NetBSD/sys/arch/sun68k/include/bus.h
matt a6db24a485 Add a dm_maxsegsz public member to bus_dmamap_t. This allows a user of the API
to select the maximum segment size for each bus_dmamap_load (up to the maxsegsz
supplied to bus_dmamap_create).  dm_maxsegsz is reset to the value supplied to
bus_dmamap_create when the dmamap is unloaded.
2005-03-09 19:04:43 +00:00

986 lines
31 KiB
C

/* $NetBSD: bus.h,v 1.8 2005/03/09 19:04:45 matt Exp $ */
/*-
* Copyright (c) 1996, 1997, 1998, 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1996 Charles M. Hannum. All rights reserved.
* Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Christopher G. Demetriou
* for the NetBSD Project.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _SUN68K_BUS_H_
#define _SUN68K_BUS_H_
#define SUN68K_BUS_SPACE 0
/*
* Bus address and size types
*/
typedef u_long bus_space_handle_t;
typedef u_long bus_type_t;
typedef u_long bus_addr_t;
typedef u_long bus_size_t;
#define BUS_ADDR_PADDR(x) ((x) & 0xffffffff)
/*
* Access methods for bus resources and address space.
*/
typedef struct sun68k_bus_space_tag *bus_space_tag_t;
struct sun68k_bus_space_tag {
void *cookie;
bus_space_tag_t parent;
int (*sun68k_bus_map)(
bus_space_tag_t,
bus_type_t,
bus_addr_t,
bus_size_t,
int, /*flags*/
vaddr_t, /*preferred vaddr*/
bus_space_handle_t *);
int (*sun68k_bus_unmap)(
bus_space_tag_t,
bus_space_handle_t,
bus_size_t);
int (*sun68k_bus_subregion)(
bus_space_tag_t,
bus_space_handle_t,
bus_size_t, /*offset*/
bus_size_t, /*size*/
bus_space_handle_t *);
void (*sun68k_bus_barrier)(
bus_space_tag_t,
bus_space_handle_t,
bus_size_t, /*offset*/
bus_size_t, /*size*/
int); /*flags*/
paddr_t (*sun68k_bus_mmap)(
bus_space_tag_t,
bus_type_t, /**/
bus_addr_t, /**/
off_t, /*offset*/
int, /*prot*/
int); /*flags*/
void *(*sun68k_intr_establish)(
bus_space_tag_t,
int, /*bus-specific intr*/
int, /*device class level,
see machine/intr.h*/
int, /*flags*/
int (*)(void *), /*handler*/
void *); /*handler arg*/
int (*sun68k_bus_peek)(
bus_space_tag_t,
bus_space_handle_t,
bus_size_t, /*offset*/
size_t, /*probe size*/
void *); /*result ptr*/
int (*sun68k_bus_poke)(
bus_space_tag_t,
bus_space_handle_t,
bus_size_t, /*offset*/
size_t, /*probe size*/
uint32_t); /*value*/
};
#if 0
/*
* The following macro could be used to generate the bus_space*() functions
* but it uses a gcc extension and is ANSI-only.
#define PROTO_bus_space_xxx (bus_space_tag_t t, ...)
#define RETURNTYPE_bus_space_xxx void *
#define BUSFUN(name, returntype, t, args...) \
__inline__ RETURNTYPE_##name \
bus_##name PROTO_##name \
{ \
while (t->sun68k_##name == NULL) \
t = t->parent; \
return (*(t)->sun68k_##name)(t, args); \
}
*/
#endif
/*
* Bus space function prototypes.
*/
static int bus_space_map(
bus_space_tag_t,
bus_addr_t,
bus_size_t,
int, /*flags*/
bus_space_handle_t *);
static int bus_space_map2(
bus_space_tag_t,
bus_type_t,
bus_addr_t,
bus_size_t,
int, /*flags*/
vaddr_t, /*preferred vaddr*/
bus_space_handle_t *);
static int bus_space_unmap(
bus_space_tag_t,
bus_space_handle_t,
bus_size_t);
static int bus_space_subregion(
bus_space_tag_t,
bus_space_handle_t,
bus_size_t,
bus_size_t,
bus_space_handle_t *);
static void bus_space_barrier(
bus_space_tag_t,
bus_space_handle_t,
bus_size_t,
bus_size_t,
int);
static paddr_t bus_space_mmap(
bus_space_tag_t,
bus_addr_t, /**/
off_t, /*offset*/
int, /*prot*/
int); /*flags*/
static paddr_t bus_space_mmap2(
bus_space_tag_t,
bus_type_t,
bus_addr_t, /**/
off_t, /*offset*/
int, /*prot*/
int); /*flags*/
static void *bus_intr_establish(
bus_space_tag_t,
int, /*bus-specific intr*/
int, /*device class level,
see machine/intr.h*/
int, /*flags*/
int (*)(void *), /*handler*/
void *); /*handler arg*/
static int _bus_space_peek(
bus_space_tag_t,
bus_space_handle_t,
bus_size_t, /*offset*/
size_t, /*probe size*/
void *); /*result ptr*/
static int _bus_space_poke(
bus_space_tag_t,
bus_space_handle_t,
bus_size_t, /*offset*/
size_t, /*probe size*/
uint32_t); /*value*/
/* This macro finds the first "upstream" implementation of method `f' */
#define _BS_CALL(t,f) \
while (t->f == NULL) \
t = t->parent; \
return (*(t)->f)
__inline__ int
bus_space_map(bus_space_tag_t t, bus_addr_t a, bus_size_t s, int f,
bus_space_handle_t *hp)
{
_BS_CALL(t, sun68k_bus_map)((t), 0, (a), (s), (f), 0, (hp));
}
__inline__ int
bus_space_map2(bus_space_tag_t t, bus_type_t bt, bus_addr_t a, bus_size_t s,
int f, vaddr_t v, bus_space_handle_t *hp)
{
_BS_CALL(t, sun68k_bus_map)(t, bt, a, s, f, v, hp);
}
__inline__ int
bus_space_unmap(bus_space_tag_t t, bus_space_handle_t h, bus_size_t s)
{
_BS_CALL(t, sun68k_bus_unmap)(t, h, s);
}
__inline__ int
bus_space_subregion(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
bus_size_t s, bus_space_handle_t *hp)
{
_BS_CALL(t, sun68k_bus_subregion)(t, h, o, s, hp);
}
__inline__ paddr_t
bus_space_mmap(bus_space_tag_t t, bus_addr_t a, off_t o, int p, int f)
{
_BS_CALL(t, sun68k_bus_mmap)(t, 0, a, o, p, f);
}
__inline__ paddr_t
bus_space_mmap2(bus_space_tag_t t, bus_type_t bt, bus_addr_t a, off_t o, int p,
int f)
{
_BS_CALL(t, sun68k_bus_mmap)(t, bt, a, o, p, f);
}
__inline__ void *
bus_intr_establish(bus_space_tag_t t, int p, int l, int f, int (*h)(void *),
void *a)
{
_BS_CALL(t, sun68k_intr_establish)(t, p, l, f, h, a);
}
__inline__ void
bus_space_barrier(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
bus_size_t s, int f)
{
_BS_CALL(t, sun68k_bus_barrier)(t, h, o, s, f);
}
__inline__ int
_bus_space_peek(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o, size_t s,
void *vp)
{
_BS_CALL(t, sun68k_bus_peek)(t, h, o, s, vp);
}
__inline__ int
_bus_space_poke(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o, size_t s,
uint32_t v)
{
_BS_CALL(t, sun68k_bus_poke)(t, h, o, s, v);
}
#if 0
int bus_space_alloc(bus_space_tag_t, bus_addr_t, bus_addr_t, bus_size_t,
bus_size_t, bus_size_t, int, bus_addr_t *, bus_space_handle_t *);
void bus_space_free(bus_space_tag_t, bus_space_handle_t, bus_size_t);
#endif
/* flags for bus space map functions */
#define BUS_SPACE_MAP_CACHEABLE 0x0001
#define BUS_SPACE_MAP_LINEAR 0x0002
#define BUS_SPACE_MAP_PREFETCHABLE 0x0004
#define BUS_SPACE_MAP_BUS1 0x0100 /* placeholders for bus functions... */
#define BUS_SPACE_MAP_BUS2 0x0200
#define BUS_SPACE_MAP_BUS3 0x0400
#define BUS_SPACE_MAP_BUS4 0x0800
/* Internal flag: try to find and use a PROM maping for the device. */
#define _SUN68K_BUS_MAP_USE_PROM BUS_SPACE_MAP_BUS1
/* flags for intr_establish() */
#define BUS_INTR_ESTABLISH_FASTTRAP 1
#define BUS_INTR_ESTABLISH_SOFTINTR 2
/* flags for bus_space_barrier() */
#define BUS_SPACE_BARRIER_READ 0x01 /* force read barrier */
#define BUS_SPACE_BARRIER_WRITE 0x02 /* force write barrier */
/*
* int bus_space_peek_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset, u_intN_t *valuep);
*
* Cautiously read 1, 2, 4 or 8 byte quantity from bus space described
* by tag/handle/offset.
* If no hardware responds to the read access, the function returns a
* non-zero value. Otherwise the value read is placed in `valuep'.
*/
#define bus_space_peek_1(t, h, o, vp) \
_bus_space_peek(t, h, o, sizeof(uint8_t), (void *)vp)
#define bus_space_peek_2(t, h, o, vp) \
_bus_space_peek(t, h, o, sizeof(uint16_t), (void *)vp)
#define bus_space_peek_4(t, h, o, vp) \
_bus_space_peek(t, h, o, sizeof(uint32_t), (void *)vp)
/*
* int bus_space_poke_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset, uintN_t value);
*
* Cautiously write 1, 2, 4 or 8 byte quantity to bus space described
* by tag/handle/offset.
* If no hardware responds to the write access, the function returns a
* non-zero value.
*/
#define bus_space_poke_1(t, h, o, v) \
_bus_space_poke(t, h, o, sizeof(uint8_t), v)
#define bus_space_poke_2(t, h, o, v) \
_bus_space_poke(t, h, o, sizeof(uint16_t), v)
#define bus_space_poke_4(t, h, o, v) \
_bus_space_poke(t, h, o, sizeof(uint32_t), v)
/*
* uintN_t bus_space_read_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset);
*
* Read a 1, 2, 4, or 8 byte quantity from bus space
* described by tag/handle/offset.
*/
#define bus_space_read_1(t, h, o) \
((void)t, *(volatile uint8_t *)((h) + (o)))
#define bus_space_read_2(t, h, o) \
((void)t, *(volatile uint16_t *)((h) + (o)))
#define bus_space_read_4(t, h, o) \
((void)t, *(volatile uint32_t *)((h) + (o)))
#define bus_space_read_8(t, h, o) \
((void)t, *(volatile uint64_t *)((h) + (o)))
/*
* void bus_space_write_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* uintN_t value);
*
* Write the 1, 2, 4, or 8 byte value `value' to bus space
* described by tag/handle/offset.
*/
#define bus_space_write_1(t, h, o, v) do { \
((void)t, (void)(*(volatile uint8_t *)((h) + (o)) = (v))); \
} while (0)
#define bus_space_write_2(t, h, o, v) do { \
((void)t, (void)(*(volatile uint16_t *)((h) + (o)) = (v))); \
} while (0)
#define bus_space_write_4(t, h, o, v) do { \
((void)t, (void)(*(volatile uint32_t *)((h) + (o)) = (v))); \
} while (0)
#define bus_space_write_8(t, h, o, v) do { \
((void)t, (void)(*(volatile uint64_t *)((h) + (o)) = (v))); \
} while (0)
/*
* void bus_space_read_multi_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* uintN_t *addr, bus_size_t count);
*
* Read `count' 1, 2, 4, or 8 byte quantities from bus space
* described by tag/handle/offset and copy into buffer provided.
*/
void bus_space_read_multi_1(bus_space_tag_t, bus_space_handle_t, bus_size_t,
uint8_t *, bus_size_t);
void bus_space_read_multi_2(bus_space_tag_t, bus_space_handle_t, bus_size_t,
uint16_t *, bus_size_t);
void bus_space_read_multi_4(bus_space_tag_t, bus_space_handle_t, bus_size_t,
uint32_t *, bus_size_t);
void bus_space_read_multi_8(bus_space_tag_t, bus_space_handle_t, bus_size_t,
uint64_t *, bus_size_t);
extern __inline__ void
bus_space_read_multi_1(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
uint8_t *a, bus_size_t c)
{
while (c-- > 0)
*a++ = bus_space_read_1(t, h, o);
}
extern __inline__ void
bus_space_read_multi_2(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
uint16_t *a, bus_size_t c)
{
while (c-- > 0)
*a++ = bus_space_read_2(t, h, o);
}
extern __inline__ void
bus_space_read_multi_4(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
uint32_t *a, bus_size_t c)
{
while (c-- > 0)
*a++ = bus_space_read_4(t, h, o);
}
extern __inline__ void
bus_space_read_multi_8(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
uint64_t *a, bus_size_t c)
{
while (c-- > 0)
*a++ = bus_space_read_8(t, h, o);
}
/*
* void bus_space_write_multi_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* const u_intN_t *addr, bus_size_t count);
*
* Write `count' 1, 2, 4, or 8 byte quantities from the buffer
* provided to bus space described by tag/handle/offset.
*/
void bus_space_write_multi_1(bus_space_tag_t, bus_space_handle_t, bus_size_t,
const uint8_t *, bus_size_t);
void bus_space_write_multi_2(bus_space_tag_t, bus_space_handle_t, bus_size_t,
const uint16_t *, bus_size_t);
void bus_space_write_multi_4(bus_space_tag_t, bus_space_handle_t, bus_size_t,
const uint32_t *, bus_size_t);
void bus_space_write_multi_8(bus_space_tag_t, bus_space_handle_t, bus_size_t,
const uint64_t *, bus_size_t);
extern __inline__ void
bus_space_write_multi_1(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint8_t *a, bus_size_t c)
{
while (c-- > 0)
bus_space_write_1(t, h, o, *a++);
}
extern __inline__ void
bus_space_write_multi_2(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint16_t *a, bus_size_t c)
{
while (c-- > 0)
bus_space_write_2(t, h, o, *a++);
}
extern __inline__ void
bus_space_write_multi_4(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint32_t *a, bus_size_t c)
{
while (c-- > 0)
bus_space_write_4(t, h, o, *a++);
}
extern __inline__ void
bus_space_write_multi_8(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint64_t *a, bus_size_t c)
{
while (c-- > 0)
bus_space_write_8(t, h, o, *a++);
}
/*
* void bus_space_set_multi_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset, uintN_t val,
* bus_size_t count);
*
* Write the 1, 2, 4, or 8 byte value `val' to bus space described
* by tag/handle/offset `count' times.
*/
void bus_space_set_multi_1(bus_space_tag_t, bus_space_handle_t, bus_size_t,
const uint8_t, bus_size_t);
void bus_space_set_multi_2(bus_space_tag_t, bus_space_handle_t, bus_size_t,
const uint16_t, bus_size_t);
void bus_space_set_multi_4(bus_space_tag_t, bus_space_handle_t, bus_size_t,
const uint32_t, bus_size_t);
void bus_space_set_multi_8(bus_space_tag_t, bus_space_handle_t, bus_size_t,
const uint64_t, bus_size_t);
extern __inline__ void
bus_space_set_multi_1(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint8_t v, bus_size_t c)
{
while (c-- > 0)
bus_space_write_1(t, h, o, v);
}
extern __inline__ void
bus_space_set_multi_2(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint16_t v, bus_size_t c)
{
while (c-- > 0)
bus_space_write_2(t, h, o, v);
}
extern __inline__ void
bus_space_set_multi_4(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint32_t v, bus_size_t c)
{
while (c-- > 0)
bus_space_write_4(t, h, o, v);
}
extern __inline__ void
bus_space_set_multi_8(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint64_t v, bus_size_t c)
{
while (c-- > 0)
bus_space_write_8(t, h, o, v);
}
/*
* void bus_space_read_region_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t off,
* uintN_t *addr, bus_size_t count);
*
*/
void bus_space_read_region_1(bus_space_tag_t, bus_space_handle_t, bus_size_t,
uint8_t *, bus_size_t);
void bus_space_read_region_2(bus_space_tag_t, bus_space_handle_t, bus_size_t,
uint16_t *, bus_size_t);
void bus_space_read_region_4(bus_space_tag_t, bus_space_handle_t, bus_size_t,
uint32_t *, bus_size_t);
void bus_space_read_region_8(bus_space_tag_t, bus_space_handle_t, bus_size_t,
uint64_t *, bus_size_t);
extern __inline__ void
bus_space_read_region_1(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
uint8_t *a, bus_size_t c)
{
for (; c; a++, c--, o++)
*a = bus_space_read_1(t, h, o);
}
extern __inline__ void
bus_space_read_region_2(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
uint16_t *a, bus_size_t c)
{
for (; c; a++, c--, o += 2)
*a = bus_space_read_2(t, h, o);
}
extern __inline__ void
bus_space_read_region_4(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
uint32_t *a, bus_size_t c)
{
for (; c; a++, c--, o += 4)
*a = bus_space_read_4(t, h, o);
}
extern __inline__ void
bus_space_read_region_8(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
uint64_t *a, bus_size_t c)
{
for (; c; a++, c--, o += 8)
*a = bus_space_read_8(t, h, o);
}
/*
* void bus_space_write_region_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t off,
* uintN_t *addr, bus_size_t count);
*
*/
void bus_space_write_region_1(bus_space_tag_t, bus_space_handle_t, bus_size_t,
const uint8_t *, bus_size_t);
void bus_space_write_region_2(bus_space_tag_t, bus_space_handle_t, bus_size_t,
const uint16_t *, bus_size_t);
void bus_space_write_region_4(bus_space_tag_t, bus_space_handle_t, bus_size_t,
const uint32_t *, bus_size_t);
void bus_space_write_region_8(bus_space_tag_t, bus_space_handle_t, bus_size_t,
const uint64_t *, bus_size_t);
extern __inline__ void
bus_space_write_region_1(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint8_t *a, bus_size_t c)
{
for (; c; a++, c--, o++)
bus_space_write_1(t, h, o, *a);
}
extern __inline__ void
bus_space_write_region_2(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint16_t *a, bus_size_t c)
{
for (; c; a++, c--, o += 2)
bus_space_write_2(t, h, o, *a);
}
extern __inline__ void
bus_space_write_region_4(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint32_t *a, bus_size_t c)
{
for (; c; a++, c--, o += 4)
bus_space_write_4(t, h, o, *a);
}
extern __inline__ void
bus_space_write_region_8(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint64_t *a, bus_size_t c)
{
for (; c; a++, c--, o += 8)
bus_space_write_8(t, h, o, *a);
}
/*
* void bus_space_set_region_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t off,
* uintN_t *addr, bus_size_t count);
*
*/
void bus_space_set_region_1(bus_space_tag_t, bus_space_handle_t, bus_size_t,
const uint8_t, bus_size_t);
void bus_space_set_region_2(bus_space_tag_t, bus_space_handle_t, bus_size_t,
const uint16_t, bus_size_t);
void bus_space_set_region_4(bus_space_tag_t, bus_space_handle_t, bus_size_t,
const uint32_t, bus_size_t);
void bus_space_set_region_8(bus_space_tag_t, bus_space_handle_t, bus_size_t,
const uint64_t, bus_size_t);
extern __inline__ void
bus_space_set_region_1(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint8_t v, bus_size_t c)
{
for (; c; c--, o++)
bus_space_write_1(t, h, o, v);
}
extern __inline__ void
bus_space_set_region_2(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint16_t v, bus_size_t c)
{
for (; c; c--, o += 2)
bus_space_write_2(t, h, o, v);
}
extern __inline__ void
bus_space_set_region_4(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint32_t v, bus_size_t c)
{
for (; c; c--, o += 4)
bus_space_write_4(t, h, o, v);
}
extern __inline__ void
bus_space_set_region_8(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint64_t v, bus_size_t c)
{
for (; c; c--, o += 8)
bus_space_write_8(t, h, o, v);
}
/*
* void bus_space_copy_region_N(bus_space_tag_t tag,
* bus_space_handle_t bsh1, bus_size_t off1,
* bus_space_handle_t bsh2, bus_size_t off2,
* bus_size_t count);
*
* Copy `count' 1, 2, 4, or 8 byte values from bus space starting
* at tag/bsh1/off1 to bus space starting at tag/bsh2/off2.
*/
void bus_space_copy_region_1(bus_space_tag_t, bus_space_handle_t, bus_size_t,
bus_space_handle_t, bus_size_t, bus_size_t);
void bus_space_copy_region_2(bus_space_tag_t, bus_space_handle_t, bus_size_t,
bus_space_handle_t, bus_size_t, bus_size_t);
void bus_space_copy_region_4(bus_space_tag_t, bus_space_handle_t, bus_size_t,
bus_space_handle_t, bus_size_t, bus_size_t);
void bus_space_copy_region_8(bus_space_tag_t, bus_space_handle_t, bus_size_t,
bus_space_handle_t, bus_size_t, bus_size_t);
extern __inline__ void
bus_space_copy_region_1(bus_space_tag_t t, bus_space_handle_t h1, bus_size_t o1,
bus_space_handle_t h2, bus_size_t o2, bus_size_t c)
{
for (; c; c--, o1++, o2++)
bus_space_write_1(t, h1, o1, bus_space_read_1(t, h2, o2));
}
extern __inline__ void
bus_space_copy_region_2(bus_space_tag_t t, bus_space_handle_t h1, bus_size_t o1,
bus_space_handle_t h2, bus_size_t o2, bus_size_t c)
{
for (; c; c--, o1 += 2, o2 += 2)
bus_space_write_2(t, h1, o1, bus_space_read_2(t, h2, o2));
}
extern __inline__ void
bus_space_copy_region_4(bus_space_tag_t t, bus_space_handle_t h1, bus_size_t o1,
bus_space_handle_t h2, bus_size_t o2, bus_size_t c)
{
for (; c; c--, o1 += 4, o2 += 4)
bus_space_write_4(t, h1, o1, bus_space_read_4(t, h2, o2));
}
extern __inline__ void
bus_space_copy_region_8(bus_space_tag_t t, bus_space_handle_t h1, bus_size_t o1,
bus_space_handle_t h2, bus_size_t o2, bus_size_t c)
{
for (; c; c--, o1 += 8, o2 += 8)
bus_space_write_8(t, h1, o1, bus_space_read_8(t, h2, o2));
}
/*
* void bus_space_copyin(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t off,
* void *addr, bus_size_t count);
*
* Copy `count' bytes from bus space starting at tag/bsh/off
* to kernel memory at addr using the most optimized transfer
* possible for the bus.
*/
#define bus_space_copyin(t, h, o, a, c) \
((void)t, w16copy((uint8_t *)((h) + (o)), (a), (c)))
/*
* void bus_space_copyout(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t off,
* const void *addr, bus_size_t count);
*
* Copy `count' bytes to bus space starting at tag/bsh/off
* from kernel memory at addr using the most optimized transfer
* possible for the bus.
*/
#define bus_space_copyout(t, h, o, a, c) \
((void)t, w16copy((a), (uint8_t *)((h) + (o)), (c)))
#define BUS_SPACE_ALIGNED_POINTER(p, t) ALIGNED_POINTER(p, t)
/*--------------------------------*/
/*
* Flags used in various bus DMA methods.
*/
#define BUS_DMA_WAITOK 0x000 /* safe to sleep (pseudo-flag) */
#define BUS_DMA_NOWAIT 0x001 /* not safe to sleep */
#define BUS_DMA_ALLOCNOW 0x002 /* perform resource allocation now */
#define BUS_DMA_COHERENT 0x004 /* hint: map memory DMA coherent */
#define BUS_DMA_BUS1 0x010 /* placeholders for bus functions... */
#define BUS_DMA_BUS2 0x020
#define BUS_DMA_BUS3 0x040
#define BUS_DMA_BUS4 0x080
#define BUS_DMA_READ 0x100 /* mapping is device -> memory only */
#define BUS_DMA_WRITE 0x200 /* mapping is memory -> device only */
#define BUS_DMA_NOCACHE 0x400 /* hint: map non-cached memory */
/* For devices that have a 24-bit address space */
#define BUS_DMA_24BIT BUS_DMA_BUS1
/* Internal flag: current DVMA address is equal to the KVA buffer address */
#define _BUS_DMA_DIRECTMAP BUS_DMA_BUS2
/*
* Internal flag: current DVMA address has been double-mapped by hand
* to the KVA buffer address (without the pmap's help).
*/
#define _BUS_DMA_NOPMAP BUS_DMA_BUS3
/* Forwards needed by prototypes below. */
struct mbuf;
struct uio;
/*
* Operations performed by bus_dmamap_sync().
*/
#define BUS_DMASYNC_PREREAD 0x01 /* pre-read synchronization */
#define BUS_DMASYNC_POSTREAD 0x02 /* post-read synchronization */
#define BUS_DMASYNC_PREWRITE 0x04 /* pre-write synchronization */
#define BUS_DMASYNC_POSTWRITE 0x08 /* post-write synchronization */
typedef struct sun68k_bus_dma_tag *bus_dma_tag_t;
typedef struct sun68k_bus_dmamap *bus_dmamap_t;
#define BUS_DMA_TAG_VALID(t) ((t) != NULL)
/*
* bus_dma_segment_t
*
* Describes a single contiguous DMA transaction. Values
* are suitable for programming into DMA registers.
*/
struct sun68k_bus_dma_segment {
bus_addr_t ds_addr; /* DVMA address */
bus_size_t ds_len; /* length of transfer */
bus_size_t _ds_sgsize; /* size of allocated DVMA segment */
void *_ds_mlist; /* page list when dmamem_alloc'ed */
vaddr_t _ds_va; /* VA when dmamem_map'ed */
};
typedef struct sun68k_bus_dma_segment bus_dma_segment_t;
/*
* bus_dma_tag_t
*
* A machine-dependent opaque type describing the implementation of
* DMA for a given bus.
*/
struct sun68k_bus_dma_tag {
void *_cookie; /* cookie used in the guts */
/*
* DMA mapping methods.
*/
int (*_dmamap_create)(bus_dma_tag_t, bus_size_t, int, bus_size_t,
bus_size_t, int, bus_dmamap_t *);
void (*_dmamap_destroy)(bus_dma_tag_t, bus_dmamap_t);
int (*_dmamap_load)(bus_dma_tag_t, bus_dmamap_t, void *, bus_size_t,
struct proc *, int);
int (*_dmamap_load_mbuf)(bus_dma_tag_t, bus_dmamap_t, struct mbuf *,
int);
int (*_dmamap_load_uio)(bus_dma_tag_t, bus_dmamap_t, struct uio *,
int);
int (*_dmamap_load_raw)(bus_dma_tag_t, bus_dmamap_t,
bus_dma_segment_t *, int, bus_size_t, int);
void (*_dmamap_unload)(bus_dma_tag_t, bus_dmamap_t);
void (*_dmamap_sync)(bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
bus_size_t, int);
/*
* DMA memory utility functions.
*/
int (*_dmamem_alloc)(bus_dma_tag_t, bus_size_t, bus_size_t,
bus_size_t, bus_dma_segment_t *, int, int *, int);
void (*_dmamem_free)(bus_dma_tag_t, bus_dma_segment_t *, int);
int (*_dmamem_map)(bus_dma_tag_t, bus_dma_segment_t *, int, size_t,
caddr_t *, int);
void (*_dmamem_unmap)(bus_dma_tag_t, caddr_t, size_t);
paddr_t (*_dmamem_mmap)(bus_dma_tag_t, bus_dma_segment_t *, int, off_t,
int, int);
};
#define bus_dmamap_create(t, s, n, m, b, f, p) \
(*(t)->_dmamap_create)((t), (s), (n), (m), (b), (f), (p))
#define bus_dmamap_destroy(t, p) \
(*(t)->_dmamap_destroy)((t), (p))
#define bus_dmamap_load(t, m, b, s, p, f) \
(*(t)->_dmamap_load)((t), (m), (b), (s), (p), (f))
#define bus_dmamap_load_mbuf(t, m, b, f) \
(*(t)->_dmamap_load_mbuf)((t), (m), (b), (f))
#define bus_dmamap_load_uio(t, m, u, f) \
(*(t)->_dmamap_load_uio)((t), (m), (u), (f))
#define bus_dmamap_load_raw(t, m, sg, n, s, f) \
(*(t)->_dmamap_load_raw)((t), (m), (sg), (n), (s), (f))
#define bus_dmamap_unload(t, p) \
(*(t)->_dmamap_unload)((t), (p))
#define bus_dmamap_sync(t, p, o, l, ops) \
(void)((t)->_dmamap_sync ? \
(*(t)->_dmamap_sync)((t), (p), (o), (l), (ops)) : (void)0)
#define bus_dmamem_alloc(t, s, a, b, sg, n, r, f) \
(*(t)->_dmamem_alloc)((t), (s), (a), (b), (sg), (n), (r), (f))
#define bus_dmamem_free(t, sg, n) \
(*(t)->_dmamem_free)((t), (sg), (n))
#define bus_dmamem_map(t, sg, n, s, k, f) \
(*(t)->_dmamem_map)((t), (sg), (n), (s), (k), (f))
#define bus_dmamem_unmap(t, k, s) \
(*(t)->_dmamem_unmap)((t), (k), (s))
#define bus_dmamem_mmap(t, sg, n, o, p, f) \
(*(t)->_dmamem_mmap)((t), (sg), (n), (o), (p), (f))
/*
* bus_dmamap_t
*
* Describes a DMA mapping.
*/
struct sun68k_bus_dmamap {
/*
* PRIVATE MEMBERS: not for use by machine-independent code.
*/
bus_size_t _dm_size; /* largest DMA transfer mappable */
int _dm_segcnt; /* number of segs this map can map */
bus_size_t _dm_maxmaxsegsz; /* fixed largest possible segment */
bus_size_t _dm_boundary; /* don't cross this */
int _dm_flags; /* misc. flags */
void *_dm_cookie; /* cookie for bus-specific functions */
u_long _dm_align; /* DVMA alignment; must be a
multiple of the page size */
u_long _dm_ex_start; /* constraints on DVMA map */
u_long _dm_ex_end; /* allocations; used by the VME bus
driver and by the IOMMU driver
when mapping 24-bit devices */
/*
* PUBLIC MEMBERS: these are used by machine-independent code.
*/
bus_size_t dm_maxsegsz; /* largest possible segment */
bus_size_t dm_mapsize; /* size of the mapping */
int dm_nsegs; /* # valid segments in mapping */
bus_dma_segment_t dm_segs[1]; /* segments; variable length */
};
#ifdef _SUN68K_BUS_DMA_PRIVATE
int _bus_dmamap_create(bus_dma_tag_t, bus_size_t, int, bus_size_t,
bus_size_t, int, bus_dmamap_t *);
void _bus_dmamap_destroy(bus_dma_tag_t, bus_dmamap_t);
int _bus_dmamap_load_mbuf(bus_dma_tag_t, bus_dmamap_t, struct mbuf *, int);
int _bus_dmamap_load_uio(bus_dma_tag_t, bus_dmamap_t, struct uio *, int);
int _bus_dmamap_load_raw(bus_dma_tag_t, bus_dmamap_t, bus_dma_segment_t *,
int, bus_size_t, int);
int _bus_dmamap_load(bus_dma_tag_t, bus_dmamap_t, void *, bus_size_t,
struct proc *, int);
void _bus_dmamap_unload(bus_dma_tag_t, bus_dmamap_t);
void _bus_dmamap_sync(bus_dma_tag_t, bus_dmamap_t, bus_addr_t, bus_size_t,
int);
int _bus_dmamem_alloc(bus_dma_tag_t, bus_size_t, bus_size_t, bus_size_t,
bus_dma_segment_t *, int, int *, int);
void _bus_dmamem_free(bus_dma_tag_t, bus_dma_segment_t *, int);
int _bus_dmamem_map(bus_dma_tag_t, bus_dma_segment_t *, int, size_t,
caddr_t *, int);
void _bus_dmamem_unmap(bus_dma_tag_t, caddr_t, size_t);
paddr_t _bus_dmamem_mmap(bus_dma_tag_t, bus_dma_segment_t *, int, off_t, int,
int);
int _bus_dmamem_alloc_range(bus_dma_tag_t, bus_size_t, bus_size_t,
bus_size_t, bus_dma_segment_t *, int, int *, int, vaddr_t, vaddr_t);
vaddr_t _bus_dma_valloc_skewed(size_t, u_long, u_long, u_long);
#endif /* _SUN68K_BUS_DMA_PRIVATE */
#endif /* _SUN68K_BUS_H_ */