NetBSD/sys/netccitt/pk_input.c

1174 lines
30 KiB
C

/* $NetBSD: pk_input.c,v 1.17 2000/03/30 13:53:35 augustss Exp $ */
/*
* Copyright (c) 1984 University of British Columbia.
* Copyright (c) 1992 Computer Science Department IV,
* University of Erlangen-Nuremberg, Germany.
* Copyright (c) 1991, 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by the
* Laboratory for Computation Vision and the Computer Science Department
* of the University of British Columbia and the Computer Science
* Department (IV) of the University of Erlangen-Nuremberg, Germany.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)pk_input.c 8.1 (Berkeley) 6/10/93
*/
#include "opt_hdlc.h"
#include "opt_llc.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/protosw.h>
#include <sys/socketvar.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_llc.h>
#include <net/route.h>
#include <netccitt/dll.h>
#include <netccitt/x25.h>
#include <netccitt/pk.h>
#include <netccitt/pk_var.h>
#include <netccitt/pk_extern.h>
#include <netccitt/llc_var.h>
#ifdef HDLC
#include <netccitt/hdlc.h>
#include <netccitt/hd_var.h>
#endif
#include <machine/stdarg.h>
struct pkcb_q pkcb_q = {&pkcb_q, &pkcb_q};
static void prune_dnic __P((char *, char *, char *, struct x25config *));
static void save_extra __P((struct mbuf *, octet *, struct socket *));
/*
* ccittintr() is the generic interrupt handler for HDLC, LLC2, and X.25. This
* allows to have kernel running X.25 but no HDLC or LLC2 or both (in case we
* employ boards that do all the stuff themselves, e.g. ADAX X.25 or TPS ISDN.)
*/
void
ccittintr()
{
extern struct ifqueue pkintrq;
extern struct ifqueue hdintrq;
extern struct ifqueue llcintrq;
#ifdef HDLC
if (hdintrq.ifq_len)
hdintr();
#endif
#ifdef LLC
if (llcintrq.ifq_len)
llcintr();
#endif
if (pkintrq.ifq_len)
pkintr();
}
struct pkcb *
pk_newlink(ia, llnext)
struct x25_ifaddr *ia;
caddr_t llnext;
{
struct x25config *xcp = &ia->ia_xc;
struct pkcb *pkp;
struct protosw *pp;
unsigned size;
pp = pffindproto(AF_CCITT, (int) xcp->xc_lproto, 0);
if (pp == 0 || pp->pr_output == 0) {
pk_message(0, xcp, "link level protosw error");
return ((struct pkcb *) 0);
}
/*
* Allocate a network control block structure
*/
size = sizeof(struct pkcb);
pkp = (struct pkcb *) malloc(size, M_PCB, M_WAITOK);
if (pkp == 0)
return ((struct pkcb *) 0);
bzero((caddr_t) pkp, size);
pkp->pk_lloutput = pp->pr_output;
pkp->pk_llctlinput = pp->pr_ctlinput;
pkp->pk_xcp = xcp;
IFAREF(&ia->ia_ifa);
pkp->pk_ia = ia;
pkp->pk_state = DTE_WAITING;
pkp->pk_llnext = llnext;
insque(pkp, &pkcb_q);
/*
* set defaults
*/
if (xcp->xc_pwsize == 0)
xcp->xc_pwsize = DEFAULT_WINDOW_SIZE;
if (xcp->xc_psize == 0)
xcp->xc_psize = X25_PS128;
/*
* Allocate logical channel descriptor vector
*/
(void) pk_resize(pkp);
return (pkp);
}
int
pk_dellink(pkp)
struct pkcb *pkp;
{
int i;
struct protosw *pp;
/*
* Essentially we have the choice to
* (a) go ahead and let the route be deleted and
* leave the pkcb associated with that route
* as it is, i.e. the connections stay open
* (b) do a pk_disconnect() on all channels associated
* with the route via the pkcb and then proceed.
*
* For the time being we stick with (b)
*/
for (i = 1; i < pkp->pk_maxlcn; ++i)
if (pkp->pk_chan[i])
pk_disconnect(pkp->pk_chan[i]);
/*
* Free the pkcb
*/
/*
* First find the protoswitch to get hold of the link level
* protocol to be notified that the packet level entity is
* dissolving ...
*/
pp = pffindproto(AF_CCITT, (int) pkp->pk_xcp->xc_lproto, 0);
if (pp == 0 || pp->pr_output == 0) {
pk_message(0, pkp->pk_xcp, "link level protosw error");
return (EPROTONOSUPPORT);
}
pkp->pk_refcount--;
if (!pkp->pk_refcount) {
struct dll_ctlinfo ctlinfo;
remque(pkp);
if (pkp->pk_rt->rt_llinfo == (caddr_t) pkp)
pkp->pk_rt->rt_llinfo = (caddr_t) NULL;
/*
* Tell the link level that the pkcb is dissolving
*/
if (pp->pr_ctlinput && pkp->pk_llnext) {
ctlinfo.dlcti_pcb = pkp->pk_llnext;
ctlinfo.dlcti_rt = pkp->pk_rt;
(*pp->pr_ctlinput) (PRC_DISCONNECT_REQUEST,
(struct sockaddr *)pkp->pk_xcp,
&ctlinfo);
}
if (pkp->pk_ia != NULL)
IFAFREE(&pkp->pk_ia->ia_ifa);
free((caddr_t) pkp->pk_chan, M_IFADDR);
free((caddr_t) pkp, M_PCB);
}
return (0);
}
int
pk_resize(pkp)
struct pkcb *pkp;
{
struct pklcd *dev_lcp = 0;
struct x25config *xcp = pkp->pk_xcp;
if (pkp->pk_chan &&
(pkp->pk_maxlcn != xcp->xc_maxlcn)) {
pk_restart(pkp, X25_RESTART_NETWORK_CONGESTION);
dev_lcp = pkp->pk_chan[0];
free((caddr_t) pkp->pk_chan, M_IFADDR);
pkp->pk_chan = 0;
}
if (pkp->pk_chan == 0) {
unsigned size;
pkp->pk_maxlcn = xcp->xc_maxlcn;
size = (pkp->pk_maxlcn + 1) * sizeof(struct pklcd *);
pkp->pk_chan = malloc(size, M_IFADDR, M_WAITOK);
if (pkp->pk_chan) {
bzero((caddr_t) pkp->pk_chan, size);
/*
* Allocate a logical channel descriptor for lcn 0
*/
if (dev_lcp == 0 &&
(dev_lcp = pk_attach((struct socket *) 0)) == 0)
return (ENOBUFS);
dev_lcp->lcd_state = READY;
dev_lcp->lcd_pkp = pkp;
pkp->pk_chan[0] = dev_lcp;
} else {
if (dev_lcp)
pk_close(dev_lcp);
return (ENOBUFS);
}
}
return 0;
}
/*
* This procedure is called by the link level whenever the link becomes
* operational, is reset, or when the link goes down.
*/
/* VARARGS */
void *
pk_ctlinput(code, src, addr)
int code;
struct sockaddr *src;
void *addr;
{
struct pkcb *pkp = (struct pkcb *) addr;
struct rtentry *llrt;
/*XXX correct?*/
if (src->sa_family != AF_CCITT)
return 0;
switch (code) {
case PRC_LINKUP:
if (pkp->pk_state == DTE_WAITING)
pk_restart(pkp, X25_RESTART_NETWORK_CONGESTION);
break;
case PRC_LINKDOWN:
pk_restart(pkp, -1); /* Clear all active circuits */
pkp->pk_state = DTE_WAITING;
break;
case PRC_LINKRESET:
pk_restart(pkp, X25_RESTART_NETWORK_CONGESTION);
break;
case PRC_CONNECT_INDICATION:
if ((llrt = rtalloc1(src, 0)) == 0)
return 0;
else
llrt->rt_refcnt--;
pkp = (((struct npaidbentry *) llrt->rt_llinfo)->np_rt) ?
(struct pkcb *) (((struct npaidbentry *) llrt->rt_llinfo)->np_rt->rt_llinfo) : (struct pkcb *) 0;
if (pkp == (struct pkcb *) 0)
return 0;
pkp->pk_llnext = addr;
return ((caddr_t) pkp);
case PRC_DISCONNECT_INDICATION:
pk_restart(pkp, -1); /* Clear all active circuits */
pkp->pk_state = DTE_WAITING;
pkp->pk_llnext = (caddr_t) 0;
break;
}
return (0);
}
struct ifqueue pkintrq;
/*
* This routine is called if there are semi-smart devices that do HDLC
* in hardware and want to queue the packet and call level 3 directly
*/
void
pkintr()
{
struct mbuf *m;
int s;
for (;;) {
s = splimp();
IF_DEQUEUE(&pkintrq, m);
splx(s);
if (m == 0)
break;
if (m->m_len < PKHEADERLN) {
printf("pkintr: packet too short (len=%d)\n",
m->m_len);
m_freem(m);
continue;
}
pk_input(m);
}
}
struct mbuf *pk_bad_packet;
struct mbuf_cache pk_input_cache = {0};
/*
* X.25 PACKET INPUT
*
* This procedure is called by a link level procedure whenever an information
* frame is received. It decodes the packet and demultiplexes based on the
* logical channel number.
*
* We change the original conventions of the UBC code here -- since there may be
* multiple pkcb's for a given interface of type 802.2 class 2, we retrieve
* which one it is from m_pkthdr.rcvif (which has been overwritten by lower
* layers); That field is then restored for the benefit of upper layers which
* may make use of it, such as CLNP.
*
*/
#define RESTART_DTE_ORIGINATED(xp) \
(((xp)->packet_cause == X25_RESTART_DTE_ORIGINATED) || \
((xp)->packet_cause >= X25_RESTART_DTE_ORIGINATED2))
void
#if __STDC__
pk_input(struct mbuf *m, ...)
#else
pk_input(m, va_alist)
struct mbuf *m;
va_dcl
#endif
{
struct x25_packet *xp;
struct pklcd *lcp;
struct socket *so = 0;
struct pkcb *pkp;
int ptype, lcn, lcdstate = LISTEN;
if (pk_input_cache.mbc_size || pk_input_cache.mbc_oldsize)
mbuf_cache(&pk_input_cache, m);
if ((m->m_flags & M_PKTHDR) == 0)
panic("pkintr");
if ((pkp = (struct pkcb *) m->m_pkthdr.rcvif) == 0)
return;
xp = mtod(m, struct x25_packet *);
ptype = pk_decode(xp);
lcn = LCN(xp);
lcp = pkp->pk_chan[lcn];
/*
* If the DTE is in Restart state, then it will ignore data,
* interrupt, call setup and clearing, flow control and reset
* packets.
*/
if (lcn < 0 || lcn > pkp->pk_maxlcn) {
pk_message(lcn, pkp->pk_xcp, "illegal lcn");
m_freem(m);
return;
}
pk_trace(pkp->pk_xcp, m, "P-In");
if (pkp->pk_state != DTE_READY && ptype != PK_RESTART &&
ptype != PK_RESTART_CONF) {
m_freem(m);
return;
}
if (lcp) {
so = lcp->lcd_so;
lcdstate = lcp->lcd_state;
} else {
if (ptype == PK_CLEAR) {/* idle line probe (Datapac specific) */
/* send response on lcd 0's output queue */
lcp = pkp->pk_chan[0];
lcp->lcd_template = pk_template(lcn, X25_CLEAR_CONFIRM);
pk_output(lcp);
m_freem(m);
return;
}
if (ptype != PK_CALL)
ptype = PK_INVALID_PACKET;
}
if (lcn == 0 && ptype != PK_RESTART && ptype != PK_RESTART_CONF) {
pk_message(0, pkp->pk_xcp, "illegal ptype (%d, %s) on lcn 0",
ptype, pk_name[ptype / MAXSTATES]);
if (pk_bad_packet)
m_freem(pk_bad_packet);
pk_bad_packet = m;
return;
}
m->m_pkthdr.rcvif = pkp->pk_ia->ia_ifp;
switch (ptype + lcdstate) {
/*
* Incoming Call packet received.
*/
case PK_CALL + LISTEN:
pk_incoming_call(pkp, m);
break;
/*
* Call collision: Just throw this "incoming call" away since
* the DCE will ignore it anyway.
*/
case PK_CALL + SENT_CALL:
pk_message((int) lcn, pkp->pk_xcp,
"incoming call collision");
break;
/*
* Call confirmation packet received. This usually means our
* previous connect request is now complete.
*/
case PK_CALL_ACCEPTED + SENT_CALL:
MCHTYPE(m, MT_CONTROL);
pk_call_accepted(lcp, m);
break;
/*
* This condition can only happen if the previous state was
* SENT_CALL. Just ignore the packet, eventually a clear
* confirmation should arrive.
*/
case PK_CALL_ACCEPTED + SENT_CLEAR:
break;
/*
* Clear packet received. This requires a complete tear down
* of the virtual circuit. Free buffers and control blocks.
* and send a clear confirmation.
*/
case PK_CLEAR + READY:
case PK_CLEAR + RECEIVED_CALL:
case PK_CLEAR + SENT_CALL:
case PK_CLEAR + DATA_TRANSFER:
lcp->lcd_state = RECEIVED_CLEAR;
lcp->lcd_template = pk_template(lcp->lcd_lcn, X25_CLEAR_CONFIRM);
pk_output(lcp);
pk_clearcause(pkp, xp);
if (lcp->lcd_upper) {
MCHTYPE(m, MT_CONTROL);
(*lcp->lcd_upper)(m, lcp);
}
pk_close(lcp);
lcp = 0;
break;
/*
* Clear collision: Treat this clear packet as a
* confirmation.
*/
case PK_CLEAR + SENT_CLEAR:
pk_close(lcp);
break;
/*
* Clear confirmation received. This usually means the
* virtual circuit is now completely removed.
*/
case PK_CLEAR_CONF + SENT_CLEAR:
pk_close(lcp);
break;
/*
* A clear confirmation on an unassigned logical channel -
* just ignore it. Note: All other packets on an unassigned
* channel results in a clear.
*/
case PK_CLEAR_CONF + READY:
case PK_CLEAR_CONF + LISTEN:
break;
/*
* Data packet received. Pass on to next level. Move the Q
* and M bits into the data portion for the next level.
*/
case PK_DATA + DATA_TRANSFER:
if (lcp->lcd_reset_condition) {
ptype = PK_DELETE_PACKET;
break;
}
/*
* Process the P(S) flow control information in this Data
* packet. Check that the packets arrive in the correct
* sequence and that they are within the "lcd_input_window".
* Input window rotation is initiated by the receive
* interface.
*/
if (PS(xp) != ((lcp->lcd_rsn + 1) % MODULUS) ||
PS(xp) == ((lcp->lcd_input_window + lcp->lcd_windowsize) % MODULUS)) {
m_freem(m);
pk_procerror(PK_RESET, lcp,
"p(s) flow control error", 1);
break;
}
lcp->lcd_rsn = PS(xp);
if (pk_ack(lcp, PR(xp)) != PACKET_OK) {
m_freem(m);
break;
}
m->m_data += PKHEADERLN;
m->m_len -= PKHEADERLN;
m->m_pkthdr.len -= PKHEADERLN;
lcp->lcd_rxcnt++;
if (lcp->lcd_flags & X25_MBS_HOLD) {
struct mbuf *n = lcp->lcd_cps;
int mbit = MBIT(xp);
octet q_and_d_bits;
if (n) {
n->m_pkthdr.len += m->m_pkthdr.len;
while (n->m_next)
n = n->m_next;
n->m_next = m;
m = lcp->lcd_cps;
if (lcp->lcd_cpsmax &&
n->m_pkthdr.len > lcp->lcd_cpsmax) {
pk_procerror(PK_RESET, lcp,
"C.P.S. overflow", 128);
return;
}
q_and_d_bits = 0xc0 & *(octet *) xp;
xp = (struct x25_packet *)
(mtod(m, octet *) - PKHEADERLN);
*(octet *) xp |= q_and_d_bits;
}
if (mbit) {
lcp->lcd_cps = m;
pk_flowcontrol(lcp, 0, 1);
return;
}
lcp->lcd_cps = 0;
}
if (so == 0)
break;
if (lcp->lcd_flags & X25_MQBIT) {
octet t = (X25GBITS(xp->bits, q_bit)) ? t = 0x80 : 0;
if (MBIT(xp))
t |= 0x40;
m->m_data -= 1;
m->m_len += 1;
m->m_pkthdr.len += 1;
*mtod(m, octet *) = t;
}
/*
* Discard Q-BIT packets if the application
* doesn't want to be informed of M and Q bit status
*/
if (X25GBITS(xp->bits, q_bit)
&& (lcp->lcd_flags & X25_MQBIT) == 0) {
m_freem(m);
/*
* NB. This is dangerous: sending a RR here can
* cause sequence number errors if a previous data
* packet has not yet been passed up to the application
* (RR's are normally generated via PRU_RCVD).
*/
pk_flowcontrol(lcp, 0, 1);
} else {
sbappendrecord(&so->so_rcv, m);
sorwakeup(so);
}
break;
/*
* Interrupt packet received.
*/
case PK_INTERRUPT + DATA_TRANSFER:
if (lcp->lcd_reset_condition)
break;
lcp->lcd_intrdata = xp->packet_data;
lcp->lcd_template = pk_template(lcp->lcd_lcn,
X25_INTERRUPT_CONFIRM);
pk_output(lcp);
m->m_data += PKHEADERLN;
m->m_len -= PKHEADERLN;
m->m_pkthdr.len -= PKHEADERLN;
MCHTYPE(m, MT_OOBDATA);
if (so) {
if (so->so_options & SO_OOBINLINE)
sbinsertoob(&so->so_rcv, m);
else
m_freem(m);
sohasoutofband(so);
}
break;
/*
* Interrupt confirmation packet received.
*/
case PK_INTERRUPT_CONF + DATA_TRANSFER:
if (lcp->lcd_reset_condition)
break;
if (lcp->lcd_intrconf_pending == TRUE)
lcp->lcd_intrconf_pending = FALSE;
else
pk_procerror(PK_RESET, lcp, "unexpected packet", 43);
break;
/*
* Receiver ready received. Rotate the output window and
* output any data packets waiting transmission.
*/
case PK_RR + DATA_TRANSFER:
if (lcp->lcd_reset_condition ||
pk_ack(lcp, PR(xp)) != PACKET_OK) {
ptype = PK_DELETE_PACKET;
break;
}
if (lcp->lcd_rnr_condition == TRUE)
lcp->lcd_rnr_condition = FALSE;
pk_output(lcp);
break;
/*
* Receiver Not Ready received. Packets up to the P(R) can be
* be sent. Condition is cleared with a RR.
*/
case PK_RNR + DATA_TRANSFER:
if (lcp->lcd_reset_condition ||
pk_ack(lcp, PR(xp)) != PACKET_OK) {
ptype = PK_DELETE_PACKET;
break;
}
lcp->lcd_rnr_condition = TRUE;
break;
/*
* Reset packet received. Set state to FLOW_OPEN. The Input
* and Output window edges ar set to zero. Both the send and
* receive numbers are reset. A confirmation is returned.
*/
case PK_RESET + DATA_TRANSFER:
if (lcp->lcd_reset_condition)
/* Reset collision. Just ignore packet. */
break;
pk_resetcause(pkp, xp);
lcp->lcd_window_condition = lcp->lcd_rnr_condition =
lcp->lcd_intrconf_pending = FALSE;
lcp->lcd_output_window = lcp->lcd_input_window =
lcp->lcd_last_transmitted_pr = 0;
lcp->lcd_ssn = 0;
lcp->lcd_rsn = MODULUS - 1;
lcp->lcd_template = pk_template(lcp->lcd_lcn, X25_RESET_CONFIRM);
pk_output(lcp);
pk_flush(lcp);
if (so == 0)
break;
wakeup((caddr_t) & so->so_timeo);
sorwakeup(so);
sowwakeup(so);
break;
/*
* Reset confirmation received.
*/
case PK_RESET_CONF + DATA_TRANSFER:
if (lcp->lcd_reset_condition) {
lcp->lcd_reset_condition = FALSE;
pk_output(lcp);
} else
pk_procerror(PK_RESET, lcp, "unexpected packet", 32);
break;
case PK_DATA + SENT_CLEAR:
ptype = PK_DELETE_PACKET;
case PK_RR + SENT_CLEAR:
case PK_RNR + SENT_CLEAR:
case PK_INTERRUPT + SENT_CLEAR:
case PK_INTERRUPT_CONF + SENT_CLEAR:
case PK_RESET + SENT_CLEAR:
case PK_RESET_CONF + SENT_CLEAR:
/*
* Just ignore p if we have sent a CLEAR already.
*/
break;
/*
* Restart sets all the permanent virtual circuits to the
* "Data Transfer" stae and all the switched virtual
* circuits to the "Ready" state.
*/
case PK_RESTART + READY:
switch (pkp->pk_state) {
case DTE_SENT_RESTART:
/*
* Restart collision. If case the restart cause is
* "DTE originated" we have a DTE-DTE situation and
* are trying to resolve who is going to play DTE/DCE
* [ISO 8208:4.2-4.5]
*/
if (RESTART_DTE_ORIGINATED(xp)) {
pk_restart(pkp, X25_RESTART_DTE_ORIGINATED);
pk_message(0, pkp->pk_xcp,
"RESTART collision");
if ((pkp->pk_restartcolls++) > MAXRESTARTCOLLISIONS) {
pk_message(0, pkp->pk_xcp,
"excessive RESTART collisions");
pkp->pk_restartcolls = 0;
}
break;
}
pkp->pk_state = DTE_READY;
pkp->pk_dxerole |= DTE_PLAYDTE;
pkp->pk_dxerole &= ~DTE_PLAYDCE;
pk_message(0, pkp->pk_xcp,
"Packet level operational");
pk_message(0, pkp->pk_xcp,
"Assuming DTE role");
if (pkp->pk_dxerole & DTE_CONNECTPENDING)
pk_callcomplete(pkp);
break;
default:
pk_restart(pkp, -1);
pk_restartcause(pkp, xp);
pkp->pk_chan[0]->lcd_template = pk_template(0,
X25_RESTART_CONFIRM);
pk_output(pkp->pk_chan[0]);
pkp->pk_state = DTE_READY;
pkp->pk_dxerole |= RESTART_DTE_ORIGINATED(xp) ? DTE_PLAYDCE :
DTE_PLAYDTE;
if (pkp->pk_dxerole & DTE_PLAYDTE) {
pkp->pk_dxerole &= ~DTE_PLAYDCE;
pk_message(0, pkp->pk_xcp,
"Assuming DTE role");
} else {
pkp->pk_dxerole &= ~DTE_PLAYDTE;
pk_message(0, pkp->pk_xcp,
"Assuming DCE role");
}
if (pkp->pk_dxerole & DTE_CONNECTPENDING)
pk_callcomplete(pkp);
}
break;
/*
* Restart confirmation received. All logical channels are
* set to READY.
*/
case PK_RESTART_CONF + READY:
switch (pkp->pk_state) {
case DTE_SENT_RESTART:
pkp->pk_state = DTE_READY;
pkp->pk_dxerole |= DTE_PLAYDTE;
pkp->pk_dxerole &= ~DTE_PLAYDCE;
pk_message(0, pkp->pk_xcp,
"Packet level operational");
pk_message(0, pkp->pk_xcp,
"Assuming DTE role");
if (pkp->pk_dxerole & DTE_CONNECTPENDING)
pk_callcomplete(pkp);
break;
default:
/* Restart local procedure error. */
pk_restart(pkp, X25_RESTART_LOCAL_PROCEDURE_ERROR);
pkp->pk_state = DTE_SENT_RESTART;
pkp->pk_dxerole &= ~(DTE_PLAYDTE | DTE_PLAYDCE);
}
break;
default:
if (lcp) {
pk_procerror(PK_CLEAR, lcp, "unknown packet error", 33);
pk_message(lcn, pkp->pk_xcp,
"\"%s\" unexpected in \"%s\" state",
pk_name[ptype / MAXSTATES], pk_state[lcdstate]);
} else
pk_message(lcn, pkp->pk_xcp,
"packet arrived on unassigned lcn");
break;
}
if (so == 0 && lcp && lcp->lcd_upper && lcdstate == DATA_TRANSFER) {
if (ptype != PK_DATA && ptype != PK_INTERRUPT)
MCHTYPE(m, MT_CONTROL);
lcp->lcd_upper(m, lcp);
} else if (ptype != PK_DATA && ptype != PK_INTERRUPT)
m_freem(m);
}
static void
prune_dnic(from, to, dnicname, xcp)
char *from, *to, *dnicname;
struct x25config *xcp;
{
char *cp1 = from, *cp2 = from;
if (xcp->xc_prepnd0 && *cp1 == '0') {
from = ++cp1;
goto copyrest;
}
if (xcp->xc_nodnic) {
for (cp1 = dnicname; (*cp2 = *cp1++) != '\0';)
cp2++;
cp1 = from;
}
copyrest:
for (cp1 = dnicname; (*cp2 = *cp1++) != '\0';)
cp2++;
}
void
pk_simple_bsd(from, to, lower, len)
octet *from, *to;
int len, lower;
{
int c;
while (--len >= 0) {
c = *from;
if (lower & 0x01)
from++;
else
c >>= 4;
c &= 0x0f;
c |= 0x30;
*to++ = c;
lower++;
}
*to = 0;
}
void
pk_from_bcd(a, iscalling, sa, xcp)
struct x25_calladdr *a;
int iscalling;
struct sockaddr_x25 *sa;
struct x25config *xcp;
{
octet buf[MAXADDRLN + 1];
octet *cp;
unsigned count;
bzero((caddr_t) sa, sizeof(*sa));
sa->x25_len = sizeof(*sa);
sa->x25_family = AF_CCITT;
if (iscalling) {
cp = a->address_field + (X25GBITS(a->addrlens, called_addrlen) / 2);
count = X25GBITS(a->addrlens, calling_addrlen);
pk_simple_bsd(cp, buf, X25GBITS(a->addrlens, called_addrlen), count);
} else {
count = X25GBITS(a->addrlens, called_addrlen);
pk_simple_bsd(a->address_field, buf, 0, count);
}
if (xcp->xc_addr.x25_net && (xcp->xc_nodnic || xcp->xc_prepnd0)) {
octet dnicname[sizeof(long) * NBBY / 3 + 2];
sprintf((char *) dnicname, "%d", xcp->xc_addr.x25_net);
prune_dnic((char *) buf, sa->x25_addr, dnicname, xcp);
} else
bcopy((caddr_t) buf, (caddr_t) sa->x25_addr, count + 1);
}
static void
save_extra(m0, fp, so)
struct mbuf *m0;
octet *fp;
struct socket *so;
{
struct mbuf *m;
struct cmsghdr cmsghdr;
/* XXX: christos:
* used to be m_copy(m, 0, ...)
* I think it is supposed to be m_copy(m0,
*/
if ((m = m_copy(m0, 0, (int) M_COPYALL)) != NULL) {
int off = fp - mtod(m0, octet *);
int len = m->m_pkthdr.len - off + sizeof(cmsghdr);
cmsghdr.cmsg_len = len;
cmsghdr.cmsg_level = AF_CCITT;
cmsghdr.cmsg_type = PK_FACILITIES;
m_adj(m, off);
M_PREPEND(m, sizeof(cmsghdr), M_DONTWAIT);
if (m == 0)
return;
bcopy((caddr_t) & cmsghdr, mtod(m, caddr_t), sizeof(cmsghdr));
MCHTYPE(m, MT_CONTROL);
sbappendrecord(&so->so_rcv, m);
}
}
/*
* This routine handles incoming call packets. It matches the protocol field
* on the Call User Data field (usually the first four bytes) with sockets
* awaiting connections.
*/
void
pk_incoming_call(pkp, m0)
struct pkcb *pkp;
struct mbuf *m0;
{
struct pklcd *lcp = 0, *l;
struct sockaddr_x25 *sa;
struct x25_calladdr *a;
struct socket *so = 0;
struct x25_packet *xp = mtod(m0, struct x25_packet *);
struct mbuf *m;
struct x25config *xcp = pkp->pk_xcp;
int len = m0->m_pkthdr.len;
unsigned udlen;
char *errstr = "server unavailable";
octet *u, *facp;
int lcn = LCN(xp);
/*
* First, copy the data from the incoming call packet to a X25
* address descriptor. It is to be regretted that you have to parse
* the facilities into a sockaddr to determine if reverse charging is
* being requested
*/
if ((m = m_get(M_DONTWAIT, MT_SONAME)) == 0)
return;
sa = mtod(m, struct sockaddr_x25 *);
a = (struct x25_calladdr *) & xp->packet_data;
facp = u = (octet *) (a->address_field +
((X25GBITS(a->addrlens, called_addrlen) + X25GBITS(a->addrlens, calling_addrlen) + 1) / 2));
u += *u + 1;
udlen = min(16, ((octet *) xp) + len - u);
#if 0
/* Cannot happen; udlen is unsigned */
if (udlen < 0)
udlen = 0;
#endif
pk_from_bcd(a, 1, sa, pkp->pk_xcp); /* get calling address */
pk_parse_facilities(facp, sa);
bcopy((caddr_t) u, sa->x25_udata, udlen);
sa->x25_udlen = udlen;
/*
* Now, loop through the listen sockets looking for a match on the
* PID. That is the first few octets of the user data field.
* This is the closest thing to a port number for X.25 packets.
* It does provide a way of multiplexing services at the user level.
*/
for (l = pk_listenhead.tqh_first; l; l = l->lcd_listen.tqe_next) {
struct sockaddr_x25 *sxp = l->lcd_ceaddr;
if (bcmp(sxp->x25_udata, u, sxp->x25_udlen))
continue;
if (sxp->x25_net &&
sxp->x25_net != xcp->xc_addr.x25_net)
continue;
/*
* don't accept incoming calls with the D-Bit on
* unless the server agrees
*/
if (X25GBITS(xp->bits, d_bit) && !(sxp->x25_opts.op_flags & X25_DBIT)) {
errstr = "incoming D-Bit mismatch";
break;
}
/*
* don't accept incoming collect calls unless
* the server sets the reverse charging option.
*/
if ((sxp->x25_opts.op_flags & (X25_OLDSOCKADDR | X25_REVERSE_CHARGE)) == 0 &&
sa->x25_opts.op_flags & X25_REVERSE_CHARGE) {
errstr = "incoming collect call refused";
break;
}
if (l->lcd_so) {
so = sonewconn(l->lcd_so, SS_ISCONNECTED);
if (so)
lcp = (struct pklcd *) so->so_pcb;
} else
lcp = pk_attach((struct socket *) 0);
if (lcp == 0) {
/*
* Insufficient space or too many unaccepted
* connections. Just throw the call away.
*/
errstr = "server malfunction";
break;
}
lcp->lcd_upper = l->lcd_upper;
lcp->lcd_upnext = l->lcd_upnext;
lcp->lcd_lcn = lcn;
lcp->lcd_state = RECEIVED_CALL;
sa->x25_opts.op_flags |= (sxp->x25_opts.op_flags &
~X25_REVERSE_CHARGE) | l->lcd_flags;
pk_assoc(pkp, lcp, sa);
lcp->lcd_faddr = *sa;
lcp->lcd_laddr.x25_udlen = sxp->x25_udlen;
lcp->lcd_craddr = &lcp->lcd_faddr;
lcp->lcd_template = pk_template(lcp->lcd_lcn, X25_CALL_ACCEPTED);
if (lcp->lcd_flags & X25_DBIT) {
if (X25GBITS(xp->bits, d_bit))
X25SBITS(mtod(lcp->lcd_template,
struct x25_packet *)->bits, d_bit, 1);
else
lcp->lcd_flags &= ~X25_DBIT;
}
if (so) {
pk_output(lcp);
soisconnected(so);
if (so->so_options & SO_OOBINLINE)
save_extra(m0, facp, so);
} else if (lcp->lcd_upper) {
(*lcp->lcd_upper) (m0, lcp);
}
(void) m_free(m);
return;
}
/*
* If the call fails for whatever reason, we still need to build a
* skeleton LCD in order to be able to properly receive the CLEAR
* CONFIRMATION.
*/
#ifdef WATERLOO /* be explicit */
if (l == 0 && bcmp(sa->x25_udata, "ean", 3) == 0)
pk_message(lcn, pkp->pk_xcp, "host=%s ean%c: %s",
sa->x25_addr, sa->x25_udata[3] & 0xff, errstr);
else if (l == 0 && bcmp(sa->x25_udata, "\1\0\0\0", 4) == 0)
pk_message(lcn, pkp->pk_xcp, "host=%s x29d: %s",
sa->x25_addr, errstr);
else
#endif
pk_message(lcn, pkp->pk_xcp, "host=%s pid=%x %x %x %x: %s",
sa->x25_addr, sa->x25_udata[0] & 0xff,
sa->x25_udata[1] & 0xff, sa->x25_udata[2] & 0xff,
sa->x25_udata[3] & 0xff, errstr);
if ((lcp = pk_attach((struct socket *) 0)) == 0) {
(void) m_free(m);
return;
}
lcp->lcd_lcn = lcn;
lcp->lcd_state = RECEIVED_CALL;
pk_assoc(pkp, lcp, sa);
(void) m_free(m);
pk_clear(lcp, 0, 1);
}
void
pk_call_accepted(lcp, m)
struct pklcd *lcp;
struct mbuf *m;
{
struct x25_calladdr *ap;
octet *fcp;
struct x25_packet *xp = mtod(m, struct x25_packet *);
int len = m->m_len;
lcp->lcd_state = DATA_TRANSFER;
if (lcp->lcd_so)
soisconnected(lcp->lcd_so);
if ((lcp->lcd_flags & X25_DBIT) && (X25GBITS(xp->bits, d_bit) == 0))
lcp->lcd_flags &= ~X25_DBIT;
if (len > 3) {
ap = (struct x25_calladdr *) & xp->packet_data;
fcp = (octet *) ap->address_field + (X25GBITS(ap->addrlens, calling_addrlen) +
X25GBITS(ap->addrlens, called_addrlen) + 1) / 2;
if (fcp + *fcp <= ((octet *) xp) + len)
pk_parse_facilities(fcp, lcp->lcd_ceaddr);
}
pk_assoc(lcp->lcd_pkp, lcp, lcp->lcd_ceaddr);
if (lcp->lcd_so == 0 && lcp->lcd_upper)
(*lcp->lcd_upper)(m, lcp);
}
void
pk_parse_facilities(fcp, sa)
octet *fcp;
struct sockaddr_x25 *sa;
{
octet *maxfcp;
maxfcp = fcp + *fcp;
fcp++;
while (fcp < maxfcp) {
/*
* Ignore national DCE or DTE facilities
*/
if (*fcp == 0 || *fcp == 0xff)
break;
switch (*fcp) {
case FACILITIES_WINDOWSIZE:
sa->x25_opts.op_wsize = fcp[1];
fcp += 3;
break;
case FACILITIES_PACKETSIZE:
sa->x25_opts.op_psize = fcp[1];
fcp += 3;
break;
case FACILITIES_THROUGHPUT:
sa->x25_opts.op_speed = fcp[1];
fcp += 2;
break;
case FACILITIES_REVERSE_CHARGE:
if (fcp[1] & 01)
sa->x25_opts.op_flags |= X25_REVERSE_CHARGE;
/*
* Datapac specific: for a X.25(1976) DTE, bit 2
* indicates a "hi priority" (eg. international) call.
*/
if (fcp[1] & 02 && sa->x25_opts.op_psize == 0)
sa->x25_opts.op_psize = X25_PS128;
fcp += 2;
break;
default:
#if 0
printf("unknown facility %x, class=%d\n", *fcp,
(*fcp & 0xc0) >> 6);
#endif
switch ((*fcp & 0xc0) >> 6) {
case 0:/* class A */
fcp += 2;
break;
case 1:
fcp += 3;
break;
case 2:
fcp += 4;
break;
case 3:
fcp++;
fcp += *fcp;
}
}
}
}