) {
ATPPC_DPRINTF(("%s(%s): cannot empty the FIFO.\n", __func__,
device_xname(dev)));
goto error;
}
/* Restore original registers */
atppc_w_ctr(atppc, ctr_sav);
atppc_w_str(atppc, str_sav);
atppc_w_ecr(atppc, ecr_sav);
atppc_barrier_w(atppc);
/* Update capabilities */
atppc->sc_has |= ATPPC_HAS_FIFO;
return 0;
error:
/* Restore original registers */
atppc_w_ctr(atppc, ctr_sav);
atppc_w_str(atppc, str_sav);
atppc_w_ecr(atppc, ecr_sav);
atppc_barrier_w(atppc);
return (EINVAL);
}
/* Interrupt handler for atppc device: wakes up read/write functions */
int
atppcintr(void *arg)
{
device_t dev = arg;
struct atppc_softc *atppc = device_private(dev);
int claim = 1;
enum { NONE, READER, WRITER } wake_up = NONE;
mutex_enter(&atppc->sc_lock);
/* Record registers' status */
atppc->sc_str_intr = atppc_r_str(atppc);
atppc->sc_ctr_intr = atppc_r_ctr(atppc);
atppc->sc_ecr_intr = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
/* Determine cause of interrupt and wake up top half */
switch (atppc->sc_mode) {
case ATPPC_MODE_STD:
/* nAck pulsed for 5 usec, too fast to check reliably, assume */
atppc->sc_irqstat = ATPPC_IRQ_nACK;
if (atppc->sc_outb)
wake_up = WRITER;
else
claim = 0;
break;
case ATPPC_MODE_NIBBLE:
case ATPPC_MODE_PS2:
/* nAck is set low by device and then high on ack */
if (!(atppc->sc_str_intr & nACK)) {
claim = 0;
break;
}
atppc->sc_irqstat = ATPPC_IRQ_nACK;
if (atppc->sc_inb)
wake_up = READER;
break;
case ATPPC_MODE_ECP:
case ATPPC_MODE_FAST:
/* Confirm interrupt cause: these are not pulsed as in nAck. */
if (atppc->sc_ecr_intr & ATPPC_SERVICE_INTR) {
if (atppc->sc_ecr_intr & ATPPC_ENABLE_DMA)
atppc->sc_irqstat |= ATPPC_IRQ_DMA;
else
atppc->sc_irqstat |= ATPPC_IRQ_FIFO;
/* Decide where top half will be waiting */
if (atppc->sc_mode & ATPPC_MODE_ECP) {
if (atppc->sc_ctr_intr & PCD) {
if (atppc->sc_inb)
wake_up = READER;
else
claim = 0;
} else {
if (atppc->sc_outb)
wake_up = WRITER;
else
claim = 0;
}
} else {
if (atppc->sc_outb)
wake_up = WRITER;
else
claim = 0;
}
}
/* Determine if nFault has occurred */
if ((atppc->sc_mode & ATPPC_MODE_ECP) &&
(atppc->sc_ecr_intr & ATPPC_nFAULT_INTR) &&
!(atppc->sc_str_intr & nFAULT)) {
/* Device is requesting the channel */
atppc->sc_irqstat |= ATPPC_IRQ_nFAULT;
claim = 1;
}
break;
case ATPPC_MODE_EPP:
/* nAck pulsed for 5 usec, too fast to check reliably */
atppc->sc_irqstat = ATPPC_IRQ_nACK;
if (atppc->sc_inb)
wake_up = WRITER;
else if (atppc->sc_outb)
wake_up = READER;
else
claim = 0;
break;
default:
panic("%s: chipset is in invalid mode.", device_xname(dev));
}
if (claim) {
switch (wake_up) {
case NONE:
break;
case READER:
cv_broadcast(&atppc->sc_in_cv);
break;
case WRITER:
cv_broadcast(&atppc->sc_out_cv);
break;
}
}
/* Call all of the installed handlers */
if (claim) {
struct atppc_handler_node * callback;
SLIST_FOREACH(callback, &(atppc->sc_handler_listhead),
entries) {
(*callback->func)(callback->arg);
}
}
mutex_exit(&atppc->sc_lock);
return claim;
}
/* Functions which support ppbus interface */
/* Check EPP mode timeout */
static int
atppc_check_epp_timeout(device_t dev)
{
struct atppc_softc *atppc = device_private(dev);
int error;
mutex_enter(&atppc->sc_lock);
atppc_reset_epp_timeout(dev);
error = !(atppc_r_str(atppc) & TIMEOUT);
atppc_barrier_r(atppc);
mutex_exit(&atppc->sc_lock);
return (error);
}
/*
* EPP timeout, according to the PC87332 manual
* Semantics of clearing EPP timeout bit.
* PC87332 - reading SPP_STR does it...
* SMC - write 1 to EPP timeout bit XXX
* Others - (?) write 0 to EPP timeout bit
*/
static void
atppc_reset_epp_timeout(device_t dev)
{
struct atppc_softc *atppc = device_private(dev);
register unsigned char r;
r = atppc_r_str(atppc);
atppc_barrier_r(atppc);
atppc_w_str(atppc, r | 0x1);
atppc_barrier_w(atppc);
atppc_w_str(atppc, r & 0xfe);
atppc_barrier_w(atppc);
return;
}
/* Read from atppc device: returns 0 on success. */
static int
atppc_read(device_t dev, char *buf, int len, int ioflag,
size_t *cnt)
{
struct atppc_softc *atppc = device_private(dev);
int error = 0;
mutex_enter(&atppc->sc_lock);
*cnt = 0;
/* Initialize buffer */
atppc->sc_inb = atppc->sc_inbstart = buf;
atppc->sc_inb_nbytes = len;
/* Initialize device input error state for new operation */
atppc->sc_inerr = 0;
/* Call appropriate function to read bytes */
switch(atppc->sc_mode) {
case ATPPC_MODE_STD:
case ATPPC_MODE_FAST:
error = ENODEV;
break;
case ATPPC_MODE_NIBBLE:
atppc_nibble_read(atppc);
break;
case ATPPC_MODE_PS2:
atppc_byte_read(atppc);
break;
case ATPPC_MODE_ECP:
atppc_ecp_read(atppc);
break;
case ATPPC_MODE_EPP:
atppc_epp_read(atppc);
break;
default:
panic("%s(%s): chipset in invalid mode.\n", __func__,
device_xname(dev));
}
/* Update counter*/
*cnt = (atppc->sc_inbstart - atppc->sc_inb);
/* Reset buffer */
atppc->sc_inb = atppc->sc_inbstart = NULL;
atppc->sc_inb_nbytes = 0;
if (!(error))
error = atppc->sc_inerr;
mutex_exit(&atppc->sc_lock);
return (error);
}
/* Write to atppc device: returns 0 on success. */
static int
atppc_write(device_t dev, char *buf, int len, int ioflag, size_t *cnt)
{
struct atppc_softc * const atppc = device_private(dev);
int error = 0;
*cnt = 0;
mutex_enter(&atppc->sc_lock);
/* Set up line buffer */
atppc->sc_outb = atppc->sc_outbstart = buf;
atppc->sc_outb_nbytes = len;
/* Initialize device output error state for new operation */
atppc->sc_outerr = 0;
/* Call appropriate function to write bytes */
switch (atppc->sc_mode) {
case ATPPC_MODE_STD:
atppc_std_write(atppc);
break;
case ATPPC_MODE_NIBBLE:
case ATPPC_MODE_PS2:
error = ENODEV;
break;
case ATPPC_MODE_FAST:
case ATPPC_MODE_ECP:
atppc_fifo_write(atppc);
break;
case ATPPC_MODE_EPP:
atppc_epp_write(atppc);
break;
default:
panic("%s(%s): chipset in invalid mode.\n", __func__,
device_xname(dev));
}
/* Update counter*/
*cnt = (atppc->sc_outbstart - atppc->sc_outb);
/* Reset output buffer */
atppc->sc_outb = atppc->sc_outbstart = NULL;
atppc->sc_outb_nbytes = 0;
if (!(error))
error = atppc->sc_outerr;
mutex_exit(&atppc->sc_lock);
return (error);
}
/*
* Set mode of chipset to mode argument. Modes not supported are ignored. If
* multiple modes are flagged, the mode is not changed. Mode's are those
* defined for ppbus_softc.sc_mode in ppbus_conf.h. Only ECP-capable chipsets
* can change their mode of operation. However, ALL operation modes support
* centronics mode and nibble mode. Modes determine both hardware AND software
* behaviour.
* NOTE: the mode for ECP should only be changed when the channel is in
* forward idle mode. This function does not make sure FIFO's have flushed or
* any consistency checks.
*/
static int
atppc_setmode(device_t dev, int mode)
{
struct atppc_softc *atppc = device_private(dev);
u_int8_t ecr;
u_int8_t chipset_mode;
int rval = 0;
mutex_enter(&atppc->sc_lock);
/* If ECP capable, configure ecr register */
if (atppc->sc_has & ATPPC_HAS_ECP) {
/* Read ECR with mode masked out */
ecr = (atppc_r_ecr(atppc) & 0x1f);
atppc_barrier_r(atppc);
switch (mode) {
case PPBUS_ECP:
/* Set ECP mode */
ecr |= ATPPC_ECR_ECP;
chipset_mode = ATPPC_MODE_ECP;
break;
case PPBUS_EPP:
/* Set EPP mode */
if (atppc->sc_has & ATPPC_HAS_EPP) {
ecr |= ATPPC_ECR_EPP;
chipset_mode = ATPPC_MODE_EPP;
} else {
rval = ENODEV;
goto end;
}
break;
case PPBUS_FAST:
/* Set fast centronics mode */
ecr |= ATPPC_ECR_FIFO;
chipset_mode = ATPPC_MODE_FAST;
break;
case PPBUS_PS2:
/* Set PS2 mode */
ecr |= ATPPC_ECR_PS2;
chipset_mode = ATPPC_MODE_PS2;
break;
case PPBUS_COMPATIBLE:
/* Set standard mode */
ecr |= ATPPC_ECR_STD;
chipset_mode = ATPPC_MODE_STD;
break;
case PPBUS_NIBBLE:
/* Set nibble mode: uses chipset standard mode */
ecr |= ATPPC_ECR_STD;
chipset_mode = ATPPC_MODE_NIBBLE;
break;
default:
/* Invalid mode specified for ECP chip */
ATPPC_DPRINTF(("%s(%s): invalid mode passed as "
"argument.\n", __func__, device_xname(dev)));
rval = ENODEV;
goto end;
}
/* Switch to byte mode to be able to change modes. */
atppc_w_ecr(atppc, ATPPC_ECR_PS2);
atppc_barrier_w(atppc);
/* Update mode */
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
} else {
switch (mode) {
case PPBUS_EPP:
if (atppc->sc_has & ATPPC_HAS_EPP) {
chipset_mode = ATPPC_MODE_EPP;
} else {
rval = ENODEV;
goto end;
}
break;
case PPBUS_PS2:
if (atppc->sc_has & ATPPC_HAS_PS2) {
chipset_mode = ATPPC_MODE_PS2;
} else {
rval = ENODEV;
goto end;
}
break;
case PPBUS_NIBBLE:
/* Set nibble mode (virtual) */
chipset_mode = ATPPC_MODE_NIBBLE;
break;
case PPBUS_COMPATIBLE:
chipset_mode = ATPPC_MODE_STD;
break;
case PPBUS_ECP:
rval = ENODEV;
goto end;
default:
ATPPC_DPRINTF(("%s(%s): invalid mode passed as "
"argument.\n", __func__, device_xname(dev)));
rval = ENODEV;
goto end;
}
}
atppc->sc_mode = chipset_mode;
if (chipset_mode == ATPPC_MODE_PS2) {
/* Set direction bit to reverse */
ecr = atppc_r_ctr(atppc);
atppc_barrier_r(atppc);
ecr |= PCD;
atppc_w_ctr(atppc, ecr);
atppc_barrier_w(atppc);
}
end:
mutex_exit(&atppc->sc_lock);
return rval;
}
/* Get the current mode of chipset */
static int
atppc_getmode(device_t dev)
{
struct atppc_softc *atppc = device_private(dev);
int mode;
mutex_enter(&atppc->sc_lock);
/* The chipset can only be in one mode at a time logically */
switch (atppc->sc_mode) {
case ATPPC_MODE_ECP:
mode = PPBUS_ECP;
break;
case ATPPC_MODE_EPP:
mode = PPBUS_EPP;
break;
case ATPPC_MODE_PS2:
mode = PPBUS_PS2;
break;
case ATPPC_MODE_STD:
mode = PPBUS_COMPATIBLE;
break;
case ATPPC_MODE_NIBBLE:
mode = PPBUS_NIBBLE;
break;
case ATPPC_MODE_FAST:
mode = PPBUS_FAST;
break;
default:
panic("%s(%s): device is in invalid mode!", __func__,
device_xname(dev));
break;
}
mutex_exit(&atppc->sc_lock);
return mode;
}
/* Wait for FIFO buffer to empty for ECP-capable chipset */
static void
atppc_ecp_sync(device_t dev)
{
struct atppc_softc *atppc = device_private(dev);
int i;
u_int8_t r;
mutex_enter(&atppc->sc_lock);
/*
* Only wait for FIFO to empty if mode is chipset is ECP-capable AND
* the mode is either ECP or Fast Centronics.
*/
r = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
r &= 0xe0;
if (!(atppc->sc_has & ATPPC_HAS_ECP) || ((r != ATPPC_ECR_ECP)
&& (r != ATPPC_ECR_FIFO))) {
goto end;
}
/* Wait for FIFO to empty */
for (i = 0; i < ((MAXBUSYWAIT/hz) * 1000000); i += 100) {
r = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if (r & ATPPC_FIFO_EMPTY) {
goto end;
}
delay(100); /* Supposed to be a 100 usec delay */
}
ATPPC_DPRINTF(("%s: ECP sync failed, data still in FIFO.\n",
device_xname(dev)));
end:
mutex_exit(&atppc->sc_lock);
return;
}
/* Execute a microsequence to handle fast I/O operations. */
static int
atppc_exec_microseq(device_t dev, struct ppbus_microseq **p_msq)
{
struct atppc_softc *atppc = device_private(dev);
struct ppbus_microseq *mi = *p_msq;
char cc, *p;
int i, iter, len;
int error;
register int reg;
register unsigned char mask;
register int accum = 0;
register char *ptr = NULL;
struct ppbus_microseq *stack = NULL;
mutex_enter(&atppc->sc_lock);
/* microsequence registers are equivalent to PC-like port registers */
#define r_reg(register,atppc) bus_space_read_1((atppc)->sc_iot, \
(atppc)->sc_ioh, (register))
#define w_reg(register, atppc, byte) bus_space_write_1((atppc)->sc_iot, \
(atppc)->sc_ioh, (register), (byte))
/* Loop until microsequence execution finishes (ending op code) */
for (;;) {
switch (mi->opcode) {
case MS_OP_RSET:
cc = r_reg(mi->arg[0].i, atppc);
atppc_barrier_r(atppc);
cc &= (char)mi->arg[2].i; /* clear mask */
cc |= (char)mi->arg[1].i; /* assert mask */
w_reg(mi->arg[0].i, atppc, cc);
atppc_barrier_w(atppc);
mi++;
break;
case MS_OP_RASSERT_P:
reg = mi->arg[1].i;
ptr = atppc->sc_ptr;
if ((len = mi->arg[0].i) == MS_ACCUM) {
accum = atppc->sc_accum;
for (; accum; accum--) {
w_reg(reg, atppc, *ptr++);
atppc_barrier_w(atppc);
}
atppc->sc_accum = accum;
} else {
for (i = 0; i < len; i++) {
w_reg(reg, atppc, *ptr++);
atppc_barrier_w(atppc);
}
}
atppc->sc_ptr = ptr;
mi++;
break;
case MS_OP_RFETCH_P:
reg = mi->arg[1].i;
mask = (char)mi->arg[2].i;
ptr = atppc->sc_ptr;
if ((len = mi->arg[0].i) == MS_ACCUM) {
accum = atppc->sc_accum;
for (; accum; accum--) {
*ptr++ = r_reg(reg, atppc) & mask;
atppc_barrier_r(atppc);
}
atppc->sc_accum = accum;
} else {
for (i = 0; i < len; i++) {
*ptr++ = r_reg(reg, atppc) & mask;
atppc_barrier_r(atppc);
}
}
atppc->sc_ptr = ptr;
mi++;
break;
case MS_OP_RFETCH:
*((char *)mi->arg[2].p) = r_reg(mi->arg[0].i, atppc) &
(char)mi->arg[1].i;
atppc_barrier_r(atppc);
mi++;
break;
case MS_OP_RASSERT:
case MS_OP_DELAY:
/* let's suppose the next instr. is the same */
do {
for (;mi->opcode == MS_OP_RASSERT; mi++) {
w_reg(mi->arg[0].i, atppc,
(char)mi->arg[1].i);
atppc_barrier_w(atppc);
}
for (;mi->opcode == MS_OP_DELAY; mi++) {
delay(mi->arg[0].i);
}
} while (mi->opcode == MS_OP_RASSERT);
break;
case MS_OP_ADELAY:
if (mi->arg[0].i) {
tsleep(atppc, PPBUSPRI, "atppcdelay",
mi->arg[0].i * (hz/1000));
}
mi++;
break;
case MS_OP_TRIG:
reg = mi->arg[0].i;
iter = mi->arg[1].i;
p = (char *)mi->arg[2].p;
/* XXX delay limited to 255 us */
for (i = 0; i < iter; i++) {
w_reg(reg, atppc, *p++);
atppc_barrier_w(atppc);
delay((unsigned char)*p++);
}
mi++;
break;
case MS_OP_SET:
atppc->sc_accum = mi->arg[0].i;
mi++;
break;
case MS_OP_DBRA:
if (--atppc->sc_accum > 0) {
mi += mi->arg[0].i;
}
mi++;
break;
case MS_OP_BRSET:
cc = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if ((cc & (char)mi->arg[0].i) == (char)mi->arg[0].i) {
mi += mi->arg[1].i;
}
mi++;
break;
case MS_OP_BRCLEAR:
cc = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if ((cc & (char)mi->arg[0].i) == 0) {
mi += mi->arg[1].i;
}
mi++;
break;
case MS_OP_BRSTAT:
cc = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if ((cc & ((char)mi->arg[0].i | (char)mi->arg[1].i)) ==
(char)mi->arg[0].i) {
mi += mi->arg[2].i;
}
mi++;
break;
case MS_OP_C_CALL:
/*
* If the C call returns !0 then end the microseq.
* The current state of ptr is passed to the C function
*/
if ((error = mi->arg[0].f(mi->arg[1].p,
atppc->sc_ptr))) {
mutex_exit(&atppc->sc_lock);
return (error);
}
mi++;
break;
case MS_OP_PTR:
atppc->sc_ptr = (char *)mi->arg[0].p;
mi++;
break;
case MS_OP_CALL:
if (stack) {
panic("%s - %s: too much calls", device_xname(dev),
__func__);
}
if (mi->arg[0].p) {
/* store state of the actual microsequence */
stack = mi;
/* jump to the new microsequence */
mi = (struct ppbus_microseq *)mi->arg[0].p;
} else {
mi++;
}
break;
case MS_OP_SUBRET:
/* retrieve microseq and pc state before the call */
mi = stack;
/* reset the stack */
stack = 0;
/* XXX return code */
mi++;
break;
case MS_OP_PUT:
case MS_OP_GET:
case MS_OP_RET:
/*
* Can't return to atppc level during the execution
* of a submicrosequence.
*/
if (stack) {
panic("%s: cannot return to atppc level",
__func__);
}
/* update pc for atppc level of execution */
*p_msq = mi;
mutex_exit(&atppc->sc_lock);
return (0);
break;
default:
panic("%s: unknown microsequence "
"opcode 0x%x", __func__, mi->opcode);
break;
}
}
/* Should not be reached! */
#ifdef ATPPC_DEBUG
panic("%s: unexpected code reached!\n", __func__);
#endif
}
/* General I/O routine */
static u_int8_t
atppc_io(device_t dev, int iop, u_char *addr, int cnt, u_char byte)
{
struct atppc_softc *atppc = device_private(dev);
u_int8_t val = 0;
mutex_enter(&atppc->sc_lock);
switch (iop) {
case PPBUS_OUTSB_EPP:
bus_space_write_multi_1(atppc->sc_iot, atppc->sc_ioh,
ATPPC_EPP_DATA, addr, cnt);
break;
case PPBUS_OUTSW_EPP:
bus_space_write_multi_2(atppc->sc_iot, atppc->sc_ioh,
ATPPC_EPP_DATA, (u_int16_t *)addr, cnt);
break;
case PPBUS_OUTSL_EPP:
bus_space_write_multi_4(atppc->sc_iot, atppc->sc_ioh,
ATPPC_EPP_DATA, (u_int32_t *)addr, cnt);
break;
case PPBUS_INSB_EPP:
bus_space_read_multi_1(atppc->sc_iot, atppc->sc_ioh,
ATPPC_EPP_DATA, addr, cnt);
break;
case PPBUS_INSW_EPP:
bus_space_read_multi_2(atppc->sc_iot, atppc->sc_ioh,
ATPPC_EPP_DATA, (u_int16_t *)addr, cnt);
break;
case PPBUS_INSL_EPP:
bus_space_read_multi_4(atppc->sc_iot, atppc->sc_ioh,
ATPPC_EPP_DATA, (u_int32_t *)addr, cnt);
break;
case PPBUS_RDTR:
val = (atppc_r_dtr(atppc));
break;
case PPBUS_RSTR:
val = (atppc_r_str(atppc));
break;
case PPBUS_RCTR:
val = (atppc_r_ctr(atppc));
break;
case PPBUS_REPP_A:
val = (atppc_r_eppA(atppc));
break;
case PPBUS_REPP_D:
val = (atppc_r_eppD(atppc));
break;
case PPBUS_RECR:
val = (atppc_r_ecr(atppc));
break;
case PPBUS_RFIFO:
val = (atppc_r_fifo(atppc));
break;
case PPBUS_WDTR:
atppc_w_dtr(atppc, byte);
break;
case PPBUS_WSTR:
atppc_w_str(atppc, byte);
break;
case PPBUS_WCTR:
atppc_w_ctr(atppc, byte);
break;
case PPBUS_WEPP_A:
atppc_w_eppA(atppc, byte);
break;
case PPBUS_WEPP_D:
atppc_w_eppD(atppc, byte);
break;
case PPBUS_WECR:
atppc_w_ecr(atppc, byte);
break;
case PPBUS_WFIFO:
atppc_w_fifo(atppc, byte);
break;
default:
panic("%s(%s): unknown I/O operation", device_xname(dev),
__func__);
break;
}
atppc_barrier(atppc);
mutex_exit(&atppc->sc_lock);
return val;
}
/* Read "instance variables" of atppc device */
static int
atppc_read_ivar(device_t dev, int index, unsigned int *val)
{
struct atppc_softc *atppc = device_private(dev);
int rval = 0;
mutex_enter(&atppc->sc_lock);
switch(index) {
case PPBUS_IVAR_EPP_PROTO:
if (atppc->sc_epp == ATPPC_EPP_1_9)
*val = PPBUS_EPP_1_9;
else if (atppc->sc_epp == ATPPC_EPP_1_7)
*val = PPBUS_EPP_1_7;
/* XXX what if not using EPP ? */
break;
case PPBUS_IVAR_INTR:
*val = ((atppc->sc_use & ATPPC_USE_INTR) != 0);
break;
case PPBUS_IVAR_DMA:
*val = ((atppc->sc_use & ATPPC_USE_DMA) != 0);
break;
default:
rval = ENODEV;
}
mutex_exit(&atppc->sc_lock);
return rval;
}
/* Write "instance varaibles" of atppc device */
static int
atppc_write_ivar(device_t dev, int index, unsigned int *val)
{
struct atppc_softc *atppc = device_private(dev);
int rval = 0;
mutex_enter(&atppc->sc_lock);
switch(index) {
case PPBUS_IVAR_EPP_PROTO:
if (*val == PPBUS_EPP_1_9 || *val == PPBUS_EPP_1_7)
atppc->sc_epp = *val;
else
rval = EINVAL;
break;
case PPBUS_IVAR_INTR:
if (*val == 0)
atppc->sc_use &= ~ATPPC_USE_INTR;
else if (atppc->sc_has & ATPPC_HAS_INTR)
atppc->sc_use |= ATPPC_USE_INTR;
else
rval = ENODEV;
break;
case PPBUS_IVAR_DMA:
if (*val == 0)
atppc->sc_use &= ~ATPPC_USE_DMA;
else if (atppc->sc_has & ATPPC_HAS_DMA)
atppc->sc_use |= ATPPC_USE_DMA;
else
rval = ENODEV;
break;
default:
rval = ENODEV;
}
mutex_exit(&atppc->sc_lock);
return rval;
}
/* Add a handler routine to be called by the interrupt handler */
static int
atppc_add_handler(device_t dev, void (*handler)(void *), void *arg)
{
struct atppc_softc *atppc = device_private(dev);
struct atppc_handler_node *callback;
int rval = 0;
if (handler == NULL) {
ATPPC_DPRINTF(("%s(%s): attempt to register NULL handler.\n",
__func__, device_xname(dev)));
rval = EINVAL;
} else {
callback = kmem_alloc(sizeof(*callback), KM_SLEEP);
if (callback) {
callback->func = handler;
callback->arg = arg;
mutex_enter(&atppc->sc_lock);
SLIST_INSERT_HEAD(&(atppc->sc_handler_listhead),
callback, entries);
mutex_exit(&atppc->sc_lock);
} else {
rval = ENOMEM;
}
}
return rval;
}
/* Remove a handler added by atppc_add_handler() */
static int
atppc_remove_handler(device_t dev, void (*handler)(void *))
{
struct atppc_softc *atppc = device_private(dev);
struct atppc_handler_node *callback;
int rval = EINVAL;
mutex_enter(&atppc->sc_lock);
if (SLIST_EMPTY(&(atppc->sc_handler_listhead)))
panic("%s(%s): attempt to remove handler from empty list.\n",
__func__, device_xname(dev));
/* Search list for handler */
SLIST_FOREACH(callback, &(atppc->sc_handler_listhead), entries) {
if (callback->func == handler) {
SLIST_REMOVE(&(atppc->sc_handler_listhead), callback,
atppc_handler_node, entries);
rval = 0;
break;
}
}
mutex_exit(&atppc->sc_lock);
if (rval == 0) {
kmem_free(callback, sizeof(*callback));
}
return rval;
}
/* Utility functions */
/*
* Functions that read bytes from port into buffer: called from interrupt
* handler depending on current chipset mode and cause of interrupt. Return
* value: number of bytes moved.
*/
/* Only the lower 4 bits of the final value are valid */
#define nibble2char(s) ((((s) & ~nACK) >> 3) | (~(s) & nBUSY) >> 4)
/* Read bytes in nibble mode */
static void
atppc_nibble_read(struct atppc_softc *atppc)
{
int i;
u_int8_t nibble[2];
u_int8_t ctr;
u_int8_t str;
/* Enable interrupts if needed */
if (atppc->sc_use & ATPPC_USE_INTR) {
ctr = atppc_r_ctr(atppc);
atppc_barrier_r(atppc);
if (!(ctr & IRQENABLE)) {
ctr |= IRQENABLE;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
}
}
while (atppc->sc_inbstart < (atppc->sc_inb + atppc->sc_inb_nbytes)) {
/* Check if device has data to send in idle phase */
str = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if (str & nDATAVAIL) {
return;
}
/* Nibble-mode handshake transfer */
for (i = 0; i < 2; i++) {
/* Event 7 - ready to take data (HOSTBUSY low) */
ctr = atppc_r_ctr(atppc);
atppc_barrier_r(atppc);
ctr |= HOSTBUSY;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
/* Event 8 - peripheral writes the first nibble */
/* Event 9 - peripheral set nAck low */
atppc->sc_inerr = atppc_poll_str(atppc, 0, PTRCLK);
if (atppc->sc_inerr)
return;
/* read nibble */
nibble[i] = atppc_r_str(atppc);
/* Event 10 - ack, nibble received */
ctr &= ~HOSTBUSY;
atppc_w_ctr(atppc, ctr);
/* Event 11 - wait ack from peripheral */
if (atppc->sc_use & ATPPC_USE_INTR)
atppc->sc_inerr = atppc_wait_interrupt(atppc,
&atppc->sc_in_cv, ATPPC_IRQ_nACK);
else
atppc->sc_inerr = atppc_poll_str(atppc, PTRCLK,
PTRCLK);
if (atppc->sc_inerr)
return;
}
/* Store byte transfered */
*(atppc->sc_inbstart) = ((nibble2char(nibble[1]) << 4) & 0xf0) |
(nibble2char(nibble[0]) & 0x0f);
atppc->sc_inbstart++;
}
}
/* Read bytes in bidirectional mode */
static void
atppc_byte_read(struct atppc_softc * const atppc)
{
u_int8_t ctr;
u_int8_t str;
/* Check direction bit */
ctr = atppc_r_ctr(atppc);
atppc_barrier_r(atppc);
if (!(ctr & PCD)) {
ATPPC_DPRINTF(("%s: byte-mode read attempted without direction "
"bit set.", device_xname(atppc->sc_dev)));
atppc->sc_inerr = ENODEV;
return;
}
/* Enable interrupts if needed */
if (atppc->sc_use & ATPPC_USE_INTR) {
if (!(ctr & IRQENABLE)) {
ctr |= IRQENABLE;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
}
}
/* Byte-mode handshake transfer */
while (atppc->sc_inbstart < (atppc->sc_inb + atppc->sc_inb_nbytes)) {
/* Check if device has data to send */
str = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if (str & nDATAVAIL) {
return;
}
/* Event 7 - ready to take data (nAUTO low) */
ctr |= HOSTBUSY;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
/* Event 9 - peripheral set nAck low */
atppc->sc_inerr = atppc_poll_str(atppc, 0, PTRCLK);
if (atppc->sc_inerr)
return;
/* Store byte transfered */
*(atppc->sc_inbstart) = atppc_r_dtr(atppc);
atppc_barrier_r(atppc);
/* Event 10 - data received, can't accept more */
ctr &= ~HOSTBUSY;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
/* Event 11 - peripheral ack */
if (atppc->sc_use & ATPPC_USE_INTR)
atppc->sc_inerr = atppc_wait_interrupt(atppc,
&atppc->sc_in_cv, ATPPC_IRQ_nACK);
else
atppc->sc_inerr = atppc_poll_str(atppc, PTRCLK, PTRCLK);
if (atppc->sc_inerr)
return;
/* Event 16 - strobe */
str |= HOSTCLK;
atppc_w_str(atppc, str);
atppc_barrier_w(atppc);
DELAY(1);
str &= ~HOSTCLK;
atppc_w_str(atppc, str);
atppc_barrier_w(atppc);
/* Update counter */
atppc->sc_inbstart++;
}
}
/* Read bytes in EPP mode */
static void
atppc_epp_read(struct atppc_softc * atppc)
{
if (atppc->sc_epp == ATPPC_EPP_1_9) {
{
uint8_t str;
int i;
atppc_reset_epp_timeout(atppc->sc_dev);
for (i = 0; i < atppc->sc_inb_nbytes; i++) {
*(atppc->sc_inbstart) = atppc_r_eppD(atppc);
atppc_barrier_r(atppc);
str = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if (str & TIMEOUT) {
atppc->sc_inerr = EIO;
break;
}
atppc->sc_inbstart++;
}
}
} else {
/* Read data block from EPP data register */
atppc_r_eppD_multi(atppc, atppc->sc_inbstart,
atppc->sc_inb_nbytes);
atppc_barrier_r(atppc);
/* Update buffer position, byte count and counter */
atppc->sc_inbstart += atppc->sc_inb_nbytes;
}
return;
}
/* Read bytes in ECP mode */
static void
atppc_ecp_read(struct atppc_softc *atppc)
{
u_int8_t ecr;
u_int8_t ctr;
u_int8_t str;
const unsigned char ctr_sav = atppc_r_ctr(atppc);
const unsigned char ecr_sav = atppc_r_ecr(atppc);
unsigned int worklen;
/* Check direction bit */
ctr = ctr_sav;
atppc_barrier_r(atppc);
if (!(ctr & PCD)) {
ATPPC_DPRINTF(("%s: ecp-mode read attempted without direction "
"bit set.", device_xname(atppc->sc_dev)));
atppc->sc_inerr = ENODEV;
goto end;
}
/* Clear device request if any */
if (atppc->sc_use & ATPPC_USE_INTR)
atppc->sc_irqstat &= ~ATPPC_IRQ_nFAULT;
while (atppc->sc_inbstart < (atppc->sc_inb + atppc->sc_inb_nbytes)) {
ecr = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if (ecr & ATPPC_FIFO_EMPTY) {
/* Check for invalid state */
if (ecr & ATPPC_FIFO_FULL) {
atppc_ecp_read_error(atppc);
break;
}
/* Check if device has data to send */
str = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if (str & nDATAVAIL) {
break;
}
if (atppc->sc_use & ATPPC_USE_INTR) {
/* Enable interrupts */
ecr &= ~ATPPC_SERVICE_INTR;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
/* Wait for FIFO to fill */
atppc->sc_inerr = atppc_wait_interrupt(atppc,
&atppc->sc_in_cv, ATPPC_IRQ_FIFO);
if (atppc->sc_inerr)
break;
} else {
DELAY(1);
}
continue;
}
else if (ecr & ATPPC_FIFO_FULL) {
/* Transfer sc_fifo bytes */
worklen = atppc->sc_fifo;
}
else if (ecr & ATPPC_SERVICE_INTR) {
/* Transfer sc_rthr bytes */
worklen = atppc->sc_rthr;
} else {
/* At least one byte is in the FIFO */
worklen = 1;
}
if ((atppc->sc_use & ATPPC_USE_INTR) &&
(atppc->sc_use & ATPPC_USE_DMA)) {
atppc_ecp_read_dma(atppc, &worklen, ecr);
} else {
atppc_ecp_read_pio(atppc, &worklen, ecr);
}
if (atppc->sc_inerr) {
atppc_ecp_read_error(atppc);
break;
}
/* Update counter */
atppc->sc_inbstart += worklen;
}
end:
atppc_w_ctr(atppc, ctr_sav);
atppc_w_ecr(atppc, ecr_sav);
atppc_barrier_w(atppc);
}
/* Read bytes in ECP mode using DMA transfers */
static void
atppc_ecp_read_dma(struct atppc_softc *atppc, unsigned int *length,
unsigned char ecr)
{
/* Limit transfer to maximum DMA size and start it */
*length = min(*length, atppc->sc_dma_maxsize);
atppc->sc_dmastat = ATPPC_DMA_INIT;
atppc->sc_dma_start(atppc, atppc->sc_inbstart, *length,
ATPPC_DMA_MODE_READ);
atppc->sc_dmastat = ATPPC_DMA_STARTED;
/* Enable interrupts, DMA */
ecr &= ~ATPPC_SERVICE_INTR;
ecr |= ATPPC_ENABLE_DMA;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
/* Wait for DMA completion */
atppc->sc_inerr = atppc_wait_interrupt(atppc, &atppc->sc_in_cv,
ATPPC_IRQ_DMA);
if (atppc->sc_inerr)
return;
/* Get register value recorded by interrupt handler */
ecr = atppc->sc_ecr_intr;
/* Clear DMA programming */
atppc->sc_dma_finish(atppc);
atppc->sc_dmastat = ATPPC_DMA_COMPLETE;
/* Disable DMA */
ecr &= ~ATPPC_ENABLE_DMA;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
}
/* Read bytes in ECP mode using PIO transfers */
static void
atppc_ecp_read_pio(struct atppc_softc *atppc, unsigned int *length,
unsigned char ecr)
{
/* Disable DMA */
ecr &= ~ATPPC_ENABLE_DMA;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
/* Read from FIFO */
atppc_r_fifo_multi(atppc, atppc->sc_inbstart, *length);
}
/* Handle errors for ECP reads */
static void
atppc_ecp_read_error(struct atppc_softc *atppc)
{
unsigned char ecr = atppc_r_ecr(atppc);
/* Abort DMA if not finished */
if (atppc->sc_dmastat == ATPPC_DMA_STARTED) {
atppc->sc_dma_abort(atppc);
ATPPC_DPRINTF(("%s: DMA interrupted.\n", __func__));
}
/* Check for invalid states */
if ((ecr & ATPPC_FIFO_EMPTY) && (ecr & ATPPC_FIFO_FULL)) {
ATPPC_DPRINTF(("%s: FIFO full+empty bits set.\n", __func__));
ATPPC_DPRINTF(("%s: reseting FIFO.\n", __func__));
atppc_w_ecr(atppc, ATPPC_ECR_PS2);
atppc_barrier_w(atppc);
}
}
/*
* Functions that write bytes to port from buffer: called from atppc_write()
* function depending on current chipset mode. Returns number of bytes moved.
*/
/* Write bytes in std/bidirectional mode */
static void
atppc_std_write(struct atppc_softc * const atppc)
{
unsigned char ctr;
ctr = atppc_r_ctr(atppc);
atppc_barrier_r(atppc);
/* Enable interrupts if needed */
if (atppc->sc_use & ATPPC_USE_INTR) {
if (!(ctr & IRQENABLE)) {
ctr |= IRQENABLE;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
}
}
while (atppc->sc_outbstart < (atppc->sc_outb + atppc->sc_outb_nbytes)) {
/* Wait for peripheral to become ready for MAXBUSYWAIT */
atppc->sc_outerr = atppc_poll_str(atppc, SPP_READY, SPP_MASK);
if (atppc->sc_outerr)
return;
/* Put data in data register */
atppc_w_dtr(atppc, *(atppc->sc_outbstart));
atppc_barrier_w(atppc);
DELAY(1);
/* Pulse strobe to indicate valid data on lines */
ctr |= STROBE;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
DELAY(1);
ctr &= ~STROBE;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
/* Wait for nACK for MAXBUSYWAIT */
if (atppc->sc_use & ATPPC_USE_INTR) {
atppc->sc_outerr = atppc_wait_interrupt(atppc,
&atppc->sc_out_cv, ATPPC_IRQ_nACK);
if (atppc->sc_outerr)
return;
} else {
/* Try to catch the pulsed acknowledgement */
atppc->sc_outerr = atppc_poll_str(atppc, 0, nACK);
if (atppc->sc_outerr)
return;
atppc->sc_outerr = atppc_poll_str(atppc, nACK, nACK);
if (atppc->sc_outerr)
return;
}
/* Update buffer position, byte count and counter */
atppc->sc_outbstart++;
}
}
/* Write bytes in EPP mode */
static void
atppc_epp_write(struct atppc_softc *atppc)
{
if (atppc->sc_epp == ATPPC_EPP_1_9) {
{
uint8_t str;
int i;
atppc_reset_epp_timeout(atppc->sc_dev);
for (i = 0; i < atppc->sc_outb_nbytes; i++) {
atppc_w_eppD(atppc, *(atppc->sc_outbstart));
atppc_barrier_w(atppc);
str = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if (str & TIMEOUT) {
atppc->sc_outerr = EIO;
break;
}
atppc->sc_outbstart++;
}
}
} else {
/* Write data block to EPP data register */
atppc_w_eppD_multi(atppc, atppc->sc_outbstart,
atppc->sc_outb_nbytes);
atppc_barrier_w(atppc);
/* Update buffer position, byte count and counter */
atppc->sc_outbstart += atppc->sc_outb_nbytes;
}
return;
}
/* Write bytes in ECP/Fast Centronics mode */
static void
atppc_fifo_write(struct atppc_softc * const atppc)
{
unsigned char ctr;
unsigned char ecr;
const unsigned char ctr_sav = atppc_r_ctr(atppc);
const unsigned char ecr_sav = atppc_r_ecr(atppc);
ctr = ctr_sav;
ecr = ecr_sav;
atppc_barrier_r(atppc);
/* Reset and flush FIFO */
atppc_w_ecr(atppc, ATPPC_ECR_PS2);
atppc_barrier_w(atppc);
/* Disable nAck interrupts and initialize port bits */
ctr &= ~(IRQENABLE | STROBE | AUTOFEED);
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
/* Restore mode */
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
/* DMA or Programmed IO */
if ((atppc->sc_use & ATPPC_USE_DMA) &&
(atppc->sc_use & ATPPC_USE_INTR)) {
atppc_fifo_write_dma(atppc, ecr, ctr);
} else {
atppc_fifo_write_pio(atppc, ecr, ctr);
}
/* Restore original register values */
atppc_w_ctr(atppc, ctr_sav);
atppc_w_ecr(atppc, ecr_sav);
atppc_barrier_w(atppc);
}
static void
atppc_fifo_write_dma(struct atppc_softc * const atppc, unsigned char ecr,
unsigned char ctr)
{
unsigned int len;
unsigned int worklen;
for (len = (atppc->sc_outb + atppc->sc_outb_nbytes) -
atppc->sc_outbstart; len > 0; len = (atppc->sc_outb +
atppc->sc_outb_nbytes) - atppc->sc_outbstart) {
/* Wait for device to become ready */
atppc->sc_outerr = atppc_poll_str(atppc, SPP_READY, SPP_MASK);
if (atppc->sc_outerr)
return;
/* Reset chipset for next DMA transfer */
atppc_w_ecr(atppc, ATPPC_ECR_PS2);
atppc_barrier_w(atppc);
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
/* Limit transfer to maximum DMA size and start it */
worklen = min(len, atppc->sc_dma_maxsize);
atppc->sc_dmastat = ATPPC_DMA_INIT;
atppc->sc_dma_start(atppc, atppc->sc_outbstart,
worklen, ATPPC_DMA_MODE_WRITE);
atppc->sc_dmastat = ATPPC_DMA_STARTED;
/* Enable interrupts, DMA */
ecr &= ~ATPPC_SERVICE_INTR;
ecr |= ATPPC_ENABLE_DMA;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
/* Wait for DMA completion */
atppc->sc_outerr = atppc_wait_interrupt(atppc,
&atppc->sc_out_cv, ATPPC_IRQ_DMA);
if (atppc->sc_outerr) {
atppc_fifo_write_error(atppc, worklen);
return;
}
/* Get register value recorded by interrupt handler */
ecr = atppc->sc_ecr_intr;
/* Clear DMA programming */
atppc->sc_dma_finish(atppc);
atppc->sc_dmastat = ATPPC_DMA_COMPLETE;
/* Disable DMA */
ecr &= ~ATPPC_ENABLE_DMA;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
/* Wait for FIFO to empty */
for (;;) {
if (ecr & ATPPC_FIFO_EMPTY) {
if (ecr & ATPPC_FIFO_FULL) {
atppc->sc_outerr = EIO;
atppc_fifo_write_error(atppc, worklen);
return;
} else {
break;
}
}
/* Enable service interrupt */
ecr &= ~ATPPC_SERVICE_INTR;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
atppc->sc_outerr = atppc_wait_interrupt(atppc,
&atppc->sc_out_cv, ATPPC_IRQ_FIFO);
if (atppc->sc_outerr) {
atppc_fifo_write_error(atppc, worklen);
return;
}
/* Get register value recorded by interrupt handler */
ecr = atppc->sc_ecr_intr;
}
/* Update pointer */
atppc->sc_outbstart += worklen;
}
}
static void
atppc_fifo_write_pio(struct atppc_softc * const atppc, unsigned char ecr,
unsigned char ctr)
{
unsigned int len;
unsigned int worklen;
unsigned int timecount;
/* Disable DMA */
ecr &= ~ATPPC_ENABLE_DMA;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
for (len = (atppc->sc_outb + atppc->sc_outb_nbytes) -
atppc->sc_outbstart; len > 0; len = (atppc->sc_outb +
atppc->sc_outb_nbytes) - atppc->sc_outbstart) {
/* Wait for device to become ready */
atppc->sc_outerr = atppc_poll_str(atppc, SPP_READY, SPP_MASK);
if (atppc->sc_outerr)
return;
/* Limit transfer to minimum of space in FIFO and buffer */
worklen = min(len, atppc->sc_fifo);
/* Write to FIFO */
atppc_w_fifo_multi(atppc, atppc->sc_outbstart, worklen);
timecount = 0;
if (atppc->sc_use & ATPPC_USE_INTR) {
ecr = atppc_r_ecr(atppc);
atppc_barrier_w(atppc);
/* Wait for interrupt */
for (;;) {
if (ecr & ATPPC_FIFO_EMPTY) {
if (ecr & ATPPC_FIFO_FULL) {
atppc->sc_outerr = EIO;
atppc_fifo_write_error(atppc,
worklen);
return;
} else {
break;
}
}
/* Enable service interrupt */
ecr &= ~ATPPC_SERVICE_INTR;
atppc_w_ecr(atppc, ecr);
atppc_barrier_w(atppc);
atppc->sc_outerr = atppc_wait_interrupt(atppc,
&atppc->sc_out_cv, ATPPC_IRQ_FIFO);
if (atppc->sc_outerr) {
atppc_fifo_write_error(atppc, worklen);
return;
}
/* Get ECR value saved by interrupt handler */
ecr = atppc->sc_ecr_intr;
}
} else {
for (; timecount < ((MAXBUSYWAIT/hz)*1000000);
timecount++) {
ecr = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if (ecr & ATPPC_FIFO_EMPTY) {
if (ecr & ATPPC_FIFO_FULL) {
atppc->sc_outerr = EIO;
atppc_fifo_write_error(atppc,
worklen);
return;
} else {
break;
}
}
DELAY(1);
}
if (((timecount*hz)/1000000) >= MAXBUSYWAIT) {
atppc->sc_outerr = EIO;
atppc_fifo_write_error(atppc, worklen);
return;
}
}
/* Update pointer */
atppc->sc_outbstart += worklen;
}
}
static void
atppc_fifo_write_error(struct atppc_softc * const atppc,
const unsigned int worklen)
{
unsigned char ecr = atppc_r_ecr(atppc);
/* Abort DMA if not finished */
if (atppc->sc_dmastat == ATPPC_DMA_STARTED) {
atppc->sc_dma_abort(atppc);
ATPPC_DPRINTF(("%s: DMA interrupted.\n", __func__));
}
/* Check for invalid states */
if ((ecr & ATPPC_FIFO_EMPTY) && (ecr & ATPPC_FIFO_FULL)) {
ATPPC_DPRINTF(("%s: FIFO full+empty bits set.\n", __func__));
} else if (!(ecr & ATPPC_FIFO_EMPTY)) {
unsigned char ctr = atppc_r_ctr(atppc);
int bytes_left;
int i;
ATPPC_DPRINTF(("%s(%s): FIFO not empty.\n", __func__,
device_xname(atppc->sc_dev)));
/* Drive strobe low to stop data transfer */
ctr &= ~STROBE;
atppc_w_ctr(atppc, ctr);
atppc_barrier_w(atppc);
/* Determine how many bytes remain in FIFO */
for (i = 0; i < atppc->sc_fifo; i++) {
atppc_w_fifo(atppc, (unsigned char)i);
ecr = atppc_r_ecr(atppc);
atppc_barrier_r(atppc);
if (ecr & ATPPC_FIFO_FULL)
break;
}
bytes_left = (atppc->sc_fifo) - (i + 1);
ATPPC_DPRINTF(("%s: %d bytes left in FIFO.\n", __func__,
bytes_left));
/* Update counter */
atppc->sc_outbstart += (worklen - bytes_left);
} else {
/* Update counter */
atppc->sc_outbstart += worklen;
}
ATPPC_DPRINTF(("%s: reseting FIFO.\n", __func__));
atppc_w_ecr(atppc, ATPPC_ECR_PS2);
atppc_barrier_w(atppc);
}
/*
* Poll status register using mask and status for MAXBUSYWAIT.
* Returns 0 if device ready, error value otherwise.
*/
static int
atppc_poll_str(const struct atppc_softc * const atppc, const u_int8_t status,
const u_int8_t mask)
{
unsigned int timecount;
u_int8_t str;
int error = EIO;
/* Wait for str to have status for MAXBUSYWAIT */
for (timecount = 0; timecount < ((MAXBUSYWAIT/hz)*1000000);
timecount++) {
str = atppc_r_str(atppc);
atppc_barrier_r(atppc);
if ((str & mask) == status) {
error = 0;
break;
}
DELAY(1);
}
return error;
}
/* Wait for interrupt for MAXBUSYWAIT: returns 0 if acknowledge received. */
static int
atppc_wait_interrupt(struct atppc_softc * const atppc, kcondvar_t *cv,
const u_int8_t irqstat)
{
int error = EIO;
atppc->sc_irqstat &= ~irqstat;
/* Wait for interrupt for MAXBUSYWAIT */
error = cv_timedwait_sig(cv, &atppc->sc_lock, MAXBUSYWAIT);
if (!(error) && (atppc->sc_irqstat & irqstat)) {
atppc->sc_irqstat &= ~irqstat;
error = 0;
}
return error;
}