NetBSD/sys/kern/kern_timeout.c
chs fd34ea77eb remove checks for failure after memory allocation calls that cannot fail:
kmem_alloc() with KM_SLEEP
  kmem_zalloc() with KM_SLEEP
  percpu_alloc()
  pserialize_create()
  psref_class_create()

all of these paths include an assertion that the allocation has not failed,
so callers should not assert that again.
2017-06-01 02:45:05 +00:00

827 lines
22 KiB
C

/* $NetBSD: kern_timeout.c,v 1.52 2017/06/01 02:45:13 chs Exp $ */
/*-
* Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe, and by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2001 Thomas Nordin <nordin@openbsd.org>
* Copyright (c) 2000-2001 Artur Grabowski <art@openbsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.52 2017/06/01 02:45:13 chs Exp $");
/*
* Timeouts are kept in a hierarchical timing wheel. The c_time is the
* value of c_cpu->cc_ticks when the timeout should be called. There are
* four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
* Hierarchical Timing Wheels: Efficient Data Structures for Implementing
* a Timer Facility" by George Varghese and Tony Lauck.
*
* Some of the "math" in here is a bit tricky. We have to beware of
* wrapping ints.
*
* We use the fact that any element added to the queue must be added with
* a positive time. That means that any element `to' on the queue cannot
* be scheduled to timeout further in time than INT_MAX, but c->c_time can
* be positive or negative so comparing it with anything is dangerous.
* The only way we can use the c->c_time value in any predictable way is
* when we calculate how far in the future `to' will timeout - "c->c_time
* - c->c_cpu->cc_ticks". The result will always be positive for future
* timeouts and 0 or negative for due timeouts.
*/
#define _CALLOUT_PRIVATE
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/callout.h>
#include <sys/lwp.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sleepq.h>
#include <sys/syncobj.h>
#include <sys/evcnt.h>
#include <sys/intr.h>
#include <sys/cpu.h>
#include <sys/kmem.h>
#ifdef DDB
#include <machine/db_machdep.h>
#include <ddb/db_interface.h>
#include <ddb/db_access.h>
#include <ddb/db_cpu.h>
#include <ddb/db_sym.h>
#include <ddb/db_output.h>
#endif
#define BUCKETS 1024
#define WHEELSIZE 256
#define WHEELMASK 255
#define WHEELBITS 8
#define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
#define BUCKET(cc, rel, abs) \
(((rel) <= (1 << (2*WHEELBITS))) \
? ((rel) <= (1 << WHEELBITS)) \
? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
: &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
: ((rel) <= (1 << (3*WHEELBITS))) \
? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
: &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
#define MOVEBUCKET(cc, wheel, time) \
CIRCQ_APPEND(&(cc)->cc_todo, \
&(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
/*
* Circular queue definitions.
*/
#define CIRCQ_INIT(list) \
do { \
(list)->cq_next_l = (list); \
(list)->cq_prev_l = (list); \
} while (/*CONSTCOND*/0)
#define CIRCQ_INSERT(elem, list) \
do { \
(elem)->cq_prev_e = (list)->cq_prev_e; \
(elem)->cq_next_l = (list); \
(list)->cq_prev_l->cq_next_l = (elem); \
(list)->cq_prev_l = (elem); \
} while (/*CONSTCOND*/0)
#define CIRCQ_APPEND(fst, snd) \
do { \
if (!CIRCQ_EMPTY(snd)) { \
(fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
(snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
(snd)->cq_prev_l->cq_next_l = (fst); \
(fst)->cq_prev_l = (snd)->cq_prev_l; \
CIRCQ_INIT(snd); \
} \
} while (/*CONSTCOND*/0)
#define CIRCQ_REMOVE(elem) \
do { \
(elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
(elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
} while (/*CONSTCOND*/0)
#define CIRCQ_FIRST(list) ((list)->cq_next_e)
#define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
#define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
#define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
struct callout_cpu {
kmutex_t *cc_lock;
sleepq_t cc_sleepq;
u_int cc_nwait;
u_int cc_ticks;
lwp_t *cc_lwp;
callout_impl_t *cc_active;
callout_impl_t *cc_cancel;
struct evcnt cc_ev_late;
struct evcnt cc_ev_block;
struct callout_circq cc_todo; /* Worklist */
struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
char cc_name1[12];
char cc_name2[12];
};
#ifndef CRASH
static void callout_softclock(void *);
static struct callout_cpu callout_cpu0;
static void *callout_sih;
static inline kmutex_t *
callout_lock(callout_impl_t *c)
{
struct callout_cpu *cc;
kmutex_t *lock;
for (;;) {
cc = c->c_cpu;
lock = cc->cc_lock;
mutex_spin_enter(lock);
if (__predict_true(cc == c->c_cpu))
return lock;
mutex_spin_exit(lock);
}
}
/*
* callout_startup:
*
* Initialize the callout facility, called at system startup time.
* Do just enough to allow callouts to be safely registered.
*/
void
callout_startup(void)
{
struct callout_cpu *cc;
int b;
KASSERT(curcpu()->ci_data.cpu_callout == NULL);
cc = &callout_cpu0;
cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
CIRCQ_INIT(&cc->cc_todo);
for (b = 0; b < BUCKETS; b++)
CIRCQ_INIT(&cc->cc_wheel[b]);
curcpu()->ci_data.cpu_callout = cc;
}
/*
* callout_init_cpu:
*
* Per-CPU initialization.
*/
CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
void
callout_init_cpu(struct cpu_info *ci)
{
struct callout_cpu *cc;
int b;
if ((cc = ci->ci_data.cpu_callout) == NULL) {
cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
CIRCQ_INIT(&cc->cc_todo);
for (b = 0; b < BUCKETS; b++)
CIRCQ_INIT(&cc->cc_wheel[b]);
} else {
/* Boot CPU, one time only. */
callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
callout_softclock, NULL);
if (callout_sih == NULL)
panic("callout_init_cpu (2)");
}
sleepq_init(&cc->cc_sleepq);
snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
cpu_index(ci));
evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
NULL, "callout", cc->cc_name1);
snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
cpu_index(ci));
evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
NULL, "callout", cc->cc_name2);
ci->ci_data.cpu_callout = cc;
}
/*
* callout_init:
*
* Initialize a callout structure. This must be quick, so we fill
* only the minimum number of fields.
*/
void
callout_init(callout_t *cs, u_int flags)
{
callout_impl_t *c = (callout_impl_t *)cs;
struct callout_cpu *cc;
KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
cc = curcpu()->ci_data.cpu_callout;
c->c_func = NULL;
c->c_magic = CALLOUT_MAGIC;
if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
c->c_flags = flags;
c->c_cpu = cc;
return;
}
c->c_flags = flags | CALLOUT_BOUND;
c->c_cpu = &callout_cpu0;
}
/*
* callout_destroy:
*
* Destroy a callout structure. The callout must be stopped.
*/
void
callout_destroy(callout_t *cs)
{
callout_impl_t *c = (callout_impl_t *)cs;
/*
* It's not necessary to lock in order to see the correct value
* of c->c_flags. If the callout could potentially have been
* running, the current thread should have stopped it.
*/
KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
"callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
c, c->c_func, c->c_flags, __builtin_return_address(0));
KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
"callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
c, c->c_magic, CALLOUT_MAGIC);
c->c_magic = 0;
}
/*
* callout_schedule_locked:
*
* Schedule a callout to run. The function and argument must
* already be set in the callout structure. Must be called with
* callout_lock.
*/
static void
callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
{
struct callout_cpu *cc, *occ;
int old_time;
KASSERT(to_ticks >= 0);
KASSERT(c->c_func != NULL);
/* Initialize the time here, it won't change. */
occ = c->c_cpu;
c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
/*
* If this timeout is already scheduled and now is moved
* earlier, reschedule it now. Otherwise leave it in place
* and let it be rescheduled later.
*/
if ((c->c_flags & CALLOUT_PENDING) != 0) {
/* Leave on existing CPU. */
old_time = c->c_time;
c->c_time = to_ticks + occ->cc_ticks;
if (c->c_time - old_time < 0) {
CIRCQ_REMOVE(&c->c_list);
CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
}
mutex_spin_exit(lock);
return;
}
cc = curcpu()->ci_data.cpu_callout;
if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
!mutex_tryenter(cc->cc_lock)) {
/* Leave on existing CPU. */
c->c_time = to_ticks + occ->cc_ticks;
c->c_flags |= CALLOUT_PENDING;
CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
} else {
/* Move to this CPU. */
c->c_cpu = cc;
c->c_time = to_ticks + cc->cc_ticks;
c->c_flags |= CALLOUT_PENDING;
CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
mutex_spin_exit(cc->cc_lock);
}
mutex_spin_exit(lock);
}
/*
* callout_reset:
*
* Reset a callout structure with a new function and argument, and
* schedule it to run.
*/
void
callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
{
callout_impl_t *c = (callout_impl_t *)cs;
kmutex_t *lock;
KASSERT(c->c_magic == CALLOUT_MAGIC);
KASSERT(func != NULL);
lock = callout_lock(c);
c->c_func = func;
c->c_arg = arg;
callout_schedule_locked(c, lock, to_ticks);
}
/*
* callout_schedule:
*
* Schedule a callout to run. The function and argument must
* already be set in the callout structure.
*/
void
callout_schedule(callout_t *cs, int to_ticks)
{
callout_impl_t *c = (callout_impl_t *)cs;
kmutex_t *lock;
KASSERT(c->c_magic == CALLOUT_MAGIC);
lock = callout_lock(c);
callout_schedule_locked(c, lock, to_ticks);
}
/*
* callout_stop:
*
* Try to cancel a pending callout. It may be too late: the callout
* could be running on another CPU. If called from interrupt context,
* the callout could already be in progress at a lower priority.
*/
bool
callout_stop(callout_t *cs)
{
callout_impl_t *c = (callout_impl_t *)cs;
struct callout_cpu *cc;
kmutex_t *lock;
bool expired;
KASSERT(c->c_magic == CALLOUT_MAGIC);
lock = callout_lock(c);
if ((c->c_flags & CALLOUT_PENDING) != 0)
CIRCQ_REMOVE(&c->c_list);
expired = ((c->c_flags & CALLOUT_FIRED) != 0);
c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
cc = c->c_cpu;
if (cc->cc_active == c) {
/*
* This is for non-MPSAFE callouts only. To synchronize
* effectively we must be called with kernel_lock held.
* It's also taken in callout_softclock.
*/
cc->cc_cancel = c;
}
mutex_spin_exit(lock);
return expired;
}
/*
* callout_halt:
*
* Cancel a pending callout. If in-flight, block until it completes.
* May not be called from a hard interrupt handler. If the callout
* can take locks, the caller of callout_halt() must not hold any of
* those locks, otherwise the two could deadlock. If 'interlock' is
* non-NULL and we must wait for the callout to complete, it will be
* released and re-acquired before returning.
*/
bool
callout_halt(callout_t *cs, void *interlock)
{
callout_impl_t *c = (callout_impl_t *)cs;
struct callout_cpu *cc;
struct lwp *l;
kmutex_t *lock, *relock;
bool expired;
KASSERT(c->c_magic == CALLOUT_MAGIC);
KASSERT(!cpu_intr_p());
lock = callout_lock(c);
relock = NULL;
expired = ((c->c_flags & CALLOUT_FIRED) != 0);
if ((c->c_flags & CALLOUT_PENDING) != 0)
CIRCQ_REMOVE(&c->c_list);
c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
l = curlwp;
for (;;) {
cc = c->c_cpu;
if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
break;
if (interlock != NULL) {
/*
* Avoid potential scheduler lock order problems by
* dropping the interlock without the callout lock
* held.
*/
mutex_spin_exit(lock);
mutex_exit(interlock);
relock = interlock;
interlock = NULL;
} else {
/* XXX Better to do priority inheritance. */
KASSERT(l->l_wchan == NULL);
cc->cc_nwait++;
cc->cc_ev_block.ev_count++;
l->l_kpriority = true;
sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
&sleep_syncobj);
sleepq_block(0, false);
}
lock = callout_lock(c);
}
mutex_spin_exit(lock);
if (__predict_false(relock != NULL))
mutex_enter(relock);
return expired;
}
#ifdef notyet
/*
* callout_bind:
*
* Bind a callout so that it will only execute on one CPU.
* The callout must be stopped, and must be MPSAFE.
*
* XXX Disabled for now until it is decided how to handle
* offlined CPUs. We may want weak+strong binding.
*/
void
callout_bind(callout_t *cs, struct cpu_info *ci)
{
callout_impl_t *c = (callout_impl_t *)cs;
struct callout_cpu *cc;
kmutex_t *lock;
KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
KASSERT(c->c_cpu->cc_active != c);
KASSERT(c->c_magic == CALLOUT_MAGIC);
KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
lock = callout_lock(c);
cc = ci->ci_data.cpu_callout;
c->c_flags |= CALLOUT_BOUND;
if (c->c_cpu != cc) {
/*
* Assigning c_cpu effectively unlocks the callout
* structure, as we don't hold the new CPU's lock.
* Issue memory barrier to prevent accesses being
* reordered.
*/
membar_exit();
c->c_cpu = cc;
}
mutex_spin_exit(lock);
}
#endif
void
callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
{
callout_impl_t *c = (callout_impl_t *)cs;
kmutex_t *lock;
KASSERT(c->c_magic == CALLOUT_MAGIC);
KASSERT(func != NULL);
lock = callout_lock(c);
c->c_func = func;
c->c_arg = arg;
mutex_spin_exit(lock);
}
bool
callout_expired(callout_t *cs)
{
callout_impl_t *c = (callout_impl_t *)cs;
kmutex_t *lock;
bool rv;
KASSERT(c->c_magic == CALLOUT_MAGIC);
lock = callout_lock(c);
rv = ((c->c_flags & CALLOUT_FIRED) != 0);
mutex_spin_exit(lock);
return rv;
}
bool
callout_active(callout_t *cs)
{
callout_impl_t *c = (callout_impl_t *)cs;
kmutex_t *lock;
bool rv;
KASSERT(c->c_magic == CALLOUT_MAGIC);
lock = callout_lock(c);
rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
mutex_spin_exit(lock);
return rv;
}
bool
callout_pending(callout_t *cs)
{
callout_impl_t *c = (callout_impl_t *)cs;
kmutex_t *lock;
bool rv;
KASSERT(c->c_magic == CALLOUT_MAGIC);
lock = callout_lock(c);
rv = ((c->c_flags & CALLOUT_PENDING) != 0);
mutex_spin_exit(lock);
return rv;
}
bool
callout_invoking(callout_t *cs)
{
callout_impl_t *c = (callout_impl_t *)cs;
kmutex_t *lock;
bool rv;
KASSERT(c->c_magic == CALLOUT_MAGIC);
lock = callout_lock(c);
rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
mutex_spin_exit(lock);
return rv;
}
void
callout_ack(callout_t *cs)
{
callout_impl_t *c = (callout_impl_t *)cs;
kmutex_t *lock;
KASSERT(c->c_magic == CALLOUT_MAGIC);
lock = callout_lock(c);
c->c_flags &= ~CALLOUT_INVOKING;
mutex_spin_exit(lock);
}
/*
* callout_hardclock:
*
* Called from hardclock() once every tick. We schedule a soft
* interrupt if there is work to be done.
*/
void
callout_hardclock(void)
{
struct callout_cpu *cc;
int needsoftclock, ticks;
cc = curcpu()->ci_data.cpu_callout;
mutex_spin_enter(cc->cc_lock);
ticks = ++cc->cc_ticks;
MOVEBUCKET(cc, 0, ticks);
if (MASKWHEEL(0, ticks) == 0) {
MOVEBUCKET(cc, 1, ticks);
if (MASKWHEEL(1, ticks) == 0) {
MOVEBUCKET(cc, 2, ticks);
if (MASKWHEEL(2, ticks) == 0)
MOVEBUCKET(cc, 3, ticks);
}
}
needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
mutex_spin_exit(cc->cc_lock);
if (needsoftclock)
softint_schedule(callout_sih);
}
/*
* callout_softclock:
*
* Soft interrupt handler, scheduled above if there is work to
* be done. Callouts are made in soft interrupt context.
*/
static void
callout_softclock(void *v)
{
callout_impl_t *c;
struct callout_cpu *cc;
void (*func)(void *);
void *arg;
int mpsafe, count, ticks, delta;
lwp_t *l;
l = curlwp;
KASSERT(l->l_cpu == curcpu());
cc = l->l_cpu->ci_data.cpu_callout;
mutex_spin_enter(cc->cc_lock);
cc->cc_lwp = l;
while (!CIRCQ_EMPTY(&cc->cc_todo)) {
c = CIRCQ_FIRST(&cc->cc_todo);
KASSERT(c->c_magic == CALLOUT_MAGIC);
KASSERT(c->c_func != NULL);
KASSERT(c->c_cpu == cc);
KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
CIRCQ_REMOVE(&c->c_list);
/* If due run it, otherwise insert it into the right bucket. */
ticks = cc->cc_ticks;
delta = c->c_time - ticks;
if (delta > 0) {
CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
continue;
}
if (delta < 0)
cc->cc_ev_late.ev_count++;
c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
(CALLOUT_FIRED | CALLOUT_INVOKING);
mpsafe = (c->c_flags & CALLOUT_MPSAFE);
func = c->c_func;
arg = c->c_arg;
cc->cc_active = c;
mutex_spin_exit(cc->cc_lock);
KASSERT(func != NULL);
if (__predict_false(!mpsafe)) {
KERNEL_LOCK(1, NULL);
(*func)(arg);
KERNEL_UNLOCK_ONE(NULL);
} else
(*func)(arg);
mutex_spin_enter(cc->cc_lock);
/*
* We can't touch 'c' here because it might be
* freed already. If LWPs waiting for callout
* to complete, awaken them.
*/
cc->cc_active = NULL;
if ((count = cc->cc_nwait) != 0) {
cc->cc_nwait = 0;
/* sleepq_wake() drops the lock. */
sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
mutex_spin_enter(cc->cc_lock);
}
}
cc->cc_lwp = NULL;
mutex_spin_exit(cc->cc_lock);
}
#endif
#ifdef DDB
static void
db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
struct callout_circq *bucket)
{
callout_impl_t *c, ci;
db_expr_t offset;
const char *name;
static char question[] = "?";
int b;
if (CIRCQ_LAST(bucket, kbucket))
return;
for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
c = &ci;
db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
&offset);
name = name ? name : question;
b = (bucket - cc->cc_wheel);
if (b < 0)
b = -WHEELSIZE;
db_printf("%9d %2d/%-4d %16lx %s\n",
c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
(u_long)c->c_arg, name);
if (CIRCQ_LAST(&c->c_list, kbucket))
break;
}
}
void
db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
{
struct callout_cpu *cc, ccb;
struct cpu_info *ci, cib;
int b;
#ifndef CRASH
db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
#endif
db_printf(" ticks wheel arg func\n");
/*
* Don't lock the callwheel; all the other CPUs are paused
* anyhow, and we might be called in a circumstance where
* some other CPU was paused while holding the lock.
*/
for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
cc = cib.ci_data.cpu_callout;
db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
}
for (b = 0; b < BUCKETS; b++) {
for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
cc = cib.ci_data.cpu_callout;
db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
&ccb.cc_wheel[b]);
}
}
}
#endif /* DDB */