NetBSD/sys/dev/ic/iha.c
2003-05-03 18:10:37 +00:00

2886 lines
66 KiB
C

/* $NetBSD: iha.c,v 1.22 2003/05/03 18:11:18 wiz Exp $ */
/*-
* Device driver for the INI-9XXXU/UW or INIC-940/950 PCI SCSI Controller.
*
* Written for 386bsd and FreeBSD by
* Winston Hung <winstonh@initio.com>
*
* Copyright (c) 1997-1999 Initio Corp.
* Copyright (c) 2000, 2001 Ken Westerback
* Copyright (c) 2001, 2002 Izumi Tsutsui
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Ported to NetBSD by Izumi Tsutsui <tsutsui@ceres.dti.ne.jp> from OpenBSD:
* $OpenBSD: iha.c,v 1.3 2001/02/20 00:47:33 krw Exp $
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: iha.c,v 1.22 2003/05/03 18:11:18 wiz Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/buf.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <uvm/uvm_extern.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/scsipi/scsi_message.h>
#include <dev/ic/ihareg.h>
#include <dev/ic/ihavar.h>
/*
* SCSI Rate Table, indexed by FLAG_SCSI_RATE field of
* tcs flags.
*/
static const u_int8_t iha_rate_tbl[] = {
/* fast 20 */
/* nanosecond divide by 4 */
12, /* 50ns, 20M */
18, /* 75ns, 13.3M */
25, /* 100ns, 10M */
31, /* 125ns, 8M */
37, /* 150ns, 6.6M */
43, /* 175ns, 5.7M */
50, /* 200ns, 5M */
62 /* 250ns, 4M */
};
#define IHA_MAX_PERIOD 62
#ifdef notused
static u_int16_t eeprom_default[EEPROM_SIZE] = {
/* -- Header ------------------------------------ */
/* signature */
EEP_SIGNATURE,
/* size, revision */
EEP_WORD(EEPROM_SIZE * 2, 0x01),
/* -- Host Adapter Structure -------------------- */
/* model */
0x0095,
/* model info, number of channel */
EEP_WORD(0x00, 1),
/* BIOS config */
EEP_BIOSCFG_DEFAULT,
/* host adapter config */
0,
/* -- eeprom_adapter[0] ------------------------------- */
/* ID, adapter config 1 */
EEP_WORD(7, CFG_DEFAULT),
/* adapter config 2, number of targets */
EEP_WORD(0x00, 8),
/* target flags */
EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
/* -- eeprom_adapter[1] ------------------------------- */
/* ID, adapter config 1 */
EEP_WORD(7, CFG_DEFAULT),
/* adapter config 2, number of targets */
EEP_WORD(0x00, 8),
/* target flags */
EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
/* reserved[5] */
0, 0, 0, 0, 0,
/* checksum */
0
};
#endif
static void iha_append_free_scb(struct iha_softc *, struct iha_scb *);
static void iha_append_done_scb(struct iha_softc *, struct iha_scb *, u_int8_t);
static __inline struct iha_scb *iha_pop_done_scb(struct iha_softc *);
static struct iha_scb *iha_find_pend_scb(struct iha_softc *);
static __inline void iha_append_pend_scb(struct iha_softc *, struct iha_scb *);
static __inline void iha_push_pend_scb(struct iha_softc *, struct iha_scb *);
static __inline void iha_del_pend_scb(struct iha_softc *, struct iha_scb *);
static __inline void iha_mark_busy_scb(struct iha_scb *);
static __inline void iha_set_ssig(struct iha_softc *, u_int8_t, u_int8_t);
static int iha_alloc_sglist(struct iha_softc *);
static void iha_scsipi_request(struct scsipi_channel *, scsipi_adapter_req_t,
void *);
static void iha_update_xfer_mode(struct iha_softc *, int);
static void iha_reset_scsi_bus(struct iha_softc *);
static void iha_reset_chip(struct iha_softc *);
static void iha_reset_dma(struct iha_softc *);
static void iha_reset_tcs(struct tcs *, u_int8_t);
static void iha_main(struct iha_softc *);
static void iha_scsi(struct iha_softc *);
static void iha_select(struct iha_softc *, struct iha_scb *, u_int8_t);
static int iha_wait(struct iha_softc *, u_int8_t);
static void iha_exec_scb(struct iha_softc *, struct iha_scb *);
static void iha_done_scb(struct iha_softc *, struct iha_scb *);
static int iha_push_sense_request(struct iha_softc *, struct iha_scb *);
static void iha_timeout(void *);
static void iha_abort_xs(struct iha_softc *, struct scsipi_xfer *, u_int8_t);
static u_int8_t iha_data_over_run(struct iha_scb *);
static int iha_next_state(struct iha_softc *);
static int iha_state_1(struct iha_softc *);
static int iha_state_2(struct iha_softc *);
static int iha_state_3(struct iha_softc *);
static int iha_state_4(struct iha_softc *);
static int iha_state_5(struct iha_softc *);
static int iha_state_6(struct iha_softc *);
static int iha_state_8(struct iha_softc *);
static int iha_xfer_data(struct iha_softc *, struct iha_scb *, int);
static int iha_xpad_in(struct iha_softc *);
static int iha_xpad_out(struct iha_softc *);
static int iha_status_msg(struct iha_softc *);
static void iha_busfree(struct iha_softc *);
static int iha_resel(struct iha_softc *);
static int iha_msgin(struct iha_softc *);
static int iha_msgin_extended(struct iha_softc *);
static int iha_msgin_sdtr(struct iha_softc *);
static int iha_msgin_ignore_wid_resid(struct iha_softc *);
static int iha_msgout(struct iha_softc *, u_int8_t);
static void iha_msgout_abort(struct iha_softc *, u_int8_t);
static int iha_msgout_reject(struct iha_softc *);
static int iha_msgout_extended(struct iha_softc *);
static int iha_msgout_wdtr(struct iha_softc *);
static int iha_msgout_sdtr(struct iha_softc *);
static void iha_wide_done(struct iha_softc *);
static void iha_sync_done(struct iha_softc *);
static void iha_bad_seq(struct iha_softc *);
static void iha_read_eeprom(struct iha_softc *, struct iha_eeprom *);
static int iha_se2_rd_all(struct iha_softc *, u_int16_t *);
static void iha_se2_instr(struct iha_softc *, int);
static u_int16_t iha_se2_rd(struct iha_softc *, int);
#ifdef notused
static void iha_se2_update_all(struct iha_softc *);
static void iha_se2_wr(struct iha_softc *, int, u_int16_t);
#endif
/*
* iha_append_free_scb - append the supplied SCB to the tail of the
* sc_freescb queue after clearing and resetting
* everything possible.
*/
static void
iha_append_free_scb(sc, scb)
struct iha_softc *sc;
struct iha_scb *scb;
{
int s;
s = splbio();
if (scb == sc->sc_actscb)
sc->sc_actscb = NULL;
scb->status = STATUS_QUEUED;
scb->ha_stat = HOST_OK;
scb->ta_stat = SCSI_OK;
scb->nextstat = 0;
scb->scb_tagmsg = 0;
scb->xs = NULL;
scb->tcs = NULL;
/*
* scb_tagid, sg_addr, sglist
* SCB_SensePtr are set at initialization
* and never change
*/
TAILQ_INSERT_TAIL(&sc->sc_freescb, scb, chain);
splx(s);
}
static void
iha_append_done_scb(sc, scb, hastat)
struct iha_softc *sc;
struct iha_scb *scb;
u_int8_t hastat;
{
struct tcs *tcs;
int s;
s = splbio();
if (scb->xs != NULL)
callout_stop(&scb->xs->xs_callout);
if (scb == sc->sc_actscb)
sc->sc_actscb = NULL;
tcs = scb->tcs;
if (scb->scb_tagmsg != 0) {
if (tcs->tagcnt)
tcs->tagcnt--;
} else if (tcs->ntagscb == scb)
tcs->ntagscb = NULL;
scb->status = STATUS_QUEUED;
scb->ha_stat = hastat;
TAILQ_INSERT_TAIL(&sc->sc_donescb, scb, chain);
splx(s);
}
static __inline struct iha_scb *
iha_pop_done_scb(sc)
struct iha_softc *sc;
{
struct iha_scb *scb;
int s;
s = splbio();
scb = TAILQ_FIRST(&sc->sc_donescb);
if (scb != NULL) {
scb->status = STATUS_RENT;
TAILQ_REMOVE(&sc->sc_donescb, scb, chain);
}
splx(s);
return (scb);
}
/*
* iha_find_pend_scb - scan the pending queue for a SCB that can be
* processed immediately. Return NULL if none found
* and a pointer to the SCB if one is found. If there
* is an active SCB, return NULL!
*/
static struct iha_scb *
iha_find_pend_scb(sc)
struct iha_softc *sc;
{
struct iha_scb *scb;
struct tcs *tcs;
int s;
s = splbio();
if (sc->sc_actscb != NULL)
scb = NULL;
else
TAILQ_FOREACH(scb, &sc->sc_pendscb, chain) {
if ((scb->xs->xs_control & XS_CTL_RESET) != 0)
/* ALWAYS willing to reset a device */
break;
tcs = scb->tcs;
if ((scb->scb_tagmsg) != 0) {
/*
* A Tagged I/O. OK to start If no
* non-tagged I/O is active on the same
* target
*/
if (tcs->ntagscb == NULL)
break;
} else if (scb->cmd[0] == REQUEST_SENSE) {
/*
* OK to do a non-tagged request sense
* even if a non-tagged I/O has been
* started, 'cuz we don't allow any
* disconnect during a request sense op
*/
break;
} else if (tcs->tagcnt == 0) {
/*
* No tagged I/O active on this target,
* ok to start a non-tagged one if one
* is not already active
*/
if (tcs->ntagscb == NULL)
break;
}
}
splx(s);
return (scb);
}
static __inline void
iha_append_pend_scb(sc, scb)
struct iha_softc *sc;
struct iha_scb *scb;
{
/* ASSUMPTION: only called within a splbio()/splx() pair */
if (scb == sc->sc_actscb)
sc->sc_actscb = NULL;
scb->status = STATUS_QUEUED;
TAILQ_INSERT_TAIL(&sc->sc_pendscb, scb, chain);
}
static __inline void
iha_push_pend_scb(sc, scb)
struct iha_softc *sc;
struct iha_scb *scb;
{
int s;
s = splbio();
if (scb == sc->sc_actscb)
sc->sc_actscb = NULL;
scb->status = STATUS_QUEUED;
TAILQ_INSERT_HEAD(&sc->sc_pendscb, scb, chain);
splx(s);
}
/*
* iha_del_pend_scb - remove scb from sc_pendscb
*/
static __inline void
iha_del_pend_scb(sc, scb)
struct iha_softc *sc;
struct iha_scb *scb;
{
int s;
s = splbio();
TAILQ_REMOVE(&sc->sc_pendscb, scb, chain);
splx(s);
}
static __inline void
iha_mark_busy_scb(scb)
struct iha_scb *scb;
{
int s;
s = splbio();
scb->status = STATUS_BUSY;
if (scb->scb_tagmsg == 0)
scb->tcs->ntagscb = scb;
else
scb->tcs->tagcnt++;
splx(s);
}
/*
* iha_set_ssig - read the current scsi signal mask, then write a new
* one which turns off/on the specified signals.
*/
static __inline void
iha_set_ssig(sc, offsigs, onsigs)
struct iha_softc *sc;
u_int8_t offsigs, onsigs;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int8_t currsigs;
currsigs = bus_space_read_1(iot, ioh, TUL_SSIGI);
bus_space_write_1(iot, ioh, TUL_SSIGO, (currsigs & ~offsigs) | onsigs);
}
/*
* iha_intr - the interrupt service routine for the iha driver
*/
int
iha_intr(arg)
void *arg;
{
bus_space_tag_t iot;
bus_space_handle_t ioh;
struct iha_softc *sc;
int s;
sc = (struct iha_softc *)arg;
iot = sc->sc_iot;
ioh = sc->sc_ioh;
if ((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0)
return (0);
s = splbio(); /* XXX - Or are interrupts off when ISR's are called? */
if (sc->sc_semaph != SEMAPH_IN_MAIN) {
/* XXX - need these inside a splbio()/splx()? */
bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
sc->sc_semaph = SEMAPH_IN_MAIN;
iha_main(sc);
sc->sc_semaph = ~SEMAPH_IN_MAIN;
bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP));
}
splx(s);
return (1);
}
void
iha_attach(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct iha_scb *scb;
struct iha_eeprom eeprom;
struct eeprom_adapter *conf;
int i, error, reg;
iha_read_eeprom(sc, &eeprom);
conf = &eeprom.adapter[0];
/*
* fill in the rest of the iha_softc fields
*/
sc->sc_id = CFG_ID(conf->config1);
sc->sc_semaph = ~SEMAPH_IN_MAIN;
sc->sc_status0 = 0;
sc->sc_actscb = NULL;
TAILQ_INIT(&sc->sc_freescb);
TAILQ_INIT(&sc->sc_pendscb);
TAILQ_INIT(&sc->sc_donescb);
error = iha_alloc_sglist(sc);
if (error != 0) {
printf(": cannot allocate sglist\n");
return;
}
sc->sc_scb = malloc(sizeof(struct iha_scb) * IHA_MAX_SCB,
M_DEVBUF, M_NOWAIT|M_ZERO);
if (sc->sc_scb == NULL) {
printf(": cannot allocate SCB\n");
return;
}
for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++) {
scb->scb_tagid = i;
scb->sgoffset = IHA_SG_SIZE * i;
scb->sglist = sc->sc_sglist + IHA_MAX_SG_ENTRIES * i;
scb->sg_addr =
sc->sc_dmamap->dm_segs[0].ds_addr + scb->sgoffset;
error = bus_dmamap_create(sc->sc_dmat,
MAXPHYS, IHA_MAX_SG_ENTRIES, MAXPHYS, 0,
BUS_DMA_NOWAIT, &scb->dmap);
if (error != 0) {
printf(": couldn't create SCB DMA map, error = %d\n",
error);
return;
}
TAILQ_INSERT_TAIL(&sc->sc_freescb, scb, chain);
}
/* Mask all the interrupts */
bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
/* Stop any I/O and reset the scsi module */
iha_reset_dma(sc);
bus_space_write_1(iot, ioh, TUL_SCTRL0, RSMOD);
/* Program HBA's SCSI ID */
bus_space_write_1(iot, ioh, TUL_SID, sc->sc_id << 4);
/*
* Configure the channel as requested by the NVRAM settings read
* by iha_read_eeprom() above.
*/
sc->sc_sconf1 = SCONFIG0DEFAULT;
if ((conf->config1 & CFG_EN_PAR) != 0)
sc->sc_sconf1 |= SPCHK;
bus_space_write_1(iot, ioh, TUL_SCONFIG0, sc->sc_sconf1);
/* set selection time out 250 ms */
bus_space_write_1(iot, ioh, TUL_STIMO, STIMO_250MS);
/* Enable desired SCSI termination configuration read from eeprom */
reg = 0;
if (conf->config1 & CFG_ACT_TERM1)
reg |= ENTMW;
if (conf->config1 & CFG_ACT_TERM2)
reg |= ENTM;
bus_space_write_1(iot, ioh, TUL_DCTRL0, reg);
reg = bus_space_read_1(iot, ioh, TUL_GCTRL1) & ~ATDEN;
if (conf->config1 & CFG_AUTO_TERM)
reg |= ATDEN;
bus_space_write_1(iot, ioh, TUL_GCTRL1, reg);
for (i = 0; i < IHA_MAX_TARGETS / 2; i++) {
sc->sc_tcs[i * 2 ].flags = EEP_LBYTE(conf->tflags[i]);
sc->sc_tcs[i * 2 + 1].flags = EEP_HBYTE(conf->tflags[i]);
iha_reset_tcs(&sc->sc_tcs[i * 2 ], sc->sc_sconf1);
iha_reset_tcs(&sc->sc_tcs[i * 2 + 1], sc->sc_sconf1);
}
iha_reset_chip(sc);
bus_space_write_1(iot, ioh, TUL_SIEN, ALL_INTERRUPTS);
/*
* fill in the adapter.
*/
sc->sc_adapter.adapt_dev = &sc->sc_dev;
sc->sc_adapter.adapt_nchannels = 1;
sc->sc_adapter.adapt_openings = IHA_MAX_SCB;
sc->sc_adapter.adapt_max_periph = IHA_MAX_SCB;
sc->sc_adapter.adapt_ioctl = NULL;
sc->sc_adapter.adapt_minphys = minphys;
sc->sc_adapter.adapt_request = iha_scsipi_request;
/*
* fill in the channel.
*/
sc->sc_channel.chan_adapter = &sc->sc_adapter;
sc->sc_channel.chan_bustype = &scsi_bustype;
sc->sc_channel.chan_channel = 0;
sc->sc_channel.chan_ntargets = CFG_TARGET(conf->config2);
sc->sc_channel.chan_nluns = 8;
sc->sc_channel.chan_id = sc->sc_id;
/*
* Now try to attach all the sub devices.
*/
config_found(&sc->sc_dev, &sc->sc_channel, scsiprint);
}
/*
* iha_alloc_sglist - allocate and map sglist for SCB's
*/
static int
iha_alloc_sglist(sc)
struct iha_softc *sc;
{
bus_dma_segment_t seg;
int error, rseg;
/*
* Allocate DMA-safe memory for the SCB's sglist
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
IHA_SG_SIZE * IHA_MAX_SCB,
PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
printf(": unable to allocate sglist, error = %d\n", error);
return (error);
}
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
IHA_SG_SIZE * IHA_MAX_SCB, (caddr_t *)&sc->sc_sglist,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
printf(": unable to map sglist, error = %d\n", error);
return (error);
}
/*
* Create and load the DMA map used for the SCBs
*/
if ((error = bus_dmamap_create(sc->sc_dmat,
IHA_SG_SIZE * IHA_MAX_SCB, 1, IHA_SG_SIZE * IHA_MAX_SCB,
0, BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
printf(": unable to create control DMA map, error = %d\n",
error);
return (error);
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
sc->sc_sglist, IHA_SG_SIZE * IHA_MAX_SCB,
NULL, BUS_DMA_NOWAIT)) != 0) {
printf(": unable to load control DMA map, error = %d\n", error);
return (error);
}
memset(sc->sc_sglist, 0, IHA_SG_SIZE * IHA_MAX_SCB);
return (0);
}
void
iha_scsipi_request(chan, req, arg)
struct scsipi_channel *chan;
scsipi_adapter_req_t req;
void *arg;
{
struct scsipi_xfer *xs;
struct scsipi_periph *periph;
struct iha_scb *scb;
struct iha_softc *sc;
int error, s;
sc = (struct iha_softc *)chan->chan_adapter->adapt_dev;
switch (req) {
case ADAPTER_REQ_RUN_XFER:
xs = arg;
periph = xs->xs_periph;
if (xs->cmdlen > sizeof(struct scsi_generic) ||
periph->periph_target >= IHA_MAX_TARGETS) {
xs->error = XS_DRIVER_STUFFUP;
return;
}
s = splbio();
scb = TAILQ_FIRST(&sc->sc_freescb);
if (scb != NULL) {
scb->status = STATUS_RENT;
TAILQ_REMOVE(&sc->sc_freescb, scb, chain);
}
#ifdef DIAGNOSTIC
else {
scsipi_printaddr(periph);
printf("unable to allocate scb\n");
panic("iha_scsipi_request");
}
#endif
splx(s);
scb->target = periph->periph_target;
scb->lun = periph->periph_lun;
scb->tcs = &sc->sc_tcs[scb->target];
scb->scb_id = MSG_IDENTIFY(periph->periph_lun,
(xs->xs_control & XS_CTL_REQSENSE) == 0);
scb->xs = xs;
scb->cmdlen = xs->cmdlen;
memcpy(&scb->cmd, xs->cmd, xs->cmdlen);
scb->buflen = xs->datalen;
scb->flags = 0;
if (xs->xs_control & XS_CTL_DATA_OUT)
scb->flags |= FLAG_DATAOUT;
if (xs->xs_control & XS_CTL_DATA_IN)
scb->flags |= FLAG_DATAIN;
if (scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) {
error = bus_dmamap_load(sc->sc_dmat, scb->dmap,
xs->data, scb->buflen, NULL,
((xs->xs_control & XS_CTL_NOSLEEP) ?
BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
BUS_DMA_STREAMING |
((scb->flags & FLAG_DATAIN) ?
BUS_DMA_READ : BUS_DMA_WRITE));
if (error) {
printf("%s: error %d loading DMA map\n",
sc->sc_dev.dv_xname, error);
iha_append_free_scb(sc, scb);
xs->error = XS_DRIVER_STUFFUP;
scsipi_done(xs);
return;
}
bus_dmamap_sync(sc->sc_dmat, scb->dmap,
0, scb->dmap->dm_mapsize,
(scb->flags & FLAG_DATAIN) ?
BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
}
iha_exec_scb(sc, scb);
return;
case ADAPTER_REQ_GROW_RESOURCES:
return; /* XXX */
case ADAPTER_REQ_SET_XFER_MODE:
{
struct tcs *tcs;
struct scsipi_xfer_mode *xm = arg;
tcs = &sc->sc_tcs[xm->xm_target];
if ((xm->xm_mode & PERIPH_CAP_WIDE16) != 0 &&
(tcs->flags & FLAG_NO_WIDE) == 0)
tcs->flags &= ~(FLAG_WIDE_DONE|FLAG_SYNC_DONE);
if ((xm->xm_mode & PERIPH_CAP_SYNC) != 0 &&
(tcs->flags & FLAG_NO_SYNC) == 0)
tcs->flags &= ~FLAG_SYNC_DONE;
/*
* If we're not going to negotiate, send the
* notification now, since it won't happen later.
*/
if ((tcs->flags & (FLAG_WIDE_DONE|FLAG_SYNC_DONE)) ==
(FLAG_WIDE_DONE|FLAG_SYNC_DONE))
iha_update_xfer_mode(sc, xm->xm_target);
return;
}
}
}
void
iha_update_xfer_mode(sc, target)
struct iha_softc *sc;
int target;
{
struct tcs *tcs = &sc->sc_tcs[target];
struct scsipi_xfer_mode xm;
xm.xm_target = target;
xm.xm_mode = 0;
xm.xm_period = 0;
xm.xm_offset = 0;
if (tcs->syncm & PERIOD_WIDE_SCSI)
xm.xm_mode |= PERIPH_CAP_WIDE16;
if (tcs->period) {
xm.xm_mode |= PERIPH_CAP_SYNC;
xm.xm_period = tcs->period;
xm.xm_offset = tcs->offset;
}
scsipi_async_event(&sc->sc_channel, ASYNC_EVENT_XFER_MODE, &xm);
}
static void
iha_reset_scsi_bus(sc)
struct iha_softc *sc;
{
struct iha_scb *scb;
struct tcs *tcs;
int i, s;
s = splbio();
iha_reset_dma(sc);
for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
switch (scb->status) {
case STATUS_BUSY:
iha_append_done_scb(sc, scb, HOST_SCSI_RST);
break;
case STATUS_SELECT:
iha_push_pend_scb(sc, scb);
break;
default:
break;
}
for (i = 0, tcs = sc->sc_tcs; i < IHA_MAX_TARGETS; i++, tcs++)
iha_reset_tcs(tcs, sc->sc_sconf1);
splx(s);
}
void
iha_reset_chip(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
/* reset tulip chip */
bus_space_write_1(iot, ioh, TUL_SCTRL0, RSCSI);
do {
sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
} while ((sc->sc_sistat & SRSTD) == 0);
iha_set_ssig(sc, 0, 0);
bus_space_read_1(iot, ioh, TUL_SISTAT); /* Clear any active interrupt*/
}
/*
* iha_reset_dma - abort any active DMA xfer, reset tulip FIFO.
*/
static void
iha_reset_dma(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
/* if DMA xfer is pending, abort DMA xfer */
bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR);
/* wait Abort DMA xfer done */
while ((bus_space_read_1(iot, ioh, TUL_ISTUS0) & DABT) == 0)
;
}
bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
}
/*
* iha_reset_tcs - reset the target control structure pointed
* to by tcs to default values. tcs flags
* only has the negotiation done bits reset as
* the other bits are fixed at initialization.
*/
static void
iha_reset_tcs(tcs, config0)
struct tcs *tcs;
u_int8_t config0;
{
tcs->flags &= ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE);
tcs->period = 0;
tcs->offset = 0;
tcs->tagcnt = 0;
tcs->ntagscb = NULL;
tcs->syncm = 0;
tcs->sconfig0 = config0;
}
/*
* iha_main - process the active SCB, taking one off pending and making it
* active if necessary, and any done SCB's created as
* a result until there are no interrupts pending and no pending
* SCB's that can be started.
*/
static void
iha_main(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh =sc->sc_ioh;
struct iha_scb *scb;
for (;;) {
iha_scsi(sc);
while ((scb = iha_pop_done_scb(sc)) != NULL)
iha_done_scb(sc, scb);
/*
* If there are no interrupts pending, or we can't start
* a pending sc, break out of the for(;;). Otherwise
* continue the good work with another call to
* iha_scsi().
*/
if (((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0)
&& (iha_find_pend_scb(sc) == NULL))
break;
}
}
/*
* iha_scsi - service any outstanding interrupts. If there are none, try to
* start another SCB currently in the pending queue.
*/
static void
iha_scsi(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct iha_scb *scb;
struct tcs *tcs;
u_int8_t stat;
/* service pending interrupts asap */
stat = bus_space_read_1(iot, ioh, TUL_STAT0);
if ((stat & INTPD) != 0) {
sc->sc_status0 = stat;
sc->sc_status1 = bus_space_read_1(iot, ioh, TUL_STAT1);
sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
sc->sc_phase = sc->sc_status0 & PH_MASK;
if ((sc->sc_sistat & SRSTD) != 0) {
iha_reset_scsi_bus(sc);
return;
}
if ((sc->sc_sistat & RSELED) != 0) {
iha_resel(sc);
return;
}
if ((sc->sc_sistat & (STIMEO | DISCD)) != 0) {
iha_busfree(sc);
return;
}
if ((sc->sc_sistat & (SCMDN | SBSRV)) != 0) {
iha_next_state(sc);
return;
}
if ((sc->sc_sistat & SELED) != 0)
iha_set_ssig(sc, 0, 0);
}
/*
* There were no interrupts pending which required action elsewhere, so
* see if it is possible to start the selection phase on a pending SCB
*/
if ((scb = iha_find_pend_scb(sc)) == NULL)
return;
tcs = scb->tcs;
/* program HBA's SCSI ID & target SCSI ID */
bus_space_write_1(iot, ioh, TUL_SID, (sc->sc_id << 4) | scb->target);
if ((scb->xs->xs_control & XS_CTL_RESET) == 0) {
bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
if ((tcs->flags & FLAG_NO_NEG_SYNC) == 0 ||
(tcs->flags & FLAG_NO_NEG_WIDE) == 0)
iha_select(sc, scb, SELATNSTOP);
else if (scb->scb_tagmsg != 0)
iha_select(sc, scb, SEL_ATN3);
else
iha_select(sc, scb, SEL_ATN);
} else {
iha_select(sc, scb, SELATNSTOP);
scb->nextstat = 8;
}
if ((scb->xs->xs_control & XS_CTL_POLL) != 0) {
int timeout;
for (timeout = scb->xs->timeout; timeout > 0; timeout--) {
if (iha_wait(sc, NO_OP) == -1)
break;
if (iha_next_state(sc) == -1)
break;
delay(1000); /* Only happens in boot, so it's ok */
}
/*
* Since done queue processing not done until AFTER this
* function returns, scb is on the done queue, not
* the free queue at this point and still has valid data
*
* Conversely, xs->error has not been set yet
*/
if (timeout == 0)
iha_timeout(scb);
}
}
static void
iha_select(sc, scb, select_type)
struct iha_softc *sc;
struct iha_scb *scb;
u_int8_t select_type;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
switch (select_type) {
case SEL_ATN:
bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
scb->cmd, scb->cmdlen);
scb->nextstat = 2;
break;
case SELATNSTOP:
scb->nextstat = 1;
break;
case SEL_ATN3:
bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_tagmsg);
bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_tagid);
bus_space_write_multi_1(iot, ioh, TUL_SFIFO, scb->cmd,
scb->cmdlen);
scb->nextstat = 2;
break;
default:
printf("[debug] iha_select() - unknown select type = 0x%02x\n",
select_type);
return;
}
iha_del_pend_scb(sc, scb);
scb->status = STATUS_SELECT;
sc->sc_actscb = scb;
bus_space_write_1(iot, ioh, TUL_SCMD, select_type);
}
/*
* iha_wait - wait for an interrupt to service or a SCSI bus phase change
* after writing the supplied command to the tulip chip. If
* the command is NO_OP, skip the command writing.
*/
static int
iha_wait(sc, cmd)
struct iha_softc *sc;
u_int8_t cmd;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
if (cmd != NO_OP)
bus_space_write_1(iot, ioh, TUL_SCMD, cmd);
/*
* Have to do this here, in addition to in iha_isr, because
* interrupts might be turned off when we get here.
*/
do {
sc->sc_status0 = bus_space_read_1(iot, ioh, TUL_STAT0);
} while ((sc->sc_status0 & INTPD) == 0);
sc->sc_status1 = bus_space_read_1(iot, ioh, TUL_STAT1);
sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
sc->sc_phase = sc->sc_status0 & PH_MASK;
if ((sc->sc_sistat & SRSTD) != 0) {
/* SCSI bus reset interrupt */
iha_reset_scsi_bus(sc);
return (-1);
}
if ((sc->sc_sistat & RSELED) != 0)
/* Reselection interrupt */
return (iha_resel(sc));
if ((sc->sc_sistat & STIMEO) != 0) {
/* selected/reselected timeout interrupt */
iha_busfree(sc);
return (-1);
}
if ((sc->sc_sistat & DISCD) != 0) {
/* BUS disconnection interrupt */
if ((sc->sc_flags & FLAG_EXPECT_DONE_DISC) != 0) {
bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
bus_space_write_1(iot, ioh, TUL_SCONFIG0,
SCONFIG0DEFAULT);
bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
iha_append_done_scb(sc, sc->sc_actscb, HOST_OK);
sc->sc_flags &= ~FLAG_EXPECT_DONE_DISC;
} else if ((sc->sc_flags & FLAG_EXPECT_DISC) != 0) {
bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
bus_space_write_1(iot, ioh, TUL_SCONFIG0,
SCONFIG0DEFAULT);
bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
sc->sc_actscb = NULL;
sc->sc_flags &= ~FLAG_EXPECT_DISC;
} else
iha_busfree(sc);
return (-1);
}
return (sc->sc_phase);
}
static void
iha_exec_scb(sc, scb)
struct iha_softc *sc;
struct iha_scb *scb;
{
bus_space_tag_t iot;
bus_space_handle_t ioh;
bus_dmamap_t dm;
struct scsipi_xfer *xs = scb->xs;
int nseg, s;
dm = scb->dmap;
nseg = dm->dm_nsegs;
if (nseg > 1) {
struct iha_sg_element *sg = scb->sglist;
int i;
for (i = 0; i < nseg; i++) {
sg[i].sg_len = htole32(dm->dm_segs[i].ds_len);
sg[i].sg_addr = htole32(dm->dm_segs[i].ds_addr);
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
scb->sgoffset, IHA_SG_SIZE,
BUS_DMASYNC_PREWRITE);
scb->flags |= FLAG_SG;
scb->sg_size = scb->sg_max = nseg;
scb->sg_index = 0;
scb->bufaddr = scb->sg_addr;
} else
scb->bufaddr = dm->dm_segs[0].ds_addr;
if ((xs->xs_control & XS_CTL_POLL) == 0) {
int timeout = mstohz(xs->timeout);
if (timeout == 0)
timeout = 1;
callout_reset(&xs->xs_callout, timeout, iha_timeout, scb);
}
s = splbio();
if (((scb->xs->xs_control & XS_RESET) != 0) ||
(scb->cmd[0] == REQUEST_SENSE))
iha_push_pend_scb(sc, scb); /* Insert SCB at head of Pend */
else
iha_append_pend_scb(sc, scb); /* Append SCB to tail of Pend */
/*
* Run through iha_main() to ensure something is active, if
* only this new SCB.
*/
if (sc->sc_semaph != SEMAPH_IN_MAIN) {
iot = sc->sc_iot;
ioh = sc->sc_ioh;
bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
sc->sc_semaph = SEMAPH_IN_MAIN;
splx(s);
iha_main(sc);
s = splbio();
sc->sc_semaph = ~SEMAPH_IN_MAIN;
bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP));
}
splx(s);
}
/*
* iha_done_scb - We have a scb which has been processed by the
* adaptor, now we look to see how the operation went.
*/
static void
iha_done_scb(sc, scb)
struct iha_softc *sc;
struct iha_scb *scb;
{
struct scsipi_xfer *xs = scb->xs;
if (xs != NULL) {
/* Cancel the timeout. */
callout_stop(&xs->xs_callout);
if (scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) {
bus_dmamap_sync(sc->sc_dmat, scb->dmap,
0, scb->dmap->dm_mapsize,
(scb->flags & FLAG_DATAIN) ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, scb->dmap);
}
xs->status = scb->ta_stat;
switch (scb->ha_stat) {
case HOST_OK:
switch (scb->ta_stat) {
case SCSI_OK:
case SCSI_CONDITION_MET:
case SCSI_INTERM:
case SCSI_INTERM_COND_MET:
xs->resid = scb->buflen;
xs->error = XS_NOERROR;
if ((scb->flags & FLAG_RSENS) != 0)
xs->error = XS_SENSE;
break;
case SCSI_RESV_CONFLICT:
case SCSI_BUSY:
case SCSI_QUEUE_FULL:
xs->error = XS_BUSY;
break;
case SCSI_TERMINATED:
case SCSI_ACA_ACTIVE:
case SCSI_CHECK:
scb->tcs->flags &=
~(FLAG_SYNC_DONE | FLAG_WIDE_DONE);
if ((scb->flags & FLAG_RSENS) != 0 ||
iha_push_sense_request(sc, scb) != 0) {
scb->flags &= ~FLAG_RSENS;
printf("%s: request sense failed\n",
sc->sc_dev.dv_xname);
xs->error = XS_DRIVER_STUFFUP;
break;
}
xs->error = XS_SENSE;
return;
default:
xs->error = XS_DRIVER_STUFFUP;
break;
}
break;
case HOST_SEL_TOUT:
xs->error = XS_SELTIMEOUT;
break;
case HOST_SCSI_RST:
case HOST_DEV_RST:
xs->error = XS_RESET;
break;
case HOST_SPERR:
printf("%s: SCSI Parity error detected\n",
sc->sc_dev.dv_xname);
xs->error = XS_DRIVER_STUFFUP;
break;
case HOST_TIMED_OUT:
xs->error = XS_TIMEOUT;
break;
case HOST_DO_DU:
case HOST_BAD_PHAS:
default:
xs->error = XS_DRIVER_STUFFUP;
break;
}
scsipi_done(xs);
}
iha_append_free_scb(sc, scb);
}
/*
* iha_push_sense_request - obtain auto sense data by pushing the
* SCB needing it back onto the pending
* queue with a REQUEST_SENSE CDB.
*/
static int
iha_push_sense_request(sc, scb)
struct iha_softc *sc;
struct iha_scb *scb;
{
struct scsipi_xfer *xs = scb->xs;
struct scsipi_periph *periph = xs->xs_periph;
struct scsipi_sense *ss = (struct scsipi_sense *)scb->cmd;
int lun = periph->periph_lun;
int err;
ss->opcode = REQUEST_SENSE;
ss->byte2 = lun << SCSI_CMD_LUN_SHIFT;
ss->unused[0] = ss->unused[1] = 0;
ss->length = sizeof(struct scsipi_sense_data);
ss->control = 0;
scb->flags = FLAG_RSENS | FLAG_DATAIN;
scb->scb_id &= ~MSG_IDENTIFY_DISCFLAG;
scb->scb_tagmsg = 0;
scb->ta_stat = SCSI_OK;
scb->cmdlen = sizeof(struct scsipi_sense);
scb->buflen = ss->length;
err = bus_dmamap_load(sc->sc_dmat, scb->dmap,
&xs->sense.scsi_sense, scb->buflen, NULL,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (err != 0) {
printf("iha_push_sense_request: cannot bus_dmamap_load()\n");
xs->error = XS_DRIVER_STUFFUP;
return 1;
}
bus_dmamap_sync(sc->sc_dmat, scb->dmap,
0, scb->buflen, BUS_DMASYNC_PREREAD);
/* XXX What about queued command? */
iha_exec_scb(sc, scb);
return 0;
}
static void
iha_timeout(arg)
void *arg;
{
struct iha_scb *scb = (struct iha_scb *)arg;
struct scsipi_xfer *xs = scb->xs;
struct scsipi_periph *periph = xs->xs_periph;
struct iha_softc *sc;
sc = (void *)periph->periph_channel->chan_adapter->adapt_dev;
if (xs == NULL)
printf("[debug] iha_timeout called with xs == NULL\n");
else {
scsipi_printaddr(periph);
printf("SCSI OpCode 0x%02x timed out\n", xs->cmd->opcode);
iha_abort_xs(sc, xs, HOST_TIMED_OUT);
}
}
/*
* iha_abort_xs - find the SCB associated with the supplied xs and
* stop all processing on it, moving it to the done
* queue with the supplied host status value.
*/
static void
iha_abort_xs(sc, xs, hastat)
struct iha_softc *sc;
struct scsipi_xfer *xs;
u_int8_t hastat;
{
struct iha_scb *scb;
int i, s;
s = splbio();
/* Check the pending queue for the SCB pointing to xs */
TAILQ_FOREACH(scb, &sc->sc_pendscb, chain)
if (scb->xs == xs) {
iha_del_pend_scb(sc, scb);
iha_append_done_scb(sc, scb, hastat);
splx(s);
return;
}
/*
* If that didn't work, check all BUSY/SELECTING SCB's for one
* pointing to xs
*/
for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
switch (scb->status) {
case STATUS_BUSY:
case STATUS_SELECT:
if (scb->xs == xs) {
iha_append_done_scb(sc, scb, hastat);
splx(s);
return;
}
break;
default:
break;
}
splx(s);
}
/*
* iha_data_over_run - return HOST_OK for all SCSI opcodes where BufLen
* is an 'Allocation Length'. All other SCSI opcodes
* get HOST_DO_DU as they SHOULD have xferred all the
* data requested.
*
* The list of opcodes using 'Allocation Length' was
* found by scanning all the SCSI-3 T10 drafts. See
* www.t10.org for the curious with a .pdf reader.
*/
static u_int8_t
iha_data_over_run(scb)
struct iha_scb *scb;
{
switch (scb->cmd[0]) {
case 0x03: /* Request Sense SPC-2 */
case 0x12: /* Inquiry SPC-2 */
case 0x1a: /* Mode Sense (6 byte version) SPC-2 */
case 0x1c: /* Receive Diagnostic Results SPC-2 */
case 0x23: /* Read Format Capacities MMC-2 */
case 0x29: /* Read Generation SBC */
case 0x34: /* Read Position SSC-2 */
case 0x37: /* Read Defect Data SBC */
case 0x3c: /* Read Buffer SPC-2 */
case 0x42: /* Read Sub Channel MMC-2 */
case 0x43: /* Read TOC/PMA/ATIP MMC */
/* XXX - 2 with same opcode of 0x44? */
case 0x44: /* Read Header/Read Density Suprt MMC/SSC*/
case 0x46: /* Get Configuration MMC-2 */
case 0x4a: /* Get Event/Status Notification MMC-2 */
case 0x4d: /* Log Sense SPC-2 */
case 0x51: /* Read Disc Information MMC */
case 0x52: /* Read Track Information MMC */
case 0x59: /* Read Master CUE MMC */
case 0x5a: /* Mode Sense (10 byte version) SPC-2 */
case 0x5c: /* Read Buffer Capacity MMC */
case 0x5e: /* Persistant Reserve In SPC-2 */
case 0x84: /* Receive Copy Results SPC-2 */
case 0xa0: /* Report LUNs SPC-2 */
case 0xa3: /* Various Report requests SBC-2/SCC-2*/
case 0xa4: /* Report Key MMC-2 */
case 0xad: /* Read DVD Structure MMC-2 */
case 0xb4: /* Read Element Status (Attached) SMC */
case 0xb5: /* Request Volume Element Address SMC */
case 0xb7: /* Read Defect Data (12 byte ver.) SBC */
case 0xb8: /* Read Element Status (Independ.) SMC */
case 0xba: /* Report Redundancy SCC-2 */
case 0xbd: /* Mechanism Status MMC */
case 0xbe: /* Report Basic Redundancy SCC-2 */
return (HOST_OK);
break;
default:
return (HOST_DO_DU);
break;
}
}
/*
* iha_next_state - prcess the current SCB as requested in it's
* nextstat member.
*/
static int
iha_next_state(sc)
struct iha_softc *sc;
{
if (sc->sc_actscb == NULL)
return (-1);
switch (sc->sc_actscb->nextstat) {
case 1:
if (iha_state_1(sc) == 3)
goto state_3;
break;
case 2:
switch (iha_state_2(sc)) {
case 3:
goto state_3;
case 4:
goto state_4;
default:
break;
}
break;
case 3:
state_3:
if (iha_state_3(sc) == 4)
goto state_4;
break;
case 4:
state_4:
switch (iha_state_4(sc)) {
case 0:
return (0);
case 6:
goto state_6;
default:
break;
}
break;
case 5:
switch (iha_state_5(sc)) {
case 4:
goto state_4;
case 6:
goto state_6;
default:
break;
}
break;
case 6:
state_6:
iha_state_6(sc);
break;
case 8:
iha_state_8(sc);
break;
default:
#ifdef IHA_DEBUG_STATE
printf("[debug] -unknown state: %i-\n",
sc->sc_actscb->nextstat);
#endif
iha_bad_seq(sc);
break;
}
return (-1);
}
/*
* iha_state_1 - selection is complete after a SELATNSTOP. If the target
* has put the bus into MSG_OUT phase start wide/sync
* negotiation. Otherwise clear the FIFO and go to state 3,
* which will send the SCSI CDB to the target.
*/
static int
iha_state_1(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct iha_scb *scb = sc->sc_actscb;
struct tcs *tcs;
int flags;
iha_mark_busy_scb(scb);
tcs = scb->tcs;
bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
/*
* If we are in PHASE_MSG_OUT, send
* a) IDENT message (with tags if appropriate)
* b) WDTR if the target is configured to negotiate wide xfers
* ** OR **
* c) SDTR if the target is configured to negotiate sync xfers
* but not wide ones
*
* If we are NOT, then the target is not asking for anything but
* the data/command, so go straight to state 3.
*/
if (sc->sc_phase == PHASE_MSG_OUT) {
bus_space_write_1(iot, ioh, TUL_SCTRL1, (ESBUSIN | EHRSL));
bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
if (scb->scb_tagmsg != 0) {
bus_space_write_1(iot, ioh, TUL_SFIFO,
scb->scb_tagmsg);
bus_space_write_1(iot, ioh, TUL_SFIFO,
scb->scb_tagid);
}
flags = tcs->flags;
if ((flags & FLAG_NO_NEG_WIDE) == 0) {
if (iha_msgout_wdtr(sc) == -1)
return (-1);
} else if ((flags & FLAG_NO_NEG_SYNC) == 0) {
if (iha_msgout_sdtr(sc) == -1)
return (-1);
}
} else {
bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
}
return (3);
}
/*
* iha_state_2 - selection is complete after a SEL_ATN or SEL_ATN3. If the SCSI
* CDB has already been send, go to state 4 to start the data
* xfer. Otherwise reset the FIFO and go to state 3, sending
* the SCSI CDB.
*/
static int
iha_state_2(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct iha_scb *scb = sc->sc_actscb;
iha_mark_busy_scb(scb);
bus_space_write_1(iot, ioh, TUL_SCONFIG0, scb->tcs->sconfig0);
if ((sc->sc_status1 & CPDNE) != 0)
return (4);
bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
return (3);
}
/*
* iha_state_3 - send the SCSI CDB to the target, processing any status
* or other messages received until that is done or
* abandoned.
*/
static int
iha_state_3(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct iha_scb *scb = sc->sc_actscb;
int flags;
for (;;) {
switch (sc->sc_phase) {
case PHASE_CMD_OUT:
bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
scb->cmd, scb->cmdlen);
if (iha_wait(sc, XF_FIFO_OUT) == -1)
return (-1);
else if (sc->sc_phase == PHASE_CMD_OUT) {
iha_bad_seq(sc);
return (-1);
} else
return (4);
case PHASE_MSG_IN:
scb->nextstat = 3;
if (iha_msgin(sc) == -1)
return (-1);
break;
case PHASE_STATUS_IN:
if (iha_status_msg(sc) == -1)
return (-1);
break;
case PHASE_MSG_OUT:
flags = scb->tcs->flags;
if ((flags & FLAG_NO_NEG_SYNC) != 0) {
if (iha_msgout(sc, MSG_NOOP) == -1)
return (-1);
} else if (iha_msgout_sdtr(sc) == -1)
return (-1);
break;
default:
printf("[debug] -s3- bad phase = %d\n", sc->sc_phase);
iha_bad_seq(sc);
return (-1);
}
}
}
/*
* iha_state_4 - start a data xfer. Handle any bus state
* transitions until PHASE_DATA_IN/_OUT
* or the attempt is abandoned. If there is
* no data to xfer, go to state 6 and finish
* processing the current SCB.
*/
static int
iha_state_4(sc)
struct iha_softc *sc;
{
struct iha_scb *scb = sc->sc_actscb;
if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) ==
(FLAG_DATAIN | FLAG_DATAOUT))
return (6); /* Both dir flags set => NO xfer was requested */
for (;;) {
if (scb->buflen == 0)
return (6);
switch (sc->sc_phase) {
case PHASE_STATUS_IN:
if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
scb->ha_stat = iha_data_over_run(scb);
if ((iha_status_msg(sc)) == -1)
return (-1);
break;
case PHASE_MSG_IN:
scb->nextstat = 4;
if (iha_msgin(sc) == -1)
return (-1);
break;
case PHASE_MSG_OUT:
if ((sc->sc_status0 & SPERR) != 0) {
scb->buflen = 0;
scb->ha_stat = HOST_SPERR;
if (iha_msgout(sc, MSG_INITIATOR_DET_ERR) == -1)
return (-1);
else
return (6);
} else {
if (iha_msgout(sc, MSG_NOOP) == -1)
return (-1);
}
break;
case PHASE_DATA_IN:
return (iha_xfer_data(sc, scb, FLAG_DATAIN));
case PHASE_DATA_OUT:
return (iha_xfer_data(sc, scb, FLAG_DATAOUT));
default:
iha_bad_seq(sc);
return (-1);
}
}
}
/*
* iha_state_5 - handle the partial or final completion of the current
* data xfer. If DMA is still active stop it. If there is
* more data to xfer, go to state 4 and start the xfer.
* If not go to state 6 and finish the SCB.
*/
static int
iha_state_5(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct iha_scb *scb = sc->sc_actscb;
struct iha_sg_element *sg;
u_int32_t cnt;
u_int8_t period, stat;
long xcnt; /* cannot use unsigned!! see code: if (xcnt < 0) */
int i;
cnt = bus_space_read_4(iot, ioh, TUL_STCNT0) & TCNT;
/*
* Stop any pending DMA activity and check for parity error.
*/
if ((bus_space_read_1(iot, ioh, TUL_DCMD) & XDIR) != 0) {
/* Input Operation */
if ((sc->sc_status0 & SPERR) != 0)
scb->ha_stat = HOST_SPERR;
if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
bus_space_write_1(iot, ioh, TUL_DCTRL0,
bus_space_read_1(iot, ioh, TUL_DCTRL0) | SXSTP);
while (bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND)
;
}
} else {
/* Output Operation */
if ((sc->sc_status1 & SXCMP) == 0) {
period = scb->tcs->syncm;
if ((period & PERIOD_WIDE_SCSI) != 0)
cnt += (bus_space_read_1(iot, ioh,
TUL_SFIFOCNT) & FIFOC) * 2;
else
cnt += bus_space_read_1(iot, ioh,
TUL_SFIFOCNT) & FIFOC;
}
if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR);
do
stat = bus_space_read_1(iot, ioh, TUL_ISTUS0);
while ((stat & DABT) == 0);
}
if ((cnt == 1) && (sc->sc_phase == PHASE_DATA_OUT)) {
if (iha_wait(sc, XF_FIFO_OUT) == -1)
return (-1);
cnt = 0;
} else if ((sc->sc_status1 & SXCMP) == 0)
bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
}
if (cnt == 0) {
scb->buflen = 0;
return (6);
}
/* Update active data pointer and restart the I/O at the new point */
xcnt = scb->buflen - cnt; /* xcnt == bytes xferred */
scb->buflen = cnt; /* cnt == bytes left */
if ((scb->flags & FLAG_SG) != 0) {
sg = &scb->sglist[scb->sg_index];
for (i = scb->sg_index; i < scb->sg_max; sg++, i++) {
xcnt -= le32toh(sg->sg_len);
if (xcnt < 0) {
xcnt += le32toh(sg->sg_len);
sg->sg_addr =
htole32(le32toh(sg->sg_addr) + xcnt);
sg->sg_len =
htole32(le32toh(sg->sg_len) - xcnt);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
scb->sgoffset, IHA_SG_SIZE,
BUS_DMASYNC_PREWRITE);
scb->bufaddr += (i - scb->sg_index) *
sizeof(struct iha_sg_element);
scb->sg_size = scb->sg_max - i;
scb->sg_index = i;
return (4);
}
}
return (6);
} else
scb->bufaddr += xcnt;
return (4);
}
/*
* iha_state_6 - finish off the active scb (may require several
* iterations if PHASE_MSG_IN) and return -1 to indicate
* the bus is free.
*/
static int
iha_state_6(sc)
struct iha_softc *sc;
{
for (;;) {
switch (sc->sc_phase) {
case PHASE_STATUS_IN:
if (iha_status_msg(sc) == -1)
return (-1);
break;
case PHASE_MSG_IN:
sc->sc_actscb->nextstat = 6;
if ((iha_msgin(sc)) == -1)
return (-1);
break;
case PHASE_MSG_OUT:
if ((iha_msgout(sc, MSG_NOOP)) == -1)
return (-1);
break;
case PHASE_DATA_IN:
if (iha_xpad_in(sc) == -1)
return (-1);
break;
case PHASE_DATA_OUT:
if (iha_xpad_out(sc) == -1)
return (-1);
break;
default:
iha_bad_seq(sc);
return (-1);
}
}
}
/*
* iha_state_8 - reset the active device and all busy SCBs using it
*/
static int
iha_state_8(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct iha_scb *scb;
int i;
u_int8_t tar;
if (sc->sc_phase == PHASE_MSG_OUT) {
bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_BUS_DEV_RESET);
scb = sc->sc_actscb;
/* This SCB finished correctly -- resetting the device */
iha_append_done_scb(sc, scb, HOST_OK);
iha_reset_tcs(scb->tcs, sc->sc_sconf1);
tar = scb->target;
for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
if (scb->target == tar)
switch (scb->status) {
case STATUS_BUSY:
iha_append_done_scb(sc,
scb, HOST_DEV_RST);
break;
case STATUS_SELECT:
iha_push_pend_scb(sc, scb);
break;
default:
break;
}
sc->sc_flags |= FLAG_EXPECT_DISC;
if (iha_wait(sc, XF_FIFO_OUT) == -1)
return (-1);
}
iha_bad_seq(sc);
return (-1);
}
/*
* iha_xfer_data - initiate the DMA xfer of the data
*/
static int
iha_xfer_data(sc, scb, direction)
struct iha_softc *sc;
struct iha_scb *scb;
int direction;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int32_t xferlen;
u_int8_t xfercmd;
if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != direction)
return (6); /* wrong direction, abandon I/O */
bus_space_write_4(iot, ioh, TUL_STCNT0, scb->buflen);
xfercmd = STRXFR;
if (direction == FLAG_DATAIN)
xfercmd |= XDIR;
if (scb->flags & FLAG_SG) {
xferlen = scb->sg_size * sizeof(struct iha_sg_element);
xfercmd |= SGXFR;
} else
xferlen = scb->buflen;
bus_space_write_4(iot, ioh, TUL_DXC, xferlen);
bus_space_write_4(iot, ioh, TUL_DXPA, scb->bufaddr);
bus_space_write_1(iot, ioh, TUL_DCMD, xfercmd);
bus_space_write_1(iot, ioh, TUL_SCMD,
(direction == FLAG_DATAIN) ? XF_DMA_IN : XF_DMA_OUT);
scb->nextstat = 5;
return (0);
}
static int
iha_xpad_in(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct iha_scb *scb = sc->sc_actscb;
if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
scb->ha_stat = HOST_DO_DU;
for (;;) {
if ((scb->tcs->syncm & PERIOD_WIDE_SCSI) != 0)
bus_space_write_4(iot, ioh, TUL_STCNT0, 2);
else
bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
switch (iha_wait(sc, XF_FIFO_IN)) {
case -1:
return (-1);
case PHASE_DATA_IN:
bus_space_read_1(iot, ioh, TUL_SFIFO);
break;
default:
bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
return (6);
}
}
}
static int
iha_xpad_out(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct iha_scb *scb = sc->sc_actscb;
if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
scb->ha_stat = HOST_DO_DU;
for (;;) {
if ((scb->tcs->syncm & PERIOD_WIDE_SCSI) != 0)
bus_space_write_4(iot, ioh, TUL_STCNT0, 2);
else
bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
bus_space_write_1(iot, ioh, TUL_SFIFO, 0);
switch (iha_wait(sc, XF_FIFO_OUT)) {
case -1:
return (-1);
case PHASE_DATA_OUT:
break;
default:
/* Disable wide CPU to allow read 16 bits */
bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
return (6);
}
}
}
static int
iha_status_msg(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct iha_scb *scb;
u_int8_t msg;
int phase;
if ((phase = iha_wait(sc, CMD_COMP)) == -1)
return (-1);
scb = sc->sc_actscb;
scb->ta_stat = bus_space_read_1(iot, ioh, TUL_SFIFO);
if (phase == PHASE_MSG_OUT) {
if ((sc->sc_status0 & SPERR) == 0)
bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_NOOP);
else
bus_space_write_1(iot, ioh, TUL_SFIFO,
MSG_PARITY_ERROR);
return (iha_wait(sc, XF_FIFO_OUT));
} else if (phase == PHASE_MSG_IN) {
msg = bus_space_read_1(iot, ioh, TUL_SFIFO);
if ((sc->sc_status0 & SPERR) != 0)
switch (iha_wait(sc, MSG_ACCEPT)) {
case -1:
return (-1);
case PHASE_MSG_OUT:
bus_space_write_1(iot, ioh, TUL_SFIFO,
MSG_PARITY_ERROR);
return (iha_wait(sc, XF_FIFO_OUT));
default:
iha_bad_seq(sc);
return (-1);
}
if (msg == MSG_CMDCOMPLETE) {
if ((scb->ta_stat &
(SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM) {
iha_bad_seq(sc);
return (-1);
}
sc->sc_flags |= FLAG_EXPECT_DONE_DISC;
bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
return (iha_wait(sc, MSG_ACCEPT));
}
if ((msg == MSG_LINK_CMD_COMPLETE)
|| (msg == MSG_LINK_CMD_COMPLETEF)) {
if ((scb->ta_stat &
(SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM)
return (iha_wait(sc, MSG_ACCEPT));
}
}
iha_bad_seq(sc);
return (-1);
}
/*
* iha_busfree - SCSI bus free detected as a result of a TIMEOUT or
* DISCONNECT interrupt. Reset the tulip FIFO and
* SCONFIG0 and enable hardware reselect. Move any active
* SCB to sc_donescb list. Return an appropriate host status
* if an I/O was active.
*/
static void
iha_busfree(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct iha_scb *scb;
bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
bus_space_write_1(iot, ioh, TUL_SCONFIG0, SCONFIG0DEFAULT);
bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
scb = sc->sc_actscb;
if (scb != NULL) {
if (scb->status == STATUS_SELECT)
/* selection timeout */
iha_append_done_scb(sc, scb, HOST_SEL_TOUT);
else
/* Unexpected bus free */
iha_append_done_scb(sc, scb, HOST_BAD_PHAS);
}
}
/*
* iha_resel - handle a detected SCSI bus reselection request.
*/
static int
iha_resel(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct iha_scb *scb;
struct tcs *tcs;
u_int8_t tag, target, lun, msg, abortmsg;
if (sc->sc_actscb != NULL) {
if ((sc->sc_actscb->status == STATUS_SELECT))
iha_push_pend_scb(sc, sc->sc_actscb);
sc->sc_actscb = NULL;
}
target = bus_space_read_1(iot, ioh, TUL_SBID);
lun = bus_space_read_1(iot, ioh, TUL_SALVC) & IHA_MSG_IDENTIFY_LUNMASK;
tcs = &sc->sc_tcs[target];
bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
abortmsg = MSG_ABORT; /* until a valid tag has been obtained */
if (tcs->ntagscb != NULL)
/* There is a non-tagged I/O active on the target */
scb = tcs->ntagscb;
else {
/*
* Since there is no active non-tagged operation
* read the tag type, the tag itself, and find
* the appropriate scb by indexing sc_scb with
* the tag.
*/
switch (iha_wait(sc, MSG_ACCEPT)) {
case -1:
return (-1);
case PHASE_MSG_IN:
bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
if ((iha_wait(sc, XF_FIFO_IN)) == -1)
return (-1);
break;
default:
goto abort;
}
msg = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag Msg */
if ((msg < MSG_SIMPLE_Q_TAG) || (msg > MSG_ORDERED_Q_TAG))
goto abort;
switch (iha_wait(sc, MSG_ACCEPT)) {
case -1:
return (-1);
case PHASE_MSG_IN:
bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
if ((iha_wait(sc, XF_FIFO_IN)) == -1)
return (-1);
break;
default:
goto abort;
}
tag = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag ID */
scb = &sc->sc_scb[tag];
abortmsg = MSG_ABORT_TAG; /* Now that we have valdid tag! */
}
if ((scb->target != target)
|| (scb->lun != lun)
|| (scb->status != STATUS_BUSY)) {
abort:
iha_msgout_abort(sc, abortmsg);
return (-1);
}
sc->sc_actscb = scb;
if (iha_wait(sc, MSG_ACCEPT) == -1)
return (-1);
return (iha_next_state(sc));
}
static int
iha_msgin(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int flags;
int phase;
u_int8_t msg;
for (;;) {
if ((bus_space_read_1(iot, ioh, TUL_SFIFOCNT) & FIFOC) > 0)
bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
phase = iha_wait(sc, XF_FIFO_IN);
msg = bus_space_read_1(iot, ioh, TUL_SFIFO);
switch (msg) {
case MSG_DISCONNECT:
sc->sc_flags |= FLAG_EXPECT_DISC;
if (iha_wait(sc, MSG_ACCEPT) != -1)
iha_bad_seq(sc);
phase = -1;
break;
case MSG_SAVEDATAPOINTER:
case MSG_RESTOREPOINTERS:
case MSG_NOOP:
phase = iha_wait(sc, MSG_ACCEPT);
break;
case MSG_MESSAGE_REJECT:
/* XXX - need to clear FIFO like other 'Clear ATN'?*/
iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
flags = sc->sc_actscb->tcs->flags;
if ((flags & FLAG_NO_NEG_SYNC) == 0)
iha_set_ssig(sc, REQ | BSY | SEL, ATN);
phase = iha_wait(sc, MSG_ACCEPT);
break;
case MSG_EXTENDED:
phase = iha_msgin_extended(sc);
break;
case MSG_IGN_WIDE_RESIDUE:
phase = iha_msgin_ignore_wid_resid(sc);
break;
case MSG_CMDCOMPLETE:
sc->sc_flags |= FLAG_EXPECT_DONE_DISC;
bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
phase = iha_wait(sc, MSG_ACCEPT);
if (phase != -1) {
iha_bad_seq(sc);
return (-1);
}
break;
default:
printf("[debug] iha_msgin: bad msg type: %d\n", msg);
phase = iha_msgout_reject(sc);
break;
}
if (phase != PHASE_MSG_IN)
return (phase);
}
/* NOTREACHED */
}
static int
iha_msgin_extended(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int flags, i, phase, msglen, msgcode;
/*
* XXX - can we just stop reading and reject, or do we have to
* read all input, discarding the excess, and then reject
*/
for (i = 0; i < IHA_MAX_EXTENDED_MSG; i++) {
phase = iha_wait(sc, MSG_ACCEPT);
if (phase != PHASE_MSG_IN)
return (phase);
bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
if (iha_wait(sc, XF_FIFO_IN) == -1)
return (-1);
sc->sc_msg[i] = bus_space_read_1(iot, ioh, TUL_SFIFO);
if (sc->sc_msg[0] == i)
break;
}
msglen = sc->sc_msg[0];
msgcode = sc->sc_msg[1];
if ((msglen == MSG_EXT_SDTR_LEN) && (msgcode == MSG_EXT_SDTR)) {
if (iha_msgin_sdtr(sc) == 0) {
iha_sync_done(sc);
return (iha_wait(sc, MSG_ACCEPT));
}
iha_set_ssig(sc, REQ | BSY | SEL, ATN);
phase = iha_wait(sc, MSG_ACCEPT);
if (phase != PHASE_MSG_OUT)
return (phase);
/* Clear FIFO for important message - final SYNC offer */
bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
iha_sync_done(sc); /* This is our final offer */
} else if ((msglen == MSG_EXT_WDTR_LEN) && (msgcode == MSG_EXT_WDTR)) {
flags = sc->sc_actscb->tcs->flags;
if ((flags & FLAG_NO_WIDE) != 0)
/* Offer 8bit xfers only */
sc->sc_msg[2] = MSG_EXT_WDTR_BUS_8_BIT;
else if (sc->sc_msg[2] > MSG_EXT_WDTR_BUS_32_BIT)
/* BAD MSG */
return (iha_msgout_reject(sc));
else if (sc->sc_msg[2] == MSG_EXT_WDTR_BUS_32_BIT)
/* Offer 16bit instead */
sc->sc_msg[2] = MSG_EXT_WDTR_BUS_16_BIT;
else {
iha_wide_done(sc);
if ((flags & FLAG_NO_NEG_SYNC) == 0)
iha_set_ssig(sc, REQ | BSY | SEL, ATN);
return (iha_wait(sc, MSG_ACCEPT));
}
iha_set_ssig(sc, REQ | BSY | SEL, ATN);
phase = iha_wait(sc, MSG_ACCEPT);
if (phase != PHASE_MSG_OUT)
return (phase);
} else
return (iha_msgout_reject(sc));
return (iha_msgout_extended(sc));
}
/*
* iha_msgin_sdtr - check SDTR msg in sc_msg. If the offer is
* acceptable leave sc_msg as is and return 0.
* If the negotiation must continue, modify sc_msg
* as needed and return 1. Else return 0.
*/
static int
iha_msgin_sdtr(sc)
struct iha_softc *sc;
{
int flags;
int newoffer;
u_int8_t default_period;
flags = sc->sc_actscb->tcs->flags;
default_period = iha_rate_tbl[flags & FLAG_SCSI_RATE];
if (sc->sc_msg[3] == 0)
/* target offered async only. Accept it. */
return (0);
newoffer = 0;
if ((flags & FLAG_NO_SYNC) != 0) {
sc->sc_msg[3] = 0;
newoffer = 1;
}
if (sc->sc_msg[3] > IHA_MAX_OFFSET) {
sc->sc_msg[3] = IHA_MAX_OFFSET;
newoffer = 1;
}
if (sc->sc_msg[2] < default_period) {
sc->sc_msg[2] = default_period;
newoffer = 1;
}
if (sc->sc_msg[2] > IHA_MAX_PERIOD) {
/* Use async */
sc->sc_msg[3] = 0;
newoffer = 1;
}
return (newoffer);
}
static int
iha_msgin_ignore_wid_resid(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int phase;
phase = iha_wait(sc, MSG_ACCEPT);
if (phase == PHASE_MSG_IN) {
phase = iha_wait(sc, XF_FIFO_IN);
if (phase != -1) {
bus_space_write_1(iot, ioh, TUL_SFIFO, 0);
bus_space_read_1(iot, ioh, TUL_SFIFO);
bus_space_read_1(iot, ioh, TUL_SFIFO);
phase = iha_wait(sc, MSG_ACCEPT);
}
}
return (phase);
}
static int
iha_msgout(sc, msg)
struct iha_softc *sc;
u_int8_t msg;
{
bus_space_write_1(sc->sc_iot, sc->sc_ioh, TUL_SFIFO, msg);
return (iha_wait(sc, XF_FIFO_OUT));
}
static void
iha_msgout_abort(sc, aborttype)
struct iha_softc *sc;
u_int8_t aborttype;
{
iha_set_ssig(sc, REQ | BSY | SEL, ATN);
switch (iha_wait(sc, MSG_ACCEPT)) {
case -1:
break;
case PHASE_MSG_OUT:
sc->sc_flags |= FLAG_EXPECT_DISC;
if (iha_msgout(sc, aborttype) != -1)
iha_bad_seq(sc);
break;
default:
iha_bad_seq(sc);
break;
}
}
static int
iha_msgout_reject(sc)
struct iha_softc *sc;
{
iha_set_ssig(sc, REQ | BSY | SEL, ATN);
if (iha_wait(sc, MSG_ACCEPT) == PHASE_MSG_OUT)
return (iha_msgout(sc, MSG_MESSAGE_REJECT));
return (-1);
}
static int
iha_msgout_extended(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int phase;
bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_EXTENDED);
bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
sc->sc_msg, sc->sc_msg[0] + 1);
phase = iha_wait(sc, XF_FIFO_OUT);
bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
return (phase);
}
static int
iha_msgout_wdtr(sc)
struct iha_softc *sc;
{
sc->sc_actscb->tcs->flags |= FLAG_WIDE_DONE;
sc->sc_msg[0] = MSG_EXT_WDTR_LEN;
sc->sc_msg[1] = MSG_EXT_WDTR;
sc->sc_msg[2] = MSG_EXT_WDTR_BUS_16_BIT;
return (iha_msgout_extended(sc));
}
static int
iha_msgout_sdtr(sc)
struct iha_softc *sc;
{
struct tcs *tcs = sc->sc_actscb->tcs;
tcs->flags |= FLAG_SYNC_DONE;
sc->sc_msg[0] = MSG_EXT_SDTR_LEN;
sc->sc_msg[1] = MSG_EXT_SDTR;
sc->sc_msg[2] = iha_rate_tbl[tcs->flags & FLAG_SCSI_RATE];
sc->sc_msg[3] = IHA_MAX_OFFSET; /* REQ/ACK */
return (iha_msgout_extended(sc));
}
static void
iha_wide_done(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct tcs *tcs = sc->sc_actscb->tcs;
tcs->syncm = 0;
tcs->period = 0;
tcs->offset = 0;
if (sc->sc_msg[2] != 0)
tcs->syncm |= PERIOD_WIDE_SCSI;
tcs->sconfig0 &= ~ALTPD;
tcs->flags &= ~FLAG_SYNC_DONE;
tcs->flags |= FLAG_WIDE_DONE;
iha_update_xfer_mode(sc, sc->sc_actscb->target);
bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
}
static void
iha_sync_done(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct tcs *tcs = sc->sc_actscb->tcs;
int i;
tcs->period = sc->sc_msg[2];
tcs->offset = sc->sc_msg[3];
if (tcs->offset != 0) {
tcs->syncm |= tcs->offset;
/* pick the highest possible rate */
for (i = 0; i < sizeof(iha_rate_tbl); i++)
if (iha_rate_tbl[i] >= tcs->period)
break;
tcs->syncm |= (i << 4);
tcs->sconfig0 |= ALTPD;
}
tcs->flags |= FLAG_SYNC_DONE;
iha_update_xfer_mode(sc, sc->sc_actscb->target);
bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
}
/*
* iha_bad_seq - a SCSI bus phase was encountered out of the
* correct/expected sequence. Reset the SCSI bus.
*/
static void
iha_bad_seq(sc)
struct iha_softc *sc;
{
struct iha_scb *scb = sc->sc_actscb;
if (scb != NULL)
iha_append_done_scb(sc, scb, HOST_BAD_PHAS);
iha_reset_scsi_bus(sc);
iha_reset_chip(sc);
}
/*
* iha_read_eeprom - read Serial EEPROM value & set to defaults
* if required. XXX - Writing does NOT work!
*/
static void
iha_read_eeprom(sc, eeprom)
struct iha_softc *sc;
struct iha_eeprom *eeprom;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t *buf = (u_int16_t *)eeprom;
u_int8_t gctrl;
/* Enable EEProm programming */
gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) | EEPRG;
bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl);
/* Read EEProm */
if (iha_se2_rd_all(sc, buf) == 0)
panic("%s: cannot read EEPROM", sc->sc_dev.dv_xname);
/* Disable EEProm programming */
gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) & ~EEPRG;
bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl);
}
#ifdef notused
/*
* iha_se2_update_all - Update SCSI H/A configuration parameters from
* serial EEPROM Setup default pattern. Only
* change those values different from the values
* in iha_eeprom.
*/
static void
iha_se2_update_all(sc)
struct iha_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t *np;
u_int32_t chksum;
int i;
/* Enable erase/write state of EEPROM */
iha_se2_instr(sc, ENABLE_ERASE);
bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
EEP_WAIT();
np = (u_int16_t *)&eeprom_default;
for (i = 0, chksum = 0; i < EEPROM_SIZE - 1; i++) {
iha_se2_wr(sc, i, *np);
chksum += *np++;
}
chksum &= 0x0000ffff;
iha_se2_wr(sc, 31, chksum);
/* Disable erase/write state of EEPROM */
iha_se2_instr(sc, 0);
bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
EEP_WAIT();
}
/*
* iha_se2_wr - write the given 16 bit value into the Serial EEPROM
* at the specified offset
*/
static void
iha_se2_wr(sc, addr, writeword)
struct iha_softc *sc;
int addr;
u_int16_t writeword;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i, bit;
/* send 'WRITE' Instruction == address | WRITE bit */
iha_se2_instr(sc, addr | WRITE);
for (i = 16; i > 0; i--) {
if (writeword & (1 << (i - 1)))
bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRDO);
else
bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
EEP_WAIT();
bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
EEP_WAIT();
}
bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
EEP_WAIT();
bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
EEP_WAIT();
bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
EEP_WAIT();
for (;;) {
bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
EEP_WAIT();
bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
EEP_WAIT();
bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI;
EEP_WAIT();
if (bit != 0)
break; /* write complete */
}
bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
}
#endif
/*
* iha_se2_rd - read & return the 16 bit value at the specified
* offset in the Serial E2PROM
*
*/
static u_int16_t
iha_se2_rd(sc, addr)
struct iha_softc *sc;
int addr;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i, bit;
u_int16_t readword;
/* Send 'READ' instruction == address | READ bit */
iha_se2_instr(sc, addr | READ);
readword = 0;
for (i = 16; i > 0; i--) {
bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
EEP_WAIT();
bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
EEP_WAIT();
/* sample data after the following edge of clock */
bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI ? 1 : 0;
EEP_WAIT();
readword |= bit << (i - 1);
}
bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
return (readword);
}
/*
* iha_se2_rd_all - Read SCSI H/A config parameters from serial EEPROM
*/
static int
iha_se2_rd_all(sc, buf)
struct iha_softc *sc;
u_int16_t *buf;
{
struct iha_eeprom *eeprom = (struct iha_eeprom *)buf;
u_int32_t chksum;
int i;
for (i = 0, chksum = 0; i < EEPROM_SIZE - 1; i++) {
*buf = iha_se2_rd(sc, i);
chksum += *buf++;
}
*buf = iha_se2_rd(sc, 31); /* read checksum from EEPROM */
chksum &= 0x0000ffff; /* lower 16 bits */
return (eeprom->signature == EEP_SIGNATURE) &&
(eeprom->checksum == chksum);
}
/*
* iha_se2_instr - write an octet to serial E2PROM one bit at a time
*/
static void
iha_se2_instr(sc, instr)
struct iha_softc *sc;
int instr;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int b, i;
b = NVRCS | NVRDO; /* Write the start bit (== 1) */
bus_space_write_1(iot, ioh, TUL_NVRAM, b);
EEP_WAIT();
bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK);
EEP_WAIT();
for (i = 8; i > 0; i--) {
if (instr & (1 << (i - 1)))
b = NVRCS | NVRDO; /* Write a 1 bit */
else
b = NVRCS; /* Write a 0 bit */
bus_space_write_1(iot, ioh, TUL_NVRAM, b);
EEP_WAIT();
bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK);
EEP_WAIT();
}
bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
}